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1. Introduction. The Hauptvermutung for PL manifolds is the conjecture that

homeomorphic PL manifolds are PL homeomorphic. No counterexample to this

conjecture is known. It is known to be true for manifolds of dimension three or less

([13], [14]) and for many high dimensional compact manifolds ([20], [21]), but the

only high dimensional result for open (i.e. noncompact with empty boundary)

manifolds is that it is true in case the manifolds are topologically Fn («^5) [19].

The main result of this paper is that the conjecture is true whenever the manifolds

are topologically Sn minus a nonempty tame [8] compact 0-dimensional subset and

«>5. The analogous result in the differentiable category holds if n = 6, 7 (Theorem

5.2), but there exist many counterexamples to the complete transfer of the theorem,

there is one in dimension 8. We also obtain a connectivity characterization of Sn

(n > 5) minus a nonempty tame compact 0-dimensional subset (Theorem 4.3).

2. Definitions and basic facts.   An end of a manifold M is a function

£ : {compact subsets of M} -* {open subsets of M}

such that

(1) e(C) is a nonempty component of M—C and

(2) e(C!)=>e(C2) whenever C^C2.

This definition is equivalent to that given by Siebenmann in [16].

Throughout this paper SX, 'ßX, ^„(X—A) and aX will denote the set of ends

of X, the set of components of X, the set of unbounded components of X— A

(i.e. components with noncompact closure in X), and the cardinality of X respec-

tively. The following elementary lemma is given without proof.

Lemma 2.1. Fe7 Mn («ä2) be a compact manifold and let K be a 0-dimensional

closed subset of M. Then oS(M-K) = aK.

A manifold M is said to be q-connected at infinity if and only if given any compact

subset C of M, there is a compact subset D (depending upon C) of M such that

C<= D and each component of M — D is ^-connected. M is (p, q)-connected if and

only if M is /^-connected and ^r-connected at infinity.
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Throughout this paper E", Bn, and Sn will denote the PL manifolds, Euclidean

n-space, a standard n-simplex, and the boundary of Bn + 1 respectively. A cored

n-ball CBl of index k (k a positive integer) is a PL n-manifold which is PL homeo-

morphic to Sn minus the interiors of k mutually disjoint PL n-balls. M is the

monotone union of the submanifolds Mx, M2,... if and only if M=\J AZ¡ and

MfClnt Mi+1 for allí.

Theorem 2.2. If U is an open PL n-manifold (n > 5) which is the monotone union

of cored n-balls, then U is PL homeomorphic to Sn minus a nonempty tame compact

O-dimensional subset.

Remark. We will not give all the details of the proof of Theorem 2.2. The

theorem actually can be proven in every dimension except four (in question here

because we use the Hauptvermutung for balls). Edwards [6] gives a proof of the

3-dimensional case. One proves Theorem 2.2 in a straightforward manner using the

following three lemmas and a theorem of McMillan [8] which tells us that the

subset is tame.

Lemma 2.3. Let h: M->- Sn be a PL embedding where M is a compact connected

PL n-manifold (n>5) with Bd M being a disjoint union of k PL (n—l)-spheres,

Sx, S2,..., Sk. Then Cl (Sn — h(M)) is the disjoint union ofk PL n-balls, Bx,..., Bk

with h(S¡) = Bd B¡; and hence M is a cored n-ball.

Proof. By duality h(Sj) separates Sn into two components. One of these, say Q{,

does not intersect h(M). Since h(Si) is a PL sphere, Cl Qi = B¡ is a topological ball

by applying a theorem of Brown [3]. Obviously B¡ is a component of Cl (Sn — h(M))

and hence is a PL manifold by [1]. Since for n>5 the PL Hauptvermutung for

balls is true [18], B¡ is a PL n-ball. The lemma now follows easily.

Lemma 2.4. Let CB? <=Int CB? (n> 5). Let Sx, S2,..., Sr be the boundary spheres

of CB?. Then Cl (CB?-CB?) has r components, Qx,...,Qr with

Qt n CB? = Bd ßi n Bd CB? = S{

and each Qt is a cored n-ball.

Lemma 2.5. Let M be a cored n-ball (n > 5) with boundary spheres Sx, S2,..., Sk.

Let h: Si -> Sn be a PL embedding such that Cl Q is a PL n-ball where Q is a

component of Sn — h(Sx). Let AZ'cCl Q be a cored n-ball with boundary spheres,

S'x, S'2,..., S'k and Sx = Bd Cl Q. Then h extends to a PL homeomorphism

h'-.M^-M' such that h'(S¡) = Slfor i'= 1,..., k.

