
PRE-SELF-INJECTIVE RINGS

BY

G. B. KLATT AND L. S. LEVYF)

In this paper we study commutative rings (with identity) all of whose proper

homomorphic images are self-injective rings. Such rings will be called pre-self-

injective.

We were led to the study of such rings by one of the proofs of the structure

theorem for finite abelian groups, in which the key lemma is: "Every element x

of largest possible order in a finite abelian group G generates a subgroup which is

a direct summand of G." If we let « be the order of x, then «G=0 (this is easiest

to see when « is a power of a prime) so that G is a module over the integers modulo

«. Since the subgroup generated by x is also isomorphic to the integers modulo n,

the lemma can be restated: The ring of integers modulo « is self-injective when

«^0.

Our first main result (Theorem 3.5) is that a commutative ring R is pre-self-

injective if and only if it is one of the following: (1) A domain (necessarily Prüfer)

in which, for every maximal ideal M, RM is an almost maximal, rank 1 valuation

domain; and in which each proper ideal is contained in only finitely many maximal

ideals. (2) The direct sum of a finite number of maximal, rank 0 valuation rings.

(3) An almost maximal rank 0 valuation ring. (4) A local ring whose maximal ideal

has composition length 2 and squares to 0. (By a local ring we mean a commutative

ring with identity which has exactly one maximal ideal. See §1 for definitions of

valuation rings.) If R is noetherian, (1) becomes the class of Dedekind domains,

while (2) and (3) become the class of principal ideal rings with DCC (see [6, p. 149]).

Our second main result (Theorem 4.5) is that a domain R with quotient field Q

is pre-self-injective if and only if R has Krull dimension 1 and all /Wiomomorphic

images of Q are F-injective. This last condition (Q/H always being F-injective)

was studied by E. Maths who showed [7, Theorems 5 and 4] that every RM must

be an almost maximal valuation domain, and that the converse holds if R is a

valuation domain. We show that the general converse is false (Example 4.6).

Finally we show (Theorem 5.1) that over a pre-self-injective domain, every

finitely generated module is the direct sum of ideals and cyclic torsion modules.

1. Preliminaries on valuation rings. By a valuation ring we will mean a com-

mutative ring with identity such that, for every pair of elements, one divides the

other.
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(1.1) In a valuation ring R the set of ideals is totally ordered by inclusion. If R is

a domain the same is true of the set of all R-submodules of its quotient field.

This follows from the observation that an ideal J is contained in an ideal K if

and only if every principal ideal contained in / is also contained in K.

A valuation ring has rank 0 if it has only one prime ideal, namely its maximal

ideal. Note that a rank 0 valuation ring is a domain only if it is a field. Since the

set of nilpotent elements of a commutative ring is the intersection of all of the

minimal prime ideals, [8, Chapter I, Corollary 2.6, p. 5], we get:

(1.2) The maximal ideal of a rank 0 valuation ring is nil.

For a subset J of a ring F we define ann J (the annihilator of J) to be the ideal

of all x in F such that xJ=0. Clearly ann ann J^J and ann ann ann/=annF

Hence if y is an ideal of the form,ann A, ann ann J=J. Such an ideal is called an

annihilator ideal.

Proposition 1.3. Let R be a valuation ring with maximal ideal M in which (1)

below holds (for example, any rank 0 valuation ring). Then so do (2) and (3).

(1) ann ann (Rb) = Rbfor each b in R.

(2) If J is an ideal but not an annihilator ideal, then there is a smallest principal

ideal Rb containing J. Rb = ann ann J and Mb=J.

(3) If JcK (ideals) then ann ann/sF.

Proof. Suppose that (1) is false, and let .yeann ann(F/3) — Rb. Then, by (1.1),

Ry^Rb, say b = my with «7 e M. Since y e ann ann (F6) = ann ann (Rmy) we get

ann (Ry) 2 ann ann ann (Rmy) = ann(Rmy)

so if rmy = 0 then ry = 0. Hence ann (m) n Ry = 0. Now since F is a valuation

ring and Ry^O, thus ann (w)=0.

