FREE SURFACES IN §°

BY
JOHN HEMPEL(")

1. Introduction. Suppose M is a subcontinuum of the n-sphere S, and U is a
component of S"— M. We say that M is free relative to U if for each >0 there is a
map f: M — U such that d(x, f(x)) < e for each x € M. If M is free relative to each
component of S*— M we say M is free in S".

Free continua in S™ have been studied by R. L. Wilder with regard to determining
those intrinsic properties of M which can be deduced from the existence of an
embedding of M as a free subcontinuum of S™. In [17] it is shown, under appropri-
ate assumptions, that if M is free in S™ then M is a generalized (n— 1)-manifold. In
particular, when n=3, it is known [16, Theorem 3] that if M separates S?, is
locally connected, has finitely generated homology, and is free in S, then M is a
closed 2-manifold.

In this paper we pursue this topic by investigating those positional properties
which are satisfied by a given embedding of M as a free subset of S2. From now on
M will denote a closed, connected 2-manifold in S3.

Bing has shown [2] that M is tame in S° if it can be homeomorphically ap-
proximated in each complementary domain—that is, if it can be freed to each side
by homeomorphisms. Hempel has shown [10] that M is tame in S® if for each
component U of S3— M there is a homotopy h: M x I — U such that h(x, 0)=x
and for >0 h(x, t) € U. Thus M is tame if it can be freed to each side by a con-
tinuous family of maps.

In light of these results it is natural to conjecture that M is tame if it is free. The
purpose of this paper is to prove this conjecture in the presence of an additional
assumption on the placement of M in S This assumption is discussed in §3. We
note the contrast between this result and the fact [8] that any M < S® is partially free
in the sense that, given a component U of S®— M and £>0, there is a compact
zero-dimensional set 7<M and a map f: M — U U T satisfying f(M—T)<U
and d(x, f(x))<e.

We say M is tame in S® if there is a homeomorphism of S® onto itself which
takes M onto a polyhedron. If U is a component of S®— M we say M is tame from
Uif U=M v U s a 3-manifold with boundary. It follows from [4], [5], [13] that M
is tame if and only if it is tame from each complementary domain. For other
definitions we refer the reader to [3].
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In [3] it is shown that M is tame if S®— M is uniformly locally simply connected
(1-ULC). This result is extended in [9] to show that M is tame from U if U is
1-ULC. In §2 we describe a condition which is weaker than being 1-ULC but which
suffices to prove the above results. In §4 we show that if M satisfies our special
assumption (§3) and is free relative to U then U satisfies our modified form of
1-ULC, and hence that M is tame from U. We note that it is always the case that U
is uniformly locally 1-connected in homology (1-u.l.c.) (cf. Theorem 3.2, p. 295 of
[18]). In our context the assumption of freeness imposes on U the stronger property
of uniform local 1-connectedness in homotopy. In §5 it is shown that if M is assumed
to be locally tame off a zero-dimensional set then freeness implies tameness without
the special assumptions of §3.

2. A modification of 1-ULC. We say that an open subset U of S%is 1-ULC
with respect to unknotted simple closed curves if for each ¢>0 there corresponds
8> 0 such that if J is a polyhedral simple closed curve in U which is unknotted (i.e.
J bounds a (nonsingular) disk in S$®) and has diameter less than 8 then J can be
shrunk to a point on a subset of U of diameter less than e.

We note that for an arbitrary open set U< S?, the condition of being 1-ULC with
respect to unknotted curves is strictly weaker than being 1-ULC. For an example of
this, let C be obtained by boring out of a 3-cell a disjoint sequence of knotted
“tunnels” which converges to a point of the boundary of the 3-cell. The construc-
tion can be made so that U= S®— Cis 1-ULC with respect to unknotted curves, but
U is not 1-ULC. We will see, by an indirect route, that if U is a complementary
domain of a closed 2-manifold then the two conditions are equivalent. This is a
consequence of the following two lemmas.

