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1. Introduction. In the study of cellular decompositions of manifolds, homo-

topy properties have proved to be of considerable importance. One of the first

results along these lines was established by Price [10], [11]. He proved that if G is a

cellular decomposition of Fn and U is a simply connected open set in the associated

decomposition space, then P'^U] is simply connected. Here F denotes the pro-

jection mapping. In [8], Martin pointed out that a similar result holds for upper

semicontinuous decompositions of S3 into compact absolute retracts. Martin's

result also follows from results of Smale [12].

In the cases mentioned, the crucial lemmas assert that certain types of maps into

the decomposition space can be "lifted" to yield maps into the space being de-

composed. The hypotheses of [11] and [8] are used to show that if g is any element

of the decomposition and U is an open set containing g, there is an open set V such

that g<^ V<= U and each singular 1-sphere in V is homotopic to 0 in U. This is a type

of homotopy triviality in dimension 1, and in [1], is called "property l-UV".

The construction of [8] and [11] can be extended to higher dimensions. In [1], a

family of properties, the UV properties for compact sets, are studied. For a given

positive integer «, a compact set M in a space X has property n-UV if pairs of

neighborhoods of M satisfy a condition of homotopy triviality in dimension n

analogous to that stated above for dimension 1.

The purpose of this paper is to extend the results of [8] and [11] mentioned above

to upper semicontinuous decompositions of metric spaces into compact sets with

suitable £/F properties. We shall establish stronger results than those of [8] and [11].

We shall obtain results for decompositions of the type mentioned analogous to

those of Smale [12]. Closely related results have also been obtained by Lacher [6].

The main lemmas of the paper are established in §§ 3 and 4. In these results, we

consider a map/from a finite complex F into a decomposition space X\G. Under

suitable hypotheses, such maps can be " lifted " into the space X being decomposed.

In § 3, it is supposed that there is a map g from a subcomplex Lof K such that/is an

extension of Pg. We show that (under appropriate hypotheses), g has an extension.

In §4, we show that, in the cases considered, there is a map g from F into X such

that Pg is "near"/ thus, g "almost covers"/
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The lemmas of §§3 and 4 are applied in §5. Other applications of these lemmas

may be found in [2].

The first major result of §5 concerns the relation between the homotopy groups

of an open set U in a decomposition space and the homotopy groups of F_1[i/].

We show that under suitable hypotheses, F induces isomorphisms from the groups

of P'X[U] onto the corresponding groups of U. The second major result, which

generalizes a theorem due to Price [11], gives conditions under which, if U is an

open cell in a decomposition space, P~1[U]is an open cell.

There is a close connection between upper semicontinuous decompositions of

metric spaces and compact mappings from a metric space onto a metric space. In

§6, we have formulated some of our results in terms of compact mappings.

2. Notation and terminology. If X is a topological space and G is an upper

semicontinuous decomposition of X, then X/G denotes the associated decomposi-

tion space and F denotes the projection map from X onto X/G. A number of basic

results concerning upper semicontinuous decompositions are given in [9, Chapter

V] and [15, Chapter 7].

Suppose X is a topological space, M is a subset of X, and « is a nonnegative

integer. M has property n-UV if and only if for each open set U containing M,

there is an open set V containing M such that (1) F<= U and (2) each singular

«-sphere in V is homotopic to 0 in U. M has property UVn if and only if for each

nonnegative integer i such that z' = «, M has property i-UV.

M has property UVa if and only if for each nonnegative integer k, M has prop-

erty k-UV. M has property UVX if and only if for each open set U containing M,

there is an open set V containing M such that (1) F<= U and (2) V is contractible

in U.

If X is a topological space and « is a nonnegative integer, the statement that G

is a UVn decomposition of X means that G is an upper semicontinuous decomposi-

tion of X into compact sets, each with property UVn.

Suppose « is a positive integer. The statement that M is an n-manifold means that

M is a separable metric space such that each point of M has an open neighborhood

which is an open «-cell. The statement that M is an «-manifold-with-boundary

means that M is a separable metric space such that each point of M has a neighbor-

hood which is an «-cell. If M is an «-manifold-with-boundary, then a point p of M

is an interior point of M if and only if p has an open neighborhood which is an

open «-cell. The set of all interior points of M is the interior of M, denoted by

Int M. The boundary of M, Bd M, is Af—Int M.