If F is a rank 0 valuation ring then all the nonunits are nilpotent, which contra-

dicts the above. Hence in a rank 0 valuation ring (1) is true.

To obtain (2), take any b e ann ann (/) — J. Then J<^Rb^annannJ. Taking

double annihilators and using (1)-gives ann ann J^Rb ^ann ann /. We have shown

that the second annihilator of J equals Rb for every b e ann ann /—/, as claimed.

Since there are no ideals between M and F, the same is true of Mb and Rb. There-

fore Mb=J.

(3) follows immediately from (1) and (2).

Finally, we define a valuation ring to be maximal if every family of pairwise

solvable congruences of the form x=xa (mod Ja) (each xa e F, each Ja an ideal of

F) has a simultaneous solution x. We get the definition of almost maximal if we

only require a simultaneous solution when D^da^O; equivalently: a valuation

ring is almost maximal if all of its proper homomorphic images are maximal. For

the origin of the term "maximal" see [13, Chapter 2, §§3 and 4].
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2. The local case.

Lemma 2.1. Let Rbe a local, self-injective ring with maximal ideal M. Then ann M

is contained in every nonzero ideal of R.

Proof. Assume x is a nonzero element of ann M. Then Mx=0 and Rx^O

show that ann x = M. For any nonzero y in R, ann y £ M = ann x so an F-homo-

morphism <p: Ry -> fix can be defined by ry-+rx. Since /? is self-injective 93 is

multiplication by some s in R. Hence x = f(y)=ys e Ry. This shows that ann M

is contained in every principal ideal (¥=0), hence in every ideal (#0) of R.

Theorem 2.2. For a local ring R with maximal ideal M, suppose that R/Mx is

self-injective whenever Mx#0 and R/Rx is self-injective whenever Fx/0. Then

either R is a valuation ring or else M2 = 0 and M has composition length 2.

Proof. Suppose that R is not a valuation ring. Then R has a pair of elements x

and y neither of which is a multiple of the other. We first show: for any such x

and y, Mx = 0 = My. If Mx^O then in the self-injective local ring R = R/Mx the

annihilator of the maximal ideal M contains the nonzero element x. Moreover,

y 7^0 since y is not a multiple of x. Hence Lemma 2.1 shows x e ann M^Ry, say

x = ry + mx(r e R, m e M), i.e. (1 —m)x = ry. But since R is local, 1 —m is invertible,

and hence we get the contradiction that x is a multiple of y. Therefore Mx = 0.

Similarly My = 0.

Next we show that M2 = 0. If not, Muj^O for some u in M. This implies, by the

preceding paragraph (with u in place of y) that either u is a multiple of x or vice

versa. If u were a multiple of x we would have Mu^Mx = 0. Hence x = bu for

some b. Similarly y = cu for some c. Since O^buebM and O^cuecM the pre-

ceding paragraph shows that one of b and c must be a multiple of the other;

and hence that one of x and y must be a multiple of the other, contrary to our choice

of x and y. Thus M2 = 0.

Since M2 = 0, M is a vector space over the field R/M of dimension at least 2

(x and y are linearly independent). Thus the /^-module M has composition length

at least 2. To see that equality holds, take a nonzero m in M which is not a multiple

of x. We finally use the hypothesis that R=R/Rx is self-injective. Since M2 = 0,

Lemma 2.1 shows zz/eann M^Ry, so m = dy + ex (d. ee R). This completes the

proof of the theorem.

Theorem 2.3. A valuation ring R is self-injective if and only if

(1) ann ann (Rb)=Rb for each h e R, and

(2) R is maximal.

Recall that by Proposition 1.3 rank 0 valuation rings satisfy (1).