LeMMA 1. Suppose S is a 2-sphere in S® and U is a component of S®— S which is
1-ULC with respect to unknotted simple closed curves. Then S is tame from U.

Proof. If we leave out the statement about unknottedness this is a direct con-
sequence of [3, Theorem 1] which shows that S can be homeomorphically ap-
proximated in U, together with [2, Theorem 2.1] which then shows that U U Sis a
3-cell. We merely note that the proof given in [3] works just as well with the state-
ment about unknottedness left in. Specifically the only ‘“small” simple closed
curves in U that need to be shrunk to a point on a *““small” subset of U are ones
which lie on a polyhedral 2-sphere S’<S$® which is homeomorphically close to .S
and lies “almost” in U.

LEMMA 2. Suppose M is a closed, connected 2-manifold in S® and U is a component
of S®— M which is 1-ULC with respect to unknotted simple closed curves. Then M is
tame from U.

Proof. Without the statement about unknottedness, Lemma 2 becomes [9,
Theorem 5]. It seems likely that we could dismiss this proof just as we did the proof
of Lemma 1. However the proof given in [9] does not proceed directly to show that
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M can be homeomorphically approximated from U, but rather shows that M is
locally tame from U. Since it is not evident that the proof by localization given in
[9] can be adapted to our weaker hypothesis, we give a proof.

Take p € M. It follows from [9, Theorem 1] that there is a disk D<M and a
2-sphere S< .S such that

(i) peInt D<SS,

(ii) S is locally polyhedral off D, and

(iii) Bd D is tame.

Now one component of $%— S, which we denote by ¥, has the property that D
lies in the (topological) boundary of U N V. We will show that ¥ is 1-ULC with
respect to unknotted curves. It then follows by Lemma 1 that S is tame from V.
This in turn implies that M is locally tame from U at p. Since this holds for each
P € M, the conclusion follows.

Let E=S—Int D. Since E is locally tame at each point of its interior and has a
tame boundary it follows (cf. [13, Lemma 2.1]) that E is tame.

Now let £¢>0 be given. There exists >0 such that any subset of E of diameter
less than 7 lies in a disk in E of diameter less than ¢/2. Now choose 6> 0 such that
any unknotted simple closed curve in U of diameter less than 6 can be shrunk to a
point on a subset of U of diameter less than 7/3. Finally choose >0 so that any
subset of E of diameter less than 8 lies in a disk F<E of diameter less than 6/2
with F N Bd E either empty or an arc.

Suppose J is an unknotted polyhedral simple closed curve in V of diameter less
than 8. Since J bounds a disk in S3, it is an easy argument to show that J bounds a
polyhedral disk K<S§® with diameter K<38; for one can modify an arbitrary
polyhedral disk bounded by J by standard “cut and paste” techniques to obtain
one which lies in a small regular neighborhood of the convex hull of J. We can
obtain a polyhedral disk K; such that Bd K, =J, K; N E= @ and diameter K, <6;
for K N E (if not already empty) lies in a disk F<E of diameter less than 6/2.
If KN Bd E+# @, then FN Bd E is an arc (in Bd F), and K, is obtained by stretch-
ing K across the boundary of the tame disk E by a motion that is the identity
outside a small neighborhood of F. If K N Bd E= @, we obtain K, by systematically
chopping off K where it pokes through F (we assume K is in general position with
respect to F).

Now there is a finite collection {/;, ..., J,} of mutually exclusive polyhedral
simple closed curves in K; N U N V such that { J¥-, J, separates J from K; N D on
K;. Let C be the component of K; — | J¥. ; J; which contains J. Each J, is unknotted,
lies in U and has diameter less than 8. Thus J; bounds a singular disk C; in U with
diameter C;<7/3. Thus K,=C U |}, C; is a singular disk bounded by J, having
diameter less than 6+ 27/3 <7, and missing D. Thus there is a piecewise linear map
St A — U (A a disk) such that f|Bd A is a homeomorphism onto J, f(A) N D= &,
diameter f(A) <7, and fis in general position with respect to E. By our choice of 7,
f(A) N E lies in a disk G<Int E of diameter less than ¢/2. Each component of
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S7Y(f(A) N E) is a simple closed curve in Int A; hence f can be modified to obtain
amap g:A— VU G so that g|Bd A=f|Bd A and g(A)=G U (f(A) N V). Since G
is tame, g can be further modified (on a neighborhood of g~*(G)) to obtain a map
h:A— V with h|Bd A=g|Bd A and with diameter h(A) < diameter f(A) + diameter G
<n+ef2<e. This establishes that V' is 1-ULC with respect to unknotted simple
closed curves and therefore completes our proof.