The PL n-manifold M2 is said to be obtained from the PL n-manifold Mx

by surgery of index k (0^k<n) if and only if there are PL embeddings

fx:Skx Bn~k -* Mx and/2: Bk+1 x S"-"'1 -> M2 such that

Mxr\M2 = Mx -fx(Sk x Int Bn~k)

= M2-f2(lntBk + 1xSn-k-1),
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and

(2) f1\SkxSn~k-1 =f2\SkxSn~k-1.

Proposition 2.6. Let f: Bk+1 -> Mn be a proper (i.e. /_1(Bd M) = Sk) PL em-

bedding. Then there is a regular neighborhood N of f(Bk + x) in M such that

(1) M ' = C1 (M-N) is a PL n-manifold.

(2) If}<n — k — 2 and M is j-connected, so is M'.
(3) NnBdMxSkxBn-k~1.

(4) NnBdM'xBk+1xS"-k-2.

(5) Bd M' is obtained from Bd M by surgery of index k.

(6) If2k + 2<n and A is the homotopy class off\Sk in trk(Bd M), then 77¡(Bd M')

s;77i(Bd M) for i<k and 77)c(Bd Af')£7rfc(Bd M)I(X) where (A) is a subgroup con-

taining A.

Proof. Let A be a regular neighborhood of/(Fk + 1) in M such that N n Bd M

is a regular neighborhood of f(Sk) in Bd M. By [15], there is a block bundle £

over/(Ffc+1) whose total space is N and whose restriction to f(Sk) has total space

Nn Bd M. Also by [15], since f(Bk+1) is collapsible, i and Ç\f(Sk) are product

bundles. Hence, there is a PL homeomorphism h: Bk+1xBn~k~1 -»■ N such that

h(x,0)=flx) for all xeBk + 1, and h(SkxBn-k~1) = Nn Bd M. Hence (3) is

satisfied, and by [1], it follows that (1) is satisfied. Now M' and M-f(Bk + 1) have

the same homotopy type and hence (2) follows easily using standard general

position techniques [23]. An elementary point-set argument yields (4), and (5)

follows. (6) is an immediate consequence of a theorem of Milnor [10].

The following elementary lemmas are given without proof.

Lemma 2.7. The complement of a compact subpolyhedron in a connected poly-

hedron has only finitely many components.

Lemma 2.8. Let C be a compact subset of a connected PL n-manifold M. Then

C' = C\J (J {Q : Q is a bounded component of M—C (i.e. Cl Q is compact)} is

compact and M—C has only finitely many components.

3. Approximating open manifolds by compact submanifolds.

Proposition 3.1. Let Un («> 5) be an open (0, l)-connected PL manifold. Let C

be a compact subset of U such that each component of U—C is l-connected and

i: Ce U induces onto homomorphisms /„,: Hr(C) -»- Hr(U)for r^n — 2.

Then there is a compact connected PL n-submanifold N of U such that

(1) C<=IntAT,

(2) oVBdN=aV(U-N) = oVu(U-C),

(3) each component of Bd N and of U—N is l-connected, and

(4) i:N<^U induces isomorphisms ¡* : Hr(N) -»■ Hr(U) for r^n — 3.

The proof of this proposition parallels closely that of Proposition 4 of [2].
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For 1 ̂  k ^ n — 3 let £r°k be the statement that there is a compact PL n-submanifold

Nk of U such that (1), (2), and (3) of 3.1 hold if Nk replaces N, and (4)k i:Nk<=U

induces isomorphisms /*: Hr(Nk) -»- Hr(U) for r^k and is onto ifk<r%.n — 2.

Let £f'k be the statement that if P is a compact subpolyhedron of U with dim P

^ n — 2 and Nk is as above then there is a compact connected PL n-submanifold Nk

of U such that (1), (2), (3) and (4)fc hold if Nk replaces Nk, Nk u P<=int N'k, and

(N'k — Nk) intersected with any component of U—Nk is l-connected.

The proof will proceed through the following steps.

Step 1. Verify«^.

Step 2. Verify £f2.

Step 3. Show that Sr\ implies Sf'k.

Step 4. Show that Sfk implies SPk+x if 2^k¿n-5.

Step 5. Show that <S^_4 implies «5^_3.

It is clear that ¿fn_3 implies the proposition.

Step 1. The validity of Sfx.