Proof. Assume R is self-injective. To show (1) repeat the first paragraph of the

proof of Proposition 1.3 to get a nonunit, «z, whose annihilator is 0. Then multipli-

cation by l/m is a well-defined R homomorphism: Rm -> R which cannot be

extended to all of /?, contradicting self-injectivity of R.
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We now show F is maximal. Let a family of congruences

(3) x = xa (mod Ja)       (a e A)

be given which are pairwise solvable. This is equivalent to saying that for all a

and ß, xa-xs belongs to the larger of Ja and Jß. In particular, if there is a smallest

Ja, then that xa is a simultaneous solution of (3). Consequently we can suppose

that there is no smallest Ja.

Let Aa=annJa, and consider the multiplication maps: Aa -> F by xa. Pairwise

solvability shows that if Ja^JB, and hence Aa^AB, the multiplication maps:

Aa -> R (by xa) and Aß -> F (by x^) coincide on their common domain Aß. We

can therefore take the union of these maps to get an F-homomorphism

fi.A = [JAa^R.

By the hypothesis that F is self-injective,/is a multiplication by some element x

of F. We show x solves the congruences (3).

Let a be given. Then for aa in Aa we get (x—xa)aa=xaa — xaaa=f(aa)—f(aa) = 0.

Thus

(4) x — xa e ann Aa = ann ann Ja       (all a).

If the right-hand side equals Ja we are done. Otherwise we can use the hypothesis

that there is no smallest Ja to find a JBcJa. Then x — x„ = (x — xe) + (xg — xa) with

x —xee ann ann Je^Ja by (4) and Proposition 1.3 and xe — xaeJa by pairwise

solvability. Thus x — xa eJa as desired.

Now suppose that F satisfies (1) and (2) and let an F-homomorphism/: /-> F

be given with 7 a left ideal of F. We show that/is a multiplication map. Take y

in y and note that 0=f((annj)j) = (annj)f(j) shows that

f(j) e ann ann j = Rj.

Thus f(j) =jx, for some x, in F. To put these multiplication maps together, con-

sider the system of congruences

(5) x = x, (mod ann Rj)       (j e J).

These congruences are pairwise solvable: If ann F/sann Rk and hence Rj^Rk

( = ann ann Rk) we can write k = rj so that k(x, — xk) = rjx, — kxk =f(rj) —f(k) = 0 so

x, — xk e ann Rk. Therefore, by maximality we have an x in F which simultaneously

solves all the congruences (5). Then, for y in J,f(j)=jx¡=jx since y'(x — x,)=0.

Lemma 2.4. Every nonzero prime ideal of a pre-self-injective ring is maximal.

Proof. We are trying to prove that every self-injective integral domain is a

field. But this follows from the fact that over an integral domain every injective

module is divisible [2, Chapter 7, Proposition 12].

Finally, we can determine all pre-self-injective valuation rings :
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Corollary 2.5. For a valuation ring R the following are equivalent:

(i) R is pre-self-injective.

(ii) R/Rx is self-injective whenever x#0; and R has rank 0 or is a domain of

rank 1.

(iii) R is an almost maximal rank 0 valuation ring or an almost maximal rank 1

valuation domain.

Proof, (i) => (ii) follows from Lemma 2.4, while (iii) => (i) follows from Theorem

2.3.

To get (ii) => (iii) note that every R/Rx is self-injective (when x^O) hence

maximal by Theorem 2.3. Since every nonzero ideal of R contains a nonzero

principal ideal, it follows that R is almost maximal.

Examples 2.6. It is easy to see that every discrete rank 1 valuation domain is

almost maximal and that these are the only noetherian examples of almost maximal

valuation domains. Examples of maximal nonnoetherian valuation domains, in

the form of "long" power series are given by Kaplansky [3, §4, p. 314] or [6,

Remark (i), p. 151]; and additional examples are given by a theorem of Krull

which states that every valuation domain is contained in a maximal one having the

same value group and residue class field as the original domain [5, Theorem 24,

p. 191]. Taking proper homomorphic images of rank 1 almost maximal valuation

domains we get examples of rank 0 maximal valuation rings; and all the examples

we know of rank 0 almost maximal valuation rings have this form.