Suppose M is an «-manifold. If A is a subset of M, then A is cellular in M if and

only if there exists a sequence C1; C2, C3,... of «-cells in M such that (1) for each

positive integer i, C, + 1c Int C¡, and (2) p|,™ j C¡ = A. If M is a «-manifold, the state-

ment that G is a cellular decomposition of M means that G is an upper semicon-

tinuous decomposition of M and each element of G is a cellular subset of M.
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Suppose A' is a topological space. If ^ is a collection of subsets of X and A <= X,

then the star 0/A with respect to <%, denoted by st (A, <W), is (J {U : Ue<% and U

intersects A}. Suppose % and F" are collections of open subsets of X. Then F"

star refines <% if and only if for each set V of 'f, there is a set U of % such that

st (y,y)<=. U. If « is any nonnegative integer, then V star n-homotopy refines W if

and only if for each set V of f, there is a set U of % such that (1) st (F, F~)c \j and

(2) if 0 í¡ k ¿ «, each singular ^-sphere in st ( V, ir) is homotopic to 0 in U.

I denotes the closed interval [0, 1]. If « is a positive integer, Dn denotes the closed

unit ball («-cell) with center at the origin in En, and Sn denotes the unit sphere in

£7i+i w¡tn center at the origin. By a complex is meant a finite simplicial complex.

By a mapping is meant a continuous function. If A' is a compact metric space and

/ and g are mappings from X into a metric space Y, then

D(f, g) = l.u.b. {d(f(x), g(x)) :xeX}.

3. Lifting extensions of maps. Lemma 3.2 below is one of the two main lemmas

of this paper. It deals essentially with lifting extensions of maps. It may also be

viewed in the following way : From the existence of homotopies in a decomposition

space, we may infer the existence of certain homotopies in the space being de-

composed. We first establish a preliminary result.

Lemma 3.1. Suppose X is a metric space, « is a nonnegative integer, G is a UVn

decomposition o/ X, and A is a subset o/ X\G. 1/*% is an open covering o/ A, there

exists an open covering F~ o/ A such that {P~\V~\ : Ve'f) star n-homotopy refines

{P-\U\ : Ue<%).

Proof. If ye A, there is an open set Uy in ^ such that ye Uy. ThenF"1[i/v] is an

open set in X containing P-1[.y]. Since each element of G has property UVn, there is

an open set Wy in A'such that (1) P-^y]^ W^P-^Uy] and (2) if Q>%\kun, each

singular k-snhere in Wy is homotopic to 0 in F_1[C/j,]. Since G is upper semicon-

tinuous and P'^yY1 Wy, we may assume that (3) Wy is a union of elements of G;

thus P[rVy] is an open set in XIG containing y. Let W denote {PflFJ : y e A};W

is an open covering of A.

By [13], X\G is a metric space. By [4, p. 167], there is an open covering "f of A

such that y star refines if. Then {F_1[H :VeiT} star refines {Wy : y e A), and

{Wy-.yeA} refines {P-x[Uy\:y e A}. It follows that {P_1[F] : Ve-T) star

«-homotopy refines {P'^U] : Ue<W}.

Lemma 3.2 was established for pointlike mappings of Sn by Cernavskii and

Kompaniec [3, Lemma 1]; see Theorem 2.1 of [6] for a closely related result.

Lemma 3.2. Suppose X is a metric space, « is a nonnegative integer, and G is a

UV"'1 decomposition o/ X. Suppose k is a nonnegative integer such that k^n, Kis a

finite simplicial k-complex, and L is a subcomplex of K Suppose f is a map from L

into X and g is a map from K into X/G such that g\L = Pf Suppose e is a positive

number. Then there exists an extension F off sending K into X such that D(g,PF) < e
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Proof. If y eg[K], there is an open set Uy in X such that (1) P[Uy] is open in

X/G, (2) yeP[Uy], and (3) P[Uy] has diameter less than e/2. Since F is a finite

complex, there is a finite subset 6Hkof{Uy : ye g[K]} such that Wk covers P'1g[K].

