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Introduction. A continuous state branching Markov process (C.B.P.) was

introduced by Jirina [8] and recently Lamperti [10] determined all such processes

on the half line. (A quite similar result was obtained independently by the author.)

This class of Markov processes contains as a special case the diffusion processes

(which we shall call Feller's diffusions) studied by Feller [2]. The main objective of

the present paper is to extend Lamperti's result to multi-dimensional case. For

simplicity we shall consider the case of 2-dimensions though many arguments can

be carried over to the case of higher dimensions(2). In Theorem 2 below we shall

characterize all C.B.P.'s in the first quadrant of a plane and construct them. Our

construction is in an analytic way, by a similar construction given in Ikeda,

Nagasawa and Watanabe [5], through backward equations (or in the terminology

of [5] through S-equations) for a simpler case and then in the general case by a

limiting procedure.

A special attention will be paid to the case of diffusions. We shall show that these

diffusions can be obtained as a unique solution of a stochastic equation of Ito

(Theorem 3). This fact may be of some interest since the solutions of a stochastic

equation with coefficients Holder continuous of exponent 1/2 (which is our case)

are not known to be unique in general. Next we shall examine the behavior of sample

functions near the boundaries (xj-axis or x2-axis). We shall explain, for instance,

the case of xraxis. There are two completely different types of behaviors. In the

first case Xj-axis acts as a pure exit boundary: when a sample function reaches the

Xj-axis then it remains on it moving as a one-dimensional Feller diffusion up to

the time when it hits the origin and then it is stopped. In the second case, there is a

point x0 on x^-axis such that 22 = (0, *o) acts as a reflecting boundary and Ex=

(x0, oo) acts as a pure entrance boundary (Theorem 4 and Corollaries).

1. Definitions and the main theorem. Let D° = {x = (x1, x2) : xx>0, x2>0},

D = {x = (x1, x2) : xr ä 0, x2 ̂  0} and D = D u {A} be the one-point compactification

of D.
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(2) Also a similar result can be obtained for more general domains, e.g., upper half plane or

whole plane (in the latter case every process is a deterministic diffusion).
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Definition 1.1 (3). A Markov process X= (xt, Px) on D is called a continuous

state branching process (C.B.P.) if it has A as a trap and satisfies

(1.1) £*(e"Ax0 = £a.o)(e-v*')*^(o.i)(«"A'*')*a

for every A = (Al5 A2)»0 and x = (xu x2) e D. The property (1.1) is called the

branching property.

Definition 1.2. A C.B.P. X=(xt, Px) is called regular if both £,a,o)(e"~A'*<)

and £'(0>1)(e"A'x') are differentiable in t at / = 0 for each fixed A»0.

Let T be the set of all functions i/<(A), A 3:0, of the form

(1.2) ift(X) = c0 + cl\1 + c2X2 + j^il-e-^Mdu)

where c^O, i=0, 1, 2 and n(du) is a nonnegative measure on D-{0}(4) such that

f     l"l      tJ >>'     i «(#(() < CO

i.e., </r(A)eT if and only if e~*m is the Laplace transform of a substochastic

infinitely divisible measure P on D. Let

(1.3) Y2 = TxT = (u>(A) = (^(A), <£2(A)); 0,(A) e Y, / = 1, 2}

then there is a one-to-one correspondence betweeni|*eT2 and a pair (P1; P2) of

substochastic infinitely divisible measures on D. It is easy to see that if i]^ and vj>2

are in T2 then q>i(d>2) e Y2 where +i(dy2) is defined by

(1.4) W+aXA) = OArWsW), TOa(A)))

if 4*i = OA'i1*) </'21>). In feet f°r every x = (xu x2) e D there exists a unique sub-

stochastic infinitely divisible measure Px{dy) on D such that

^{-x^f\X)-x2^\X)} = ^e-^P^X6).

Let öi(^j) 0=1, 2) be substochastic infinitely divisible measures on D defined by

exp(-#>(A)) = JV*-»a(o».

Thenu>1(4i2) corresponds to the pair (P1; P2) of infinitely divisible measures defined

by

Pidy) = ^DQldx)Px(dy\ /=1,2.

(3) A»0 (A=(A,, A2)) means A,>0'(/=1, 2). A§0 means A,^0 (/=1, 2). X-x=XlXl + X2x2

for A=(Ai, A2) and x=(xu x2).

(4) O denotes the origin.
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Definition 1.3. A one parameter family {4>i}(e[0,oo) of elements in Y2 is called a

^-semigroup if

(1.5) 4>(+s =+((«|*.),     <h(A) = A.

Definition 1.4. A ^-semigroup is called regular if for every A»0, u>((A)

is differentiable in t at t = 0.

Let Jf=(xt, be a C.B.P. and let P(t, x, dy) be the transition probability of X.

If we set Pi(r, dy)=P(t, (1, 0), a» and P2(/, dy)=P(t, (0, 1), a» then

(1.6) J" e-^P{t, x, dy) = exp {-^(t, X)x1-<f>2(t, X)x2}

where

(1.7) exp (- MU A)) = f e" ̂ (r, ö»,     i = 1, 2.

Then uy4(A) = (tjtjj, A), i/r2(r, A)) e T2 for every f^O and by the semigroup property

of P(t, x, dy) it is easy to see that4»(+s=u>((u>s), i.e., {u>i}ie[0jK>) is a ^-semigroup.

Conversely given a ^-semigroup {vb(}, if we define P(t, x, dy) by (1.6) then it is

a substochastic kernel and by the semigroup property of <\>t we have

P(t + s, x, dy) = j P(t, x, dz)P(s, z, dy).