There exist self-injective rings (necessarily not domains) of rank /0: Let M

be a group of type Zp». Its ring of endomorphisms is the/z-adic integers F. Hence

we can make the group direct sum R = P ® M into a ring by defining multiplication

in M to be zero and defining xm (x in P, m in M) to be x(m). Barbara Osofsky has

shown that F is a self-injective valuation ring and that every ideal of R is either a

subgroup of M or has the form Rpt = Ppt @ M [10, Example 1, p. 378]. We observe

that every homomorphic image of R except one (namely P) is self-injective: If

OçJcA/, then since every homomorphic image (t^O) of M is again isomorphic

to M, R/J=R = self-injective. If 7=>M, then (since R is maximal by our Theorem

2.3) R/J is maximal of rank 0 and hence (2.3 again) self-injective.

An example of a local ring whose maximal ideal has composition length 2 and

squares to zero (see Theorem 2.2) is the polynomial ring F[x, y] over a field F with

relations x2 = xy = y2 = 0. These rings are discussed in more detail in [6, Remark

(ii), P. 152].

3. The global case.

Lemma 3.1. Let S be a multiplicatively closed subset of a ring R, and suppose that

every prime ideal of R is maximal. Then the natural map : F ->- Rs is an epimorphism.

Proof. First consider the case that R is local with maximal ideal M. Then every

element of 5 is either outside M, hence a unit, or an element of M and hence
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nilpotent (by the proof of (1.2)). Thus if 5 consists wholly of elements outside M,

RS = R; while if S contains an element of M then 0 e S and hence Rs = 0. In either

case F -*• Fs is an epimorphism.

For the general case, it is sufficient to show that, for every maximal ideal M of

F, the induced map

Pm -*■ (Ps)m = (Pm)s

is an epimorphism ; and this reduces the problem to the local case. (For notation

see [8, Chapter I, §6], To show the above reduction apply [8, Theorem 8:9, p. 23]

to the image of the natural map.)

Proposition 3.2. Let S be a multiplicatively closed subset of a pre-self-injective

ring R. Then Fs is pre-self-injective. If R is also self-injective, so is Rs.

Proof. Choose an arbitrary nonzero ideal of Fs and write it in the form Js where

y is a nonzero ideal of F. By hypothesis R/J is self-injective. Since F is pre-self-

injective, every nonzero prime ideal of F is maximal (Lemma 2.4), and hence every

prime ideal of R/J is maximal. Thus the lemma shows that RS/JS^(R/J)S is a

homomorphic image of R/J and hence a proper homomorphic image of R; hence

self-injective. Therefore Rs is pre-self-injective. If F is also self-injective, then we

can also do the above proof for /=0.

Note that we have not shown that if F is a self-injective ring, then so is every Rs.

The proof of the following lemma was suggested by Barbara Osofsky.

Lemma 3.3. Every infective, pre-self-injective commutative ring is semilocal (i.e.

has only a finite number of maximal ideals).

Proof. First we show that if K is any ideal of a regular (in the sense of von

Neumann) commutative ring F for which R/K is self-injective, then R/K is also

F-injective. To do this let/be an F-homomorphism : J -> R/K with J an ideal of F.

It will suffice to prove that/(J n K) = 0. For then/will induce an F-homomorphism

f:J^-R = R/K where J=(J+K)/K. Since/is also an F-homomorphism we can

use self-injectivity of F to extend / to a map g: F-> F. The composition off

with the natural map: F -» F is an extension of/and this shows that F is F-

injective.

To see that/(/ n F) = 0, suppose not. Since F is regular, every principal ideal

is generated by an idempotent element. ThusJ n F contains an idempotent element

e such that/(e) / 0. But this leads to the contradiction 0 ¥=f(ee) = ef(e) £ K(R/K) = 0.

Now, to prove the lemma, let F be any injective, pre-self-injective ring. Then the

number of maximal ideals of F is the same as that of F/rad F (rad = Jacobson

radical); and a theorem of Utumi [14, Lemma 4.1 and Theorem 4.7] states that if

F is any left self-injective ring, then F/rad F is a left self-injective regular ring.