3. Condition A. We say that a 2-manifold M<S® satisfies condition (A)
provided that whenever D is a polyhedral disk in S® with Bd D=S®— M and V is
any neighborhood of D there is a disk D’ (not necessarily tame) such that

(i) Bd D'=Bd D,

(ii) D'<V, and

(iii) if C is the component of D'— M which contains Bd D’, then D’'—C has
finitely many components.

If M is a closed manifold and U is a component of S®— M we say that M satisfies
condition (A) relative to U if the above holds for those disks D with Bd D< U.

Let W denote the set of wild points of M, i.e. those points at which M fails to be
locally tame. If W has the property that any disk can be moved slightly so as to miss
W, then it is an easy general position argument to show that M satisfies (A). Thus
for example if W is a zero-dimensional set which is tame in the sense that S°— W
is 1-ULC (see [7]) then M satisfies (A). The familiar “ horned sphere” described by
Alexander [1] is such an example.

4. Main results. We show here that a surface in S® which satisfies (A) is tame
if and only if it is free.

THEOREM 1. Suppose M is a closed, connected 2-manifold in S® and U is a com-
ponent of S®— M such that M satisfies condition (A) relative to U. If M is free
relative to U, then M is tame from U.

Theorem 1 follows from Theorem 2, below, in which the hypothesis of freeness
is localized. Before proceeding we note that by applying Theorem 1 to each com-
ponent of S3— M we obtain

COROLLARY. Suppose M is a closed, connected 2-manifold in S® which satisfies
condition (A). If M is free in S® then M is tame.

THEOREM 2. Suppose M is a closed, connected 2-manifold in S° and U is a com-
ponent of S*— M such that M satisfies condition (A) relative to U. Suppose further
that for each disk G= M and for each n>0 there is a map f: G — U such that
d(x, f(x))<n for each x € G. Then M is tame from U.

Proof. By Lemma 2 it suffices to show that U is 1-ULC with respect to unknotted
simple closed curves. Thus let >0 be given. Choose >0 so that any subset of M
of diameter less than $ lies in a disk on M of diameter less than &/9.
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Now suppose J is an unknotted, polyhedral simple closed curve in U with
diameter J < 8. Since J bounds a disk in S® we can show, as we did in the proof of
Lemma 2, that J bounds a disk D of diameter less than 8. We further assume that D
satisfies (iii) of condition (A). We also assume, using [6, Theorem 7], that D is
locally polyhedral off D N M ; so that each compact subset of D— M lies in a finite
polyhedron in D— M.

Now D — C has finitely many components (C is the component of D— M which
contains Bd D). Each of these components is a continuum in Int D which does not
separate D; such a continuum can be represented as the intersection of a decreasing
sequence in disks in Int D. Thus there is a finite collection {D;, . . ., D,} of mutually
exclusive disks in Int D such that

(i) D—\J¥-, Int D,< U, and

(ii) if A, is the interior of the component of D;— M which contains J;=Bd D,,
then A, has two boundary components—J; and a subset of a component of D N S.
It then follows that 4, is homeomorphic to S* x (0, 1).

We assume that each J; is polyhedral; so D; is locally polyhedral off D; N M.

We will show that each J; bounds a (possibly singular) disk D; in U with di-
ameter D] <e/3.

