
FREE SURFACES IN S3

BY

JOHN HEMPELO

1. Introduction. Suppose M is a subcontinuum of the «-sphere Sn, and U is a

component of S" — M. We say that M is free relative to U if for each e > 0 there is a

map/: M -> U such that d(x,f(x)) < e for each xe M.If M is free relative to each

component of Sn—M we say M is free in Sn.

Free continua in Sn have been studied by R. L. Wilder with regard to determining

those intrinsic properties of M which can be deduced from the existence of an

embedding of M as a free subcontinuum of Sn. In [17] it is shown, under appropri-

ate assumptions, that if M is free in Sn then M is a generalized («— l)-manifold. In

particular, when « = 3, it is known [16, Theorem 3] that if M separates S3, is

locally connected, has finitely generated homology, and is free in S3, then M is a

closed 2-manifold.

In this paper we pursue this topic by investigating those positional properties

which are satisfied by a given embedding of M as a free subset of S3. From now on

M will denote a closed, connected 2-manifold in S3.

Bing has shown [2] that M is tame in S3 if it can be homeomorphically ap-

proximated in each complementary domain—that is, if it can be freed to each side

by homeomorphisms. Hempel has shown [10] that M is tame in S3 if for each

component U of S3-M there is a homotopy «: Mxl^-U such that h(x, 0)=x

and for f > 0 h(x, t) e U. Thus M is tame if it can be freed to each side by a con-

tinuous family of maps.

In light of these results it is natural to conjecture that M is tame if it is free. The

purpose of this paper is to prove this conjecture in the presence of an additional

assumption on the placement of M in S3. This assumption is discussed in §3. We

note the contrast between this result and the fact [8] that any M<= S3 is partially free

in the sense that, given a component U of S3 — M and e>0, there is a compact

zero-dimensional set T<=M and a map /: M-^ í/u F satisfying f(M-T)<=U

and d(x,f(x))<e.

We say M is tame in S3 if there is a homeomorphism of S3 onto itself which

takes M onto a polyhedron. If U is a component of S3 — M we say M is tame from

UifÜ=MU Uisa 3-manifold with boundary. It follows from [4], [5], [13] that M

is tame if and only if it is tame from each complementary domain. For other

definitions we refer the reader to [3].
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In [3] it is shown that M is tame if S3 — M is uniformly locally simply connected

(1-ULC). This result is extended in [9] to show that M is tame from U if U is

1-ULC. In §2 we describe a condition which is weaker than being 1-ULC but which

suffices to prove the above results. In §4 we show that if M satisfies our special

assumption (§3) and is free relative to U then U satisfies our modified form of

1-ULC, and hence that M is tame from U. We note that it is always the case that U

is uniformly locally 1-connected in homology (1-u.l.c.) (cf. Theorem 3.2, p. 295 of

[18]). In our context the assumption of freeness imposes on C/the stronger property

of uniform local 1-connectedness in homotopy. In §5 it is shown that if M is assumed

to be locally tame off a zero-dimensional set then freeness implies tameness without

the special assumptions of §3.

2. A modification of 1-ULC. We say that an open subset U of S3 is 1-ULC

with respect to unknotted simple closed curves if for each e > 0 there corresponds

S>0 such that if /is a polyhedral simple closed curve in [/which is unknotted (i.e.

J bounds a (nonsingular) disk in S3) and has diameter less than 8 then J can be

shrunk to a point on a subset of U of diameter less than e.

We note that for an arbitrary open set U^S3, the condition of being 1-ULC with

respect to unknotted curves is strictly weaker than being 1-ULC. For an example of

this, let C be obtained by boring out of a 3-cell a disjoint sequence of knotted

"tunnels" which converges to a point of the boundary of the 3-cell. The construc-

tion can be made so that U=S3 — C is 1-ULC with respect to unknotted curves, but

U is not 1-ULC. We will see, by an indirect route, that if U is a complementary

domain of a closed 2-manifold then the two conditions are equivalent. This is a

consequence of the following two lemmas.

Lemma 1. Suppose S is a 2-sphere in S3 and U is a component ofS3 — S which is

l-ULC with respect to unknotted simple closed curves. Then S is tame from U.