Proof. Let C' = C u \J {Q : g is a bounded component of U-C}. By Lemma

2.8, C is compact and U— C is composed of finitely many components, Qx,..., Qr,

which are precisely the unbounded components of U—C. Since C is compact, let

AÓ be a compact PL n-submanifold of U such that C'<=Int A¿\ Without loss of

generality we assume that AÓ is connected ; for if not, we can join components of N¿

by arcs, take regular neighborhoods, and let the new N0 be the old N0 union these

neighborhoods.

Now let a and a' be the number of components of Cl (U—N0) and U—C

respectively. By Lemma 2.7, a is finite; and since C'<=Int AÓ, a^a'. We must alter

AÓ so that a = a'. But if a>a!, then two components Vx and V2 of Cl (U—N¿) lie

in the same component Q¡ of U—C. Let a be a polygonal arc in Qs such that

a n F, = Bd a n Bd Fi={x¡} (i'= 1, 2) and Int a^lnt N'0. Let P be a regular neigh-

borhood of a in AÓ such that Pn C'=0. Let N0' = Cl(N0-P). Since an arc

cannot separate A¿\ it now follows that AÔ is a compact connected PL n-sub-

manifold of U such that C'^lnt A0' and Cl (U-N'¿) has one less component

than Cl (t7— N¡¡). By finite induction we now assume that oft Cl (U— A0') =

a^u(U-C). But ct-íí Cl(t7-A0') = cr^((7-A0'), and hence N'¿ almost satisfies (2).

Now let b be the number of components of Bd N'¿ and a' be as above. It follows

that ¿? = a'. If b>a', then since Bd A0' = Bd Cl(U—N'¿), two components Bx and

B2 of Bd A0' are components of Bd V for some component V of Cl (U—N'¿).

Let jSbea polygonal arc in V such that ß n Bd F=Bd/3 n (Bx u B2)={yx,y2}

with y i e B¡. Let IF be a regular neighborhood of ß in V. Let N0 = NÔ(J P. Since ß

cannot separate V, it is clear, by finite induction, that we may now assume that A0

satisfies (1) and (2). Now let M be a component of Bd A0. Let Q be the component

of U— C which contains M. Let A be a generator of ttx(M). By general position let

/: S1 -> M be a PL embedding such that [/] = X([f] is the homotopy class off).

Since Q is l-connected extend/to/: B2 -*■ Q. By Irwin's embedding theorem we
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assume that/is a PL embedding, and putting/into general position with respect

to M keeping f\S1 fixed, we may assume that/(F2) n M is a finite number of PL

1-spheres S1; S2,..., Sr with Sr=f(S1). Now let S¡ be an innermost embedded

1-sphere. It follows fhat/C/"^) u Int/-1^)) is a PL properly embedded 2-ball

F2 in N0 or in a component of Cl (U—N0). By taking a regular neighborhood of

B2, it follows from Proposition 2.6 that we can replace N0 by a compact connected

PL «-submanifold N[ such that the component M' of Bd N[ which replaces M by

surgery satisfies the condition

^(M') « ^(MWISJ).

Continuing in this fashion we may assume that

ir1(M')«rr1(M)l([f\S1l...,if\Sr]>.

Hence we can kill the generator A. Since t71(M) is finitely generated, we may assume

that M' is l-connected. By finite induction, we can replace N[ by a compact con-

nected PL «-submanifold N1 such that each component of Bd Nr is l-connected.

Since all alterations occured in U— C, N1 satisfies (1). The dimension of the surgery

is low so that N1 satisfies (2). The fact that U—Nx is l-connected follows easily by

general position or the van Kampen theorem depending upon whether in the

inductive stage the new compact submanifold was formed by removing or adding

on a regular neighborhood to the old compact submanifold. To verify (4^ consider

the exact Mayer-Vietoris sequence for the triad (U; Nu Cl (U—N^).

H^Bd NJ ~> HJNJ 0 /F(C1 (U-N,)) -+ HX(U).

Since each component of Bd Ax is l-connected, it follows that /*: H^N^ -*■ H^U)

is an injection. Since C^Int Nu using the hypothesis, it follows easily that i* is a

surjection.

Step 2. The validity of £f2.

Proof. Let Nx satisfy ^. We will obtain N2 from N±. Let Qu Q2,..., Qs be

the components of Cl(U—Nx). Consider the excision map e:((J Qt, U Bd Qt)

->(£/, Ai) and the following commutative diagram with exact rows.