Once this is done, the proof is finished ; for then J can be shrunk to a point on

(D— Q D‘) U Ql D

This set lies in U and has diameter less than 8+ 2¢/3 <e.

We therefore focus our attention on J; (we assume there is at least one D,—
otherwise D N M= @ and we are already finished).

Now diameter (D, N M) < §; so there is a disk E< M of diameter less than /9
with D; N M<Int E. Choose a disk G= M with EclInt G. Choose a point p € $®
— U and join p to a point of D, N E by an arc X which lies except for one end point
in $%—U. Now M separates J; from p in S%; the same is true of the image of M
under any map which is homotopic to the identity in S*—(J; U p).

Now choose 7> 0 satisfying

@) <812,

(ii) n<d(D, YV X, M—1Int E),

(iii) n<d(J, Y p, M), and

(iv) n<d(E, M—Int G).

By hypothesis there is a map f: G — U such that d(x, f(x)) <7 for each x € G.
We can extend f to a map F: M — S° such that d(x, F(x)) <7 for each x € M (we
can make F the identity outside an arbitrary neighborhood of G, but do not require
this).

By condition (ii) on 7 it follows that FM —Int E) N D,=g&.

By condition (iii) it follows that F is homotopic to the inclusion that M — S®
in §3—(J, U p). Thus F(M) separates J; from p in S% Furthermore, by (ii), (iv),
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and the fact that F(G)< U, it follows that F(M) N (E U X)= & ; so F(M) separates
J, from E in S3. Since F(M) N D,=F(E) n D,, F(E) separates J, from D, " M
on D,.

We assume that F is locally piecewise linear at each point of Int G (M has a
triangulation, but of course not necessarily as a subcomplex of $%) and that Fis in
general position with respect to 4, ; so that F~1(4,)=F~*(4, N F(E)) is the union
of a finite collection {L,, ..., L} of mutually exclusive simple closed curves in
Int E.

We would like the situation to be such that, for i=1, ..., g, F|L, is an essential
map of the simple closed curve L; into the open annulus 4,. If this is not already the
case, we modify F as follows.

Choose i so that F|L; is homotopic to zero in 4;. Choose a disk H in Int E
slightly larger than the one bounded by L,. We define a map F': M — S° so that
F'|M— H=F|M— H and F'(H)lies in U and slightly to one side of 4;. Now F’ may
move some points more than n; however, we do have

F'(E) < F(E) U small neighborhood of 4;.

We wish to assert that F'(M) separates J, from E in S2. Suppose this is not the
case. Then F’ is not homotopic to F in $°—(J; U E U X). In particular the map
o: Bd (HxI)— U—J, given by

a(x, t) = F(x), t=0,
= F'(x), t=1,
= F(x) = F'(x), xeBd H,tel,

is an essential map of the 2-sphere Bd (H x I) into U—J,. By the sphere theorem [14]
there is a piecewise linear homeomorphism B: Bd (H x I) - U~J; which is essen-
tial. By the proof of the sphere theorem given in [14], it follows that 8 can be chosen
so that B(Bd (H x I)) lies in an arbitrarily given neighborhood of «(Bd (H x I)).
Since 8 is an essential homeomorphism of a 2-sphere into U—Jj, it follows that J;
lies in the component, W, of S®—B(Bd (H x I)) which lies in U.

Now diameter W <diameter F(E)+diameter 4, <e¢/3. Thus we can choose D;
< W and the proof is finished. We therefore assume the alternative—namely that
F'(M) separates J; from E in S® and hence that F'(E) separates J; from D, N M
on D,.

We repeat the above procedure, if necessary, and after a finite number of steps
we obtain a map F;: M — S° satisfying

(i) F,IM—E=F|M—E,

(ii) F,(E)<U N (F(E) v small neighborhood of 4,),

(iii) F,(E) separates J, from D; " M on D, and

(iv) F1(A4,) is the union of a finite collection {L,, .. ., L.} of mutually exclusive
simple closed curves in Int E such that for each i F;|L, is an essential map of L,
into A,.
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Now choose an innermost L, say L,, so that L, bounds a disk E,<Int E with
F,(Int E;) N 4, = . (By condition (iii) there is at least one L,.) We construct a
(noncompact) 3-manifold Q< U with Bd Q= 4, by thickening A, slightly to one
side and adding to this a small neighborhood of F;(Int E;) which does not meet 4;.