Hence {P(t, x, dy)} defines a unique Markov process on D = £> u {A} with D as a

trap. Thus we have the following

Theorem 1. There is a one-to-one correspondence between the C.B.P.'s X=(xt,Px),

and the ^-semigroups {i\>t}. The correspondence is given by

(1.8) £*(e-v*0 = expi-xJA, X)-x2UU A)}.

Furthermore X is regular if and only if{*\>t} is regular.

Let |j(x) and £2(x)eCo(D)(6) such that £1(x) = x1 and t;2{x) = x2 on some

neighborhood U of the origin O. The main theorem is the following:

Theorem 2. Let X=(xt,Px) be a regular C.B.P. Then the semigroup Tt of the

process X is a strongly continuous nonnegative contraction semigroup on CQ(D)(6)

such that, if A is the infinitesimal generator in Hille- Yosida sense ofTt, we have

(i) Cg(7J)c D(A)(6) and

in)forfeCl{D)

(6) C0(D)={f(x) : continuous on D such that limU|^„/W = 0}, Q(D) = [f(x) e C0(D);

all the derivatives up to nth order are in C0(D)} and CS'(D) = Dn Cg(Z>).
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Af{x) = cc2x1fn(x)+ß2x2f22(_x) + (ax1 + bx2)f1(x)

+ (cx! + dx2)f2(x) - yxj{x) - 8x2f{x)

0-9) +Xl £ {f{x+y)-f{x)-Uy)ax)}ni{dy)

+ x2 f {f(x+y)-f(x)-Uy¥2(x)}n2(dy)C)
Jd

where a, ß, y, 8, a, b, c, d are constants such that

(1.10) yäO,      SäO,      ftä 0,      c >: 0

a«^ «i, «2 ß^e nonnegative measures on D — {0} such that

nin      f {8(y) + Uy))nx{dy) + f {^(j) + e2(y)}n2(dy)
(1.11) Jt7 Jt;

+ «,(£-U) + n2(D-U) < oo.

Conversely given a, b, c, d, a, ß, y, 8, «j a«tz" «2 w/VA conditions (1.10) ant/ (1.11)

^ere exists a unique Markov process X= (xt, Px) with the semigroup Tt satisfying

(i) and (ii) and further X is a regular C.B.P.

If we set

(1.12) Ea>m(e-**t) = e~*i(tM,     E(0tl)(e-***) = e"M'»

Ai(A) = -«%4-(aA1+cA2)-|-y-f (e-^-l + Ai^))»!^),

Ä2(A) = -jS^ + ^ + rfA^ + S-j (g-*»-l + Aa^))ba(fl>),

(1.13)

(1.14) Ex(e~A-xt) = F(r, A; x)

then<^t = {>py{t, A), i/r2(', A)) satisfies the backward equation

(1.15) = ^(«K),     oVa/rfr = Ä2(«h),    v|>0+ = A,

anc/ F(f, A; x) satisfies the forward equation

(1.16) |?=Äl(A)^+Aa(A)g;     F(0+, A; x) =

By the correspondence established in Theorem 1 this theorem can be stated in

the following purely analytical form:

Theorem 2'. Let 4>t = 0Ai(f, A), ifi2(t, A)) be a regular ^-semigroup. Then there exist

a, b, c, d, a, ß, y, 8, «j and n2 satisfying the conditions (1.10) and (1.11) such that it

is given as a solution of the backward equation (1.15) for hx and h2 defined by (1.13).

O /iA*) = e2/7äXi fa, and/,(*) = a/7Sx,, i=l, 2.
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Conversely given such a, b, c, d, a, ß, y, S, nx and n2, the solution of the backward

equation is unique and defines a Ys'-semigroup.

2. Proof of Theorem 2.

Lemma I. Let 0n e W and 0n => 0(8) on a domain U <£ A = {A = (A1; A2) : A^0}(9).

Then 0 e (To be precise there exists a unique extension of Y onto A so that it is

an element of^¥.)

Proof. This lemma may be well known but we shall give a standard proof for

the completeness. 0(A) e T has the form

0(A) = c0 + c1A1 + c2A2 + J^(l-e-*>(au)

- f £(\;r,6)n{drd6)
Ja

for some bounded measure n(dr dd) on 0. where

Q = [0, oo] x [0, tt/2]

£(A; r, 0) = {1 -exp (-Axr cos 0-\2r sin 0)}

x(l+rcos 0+rsin 0)(r cos 0+r sin 0)"1.

Clearly we have

c0=f n(drd8),      Cl=f C™6. 0n(drd6)
J{«>x[0,JI/2] J(0)x[0,s/2] C0S f + Sin O

and

f sin 0
c2 = -rr—.—5 «(aV rf0).

J<o> «[0,^/21 cos 0 + sin 0

Also it is easy to see that for any nonnegative bounded measure n on D

0(A) - f f(A;r,0)«(*^0)

is an element in T. Note also that for fixed A0 e U,

(2.1) dx g £(A0; r, 0) g </a     for all (/, 0) e Q

for some constants 0 < dx < d2. Now let 0„(A) => 0(A) on U. Then supn 0n(Ao) < co

and hence by (2.1) sup„ «n(ß)<oo. Hence some subsequence {hn} of {/?„} converges

weakly to a bounded measure n, then clearly

0n,(A) -> 0(A) = f f(A; r, 0)«(*V     £ Y.
Jn

(8) >jin    xp means the uniform convergence.