H^ÁU.N,)-
8k

-* H¿N¿-^-> Hk(U)-> Hk(U, N,)

Hk+i(U Qt, U Bd Qt) \ Hk((J Bd ft) - > Hk(U ft) -^> Hk(\J ft, (J Bdft)

i2 is surjective, so we will alter Ai to N2 so that A2 satisfies Sf2 by killing ker i2.

Let 0^xekeri2. Choose y e H3(U, Nx) such that d2(y)=x. Hence z=d'2e~\y)

is a nonzero element of /Y2((J Bd ft) such that i(z) = x. But H2(\J Bd Qt)x
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2 ZZ2(Bd Qt) and hence z can be thought of as (zx,..., zs) where zt e H2(Bd Qt).

Since each Bd Qt is l-connected, we represent each zt by a PL embedding

/( : S2 -»■ Bd Qt. But z e im 8'2 = ker i2 and hence each [ft] is homologically trivial

in Qt. Since each Qt is l-connected, by the Hurewicz theorem and Irwin's em-

bedding theorem, we may extend each ft to a PL embedding / : B3 -*■ Qt. Take

regular neighborhoods Pt of ft(B3) in Qt. By the proof of Proposition 2.6, these

are PL balls and Pt n Bd Qt x f(S2)x Bn'3. Let NÍ = Nxv (\Jst=xPt). Consider

the proper triad (Nx u Px; Nx, Px) and the resulting exact Mayer-Vietoris

sequence

H2(JX(S2) xB-3)^ H2(NX) 0 H2(PX) —* H2(NX U Px) —> 0.

It follows that H2(Nx)l(im a)xH2(Nx u Px), i.e.

H2(Nx)l([fx]) « H2(NX u Px).

Hence H2(N2)x H2(Nx)l([fx],..., [fs])~H2(Nx)l(x). Since ker i2 is finitely generated,

by finite induction, there is a compact PL n-submanifold A2 of U such that i:N2<=U

induces an isomorphism i'+: ZZ2(A2) -»- H2(U). It can easily be checked that N2

satisfies (1), (2), (3), and (4)2.

Step 3. STk implies £f'k.

Proof. Let Nk satisfy £fk. Since U is l-connected at infinity, let C be a compact

subset of U such that C^>Nk u P and each component of U—C is l-connected.

Let A' be a compact connected PL n-submanifold of U which satisfies £r"x for the

compact subset C. Every component of Cl (U-N') is a subset of a component of

U—Nk and hence by an argument like that given in Step 1, we may assume that, in

addition, o<tg Cl (U-N') = o<£(U-Nk). (Note: It is here that we use that fact that

dim P ^ n—2, for recall in Step 1 we join components by arcs ; and here we must be

sure that the arcs do not intersect P, for otherwise it may be that Fd: A'.) Now let

Nk be a PL n-submanifold of U which satisfies ^ for the compact set A'. It is easy

to check that A¿ satisfies Sf'k.

Step 4. £fk implies £fk+x,2^k^n-5.

Proof. Let Nk satisfy Sfk, Roughly, we wish to alter Nk so as to kill i'fc+1* where

i:Nk^U and ifc+i*: Hk+x(Nk) -> Hk+x(U) without disturbing the other nice

properties of Nk. Let O^x e ker i'fc+i*. Choose v e Hk+2(U, Nk) such that dk+2(y)

=x. Since dim (carrier y) < n - 2, by Step 3, choose Nk which satisfies £/"k for

Nk u carrier y.

Let Ô!, Q2,...,QS and Q'x, Q'2,...,Q'S he the components of Cl (U-Nk) and

Cl (U—Nk) respectively. Let Xt= Qt n Cl (Nk — Nk). Hence, each X{ is l-connected,

Bd A^Bd ßf u Bd Q{, and Bd g¡, Bd Q\ are each l-connected. Consider the

excisions

« :(U Qi, U Bd Q() c (U, Nk),       e' :(U Qu U *d c W, K)
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and the following commutative diagram

#*+2(U Xt, U Bd ft)

iWU Bd ft) *-£- /Yfc + 2(U Ôi, U Bd ft) -^> Hk+2(U, Nk) ̂ i±^Hk+1(Nk)**.    V        ÍTT   \T \    Sk + 2

*. u Jk + 1*

Hk+1((J Xt) *J— Hk + 2([j ft, U XÙ -A-> Hk + 2(U, K ) -JL+ Hk + 1(N'k )

where I», A*, A:*, /*, and y*k+i* are all induced by inclusions. Since Nk =>carrier y,

l+(y) = 0. Let z = de#1(y). Hence i+(z) = x and «*(z) = 0. Now choose we

#*+2(U*i,UBdft) such that 8(w)=z. But Ffk+1(U Bd ft)*2 Hk+1(Bd ft)

and Hk+2({J X,, (J Bd ft)ss2 Hk+2(XU Bd ft). Hence we may think of z and

w as z=(zlt z2,..., zs) where z¡ e >7fc+1(Bd ft), w=(w1, w2,..., ws) where

Wi6//fc + 2(^,Bdft).