Proof. If we leave out the statement about unknottedness this is a direct con-

sequence of [3, Theorem 1] which shows that S can be homeomorphically ap-

proximated in U, together with [2, Theorem 2.1 ] which then shows that U u S is a

3-cell. We merely note that the proof given in [3] works just as well with the state-

ment about unknottedness left in. Specifically the only "small" simple closed

curves in U that need to be shrunk to a point on a "small" subset of U are ones

which lie on a polyhedral 2-sphere S'<=S3 which is homeomorphically close to S

and lies "almost" in U.

Lemma 2. Suppose M is a closed, connected 2-manifold in S3 and U is a component

of S3 — M which is l-ULC with respect to unknotted simple closed curves. Then M is

tame from U.

Proof. Without the statement about unknottedness, Lemma 2 becomes [9,

Theorem 5]. It seems likely that we could dismiss this proof just as we did the proof

of Lemma 1. However the proof given in [9] does not proceed directly to show that
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M can be homeomorphically approximated from U, but rather shows that M is

locally tame from U. Since it is not evident that the proof by localization given in

[9] can be adapted to our weaker hypothesis, we give a proof.

Take pe M. It follows from [9, Theorem 1] that there is a disk D^M and a

2-sphere S^S3 such that

(i) pelntD^S,

(ii) S is locally polyhedral off D, and

(iii) Bd D is tame.

Now one component of S3 — S, which we denote by V, has the property that D

lies in the (topological) boundary of U n V. We will show that V is 1-ULC with

respect to unknotted curves. It then follows by Lemma 1 that S is tame from V.

This in turn implies that M is locally tame from U at p. Since this holds for each

peM, the conclusion follows.

Let E=S—Int D. Since F is locally tame at each point of its interior and has a

tame boundary it follows (cf. [13, Lemma 2.1]) that F is tame.

Now let e > 0 be given. There exists r¡ > 0 such that any subset of F of diameter

less than r¡ lies in a disk in F of diameter less than e/2. Now choose 0>O such that

any unknotted simple closed curve in U of diameter less than 9 can be shrunk to a

point on a subset of U of diameter less than -qß. Finally choose 8>0 so that any

subset of F of diameter less than 8 lies in a disk F<= E of diameter less than 0/2

with F n Bd F either empty or an arc.

Suppose / is an unknotted polyhedral simple closed curve in V of diameter less

than S. Since J bounds a disk in S3, it is an easy argument to show that / bounds a

polyhedral disk K*=S3 with diameter F<S; for one can modify an arbitrary

polyhedral disk bounded by J by standard "cut and paste" techniques to obtain

one which lies in a small regular neighborhood of the convex hull of /. We can

obtain a polyhedral disk Kx such that Bd Kx =J, Kx n F= 0 and diameter Kx < 9;

for K n E (if not already empty) lies in a disk Fc E of diameter less than 0/2.

If K n Bd Ej= 0, then F n Bd F is an arc (in Bd F), and Kx is obtained by stretch-

ing K across the boundary of the tame disk F by a motion that is the identity

outside a small neighborhood of F. If K n Bd F= 0, we obtain Kx by systematically

chopping off K where it pokes through F (we assume K is in general position with

respect to F).

Now there is a finite collection {Jx, ■ ■., Jk} of mutually exclusive polyhedral

simple closed curves in Kx n U n V such that \Jk= x J{ separates J from Kx n D on

Kx. Let C be the component of Kx — Uf= i ■/< which contains J. Each / is unknotted,

lies in U and has diameter less than 9. Thus 7¡ bounds a singular disk C¡ in U with

diameter Ct < ij/3. Thus K2 = C u \Jk= x C¡ is a singular disk bounded by J, having

diameter less than 9+2r¡ft<r¡, and missing D. Thus there is a piecewise linear map

/:A^-(/(Aa disk) such that/|Bd A is a homeomorphism onto //(A) n D= 0,

diameter/(A) < t), and/is in general position with respect to E. By our choice of r¡,

/(A) n E lies in a disk G<=lnt F of diameter less than e/2. Each component of
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/_1(/(A) n F) is a simple closed curve in Int A; hence/can be modified to obtain

a map g:A^VuGso that g|Bd A=/|Bd A and g(A)c G u (/(A) n F). Since G

is tame, g can be further modified (on a neighborhood of g~1{G)) to obtain a map

« : A -> K with « | Bd A=g | Bd A and with diameter «(A) ̂  diameter/(A) + diameter G

<-n+EJ2<e. This establishes that V is 1-ULC with respect to unknotted simple

closed curves and therefore completes our proof.