Thus we can suppose that F is a regular ring all of whose homomorphic images

(including F itself) are self-injective. The first part of this proof then shows that
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every cyclic F-module is (R-) injective. But a theorem of Barbara Osofsky [11] or

[12] asserts that any ring (commutative or not) with this last property must be

semisimple with minimum condition; in the commutative case this means that R

is the direct sum of a finite number of fields. In particular, R has only a finite

number of maximal ideals.

Next we generalize the fact that a commutative ring with DCC is the direct

sum of a finite number of local rings.

Lemma 3.4. Suppose that a commutative ring R has only a finite number of

maximal ideals M(l),..., M(ri), and that every prime ideal of R is maximal. Then

(1) R = Run © • ■ ■ © Rmw

Proof. Let v(; M-+ RM(i) be the natural map r-^-r/l. Since v¡(r)=0 for all i only

if r=0, the map v. r -> (vx(r),..., vn(r)) imbeds R monomorphically in the right

side of (1).

Since each v¡ is an epimorphism (Lemma 3.1), we can show that v is an epi-

morphism by finding an element x of R such that x/1 is invertible in RM(X) and

zero in each other Rmy

By one of the forms of the Chinese Remainder Theorem, there is an element

z in R such that z= 1 (M(l)) and z=0 modulo each other M(i). Since all primes of

R are maximal, the maximal ideal of each FM(i) is its smallest prime ideal and hence

is nil. Thus the element z/1 of Rm) (for /# 1) is nilpotent; and since only a finite

number of maximal ideals exist, there is a positive integer d such that (z/l)d = 0 in

RM(2), • • -, Rmw- Note that z" is still congruent to 1 modulo M(l). Hence, in the

local ring RmX), zd/l is outside the maximal ideal, and hence invertible. Hence

x=zd is the element we want.

Main Theorem 3.5. A commutative ring (with 1) is pre-self-injective if and only

if it is one of the following.

(1) An integral domain (necessarily a Prüfer domain) in which, for every maximal

ideal M, RM is an almost maximal rank 1 valuation domain; and every proper

ideal is contained in only finitely many maximal ideals.

(2) The direct sum of a finite number of maximal rank 0 valuation rings. (Here R

is also self-injective.)

(3) An almost maximal rank 0 valuation ring.

(4) A local ring whose maximal ideal M has composition length 2 and satisfies

M2 = 0. (Here R is not self-injective.)

Proof. Let R be pre-self-injective. Note that by 3.3 every nonzero ideal (or

element) is contained in only finitely many maximal ideals. We suppose first that

R has an infinite number of maximal ideals M and show that R must be a domain.

So suppose xy = 0 with x^O. Then x is contained in only finitely many maximal

ideals, and xy=0 is in every maximal ideal. Since maximal ideals are prime, y is

in infinitely many maximal ideals so y = 0.
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Now suppose F is a pre-self-injective domain. We show it is of type (1). For

each maximal ideal M, RM is a pre-self-injective local domain (Lemma 3.2) and

hence an almost maximal valuation domain (by Theorem 2.2 and Corollary 2.5).

Since each RM is a valuation domain all of its finitely generated ideals are invertible

(in fact, principal) and hence the same is true of F [1, Chapter II, Theorem 4,

p. 148], that is, R is a Prüfer domain.

Now consider the case that R is not a domain. Then it can have only a finite

number of maximal ideals. Since R is pre-self-injective, every nonzero prime ideal

is maximal (Lemma 2.4), and since R is not a domain, 0 is not prime. Hence (Lemma

3.4) F is the direct sum of a finite number of local rings.

If the number of summands is 1, that is F is local, then we know (Theorem 2.2

and Corollary 2.5) that R must be of type (3) or (4). Observe that type (4) rings

are not self-injective. For let x and y be independent elements of the maximal ideal

M, then Rx^R/M^ Ry but this isomorphism cannot be multiplication by some

element of F.

Now if the number of summands is at least 2, then each of them is a self-

injective, pre-self-injective ring, and by Theorems 2.2 and 2.3 each summand must

be a maximal rank 0 valuation ring.