(9) U (c A means £/ is a bounded domain such that p(U; 3 A) > 0 where p is the Euclidean

distance.
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Lemma 2. Let AB(A)=(Ain)(A), h2n\X)), n = 1, 2,..., and /!(A) = (/i1(A), /j2(A))

functions on A = {A = (AX, A2); A;äO} such that for some V <Q A, hn^- h on V and

each hn and h are Lipschitz continuous on V. Let ^["'(A) and 4<((A) be solutions of

(2.2) d^jdt = hn(Vtn)),     +J» = A,

(2.3) = A(<fc),     «K + = A

respectively. Then there exists V0<G V and t0>0 such that 44n)(A) =>4>t(A) on (r, A)

e [0, /„] x K„.

Proof. Let h(X), /7(A) be Lipschitz continuous in V such that

(2.4) sup \h(X)-h{\)\ < e

and

(2.5) sup |A(A)-A0t)|-|A-M|-» g ^(10).

Set

(2.6) 73 =  sup |Ä(A)| + e.
AeV

We claim that if i|>t and <pt are the solutions of

(2.7) dA(A) = A+J%(«K(A))<fc

and

(2.8) $t(\) = \ + jj&s(\))ds

respectively then

(2.9) sup sup |«|»f(A)-#t(A)| g ^exp(^0)

where F0 is a domain such that V0 (c F and r0 > 0 is such that

P(F0; 0K) > Bt0.

In fact, set d/0) = ih[0) = A and define u>Jn) and      successively by

and

(10) /4 is a positive constant.



1969] ON TWO DIMENSIONAL MARKOV PROCESSES 453

It is clear that if (t, X) e [0, t0] x V0 then u^"> and e V and ty\n) => U>, and

$»> => ü>(. We shall prove that for 0^ t^ t0

(2.10)        sup sup |*<»>(A)-fc»>(A)| ^ ^ U +       + ■ ■ ■ +^r] •

In fact, (2.10) is trivial for « = 0 and if we assume that (2.10) is valid for n = 0, 1, 2,

..., n then for A e V0 and 0 g / ̂  /0>

|«W"+1)(A)-$»+u(A)| ^ £ |A(r)-ttnl)l *

^ f |A(4»SB')-A(#B))I <&+ f |(A(#«>)-^&n))l *
Jo Jo

^ ^£|U><n,(A)-^n>(A)|* + ^

Therefore (2.10) holds for every n. Letting n -> co we have (2.9). The assertion of

the lemma is clear from the inequality (2.9).

Lemma 3. Let h(X) = (h1(X), h2(X)) be a function defined on A = {A: AäO}, Lipschitz

continuous on a domain V (c A. Let F(t, A) be a continuous function of (t, A) e [0, co)

x V, (real) analytic in Xe V for each fixed t and satisfy

<2-u> % = h^w+h^w2> ^A)=°-

Then F(t, A) = 0/or all (t, A) e [0, co) x V.

Proof. It is sufficient to prove F(t, A) = 0 for all (t, A) e [0, /0] x V for some t0,

since then F(t, A) = F(t +10, A) is also a solution of (2.11) and hence F(t, A) = 0

for all (7, A) e [0, /0] x V i.e., F(t, X) = 0 for all (/, A) e [0, 2t0] x K. Continuing this

process we have F(t, A) = 0 for all (t, A) e [0, oo) x V.

Since F(t, A) is analytic in A e K for each t it is sufficient to show that F(t, A) = 0

for all (r, A) e [0, /0] x V1 for some V^V. Let 4>((A) = (^(r, A), </.2(f, A)) be the

solution of

d^/dt = A(«K),     +o(A) = A.

Then there exists /0 and Vx <& V such thatu>,(A) 6 V for all (t, A) e [0, r„] x Vi- Set

C(ct, A) = F(t—a, ijja(X)), 0^a^t^t0, XeV1 then

dG       dF,       . ....        .       . .ddAo.X)   8F ,       , ,^d4>2{?,X)
Ta = --0-a>WA)) + ^(/-a,^^^+^0-CT,d>ff(A))^^

(   dF  ,  dF   ,  8F\ t = t-" n
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and hence G(c, A) is constant in a. In particular we have F(r, A) = G(0, A) = G(r, A)

=F(0,«|*t(A))=0 and therefore F(t, A) = 0 for all (t, A) e [0, t0] x Vx.

Now we shall prove Theorem 2. First, let X=(xt,Px) be a regular C.B.P. and

let F( be its semigroup. It is easy to see that Tt is a semigroup on C0. Let ^ be

the infinitesimal generator in Hille-Yosida sense of Tt and let D(A) be the

domain of A. Set

(2.12) A(x) = A = (Alf A2) £ 0,     x = (xu x2) e D.

Then

(2-13) TJA(x) = (F(A(1, 0)ri(F(A(0, l)T>.

By the regularity of X and (2.13), TtfK{x) is differentiate in r at ? = 0 for each

A»0 and noting that, for some /0>0,

sup F(/A(1,0) < 1   and      sup F(A(0, 1) < 1

it is easy to see that (TtfÄ(x) -f\(x))/t converges uniformly in x when t j 0. Hence

{/A: X»0}^D(A). By (2.13) we have also

(2.14)  AMx) = lim rtAW-^W = r^{e^/A(l,0K+e^/A(0, l)x2}.
11 o <

We shall now determine the expression of Afx(\, 0) and AfK(0, 1). More generally

we shall determine the expression of AfA at a boundary point x0 of F> except origin

O01). Let x0 = (xi, 0) where x?>0 and F be a neighborhood in D of x0. Let

£i(*), ^(X) 6 C0°(A"t)(12) such that £\(x) = xx and f2(x) = x2 on some neighborhood

U of the origin. Let DXo (resp. VXo) = {x=y — x0; y e D (resp. ye F)}and we assume