By repeated application of Lemma 3.1, we obtain collections ^k-x,^k-2,. ■ -, and

°ilo such that if 0 = /=/c— 1, (1) each set of^ is an open inverse set, (2) ^ is a finite

open covering of P~1g[K], and (3) ^ star («-l)-homotopy refines ^i + x. If

0 = z'^/c, let Un, Ui2,..., and Uimi denote the sets of <^¡.

We are now prepared to construct an extension F off to F. There exists a sub-

division F of F such that if o e T, then for some j, g[o]cP[U0j]; equivalently,

P~1g[a]cz Uor We shall define Ffirst on the 0-skeleton of F, then on the l-skeleton

of T, and so on. We shall denote these maps by F0, F1;..., and Fk.

Suppose v is a vertex of T.Ifve L, define F0(v) to be/(t>). If v $ L, let F0(v) be a

point of P-1[|»(z;)]. Hence F0 is defined on the 0-skeleton of F. It follows from the

construction of F that if a' is a 1-simplex of F, then for some/ F0[Bd o']c u0J. This

is true because for some/ P~1g[o']c U0j, and by construction, F0[Bd o']czP~1g[o'].

Suppose 0 á i < k and we have defined F¡ on the /-skeleton of T. Suppose further

that (1) if z > 0, F¡ is an extension of F¡ _ u (2) if x is in both F and the z'-skeleton of T,

then Fj(x)=/(x), and (3) if o' is an z'-simplex of F, then for some/ Fi[al]<=- U{). We

shall now construct an extension Fi + 1 of F¡ to the (z'+ l)-skeleton of F.

If a is an (z'+ l)-simplex of Fin F, define Fi + 1|<r to be/|o-. Suppose o is an (z'+1)-

simplex of F not in F. Let t be an z'-face of o. Then for some / F¡[t]c: {Jif. If i > 0,

each z'-face of Bd o intersects r, and it follows that F([Bd <r]cst (Uu, ^¡). If z'=0,

then it was mentioned above that for some / F¡[Bd a]c Uu. Since ^ star (« — 1)-

homotopy refinesVt+1, it follows that for some r, F¡[Bd a]c i/(j + 1)r and F¡|Bd <j~0

in Uii + 1)r- Thus we define an extension Fi + 1 of F¡ such that (1) Fi + 1 takes the (z'+1)-

skeleton of F into X, (2) if x e F and x lies in the (z'+l)-skeleton of T, Fi + 1(x)=f(x),

and (3) if ct' + 1 is an (z'+ l)-simplex of T, then for some/ Fi + 1[ai + 1]<=£/(j + lw.

Hence in finitely many steps we construct an extension F off that takes F into X

and has the property that if a is a simplex of F, then for some/ F[ct]c zjw.

Now we shall show that D(g, PF) < e. Suppose xe K and let a be a simplex of F

containing x. Then for some/ F[ct]<= i/w and so F(x) e i/w. Further, diamP[Uk}]

<e/2, and since for some r and i, gfa^PiUro^PiU^], it follows that diamgfor]

<e/2. Let z? be a vertex of o- and recall that g(v)=PF(v). Then

P(g(x), FF(x)) = p(g(x),g(v)) + P(g(v),PF(x)) < ,/2 + e/2 = £.

It then follows that D(g, PF) < s.

We may state Lemma 3.2 in the following way.

Lemma 3.3. Suppose X is a metric space, « is a nonnegative integer, K is a finite

simplicial n-complex, L is a subcomplex of K, and G is a UVn decomposition of X.

Suppose f and « are continuous functions from K into X such that (1)/|F = «|F and

(2) there is a homotopy H from Kxl into X/G such that (a) H0=Pf (b) Hx—Ph, and
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(c) if tel, Ht\L=Pf\L. Suppose e is a positive number. Then there is a homotopy F

from Kxl into X such that (1) F0=/, (2) Fx=h, (3) i/tel, F|F=/|F, and (4)

D(H, PF)<e.