For the converse note that Corollary 2.5 and Theorem 2.3 show that rings of

type (3) are pre-self-injective while those of type (2) are self-injective and pre-self-

injective. Rings of type (4) are pre-self-injective since their proper homomorphic

images have at most one proper ideal, hence are maximal rank 0 valuation rings.

Finally, let F be a domain of type (1). Then every nonzero prime ideal of F is

maximal (since this is true of each FM). Consequently, for each nonzero ideal J

of F, the ring R/J has only a finite number of maximal ideals and all of its primes

are maximal. Lemma 3.4 then shows R/J to be the direct sum of a finite number of

rings of the form (R/J)m=Pm/Jm (M a maximal ideal of F, M its image in R/J),

a maximal rank 0 valuation ring and hence self-injective (Theorem 2.3). Therefore

R/J is self-injective and the proof of the theorem is complete.

Remark. For an example showing that the two conditions appearing in (1) of

the theorem are independent, see Example 4.6.

Corollary 3.6. Every nonnoetherian pre-self-injective ring has cardinality at

least 2"o.

Proof. First let F be a maximal rank 0 valuation ring which is not noetherian.

Then F does not satisfy the DCC on ideals, so F has an infinite decreasing sequence

of ideals Ax^> A2^> ■ ■ ■.

For each i let a¡ e Ai — Ai+X. Then the system of congruences

(1) x = ax + a2+---+an-x   (mod An)       (« = 2,3,4,...)

is pairwise solvable and hence has a solution in F which we may conveniently think

of as an "infinite sum" a!-|-a2-l- • ■ •. Note that if one or more of the a¡ are re-
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placed by 0, (1) remains solvable. Thus R contains 2s'» "infinite sums" of the form

cx + c2+ ■ ■ ■ where each c¡ is either at or 0.

To complete the proof of the corollary it will be sufficient to show that every

nonnoetherian pre-self-injective ring R can be mapped onto a nonnoetherian,

rankO maximal valuation ring. Referring to our main theorem, we see that this is

trivial when R is not a domain. But since every nonnoetherian domain has a proper

homomorphic image which is again nonnoetherian, and since no proper homo-

morphic image of a pre-self-injective domain is again a domain (nonzero primes

of a pre-self-injective domain are maximal by Lemma 2.4), the problem for

domains is reduced to that for nondomains.

Combining the above corollary with (1) of the main theorem we get:

Corollary 3.7. A domain of algebraic numbers is pre-self-injective if and only

if it is a Dedekind domain.

4. Pre-injectivity of the quotient field. In this section R will be an integral

domain with quotient field Q. The /?-module Q is always injective, since it is

torsion-free and divisible [2, Chapter VII, Proposition 1.3, p. 128]. Our object

here will be to relate /?-injectivity of the proper /^-homomorphic images of Q to

pre-self-injectivity of R.

Proposition 4.1. Let R be a domain with quotient field Q and let I be an ideal of

R. Assume Q/I is R-injective and

(*) ifiq e Q   and   ql S /   then   q e R.

Then R/I is self-injective.

Proof. Let J be an ideal of R with IsJ^R, and let /: J/I -> R/I be an R/I-

homomorphism. Now / is also an F-homomorphism: J/I^ Q/I and since Q/I

is F-injective, there is some q in Q such that/(/+/) =jq + I for ally in J. However

for every element ie I, f(i+I) = iq + I=f(0 + I) = 0 + I showing ql^I, and by (*)

therefore q e R.

An extension of/to an F//-map : F//-> R/I is now given by (r +1) -^- (r + I)(q +1).

Thus R/I is self-injective.

When is condition (*) satisfied? For valuation domains the answer is:

Lemma 4.2. Let R be a valuation domain with quotient field Q. Then R has rank

1 if and only if for every nonzero ideal I of R:

(*) if  qe Q   and   ql Ç /   then   q e R.