VXQ^U. By a result due' to Venttsel' [15], there exists a2(x0), a(x0), c(x0)=SO,

y(xo)S:0, cr(x0)g0 and a nonnegative measure nXo(dy) on F)Xo —{0} with

f      i(j)2 + Uy))nXo(dy) + - VX0) < co

such that for every fe D(A) n C2(F),

L/(x0) = «2(x0)/1 x(xo) + a(x0)/i(x0) + c(^o)/2(^o) - y(*o)/(xo)

+ f   {/Oo+F) -/Oo) - JiWiWKW + «K*oM/"Oo) = 0.
J*>xB

Furthermore if a2(x0) = a(x0) = c(x0)=y(x0) = o(x0)=0 then nXo^0. We claim that

(j(xo)^O. In fact, if a(xo) = 0 then since {/A; A»0}c/)(/4) n C2(F),

A/ä(*o) = {Afa2(x0)-A1a(x0)-A2c(x0)-y(x0)

+ f   {e-Xy-\-KUy))nX0{dy)}e-Xx° = 0
Jdxo

(") ^A(O) = 0 for every A»0.

(12) Co°(/?n) = {/: all derivatives of/e C0(Ä")} where C0(Ä") = {/: continuous on Rn and

limu,-«, |/(*)|=0}.
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for all A»0. By a standard argument this implies that a2(x0) = a(x0) = c(x0) = y(x0)

=nXo(dy) = 0 and this is a contradiction. Hence ct(xo)#0. Without loss of the

generality we may assume a(x0)= — 1 then from Lf/,(x0)=0 we have

4fx(x0) = ■\T\ia2(x0)-\1a(xo)-Kc(xo)-yixo)

(2.15)

Jdxo )

\     {e^»-\ + X^(y))nx{dy)

Set

AX(A) = -e'iAM\,0) = -AV + ̂  + cA^ + y

(2.16)

'D(i,o>

where a2 = a2(l, 0), a=a(l, 0),..., n1(dy) = nat0)(dy). We have a similar expression

for h2(X)=-e'2AfK(0, 1);

Aa(A) = -eA^A(0, 1) = -X^ + ibX. + dX^ + S

(2.17) f
-       (e-Xy-\ + X2Uy))n2{dy).

JD(0,1>

By (2.14),

(2.18) AMx) = e-**(-xMX)-xMX)) = (*i ~+h2

If we set x=x0 = (x°, 0) in (2.18) and compare this with (2.15) we see at once that

a2(x0) = x?ct2,     a(x0) = xla,nXo(dy) = xln^dy).

From the last relation, since nXo(dy) is a measure on DXo - {O}, by letting x0 -> 0

we see at once that n^dy) is a measure on D-{O}. Similarly n2(dy) is a measure on

D — {O}. Thus we have proved that there exist a, ß, y, S, a, b, c, d, n1 and n2 satisfying

(1.10) and (1.11) such that if the operator Ä is defined by (1.9) then

AfK = A%     for all A » 0.

For any fe C2(D) choose fn e £C{fA; A»0}(13) such that fn =-/> 8f„/8xt =>/ and

d2fJ(dXi dxj) => d2f/(dXi 8x}) (n-+cc) then Afn = A'fn-^A'f and hence by the

closedness of the operator A, we have C2(D)<= D(A) and for /e C2(F>), Af=A'f.

Since /A e Z)L4) we have

8TJJ8t = ATJh = TtAfK.

By (2.18),

8TJK I   8fK       BfA        dTtf* 8TJK
ST = Wa = r'P dx+h2 8X2j   hl -Jx1+Ii2 TxT

(13) &{h\ A»0} is the linear hull of {fK\ A»0}.
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and this proves TtfA(x) = F(t, A; x) is a solution of the forward equation (1.16).

If we set exp (- ^(f, A)) = Ttfh{\, 0) and exp (-t/>2(t, A)) = F(/A(0, 1) then for 1=1,2,

= -exp m, A)) ̂  (1,0)= -exp (*(*, A)F4Tt/A(l, 0)

= -exp {HU MwJ = ««W  (U>( =        A), fcfc A)))

proving that d>( is a solution of the backward equation (1.15).

Next we shall prove the existence of C.B.P. First we shall prove the uniqueness.

Let F( and ft be strongly continuous semigroups on C0(D) with the infinitesimal

generators A and ,4 respectively such that C2(D)<= D(A) n D{Ä), A = Ä on C2(D)

and the expression of A on C2(D) is given by (1.9). Then F(/A(x) and F(/A(x)

satisfy the forward equation with the same initial value e~A'x and hence F(t, A)

= TJx{x) - F(/A(x) satisfies

g-WA)g+«A)J£      F(0 + ,A) = 0.

By Lemma 3, F(r, A) = 0, i.e., Ft/A = F(/A for every A»0. Since the linear hull

{/A; A»0} is dense in C0(D) we have Tt = ft.

Now we shall prove the existence. Given a, ß, y, 8, a, b, c, d, nx and n2 satisfying

the conditions (1.10) and (1.11) define ^(A) and A2(A) by (1.13). By the corre-

spondence between C.B.P.'s and ^-semigroups established in Theorem 1 it is

sufficient to prove that the solution u>((A) of the backward equation:

(1.5) ^o+ = A

where h = {hu h2) defines a ^-semigroup. In fact it is easy to see that the C.B.P.

corresponding to by Theorem 1 has the semigroup Tt with the infinitesimal

generator A such that {/A; A»0}^7_)(^) and AfK(x) is given by (2.18). Hence by

the same argument as above C2(D)<= D(A) and the expression of A on C2(D) is

given by (1.9). To show thatu>( is a T2-semigroup it is clearly sufficient to prove

that for some t0>0, u>, eT2, re [0, t0] and U>t+s(A)=u>((u>s(A)) for all t, s e [0, t0]

such that t + s e [0, /<,]; then {4»(}tE[CMo] can be extended uniquely to a T2-semigroup

(^Jfeio.oo). Since h(X) is Lipschitz continuous on every domain U iA={A; A2:0},

the solution of (1.15) exists uniquely on U in t e [0, t0] for some t0>0. The semi-

group property of 4»( is clear from the uniqueness of the solution. Hence what

remains to be proved is that tpt e Y2 for all t e [0, r0]. For this we first consider the

following simple case:

(2.19) a2 = ß2 = 0,      ni(D-{0})-T-n2(D-{0}) < oo.