If A and B are sets in a topological space such that F<= A and C and D are sets in a

topological space such that D<= c, then a function/is/ro«i (A, B) into (C, D) if and

only if/has domain A,/[A]<= C, and/[B]<= D. Suppose AT is a topological space, U

and F are open sets in X, Fc U, and « is a nonnegative integer. Then the pair

(U, V) is n-connected if and only if for each nonnegative integer i such that i^n

and each continuous function from (A', Bd A') into (U, V), there is a homotopy 7/

from A' x 7 into U such that (I) if tel, Ht is from (A', Bd A') into (U, V), (2) H0 =/,

and (3) TTJA'Jc: V. Here A* denotes an z'-simplex; A0 denotes a point and Bd A0 is

void.

Lemma 3.4. Suppose X is a metric space, « is a nonnegative integer, and G is a UVn

decomposition o/X. Suppose U and Vare open sets in XjG such that F<= U. I/(U, V)

is n-connected, then (F_1[C/], F_1[F]) is n-connected.

Proof. Suppose i is an integer such that O^z'^m and /is a continuous function

from (A*, BdA') into (P'^U], P_1[F]). Then P/ is a continuous function from

(A', Bd A') into (U, V). Since (U, V) is «-connected, there is a homotopy H from

A' x / into U such that (1) if tel, Ht is from (A*, Bd Af) into (U, V), (2) H0=P/

and (3) Hi[A']<= V.

Let e be the dis.tance in XjG from H[(A' x {/}) u ([Bd A'] x /)] to U- V. Now by

Lemma 3.3, there is a homotopy F from A'x/ into F_1[(7] such that (1) F0=/

and (2) D(H,PF)<e. It then follows that F[Afxtffl^p-^V] and that if tel,
F([BdA]c:/»-i[F].

4. Construction of continuous functions. The objective of this section is to

establish the second main lemma, Lemma 4.2, of this paper. In Lemma 4.2, we

consider the following situation. We have a metric space X and an upper semi-

continuous decomposition G of X. Suppose that/is a map from a finite simplicial

complex F into A7G. There may not exist a map g from F into X such that Pg=/

However, under suitable hypotheses, we can show that there exists a map « from F

into X such that Ph~/ in XjG. We may require, in addition, that Ph and / be

homotopic via a homotopy with short paths.

Lemma 4.1. Suppose X is a metric space, « is a nonnegative integer, G is a UVn

decomposition o/X, «^ 1, F is a finite simplicial k-complex, and L is a subcomplex

o/ K. Suppose / is a map from L into X and g is a map from K into X\G such that

g\L=P/ If e is any positive number, there exists a positive number 8 such that i/ h

and I are continuous extensions o//sending K into X such that, in XjG, D(g, Ph) < 8

and D(g, PI) < 8, then there is a homotopy H from Kxl into X such that (1) H0=h,

(2) Hi = /, (3) i/teI,Ht\L =/ and (4) if te I, D(g, PHt) < e in X\G.
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Proof. The proof of this lemma is similar to that of Lemma 3.2. If y e g[K],

there is an open set Uy in X such that (1) P[Uy] is open in X/G and (2) P[Uy] has

diameter less than e/2. Since F is a finite complex, there is a finite subset c%k + 1 of

{Uy : y e g[K]} covering F~1g[K]. By repeated application of Lemma 3.1, we obtain

collections Wk, <%k_x,... and ^¿0 such that if 0 = z' = /c, (1) each set of ^ is an open

inverse set, (2) ^ is a finite open covering of P'1g[K], and (3) % star «-homotopy

refines % + 1. IfO^i^k+l, let Ua, Ui2,..., and Uim, denote the sets of %it

There exists a subdivision F of F such that if o- is a simplex of F, then for some/

g[a]cP[U0j]. Let S be a positive number such that (1) S<e/2 and (2) if o is any

simplex of F, 1 ̂ j^m0, and g[a] is contained in P[U0j], then the open S-neighbor-

hood of g[a] lies in P[U0j].

Suppose h and / are continuous extensions of / sending F into X such that

D(g,Ph)<b and D(g,Pl)<b. Note that if t is any simplex of F, l=/=«i0, and

g[T]<=P[U0j], then both h[r]cP[U0j] and 1[t]^P[U0J]. This follows from the choice

of S.