3. Condition A. We say that a 2-manifold M^S3 satisfies condition (À)

provided that whenever F is a polyhedral disk in S3 with Bd D^S3-M and V is

any neighborhood of D there is a disk D' (not necessarily tame) such that

(i) MD' = BdD,

(ii) £>'<= K, and

(iii) if C is the component of D'-M which contains Bd D', then D'-C has

finitely many components.

If M is a closed manifold and U is a component of S3 — M we say that AT satisfies

condition (A) relative to U if the above holds for those disks D with Bd F»<= £/.

Let IK denote the set of wild points of AT, i.e. those points at which M fails to be

locally tame. If W has the property that any disk can be moved slightly so as to miss

W, then it is an easy general position argument to show that M satisfies (A). Thus

for example if If is a zero-dimensional set which is tame in the sense that S3— W

is 1-ULC (see [7]) then M satisfies (A). The familiar "horned sphere" described by

Alexander [1] is such an example.

4. Main results. We show here that a surface in S3 which satisfies (A) is tame

if and only if it is free.

Theorem 1. Suppose M is a closed, connected 2-manifold in S3 and U is a com-

ponent of S3 — M such that M satisfies condition (A) relative to U. If M is free

relative to U, then M is tame from U.

Theorem 1 follows from Theorem 2, below, in which the hypothesis of freeness

is localized. Before proceeding we note that by applying Theorem 1 to each com-

ponent of S3 — M we obtain

Corollary. Suppose M is a closed, connected 2-manifold in S3 which satisfies

condition (A). If M is free in S3 then M is tame.

Theorem 2. Suppose M is a closed, connected 2-manifold in S3 and U is a com-

ponent of S3 — M such that M satisfies condition (A) relative to U. Suppose further

that for each disk G<^M and for each -n>0 there is a map /: G-> U such that

d{x,/{x))<r)/or each xeG. Then M is tame/rom U.

Proof. By Lemma 2 it suffices to show that i/is 1-ULC with respect to unknotted

simple closed curves. Thus let e > 0 be given. Choose 8 > 0 so that any subset of M

of diameter less than S lies in a disk on M of diameter less than e/9.
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Now suppose J is an unknotted, polyhedral simple closed curve in U with

diameter J< 8. Since J bounds a disk in S3 we can show, as we did in the proof of

Lemma 2, that / bounds a disk D of diameter less than S. We further assume that D

satisfies (iii) of condition (A). We also assume, using [6, Theorem 7], that D is

locally polyhedral off D n M; so that each compact subset of £> — M lies in a finite

polyhedron in D — M.

Now D — C has finitely many components (C is the component of D — M which

contains Bd D). Each of these components is a continuum in Int D which does not

separate D; such a continuum can be represented as the intersection of a decreasing

sequence in disks in Int D. Thus there is a finite collection {Dx, ■ ■., Dk} of mutually

exclusive disks in Int D such that

(i) F-U^ilnt Dtcu, and

(ii) if At is the interior of the component of A — M which contains J¡ = Bd Dh

then Ai has two boundary components—F and a subset of a component of D n S.

It then follows that A¡ is homeomorphic to S1 x (0, 1).

We assume that each / is polyhedral ; so F»( is locally polyhedral off Dt n M.

We will show that each /( bounds a (possibly singular) disk D[ in U with di-

ameter D[<eß.

Once this is done, the proof is finished; for then J can be shrunk to a point on

(k \ k

D- U Dt)u (J A'-
i=l      /       i=l

This set lies in U and has diameter less than 8 + 2eß < e.

We therefore focus our attention on Jx (we assume there is at least one F»¡ —

otherwise D n M= 0 and we are already finished).