Then it is easy to see that hx and h2 can be represented in the form

(2.20) hi(X) = oi(<pi(X)-\i), i=l,2,

where <7; (/= 1, 2) are positive constants and g>t e Y, (/= 1, 2). Then the equation
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(1.15) is equivalent to the following integral equation

(2.21) Ut, A) = e-i%+o, £ c-"'tf-sVi(+.) as,     i = 1, 2.

Now if we define uVin>(A) = (ftiXt, A), ̂ \t, A)) successively by

#0)('> A) = A„

(2.22) r*
A) = e" <MAf + a, J «-••«-sV,(^i»i = 1, 2,

then noting that Y2 is closed under the composition we see easily by induction

that <JijB) e Y2. Hence by Lemma 1, 4>( e Y2 as the uniform limit of ty\n) on a domain

£7 (g A. To prove the general case we remark first that given h = (huh2) there

exists a sequence hn = (h?\ h2n)) such that for each n, hn has the property (2.19)

and hn => A on every Ui A. This is a well known fact and can be proved in a

similar method as the proof of Lemma 1. Lettp^n) be the solution of (1.15) corre-

sponding to hn then i|>jn) e Y2 and by Lemma 2, t]><n) => u>( on some £/0 (g A and

/ e [0, r0]. Hence by Lemma l,ipt e Y2 and the proof of Theorem 2 is now complete.

Consider the C.B.P. X=(xt, Px) of Theorem 2. Since its semigroup is strongly

continuous on C0(D), X is a standard process or Hunt process, cf. Dynkin [1].

In particular we may assume that it is a strong Markov process with right con-

tinuous and c/j-discontinuous sample functions. It is a diffusion process, i.e., its

sample functions are continuous with probability one if and only if y=8 = n1

= n2 = 0. A probabilistic meaning of y, 8, nu n2 is the following. Define a non-

negative kernel n(x, dy) on D x D by

n{x, E) = xxti1(Ex n D) + x2n2(Ex n D) + (yx, + 8x2)8A(£),

Ee3S(D\x = (x1?x2)(14).

Let f(x,y) be any nonnegative function on DxD such that /(x, x) = 0 for all

xe D. Then for every xe D and (^Owe have

(2.24) 2 /(*,X.)   = E|£ j£/(x" ^M*« ̂ | <&]

where xs_ is the left hand limit of xt at 5 (cf. Watanabe [16]).

3. The case of diffusion processes. In this section we shall study the case of

diffusion processes, i.e., the case y=8 = «1=«2 = 0. The infinitesimal generator A

given in Theorem 2 has now the following form:

(3.1) Af = «2x1/11+02x2/22 + (ax! + ox2)/i + {cxx + dx2]f2.

(") Ex={y-x;ye E), &{B) is the set of all Borel subsets of D* and S4(£) is the unit

measure on the point at infinity A.
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If 6 = c = 0 then the corresponding C.B.P. is the direct product of two one-

dimensional Feller diffusions. This class of 2-dimensional diffusions was discussed

by Feller [2] in connection with Galton-Watson processes of two types.

The behavior of sample functions on Xj axis when c=0 (or on x2-axis when

b = 0) is the following. If a sample path reaches the x^axis then it remains on Xj-

axis moving as a one-dimensional Feller diffusion determined by the infinitesimal

generator a2x(d2/dx2) + ax(dldx). Finally it hits the origin O and then it is stopped.

The probability that a sample function hits the x^axis is positive if ß^O.

From now on we shall consider the case when b>0 and c>0. Assume for

simplicity that a=ß=l. It is natural to expect that the process X=(xt, Px) is

obtained as a solution of the following stochastic equation;

(3 2) dXlit) = (Xl(0+)1'a dB^ + (ax,{t) + bx2{t)) dt(15),

dx2(t) = (x2(0+)1,a dBl» + (cXl(t) + dx2(t)) dt.

where B(tv and B(2) are mutually independent Wiener processes. The coefficients

are Lipschitz continuous on every U <£ D and hence by Ito's theorem (cf. [6], [13])

the solution of (3.2) exists uniquely up to the first hitting time for the boundary.

Since the coefficients are not Lipschitz continuous we cannot apply Ito's theorem

for existence and uniqueness of a global solution of (3.2) but we have the following

Theorem 3. For any xeD, there exists a unique solution xt = (x1(t), x2(ty) of

the equation (3.2) with x0 = x such that it is stopped at the origin after it hits there

for the first time. The solution defines a diffusion process X= (xt, Px) and this coincides

with the C.B.P. given in Theorem 2.

Proof. Since the coefficients are continuous on the whole plane there exists a

solution of (3.2) for any initial value x0 = x e Rn by Skorohod's existence theorem

[13, p. 59]. We modify this solution so that it is stopped at the origin after it hits

there for the first time. This gives also a solution of (3.2). If the initial point x is in

D then this solution xt never leaves D. In fact, if it leaves D, there exists some time

interval [r0, rj such that x(o e dD, say on x^axis (i.e., x2(r0) = 0) and x2(0<0 for

te [r0, fj]. But on a neighborhood of x(o, cx1 + dx2^e>0 for some positive con-

stant e and hence x2(t)-x2(s)=jts[cx1(u) + dx2(u)]du'^e(t-s) for every s, t

e[t0,t ]. This implies that x2(t)^x2(t0) + e(t-t0) and contradicts with x2(0<0

for t e [t0, hi

Now we shall show the uniqueness of such solutions. It is sufficient to show the

uniqueness of the solution on a neighborhood of each boundary point since then

the uniqueness of the global solution follows from the usual piecing out method.