Let F' denote (Fx{0}) u (Kx{l}) u (Fx/). Define H' on F' as follows: (1) If

xeK, then H'(x, 0) = h(x) and /F(x, l) = /(x). (2) If x e L and t e I, H'(x, t)=f(x).

We shall now construct an extension H of H' to Kx I. We extend by skeletons of F,

and shall denote the maps constructed by H°, H1, H2,..., and Hk.

Let z; be a vertex of F not in F. As noted above, for some/ U0j contains both h(v)

and k(v). Since ^o star «-homotopy refines ^lx, it follows that H'\({v\ x {0, 1}) can be

extended to take {z;} x / into some element of ^¿x- Note that if v is a vertex of F in F,

{i;}x/ci', In this manner, we construct an extension H° of //' to (T°xl) u F',

where T° is the 0-skeleton of F. Further, //° has the property that if o is a simplex of

F in F° u F, then //°[a x /] lies in some set of #,..

Suppose that 0 ̂  z < /c and that we have constructed an extension //' of //' to

(Ff x /) u F', where F' denotes the z'-skeleton of T. Suppose further that if t is a

simplex of F in F* u F, then //'[t x /] lies in some element of <Hi +,..

Let a be an (z'+ l)-simplex of F not in F. Then //' is defined on (a x {0}) u (a x {1})

u ([Bd a] x /). Further, if j has the property that gMcP[ry(i + lw], then

//'[(a X {0}) U (a X {1}) U ([Bd a] X /)] C St (i/(i + 1)J, «( + 1).

Since ^i + 1 star «-homotopy refines ^i+2, it follows that

//■|[(ax{0, l})u([BdCT]x/)}

can be extended to take ax I into some element of ^i + 2. Recall that if a is an

(i+ l)-simplex of F in L, oxI^K'. It follows that //' has an extension Hi+1 that

takes (Fi + 1 + /)<=F' into X such that if t is a simplex of F in Fi + 1 uF, then

Hi + 1[rxl] lies in some element of aUi + 2.

Hence there is an extension //of//' to Fx/and such that (1) //takes Fx/into

X and (2) if <r is any simplex of F, H[a x I] lies in some set of%k + 1.
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Now we shall show that in XjG, if tel, D(g, PHt) < e. Suppose x e F, and let a

be a simplex of T such that x e a. Then for some / H[axI]<=-U{k + 1)j, so that

H(x, 0) e Uik + i>j and H(x, t)e Uik + 1)j. Thus PH(x,t)eP[Uik + 1)i] and since

H0=h, PH(x,0)eP[Ulk + Uj]. By construction, diamP[É/<fc+lw]<e/2, and by

hypothesis, D(g, Ph)<8 so that p(g(x), Ph(x))<8<e/2. Thus p(g(x), PH(x, t))<e.

Therefore, if tel, D(g, PHt) < t.

Lemma 4.2. Suppose X is a metric space, n is a nonnegative integer, G is a UV

decomposition o/X, k^n, K is a finite simplicial k-complex, andL is a subcomplex o/

K. Suppose /° is a map from L into X and g is a map from K into X/G such that

g\L=P/°. I/e is a positive number, there exists an extension/o//° sending K into X

and an e-homotopy H from Kxl into XjG such that 770=/y, Hx=g, and if tel,

Ht\L=g\L. In particular, P/~g in X/G by an e-homotopy.

Proof. We shall use Lemma 3.2 to construct a sequence hx, h2, h3,... of con-

tinuous extensions of « to F such that (1) for each i, «, is homotopic to «i + 1 under a

homotopy H' such that PH' does not move points far and (2) the sequence Phu

Ph2, Ph3,... converges to g.

Suppose e is a positive number. For each i, let e¡ be e/2i+1. For each i, there exists,

by Lemma 4.1, a positive number Sj such that if a and ß are any continuous ex-

tensions of/0 sending F into X such that D(g, Pa) < 8¡ and D(g, Pß) < S¡, then there

is a homotopy F from Kxl into X such that (1) F0 = «, (2) Fx=ß, (3) if tel,

Ft\L=/°, and (4) if t e I, D(g, PFt) < e¡ in X/G. In addition, we assume that for each

i, Si<Si + 1.