Now diameter (Dx n M)<8; so there is a disk E<^M of diameter less than e/9

with Dx n Afclnt F. Choose a disk G<=M with Feint G. Choose a point peS3

— U and join p to a point of Dx n E by an arc X which lies except for one end point

in 53 — U. Now M separates Jx from /» in S3 ; the same is true of the image of M

under any map which is homotopic to the identity in S3 — (Jx u />).

Now choose r¡ > 0 satisfying

(i)V<8ß,
(ii) 7¡<d(Dx u X, M-Int E),

(iii) r¡ < d(Jx U p, M), and

(iv) T)<d(E, M-IntG).

By hypothesis there is a map /: G ->- £/ such that d(x,f(x))<r¡ for each xeG.

We can extend / to a map F: M -*■ S3 such that d(x, F(x)) < r¡ for each x e M (we

can make F the identity outside an arbitrary neighborhood of G, but do not require

this).

By condition (ii) on r¡ it follows that F(M— Int E) n Dx= 0.

By condition (iii) it follows that F is homotopic to the inclusion that M -> S3

in S3 - (Jx u /»). Thus F(M) separates Jx from /» in S3. Furthermore, by (ii), (iv),
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and the fact that F(G)c U, it follows that F{M) n (F u X)= 0 ; so F(AT) separates

Ji from F in S3. Since F(AT) nö^ F(E) n Dx, F{E) separates Jx from Dx n M

on Dx.

We assume that F is locally piecewise linear at each point of Irit G {M has a

triangulation, but of course not necessarily as a subcomplex of 53) and that Fis in

general position with respect to Ax; so that F'1{Ax) = F~l{Ax n F{E)) is the union

of a finite collection {Lx,..., FJ of mutually exclusive simple closed curves in

IntF.

We would like the situation to be such that, for i—l,...,q, F\L{ is an essential

map of the simple closed curve F into the open annu\usAx. If this is not already the

case, we modify F as follows.

Choose /' so that F|F is homotopic to zero in Ax. Choose a disk TT in IntF

slightly larger than the one bounded by L¡. We define a map F': M -> S3 so that

F'|A7-TT=F|AT— 77and F'{H) lies in Uand slightly to one side of Ax. Now F'may

move some points more than r¡; however, we do have

F'{E) c F{E) u small neighborhood of Ax.

We wish to assert that F'(AT) separates Jx from F in S3. Suppose this is not the

case. Then F' is not homotopic to F in S3 — {Jx u F u X). In particular the map

a: Bd (TTx 7) -* U-Jx given by

a(x, 0 = F(x), t = 0,

= F'(x), / = 1,

= F(x) = F'(x),       x e Bd TT, t e I,

is an essential map of the 2-sphere Bd (TTx 7) into U-Jx. By the sphere theorem [14]

there is a piecewise linear homeomorphism ß: Bd (TTx 7) -> U—Jx which is essen-

tial. By the proof of the sphere theorem given in [14], it follows that ß can be chosen

so that |8(Bd(TTxT)) lies in an arbitrarily given neighborhood of a(Bd(TTxT)).

Since ß is an essential homeomorphism of a 2-sphere into U—Jx, it follows that Jx

lies in the component, W, of S3 — ß(Bd (TTxT)) which lies in U.

Now diameter IK^diameter F(F) + diameter Ax<ej3. Thus we can choose D'x

c W and the proof is finished. We therefore assume the alternative—namely that

F'(AT) separates Jx from F in S3 and hence that F'(E) separates Jx from Dx n M

on Dx.

We repeat the above procedure, if necessary, and after a finite number of steps

we obtain a map Fx: M->S3 satisfying

(i) F1|AT-F=F|A/-F,

(ii) Fx(E)c U n (F(E) u small neighborhood of ¿j),

(iii) Fi(F) separates Jx from F»! n AT on Dx, and

(iv) Ff X/ij) is the union of a finite collection {F1;..., Lk) of mutually exclusive

simple closed curves in Int F such that for each i Fx\Li is an essential map of F(

into Ax.