Since each Xt and Bd ft is l-connected, 7Tj( Jft, Bd ft) = 0. Since /» : H,(Nk) -»■ Hr(U)

and /'*: Hr(Nk)-¥>- Hr(U) are isomorphisms for r^A, so is y'#: rYr(Ate)-»- Hr(Nk).

Hence ^(tY^, Afc) = 0 for r£fc. Using excision it follows that Hr(Xit Bd ft)=0

for 1 ̂ i^s and r^A. By the relative Hurewicz theorem, Trr(Xh Bd ft) = 0 for r^Tc;

and hence by Lemma 8 of [2], each w, can be represented by an embedded handle

Bk + 2xB?-k~2 meeting Bd X, in Sf^xÄr^^Bd ft.

Let Nk+1 = Nk u U?=i (F^2 x fif-*"2). It follows that x = i*(z) = iif(dw) includes

trivially in Hk+i(Nk+1), where we recall that x is an arbitrary generator of ker ik+ lt.

The desired result will follow by finite induction if we do not change any of the

nice properties of Nk. By finite induction, we may assume that Nk+1 = Nku Bn

with Bn n Nk = Sk + 1 x Bn~k~2. Considering the Mayer-Vietoris sequence for the

triad (Nk+ u Nk, B"), one concludes that Nk<^Nk+i induces homology isomorphisms

through dimension k, and since Nk<=U induces homology isomorphisms through

dimension k; it follows that Nk+1<=U induces homology isomorphisms through

dimension k. Furthermore, it is easy to see that Hk+1(Nk+1) is being reduced so

that eventually we will kill ker 4+i*. It now follows easily that Nk+1 satisfies (1),

(2) and (4)fc+1 of ¿^k+1. We will check (3). Let Q' be a component of Bd Afc+1. It

follows that Ö' is obtained from a component £) of Bd Nk by (k+ l)-dimensional

surgery. Hence

Ö' = (Ö-(5"c + 1xIntFn-fc-2))u(F'£ + 2x>S'n-fc-3) = C u D

where Cn D = Sk + 1xSn-k-3. But C has the homotopy type of Q~-Sk + 1 and

k+ltkn — 4. Hence, by general position, since Q is l-connected, so is C. Since

min{k + l,n—k—3}^2, by the van Kampen theorem it now follows that ()' is
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1-connected. Let Q' be a component of Cl (U—Nk+X). Let Q be the component of

Cl(U-Nk) such that g' = Cl (Q-(Bk+2xBn~k-2)). Since Q is 1-connected and

Q' has the homotopy type of Q — Bk+2, by general position Q' is 1-connected.

Step 5. &K-Í implies <S^_3.

Proof. Let N satisfy <^_4 and let V=Cl (U-N). Consider the excision map

£ :(V, Bd A) <=(£/, N) and the following commutative diagram

Hr(N)-^Hr(U) -^-> Hr(U, N) —?-> Hr.x(N) -^* HT_X(U)
A

kr

.ZZr(Bd A) -^ Hr(V) ~^> HT(V, Bd N) -U- ZZr_x(Bd N) -^ Hr_x(V).

For r 5|n — 2, i'r is onto, and hence/r=0 and Sr is injective. For r— 1 a«—4, ir_x is

an isomorphism and hence dr = 0 for rf^n — 3. Hence ZZr(iV, A) = 0 = ZZr(F, Bd A)

for r^n — 3. Since each component of Bd A is 1-connected, by duality and the

Universal Coefficient theorem, it follows that ZZn_3(Bd A) is free. But7'n_2 = 0

implies that7'ñ_2 = 0, and hence d'n_2 is injective. So ZZ„_2(F, Bd A)andZZn_2(i7, N)

are both free. Now consider the following portion of the above diagram

-> Hn.2(U, N)-> ZZn_3(A) —^U ZZn_3(i/) —* 0

-^ Hn.2(V, Bd N) —+ ZZ„_3(Bd A) -^ Hn^(V) —+ 0.