For each positive integer i, there exists, by Lemma 3.2, a map «¡ from F into X

such that hi\L=/° and D(g, Ph¡) < Sf. Since 8,+1 < 8,, it follows that D(g, Phi + x)< S¡.

Hence there is a homotopy H' from Kxl into X such that (1) 7/¿ = /z¡, (2) H[

= hi + 1, (3) if tel, H't\L=P, and (4) in X/G, if t e I, D(g, PH¡) <e¡.

Define/to be hv Define H as follows : (1) If x e F, then H(x, 1) =g(x). (2) If i is

any positive integer, r e [1 -2"<(_1), 1-2"'], and xe K, let

H(x, t) = P7F(x, 2f + 1[i + (l-2-(i-1))]).

For each i, T/í = «¡ and H'0+1 = hi. It follows that 7/ is a well-defined function

from Kxl into XjG. Since //¿=«L=/, then 7/0=F/ By definition, 7/1 = g. Since for

each i, if tel, H¡\L=/°, it is clear that if Z e F, Ht\L=g\L.

It is easy to see that H is continuous at each point of Fx [0, 1). For each i and

each / in 7, D(g, PHl)<eu e¡ = £/2< + 1, and it is routine to show that 7/ is continuous

at each point of F x {1} as well.

Since for each z, ef = e/2*+ \ it follows that for any point x of F, diam PH[{x} x I]

< e, and thus that in X/G, H is an e-homotopy.

5. Applications. As our first application, we give a Vietoris mapping theorem

for homotopy groups, for decompositions into compact sets with suitable UV

properties. Theorem 5.1 below is analogous to results of [12].
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Theorem 5.1. Suppose X is a metric space, n is a nonnegative integer, and G is a

UVn decomposition of X. Suppose U is an open set in X/G and x e P_1[[/]. Then if

0^/cgn, F*: irfc(P_1[[/], x) —> trk(U, P(x)) is an isomorphism onto.

Proof. We need only prove that P* is one-to-one and onto. Suppose 0 ^ k ^ « and

that/: (Sk, s) -> (P'^U], x) represents an element, denoted by [/], ofir^p-^Ulx).

If /"*([/])= 1, then F/can be extended to a map g: Dk + 1 -> W. By Lemma 3.2,

there is an extension F off that takes Dk + 1 into F_1[IF]. Hence/~0 in P_1[JF]

and it follows that F* is one-to-one.

Suppose O^k^n and that g: (Sh, s) -^-(U, P(x)) represents an element of

trk(U, P(x)). Let/0 denote the map from {s} into F_1[£/] such that/°(i) = x. Then

by Lemma 4.2, there is an extension / of f° sending S" into F_1[i/] such that

Pf~g in U. Hence P*([/]) = [g], and it follows that P* is onto.

Corollary 5.2. Suppose « is a positive integer, M is an n-manifold, and G is a

cellular decomposition of M. If U is an open set in M/G and x e P~X[U], then for

each positive integer k, Pif:TTk(P~1[U],x)-^-Trk(U,P(x)) is an isomorphism onto.

In particular, ifx0 e M, then for each positive integer k,

P*: 7Tk(M, x0) -> 7Tk(M/G, P(x0))

is an isomorphism onto.

Proof. Since G is a cellular decomposition, then for each positive integer m, G

is a UVm decomposition. Corollary 5.2 then follows from Theorem 5.1.

For definitions of terms used in the next two corollaries, see [1].

Corollary 5.3. Suppose n is a positive integer, X is a locally compact LCn

metric space, and G is an upper semicontinuous decomposition of X into compact

LC1'1 n-connected sets. Then if U is any open set X/G, p eP_1[£/], and q=P(p),

TTn(U,q) and 7rn(F_1[C/], p) are isomorphic.

Proof. By Lemma 5.5 of [1], each set of G has property UVn. Hence Corollary

5.3 follows from Theorem 5.1.