Let x(0) = (x?, 0), x°>0 and U be a sufficiently small neighborhood of x0 such that

cxj + dx2 > e > 0 on U where e is a positive constant. Let xt and xt be two solutions

such that x0 = x0=x<0). We shall now prove x(=x, for t<ru where tv is the first

leaving time from U. Let ^(x), P(x), C(x) and £>(x) be bounded continuous

(1S) xl=(x1(t\xdt)),«+=*vO.
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functions on R2 such that

(i) A(x) = A{x1); a function of xx only and A(x1) = (xZ)112 on U,

(ii) B(x) = B(x2); a function of x2 only and /ife)^^)1'2 on ^ and ^fe)

^(2^2 )1/2, everywhere,

(iii) C(x)=ax1 + bx2 on 17,

(iv) D(x) = cx1 + dx2 on £/ and Z)(*) = e everywhere,

(v) y4, C, D are Lipschitz continuous and B(x) is Lipschitz continuous on

|x2| >k>0 for every fc>0.

Clearly such ^4, 5, C and D exist. In order to show that xt=xt for t<rv it is

sufficient to prove that, if yt and yt are two solutions of

fljca(0 = 5(JCt) c/ß((2) + D(xt) dt

such that y0=y0 = xm, then 3>tsj?t. First we remark that by the same argument

as above we can prove that any solution yt = (}>i(t), y2(0) of (3.3) with j0 = ^<0>

satisfies y2(t)^0 for all f£0.

Lemma 4. There exists a, 0<a< 1 such that if yt = (y\{t), y2{t)) is a solution of

(3.3) with y0=xm then

(3.4) £ E{y2(sY-'}ds   ( = f|£ y2(Sy "1 * }) < co.

Proof. Let 17 > 0; then by a formula on stochastic integrals due to Ito (cf. [6], [13])

(y^O+vT-v" = « C (y2(s)+v)a-1B(ys)dB^+a C (y2(s)+vy-iD(ys)ds
Jo Jo

By taking the expectations of both sides we have

E{(y2(t) + r,)a}-va ^a^EKy^ + ^Y^Diy^ds

+ c<«-l) £ E{(ya(s)+vy-*B*(y,)} ds.

By the properties of B and D, B2(y)^2y£ and D^e and hence if 1 -e<a< 1 then

F{Cv2(0 + '?)a}-'f     ae ^E{(y2(s) + r,y-i} ds

- <x(l - a) f £{(J2(*) + ,)« " ̂ a(j)} &
Jo

£ «{e-(1 - a)} £ £{(j>a(j) + 7,)" " 1) <fr.

Letting i? j 0 we have

co > E{y2(ty} Z «{«-(!-«)} f Fb^r1}*
Jo

proving (3.4).
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Now we shall proveyt=yt- The following argument was suggested by a beautiful

proof of Tanaka [14] for the uniqueness of solutions with coefficients Holder

continuous of exponent > 1/2. Let fn(a), a e R1, be defined by

5) /n(«) = \a\, \a\ > I/",

= (l+w2a2)/2w,      |«| g 1/«.

By Ito's formula on stochastic integrals we have

fMt)-Ut))

(3.6)

Then(16)

and

= f 7»'Cya(*)-Ms))(B(ys) - (Bys)) dB™ + fMy2(s) -j2(j))
Jo Jo

x (D(ys)-D(ys)) ds+\ Pf:(y2(s)-y2(s))(B(ys)-B(ys)y ds
Jo

= h + I2 + h, say.

E{fMt)-Ht))} -+E\y2{t)-y2{t)\,      (" -* »)

E{IX) = 0     for every «,

£{/2} ^ AT, £ E{\yi{s)-Ms)\ + \y2(s)-y2(s)\} ds

since fn(a) is uniformly bounded and D{y) is Lipschitz continuous. If y, y' e D

\B(y)-B(yW = K2\y}?-y?*\* g K^-y'^yV1

for every a (0 < a < 1). Then

/3 = \ [/:(y2(s)-y2(s))(B(ys)-B(ys)fds

= lfol{\ya(s)-Ms)\ = ^(B(ys)-B(ys)rdsD

g K3^n"-2 ^y^sy^ds

and hence, if we choose a so that (3.4) holds, E{IS} -* 0 when n -*■ oo. Therefore

(3.7) E{\y2(t)-y2(t)\} g Ax £ E{\yi(s)-yi(s)\ + \y2(s)-y2(s)\} ds.

By a similar argument we can prove

(3.8) £{bx(0-7i(0|} = A-4 £ £{|^)+ ba(5)-j?a(5)|} ds.

(16) In the following Ku K2,... are positive constants.