Proof. Suppose that R has rank 1 and (*) is false. That is, ql<= / for some ideal

/^0 and some qe Q — R. Since F is a valuation domain, r= l/q belongs to R (in

fact to the maximal ideal M of R since q= l/r $ R) and I=rl. Now let K be any

ideal properly contained in /. Then in the rank 0 valuation ring R = R/K we get
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I=rï=r2I=r3I= •••. Since the maximal ideal M of R is nil (1.2) we see that

1=0, that is, I^K, a contradiction. Hence (*) holds.

Conversely, suppose that R has a prime ideal P such that Pc M, M again the

maximal ideal of R. Take «7 e M—P. Then P^Pm (P^Rm since the ideals of F

are totally ordered by inclusion; writing an element of F in the form xm, the fact

that F is prime then implies that x 6 P), and the opposite inclusion is trivial. Thus

P = Pm; or, equivalently, (l/m)P = P with l/«7 $ F since me M. Thus (*) is violated.

A globalization argument, to be given presently, will now complete the- proof

that if Q is pre-injective and F has Krull dimension 1, then R is pre-self-injective.

We therefore turn to the converse.

Proposition 4.3. Let R be a domain with quotient field Q and I be an ideal. If

R/Ic is self-injective for all c#0 in R then Q/I is R-injective.

Proof. Let J be an ideal of F and /: J —> Q/I be an F-homomorphism. Let

c#0 be in the kernel of f (Kerf =£0 since Q/I is a torsion module). Let v be the

natural map J ~>J/Ic and cp be the isomorphism Q/I'-»■ Q/Ic given by q + I^-qc

+ Ic.

J-J-^Q/I

Y f        Y

//&--- ß/F

Since kervçker/ we can define an F-homomorphism /': J/Ic -*■ g/F by/' =

<p/v-1. We show Im/'çF/F. Let j+Ic eJ/Ic and assume f(j) = r/s + I. Then

f(cj)=0 + I=rc/s + I showing f'(j+Ic) = rc/s + le e I/Ic^R/Ic. Hence/' is an

F/F-homomorphism : J/Ic -*■ R/Ic. Now F//c is self-injective so /' may be ex-

tended to an R/Ic homomorphism: R/Ic -> F/F which we will again call/'.

The desired extension off to a map F -»■ (9// is now given by <p_1/v (see the dia-

gram below). Thus Q/I is F-injective.

R--ß//

v | 99       ( = multiplication by c)
Y r/        y

R/Ic ——► ß//c

We now have to obtain F-injectivity of Q/I where / is an arbitrary F-submodule

of Q, not merely an ideal of F. To do this we prove a "primary decomposition

theorem" for torsion modules over a pre-self-injective domain.

Proposition 4.4. Let R be an integral domain in which proper prime ideals are

maximal and in which each nonzero ideal is contained in only finitely many maximal

ideals. Then for every torsion R-module T, T^@TM with M ranging over the

maximal ideals.
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Proof. (This is part of Corollary 8.6 of Cotorsion modules, E. Matlis, Mem.

Amer. Math. Soc. No. 49 (1964). The present proof is included for the convenience

of the reader.) First we note that if A is an ideal and if M and A are maximal ideals

of R,

(1) RM <g) (R/A) = 0 except for a finite number of M.

(2) RN® RM® (R/A) = 0 whenever M^N.

To obtain (1) note that the left-hand side is isomorphic to RM/AM which is zero

whenever A is not contained in M. To obtain (2), note that by Lemma 3.4, R/A

is the direct sum of a finite number of local rings (which are also F-modules).

Since tensor products commute with direct sums, we can suppose that A is con-

tained in only one maximal ideal of R. Thus either RM ® (R/A) = 0 or RN ® (R/A)
= 0.

For each t in F, (1) shows that RM 0 (Rt) = 0 except for finitely many M. Thus

we can use the canonical maps t -> 1M % t to define a map v. F-s- © RM ® T. To

see that v is an isomorphism, localize at a maximal ideal N and use (2), getting

1N <g> v. RN ® F-> RN (g) RN <8) F which is an isomorphism. Hence so is v.