1969] FREE SURFACES IN S3 269

Now choose an innermost L¡, say L\, so that Lx bounds a disk FjClnt F with

FjXInt Ex) n Ax= 0. (By condition (iii) there is at least one F¡.) We construct a

(noncompact) 3-manifold Q<= U with Bd Q = Ax by thickening Ax slightly to one

side and adding to this a small neighborhood of Fj(Int Ex) which does not meet Ax.

Now kernel (ttx(Ax) ̂  tt^QY^O; for Fi|Fi represents a nontrivial element of

this kernel. Thus by the loop theorem [15] there is a simple closed curve K in Ax

which cannot be shrunk to a point in Ax, but which bounds a disk F in Q. If F is the

component of Ax -K which contains Jx, then F<= U. Thus £>i = F u F<= [/. Finally

fllcfiu Ô, gcsmall neighborhood of AxvFx(E), and Fx(E)cF(E) u small

neighborhood of ^i. Thus Fi<= small neighborhood of (Ax u F(E)). So diameter F»i

< 8 + e/9 + 2tj < e/3, and the proof is complete.

5. Applications. In this section we give a situation in which condition (A) can

be removed from the hypothesis of our results. The author is grateful to D. R.

McMillan for pointing out the following.

Theorem 3. Suppose M is a closed, connected 2-manifold in S3 and W is a com-

pact, zero-dimensional subset of M such that M is locally tame at each point ofM—W.

If M is free in S3, then M is tame.

Proof. We will show that W is tame. From this it follows (as pointed out in §3)

that M does indeed satisfy condition (A) ; hence by the Corollary to Theorem 1 M

is tame.

To show that W is tame it suffices [7, Theorem 3.1] to show the following:

Given peW and e > 0 there is a 2-sphere S^ S3 — W having diameter less than e

and such that/» lies in the small component of S3 — S.

We proceed to show that the above condition is satisfied by W.

Since M is locally tame at each point of M— W there is a homeomorphism

h: (M- W) x (-1, 1) -> S3 such that h(x, 0) = x for each xeM-W.

Let Ux and U2 denote the components of S3-M with h((M- W)x(0, l))c ux

and h((M- W) x (-1, 0))<= U2.

Now let/» e Wand oO be given. Now since M is free relative to í/¡ 0= 1, 2), it

follows from the proof of Theorem 2 that there exist 8,>0 (/= 1, 2) such that if J

is a simple closed curve in í/¡ of diameter less than S( and if F bounds a disk in S3

whose diameter is less than S( and which satisfies condition (A), then J¡ can be

shrunk to a point on a subset of U¡ of diameter less than eß.

Let 8 = min (8X, 82, e/6). Choose a simple closed curve ./<= M- IF which bounds a

disk E^M with peint E and diameter E<8. Choose ?>0 small enough that the

disk F=E u h(Jx [0, t]) has diameter less than 8. We note that F satisfies condition

(A); thus Bd F=h(Jxt) can be shrunk to a point on a subset of Ux of diameter less

than e/3. Thus J can be shrunk to a point on a subset of Ux — W of diameter less than

8 + eß<eß. Applying the Dehn's lemma to the 3-manifold-with-boundary C7X— W

we obtain a disk Dx of diameter <e/2 with Bd DX=J and int Dx^Ux-
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In the same way we obtain a disk D2 of diameter less than e/2 with Bd D2 =J and

int F»2C U2. The 2-sphere D± u D2 satisfies our requirements and the proof is

complete.

Theorem 4. Suppose M isa 2-sphere in S3, U isa component o/S3 — M and Wisa

compact, zero-dimensional subset o/ AT such that M is locally tame from U at each

point o/M— W. I/M is free relative to U then M is tame from U.

Proof. By [11], [12] there is an embedding « of U into S3 in such a way that

S3 — h{U) is a closed 3-cell. Clearly «(AT) satisfies the hypothesis of Theorem 3;

so /¡(AT) is tame in S3. This implies that AT is tame from U.

Remark. The restriction in Theorem 4 that AT be a 2-sphere seems unnecessary.

The general theorem would follow as above from a suitable generalization of the

results of [12], but we do not pursue this matter here.
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