(17) IE denotes the indicator function of an event E.
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In fact,

n = \[/:(ji(s)-MMA(j,)-A(siaf ds

= \^l{\y&)-Ms)\ = ^(A(ys)-A{ys))2ds

^ ^n^i{\yi{s)-Us)\ -^{y,{s)-Ms)Yds

£^n-n-2t-+0, (w-^oo)

by the Lipschitz continuity of A and hence we get (3.8) just as above. From (3.7)

and (3.8), if we set

A(t) = E{\yi(t)-m\+\y2(t)-h(t)\},

then we have

ISo
A{t) < Ke f A(s) ds

Jo

and hence A(t) = 0 by a usual argument. Thus yt=pf

Finally we shall show that the diffusion process X= (xt, Px) defined by the above

unique solution of (3.2) coincides with the C.B.P. of Theorem 2. Again by Ito's

formula we have for every A»0,

e-A-*f_e-A-*0 = ^ f Xl(s)V2e-*-x. dB^ + X2 f x2(s)ll2e-A xsdB™
Jo Jo

— Aj j* (ax1(s) + bx2(s))e~x'x'ds

-A2 j (cx^ + dx^s)^-* ** ds

and hence by taking the expectation of both sides

Ex(e-* *t) = e-'x-h^E^ x^"**. ds^-h2(X)Ex^x2(s)e-^ dsj

=e"^+r[(AiÄ+/j2Äh(c"^s)]*-
Hence F(t, A; x) = Ex{e~Axt) satisfies the forward equation

(1.16) W=hl(X)^ + h2(X)l^      F(0+,A;x) = e-**.

By Lemma 3, X coincides with C.B.P. of Theorem 2.
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Remark. The branching property of X= (xt, Px) can be seen directly in the

following way: we have shown above that F(t, A; x) = Ex(e~Xxt) is the solution

of the forward equation (1.16). On the other hand, as is easily seen, F(r, A; x)

= £(lio)(e~A'*0*1£<o,i)(e~A'*<)*2 satisfies (1.16). Hence by the uniqueness of the

solution of the forward equation (Lemma 3) we have F(t, A; x) = F(i, A; x) i.e., X

has the branching property.

From Lemma 4 we have at once the following

Corollary. If a=ß=l, 6>0 and c>0 then the diffusion X=(xt,Px) has the

following property; with probability one the Lebesgue measure of the set of all t

such that xte 8D- {0} (xx-axis or x2-axis except origin) is 0.

This fact is in striking contrast to the case when 6 = 0 or c=0. We shall study in

more detail the behavior of sample functions near the boundary. Set

(3.9) Sx = {x = (xls 0); 1/c < Xl < oo},

(3.10) E2 = {x = (xu 0); 0 < xx < 1/c},

(3.11) S3 = {x = (0, x2); 0 < x2 < 1/6},

and

(3.12) S4 = {x = (0,x2);x2 > 1/6}.

Let xe 8D-{0} and U be a neighborhood in D of x which has the strictly

positive distance from the origin. For simplicity we assume that x is on xyaxis.

For each -q > 0 set

(3.13) U" = U n {x = (xlt x2); x2 > t?}

and let rn be the first leaving time from U". Set cT=lim„ 10 rn and

(3.14) ri; = the (random) set of all limit points of xt when / f a.

Following Has'minsky [4], we shall give the following

Definition 1.5. Jc is called regular if for every neighborhood V in D of x we

have

(3.15) lim_ PX{T°V c Fn 3D} = 1
xeD°-*x

where U is a fixed neighborhood of x.

Definition 1.6. Let £ be an open interval in 8D-{0}. 2 is called unattainable

if for every x e £ there exists a neighborhood U in D of x such that

(3.16) P*(r?,n 8D = 0) = 1,     for every x e (7 n £>°.

It is clear from these definitions that

(i) if 2 is unattainable then 2 consists of all irregular points,
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(ii) 2 is unattainable if and only if each x e 2 has a neighborhood in 2 which is

unattainable,

(iii) if 2 is unattainable then with probability one sample functions starting from

a point in D° never hit 2.

Theorem 4. (i) 22 and 23 consist of all regular points. Furthermore sample

functions hit any nonempty open set in 22 u 23 in a finite time with positive prob-

ability.

(ii) 2X and 24 are unattainable.

Proof. Let x=(xu 0) e 22, i.e., 0< cxi < 1 and I be a neighborhood in 22 of x.

According to [4] set

A*(x2) = min       , *2       .,     5*(x2) = max cxi + dx*
xiei xi -r1 axx -r ox2 \ x\ei x2

then it is easy to see that, if I is sufficiently small, then there exist constants

0 < fcj <k2, 0 < k3 < ki < 1 such that kxx2 ̂  A*(x2) ^ k2x2 and k3/x2 ^ 2?*(x2) ̂  fc4/x2.

Then

Z*(x2) = exp jj* B*(z) dz^-j  |exp |J B*(u) duj-A^z)] ~x dz ^ ksx2k*

and hence J0+ Z*(x2) dx2<ao. By Theorem 3.1 of [4] x is regular. Next we shall

show that sample functions hit every nonempty open subset of 22 with positive

probability. Let xeS2 and U be a neighborhood in D of x such that cxx + dx2

^e>0on U where e is a positive constant. Let u(x) e C2(D) such that u(x) = x2 on

t/then u(x) e Z)L4) by Theorem 2 and ^«(x) = cx1 + c7x2>:£ on U. Let a be the first

leaving time from U n D° and let an = a a «. By Dynkin's formula [1] we have

for any x e U n Z>°

£*(«(*.»))-«(•*) = "^M(xs)rfsJ >: fiFJa"]

and letting n-^oo, Ex(o)^(2/e)\\u\\<co. Hence Px[a<co] = l. If Px[x„ 6 8D] = 0,

xe U n Z)°(18), then every point of U n 3D would be irregular and this contra-

dicts with what we have already proved. Hence Px[xa e 8D] > 0 for every xe Z>° u U.