Now kernel (my(4;) — m,(Q))#0; for Fy|L, represents a nontrivial element of
this kernel. Thus by the loop theorem [15] there is a simple closed curve K in A4,
which cannot be shrunk to a point in 4,, but which bounds a disk Rin Q. If B is the
component of 4, — K which contains J,, then B< U. Thus Dy =B U R< U. Finally
Di=BuyU Q, Q<small neighborhood of 4; U Fy(E), and Fy(E)<F(E) U small
neighborhood of 4;. Thus D} < small neighborhood of (4, U F(E)). So diameter D
< 8+¢/9+2n<e¢/3, and the proof is complete.

5. Applications. In this section we give a situation in which condition (A) can
be removed from the hypothesis of our results. The author is grateful to D. R.
McMillan for pointing out the following.

THEOREM 3. Suppose M is a closed, connected 2-manifold in S® and W is a com-
pact, zero-dimensional subset of M such that M is locally tame at each point of M — W.
If M is free in S, then M is tame.

Proof. We will show that W is tame. From this it follows (as pointed out in §3)
that M does indeed satisfy condition (A); hence by the Corollary to Theorem 1 M
is tame.

To show that W is tame it suffices [7, Theorem 3.1] to show the following:

Given p € W and >0 there is a 2-sphere S<S%— W having diameter less than ¢
and such that p lies in the small component of $3—S.

We proceed to show that the above condition is satisfied by W.

Since M is locally tame at each point of M — W there is a homeomorphism

h: (M—W)x(—1, 1) — S such that h(x, 0)=x for each xe M— W.

Let U, and U, denote the components of S — M with A(M— W) x (0, 1))< U,
and (M- W)x(—1,0)<c U,.

Now let p € W and >0 be given. Now since M is free relative to U; (i=1, 2), it
follows from the proof of Theorem 2 that there exist 8,>0 (i=1, 2) such that if J
is a simple closed curve in U; of diameter less than §, and if J; bounds a disk in S
whose diameter is less than 8, and which satisfies condition (A), then J; can be
shrunk to a point on a subset of U; of diameter less than /3.

Let 8=min (3,, 8,, £/6). Choose a simple closed curve J= M — W which bounds a
disk E< M with p e int E and diameter E <8. Choose >0 small enough that the
disk F=F U h(J x [0, ¢]) has diameter less than 8. We note that F satisfies condition
(A); thus Bd F=h(J x t) can be shrunk to a point on a subset of U, of diameter less
than ¢/3. Thus J can be shrunk to a point on a subset of U, — W of diameter less than
8+¢/3 <¢/2. Applying the Dehn’s lemma to the 3-manifold-with-boundary U, — W
we obtain a disk D, of diameter <¢/2 with Bd D,=J and int D,< U,.
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In the same way we obtain a disk D, of diameter less than ¢/2 with Bd D,=J and
int D;< U,. The 2-sphere D, U D, satisfies our requirements and the proof is
complete.

THEOREM 4. Suppose M is a 2-sphere in S3, U is a component of S~ M and W is a
compact, zero-dimensional subset of M such that M is locally tame from U at each
point of M— W. If M is free relative to U then M is tame from U.

Proof. By [11], [12] there is an embedding 4 of U into S° in such a way that
S3—h(U) is a closed 3-cell. Clearly h(M) satisfies the hypothesis of Theorem 3;
s0 h(M) is tame in S°. This implies that M is tame from U.

REMARK. The restriction in Theorem 4 that M be a 2-sphere seems unnecessary.
The general theorem would follow as above from a suitable generalization of the
results of [12], but we do not pursue this matter here.
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