Corollary 5.4. Suppose X is a locally compact LC metric space and G is an

upper semicontinuous decomposition of X into compact absolute retracts. Then if U

is any open set in X/G, peP~x[U], q=P(p), and k is any positive integer, then

nk(U, q) and trk(P~1[U], p) are isomorphic.

Proof. By Corollary 5.7 of [1], each set of G has property UVa, and hence

Theorem 5.1 applies.

In [11], Price proved the following theorem: If « is a positive integer, «^4, G is a

cellular decomposition of En, and U is an open «-cell in En/G such that U is open in

En/G, then P~X[U] is an open «-cell. We shall establish an analogous result for

«-manifolds, «>4 and UV° decompositions.
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Theorem 5.5. Suppose n is a positive integer, n>4, M is an n-mani/old, G is a

UV" decomposition o/ M, and U is an open subset o/ M\G such that U is an open

n-cell. Then P_1[t/] is an open n-cell.

Proof. By [7], we need only show that P~X[U\ is contractible and 1-connected at

infinity. By Theorem 5.1, for each positive integer k, Trk(P~1[U]) = 0. It follows

from [14] that P-1[i/] is contractible.

Now let F be any compact subset of P~X[U]. There is a compact subset D of U

such that P[B]^D and U—D is connected and simply connected. By Lemma 3.2,

P~1[U—D], or P_1[i/] — P_1[£>], is simply connected. Since each set of G is

connected, P~X[U-D] is connected [9, Chapter V, Theorem 5]. Since B^P'^D],

P_1[f7] is 1-connected at infinity. By [7], P_1[i/] is an open «-cell.

Theorem 5.6. Suppose G is a UV™ decomposition o/E3 and U is an open subset

of'E3¡G such that U is an open 3-cell. Then P~X[U] is an open 3-cell.

Proof. This theorem may be established by an argument like that for Theorem

5.5 above but using [5].

6. Compact mappings. There is a close connection between upper semi-

continuous decomposition of metric spaces into compact sets and compact map-

pings from a metric space onto a metric space. In this section, we formulate some

of our previous results in terms of such compact mappings. If/is a map from a space

X onto a space Y, then / is compact if and only if for each compact set A in Y,

f~l[A] is compact.

We shall first point out how these two concepts are related. Suppose A" is a metric

space and G is an upper semicontinuous decomposition of X into compact sets.

Then the projection map F from A'onto X/G is compact [9, Chapter V, Theorem 6].

It then follows [13] that X/G is metrizable. Hence we have metric spaces X and

XjG, and a compact mapping F from X onto XjG.

Now suppose that A'and Fare metric spaces and/is a compact mapping from X

onto Y. Let Gf be {f~x[y];y e Y}; G, is an upper semicontinuous decomposition

of A'into compact sets. G, is the decomposition induced by / Let « be the function

from XjG, into Y such that if xeX\Gs, then h(x)=y when {y}=fP~1[x]. It is

easily shown that « is one-to-one, continuous, and onto Y. Using the fact that/is

compact, we may prove that « is a homeomorphism. In this case, then, A'and Fare

homeomorphic under the natural map «. Hence we may, in such a case, work with

the induced decomposition into compact sets in place of the compact mapping.

We shall now formulate some of our results in terms of compact mappings. In

fact, as the discussion above shows, all the results of this paper could be so formu-

lated. If « is a nonnegative integer, we define a mapping / from a space X into a

space F to be a UVn map if and only if for each point y of Y,f~l[y] has property
UVn.

The following theorem is analogous to a result of [12].
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Theorem 6.1. Suppose X and Y are metric spaces, n is a nonnegative integer, and

fis a compact UVn map from X onto Y.IfU is an open set in Y and x ef~1 [ U], then

if 1 ̂ /cá«, /*: ^k(f'x[U], x) -> -nk(U,f(x)) is an isomorphism onto.

A mapping/from a manifold M into a space F is a cellular mapping if and only

if for each point y of Y,f~x[y] is a cellular set in M.

Theorem 6.2. Suppose f is a compact cellular mapping from a manifold M onto

a metric space Y. Then if x0e M and k is any positive integer,

/* : TTk(M, x0) -> trk( Y,f(xo))

is an isomorphism onto.
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