We now obtain the main result of this section.

Theorem 4.5. For an integral domain R with quotient field Q the following are

equivalent

(1) R is pre-self-injective.

(2) Every R-homomorphic image of Q is R-injective and R has Krull dimension 1.

Proof. (2) => (1). Since Q is pre-injective, RM is an almost maximal valuation

domain for every maximal ideal M (by Matlis's Theorem [7, Theorem 5, p. 61]).

Let /#0 be an ideal of R. We have to verify condition (*) of Proposition 4.1, so

let qlç^I. Since R has Krull dimension 1, the same is true of each valuation ring

RM. Thus by Lemma 4.2 (applied to qIM £ IM), qe RM for each M, and hence qe R,

establishing (1).

(1) => (2). That R has Krull dimension 1 is a restatement of Lemma 2.4. Also,

each nonzero ideal of R is contained in only a finite number of maximal ideals

(3.5). Let H be an F-submodule of Q. We may suppose //^0 since BQ is injective.

Hence Q/H is a torsion module, so by our primary decomposition theorem (4.4)

Q/H=® (2///)mS© Q/Hm. Thus to show Q/H injective it is sufficient to show

(i) For every F-homomorphism f:J-^@(Q/H)M where J is an ideal of R, f(J)

has only finitely many nonzero coordinates; and (ii) each Q/HM is F-injective.

To establish (i) letf(J)^J/A. Then (J/A)M^JM/AM. Since J/A is atorsion module,

A is nonzero and hence is contained in only finitely many maximal ideals. Thus

Jm/Am = Rm/Rm = 0 for all but a finite number of M.

To establish (ii), choose an M. We may suppose HM ̂  Q (otherwise there is

nothing to prove). Then l/q $ HM for some qe Q. Since RM is a valuation domain

(3.5), the Z?M-submodules of Q are totally ordered by inclusion (1.1). Thus qHM

c RM. The ideal qHM of RM has the form IM for an ideal / of R, namely I=qHM n R.
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Finally, observe that

QIHM £ Q/qHM = Q/IM

which, by the primary decomposition theorem, is a direct summand of Q/I; and

Q/I is injective by Proposition 4.3. This completes the proof.

Example 4.6. Let Q be the subfield of the complex numbers generated by the

rationals and/rth roots of 1 for all primes p, and F the ring of all algebraic integers

in Q. Nakano has shown that every FM is a discrete rank 1 (hence almost maximal)

valuation domain and that every prime number is contained in an infinite number

of maximal ideals of F [9]. It is easy to see that the proper prime ideals of F are

maximal.

It follows from Theorem 3.5 that F is not pre-self-injective. Thus the two con-

ditions in (1) of Theorem 3.5 are independent. (To see the other half of the inde-

pendence, take any valuation domain which is not almost maximal.) Since Theorem

4.5 shows Q is not pre-injective, the question raised by Matlis [7, Remark 2, p. 61],

"If every FM is an almost maximal valuation domain, is Q pre-injective?" has a

negative answer.

5. Finitely generated modules.    We close with the observation:

Theorem 5.1. Over a pre-self-injective domain R every finitely generated module

is the direct sum of ideals of R and cyclic R-modules.

Proof. Let M be the given finitely generated module. If M is a torsion module,

then since our main theorem shows that F is «-local and Prüfer, the result about M

is a special case of [E. Matlis, Decomposable modules, Trans. Amer. Math. Soc.

125 (1966), 147-179; Theorem 5.7]. For the general case, the fact that F is a Prüfer

domain shows that M^M/T® T (T the torsion submodule of M) and M/T is

isomorphic to a direct sum of ideals of F [4, Theorem 1].

The theorem is spoiled somewhat by the fact that the only examples we know of

pre-self-injective domains are Dedekind domains and rank 1 almost maximal

valuation domains, and in both of these cases the theorem is already known [4,

Theorem 1, Remarks, p. 332, and Theorem 14]. Therefore we have not explored

other similar analogues from abelian group theory.
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