Finally we shall show that 2X u 24 is unattainable. Let jc=(Jc1; 0) e 21; i.e.,

cxx > 1. Let I be a neighborhood in 2X of x and set

A*(x2) = max       , *2       .,     5+(x2) = min £___±_a

If 7 is sufficiently small then there exist constants kx > 0, 1 < k2 < k3 such that

(18) Note that if Px[xa e 8D]=0 for at least one point x e D" u r/thenPJx,, e BD] = 0 on

D° *u U since it is an ^-harmonic function.
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A*(x2) g kxx2 and k2/x2 ^ B*(x2) S ka/x2. Then

Z*(x2) = exp | j"  B*(z)dz^-j   jexp jj £*(«) (/h|/1*(z)J    dz ^ k^x^

and hence J0+ z(x2) flx2 = +00. By Theorem 3.2 of [4] x has a neighborhood in 22

which is unattainable.

Irregularity of a point ~LX (or 24) is seen more directly in the following way.

Let x = (x1; 0) such that cxx > 1 and let U be a neighborhood of x such that it is

surrounded by a segment [a^ <j2] on x^axis (l/c<a1<x1<a2) and a smooth curve

y in 7J° joining the points (ox, 0) and (a2, 0). If A; >0 is a constant and u e C2(i7)

such that w|y=0 then by Green's formula we have easily that

JJ (A-k)u-u dx = — JJ {XiWi + x^l} ß?x - (^ + ̂  + ̂ r) JJ w2 #x

fa
-i     (cxi-l)«^!, 0)dXi.

Hence if A- > — o/2 — a/2 and (/i — k)u = 0 then m = 0 in U. This shows that any

solution of (A — k)u = 0 is uniquely determined by the boundary value on the part

y of the boundary and hence every point x e U n 8D must be irregular points(19).

By Corollary of Theorem 3 the Lebesgue measure of the set of all t such that

xte8D — {0} is zero with probability one. Let 9tt(20) be the set of all additive

functionals which are square-integrable martingales. Then by a result of [12] 9JI

is generated by

Mx(t) = f Xi(01/2 dB^  and  M2(t) = C x2(t)m dB\2\
Jo Jo

Hence for every M e 50c, J!0 ISD(xs) dMs = 0. Generally it is natural to call a part

S of the boundary a reflecting barrier if(21)

(i) it consists of all regular points,

(ii) the sample functions hit every nonempty open subset of S with positive

probability,

(iii) the set of time t such that xt e 2 has the Lebesgue measure 0 with probability

one,

(iv) for every M e 2R, f0 7s(xs) dMs = 0.

Thus we have the following

Corollary 1. 2 = 2X u E2 is a reflecting barrier, i.e., it satisfies the conditions

(i)-(iv).

(19) By the classification of Fichera [3], Si u 2i is 2H)-boundary and S2 u S3 is S(2>-

boundary.

(20) This class of additive functionals was studied in Motoo-Watanabe [12].

(21) In the case of one-dimensional diffusion these conditions characterize a reflecting

barrier among all possible boundary conditions, cf. Ito and McKean [7].
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Also it is natural to call a part 2 of the boundary a pure entrance boundary if S

is unattainable and every je e S has a neighborhood U such that if is the first

leaving time from U then Px(ru<oo)=l for every xeU. For any jceEj, u 24

we can show the existence of such a neighborhood U in F> of x by the same argu-

ment as above involving Dynkin's formula. Thus we have the following

Corollary 2. 2=2^X4 is a pure entrance boundary.

4. A remark on the regularity. The regularity of a C.B.P. or equivalently the

regularity of a Y2-semigroup follows from a much weaker condition as we shall

see in the following

Theorem 5. A C.B.P. X={xt,Px} is regular if<i>t(fy's continuous in t for each

A»0.

Remark. As Lamperti showed in Lemma 2.3 of [11] the continuity follows

from the measurability and some additional condition.

Proof. From the continuity of 4»t(A) we can conclude easily that A' is a Hunt

process. Next we shall remark that there exist ux(x), u2(x) e D(A) n C™(D)

such that

e~* - - 9m(u(x)),     u(x) = (Ul(x), u2(x)),

where <pm(uu u2) is a C00 -function defined on a domain containing the range

u(D) = {(u1(x), u2(x)); x e D} and further there exists a (nonempty) domain

t/c A = {A: AStO} such that if XeU then all d<pmlduif 82<pm/8ut 8u} are bounded on

u(D). In fact take linearly independent X^O and X2»0 and set for a fixed /

Ui(x) = f TJxfr) ds = f e-W* ds,     i = 1,2,
Jo Jo

then clearly Wj e D(A) n C00(jD) and by a simple calculation it is easy to see that,

if t is sufficiently small, the Jacobian 8{uu u2)!8{x1, x2) never vanishes on some

neighborhood of D. Hence there exists Cm-function <p(A) such that

e-*-»- cp^(Ul(x),u2(x)).

Also it is easy to see that, if M>0 is sufficiently large £/={A = (A1, A2); Xt>M,

;'=1,2} possesses the above property. Then by a formula on stochastic integrals

(cf. [12] for diffusion processes and Kunita and Watanabe [9] for the general Hunt

processes), if Xe U,

e-*-xt_e-h-x0 _ a martingale + a continuous additive functional

of bounded variation

and hence it is clear that for each x and XeU, e~*tmx = Ex{e~Axt) is a function

of bounded variation in / e [0, F] for every F> 0. Thus ipt(A) is a function of

bounded variation in / and combining this with the semigroup property it is easy
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to see that ibt(A) is differentiable in t at t = 0 for every A 6 U0 where U0 is a dense

subset of U. Now the first part of Theorem 2 can be proved in exactly the same

way as above and hence we have the same class of C.B.P.'s. In particular this

implies that {ibt} is a regular Y2-semigroup.

The author wishes to thank Professor J. Lamperti for his remark.
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