We wish to kill ker i*. Since A is compact, let Xx, X2,..., Xs be a set of generators of

ker i*. Choose (n —2)-chains cx,..., csin Usuch that 8(cl) = Xi. Let P = U carrier c¡.

By Step 3, let A' satisfy the conclusion of 9"n-± relative to N and P. Since N'

satisfies the same homology conditions as that of A, the conclusions we made

above for A and V are valid for A' and F' = C1 (U—N'). Now consider the com-

mutative diagram with exact rows

0

0.

Since Int A'=>U carrier A¡, h*(ker i'*)=0. Hence n;=0. Let X=Cl(N'-N).

Since (V, BdA)c(i7, N) and (V, X)<=:(U, A') are excisions; it follows that

h:(V, Bd A)c(F, X) induces the 0 map /?*: Hn.2(V, Bd N) -> Hn.2(V, X). Also

H,(V, JSf) = 0 for r^n-3, and Hn-2(V, X) is free. Now since Hn.2(V, X) and

Hn-2(V, Bd A) are both free, using the Universal Coefficient theorem, it follows

a'

kr-i lr-1

—► Hn.2(U, N) —* ZZn_3(A) -X ZZn_3(C7)

Ä1

a'

id

ZZn_2((7, A') —> ZZn_3(A') -^ ZZn_3((7)
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that «* = 0. Consider the following commutative diagram with exact rows where

all vertical homomorphisms are induced by inclusions

Hn~2(V, Bd A) <— Hn~3(BdN)<— Hn~3(V) <—0

A A

Oh*          s
0 <— Hn~2(V, X) i_» Hn~3(X) <->7n-3(F)

8'
H"-2(V, Bd A')±^ Hn~3(Bd A') <— Hn~3(V')<— 0.

The zeros on the right are valid by the Universal Coefficient theorem since

Hr(V, Bd N) = Hr(V, X) = Hr(V, Bd N') = 0 for rSn-3. To show that 8 is onto,

consider the commutative diagram

Horn (8, 1)
Horn (Hn.2(V, X), Z) <-Horn (Hn„3(X), Z)

Hn~2(V, X) <- -Hn~3(X)

where p and p come from the Universal Coefficient theorem. It is not difficult to

show that 0 -> Hn.2(V, X)l> Hn.3(X) -» rYn_3(K) -> 0 is split exact and hence

Horn (d, 1) is onto. But p is onto and hence pS is onto. But Hn~2(V, X) is free,

and hence p is an isomorphism, and 8 is onto. Using the facts that Hn~\V, X)

is free and h* = 0, it is not difficult to define a: Hn~2(V, X) -+ Hn~3(X) such that

oa = l andva = 0.'Now deñnea' : Hn~2(V',Bd N') -> Hn-3(BdN')by a' = v'a(e')-1.

(Note that e is induced by an excision, so that a is well defined.) One easily checks

that 8V = 1 and im a <= /(ker v). It follows that im a' is a free direct summand of

Hn~3(Bd A'). Now let V1,...,Vt and VI,..., V't he the components of Fand V

respectively such that F/^F,. (Recall, V=Cl(U-N), V = Cl(U-N'), and A'

satisfies ¿";_4 with respect to A.) Let *,=C1 (F,- F,'). Hence V=\JmtVt,

V' = Umt V[, Bd A=Bd F=Udi5it Bd F, Bd A' = Bd F' = UdisJt Bd V[, X=

Udisjt^i, BdA-i = Bd FiUdisjtBd V[. Let Vi:MVt<=X, and v't:BdVl<=Xt. It
follows that, for 1 ̂ i^t, there is a commutative diagram

Hn-2(Vh Bd Vi) <— Hn~3(Bd Vt)

0 = hf

H*-\Vb Xd c H»-3(Xt)
a¡

s;
Hn~2(V;, Bd V{) ±z; Hn~3(Bd F/)

où

■Hn-\Vi)

t \

Hn~3(Vi)

Hn~3(Vl)
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such that S,<Xf=l, vfa( = 0, §^¡=1, im a't<=v'¡*(ker vf), and im a\ is a free direct

summand of 7Zn_3(Bd F/). By Lemma 11 of [2], the duality isomorphism

<A¡: ZZ"-3(Bd F/)^ ZZ2(Bd V[)

sends v¡*(ker vf) onto (ker v'(t)2. Hence Ai = 'pi(im a\) is a free direct summand of

ZZ2(Bd V[). Let Ali; A2i,..., Xk¡i he a basis for /f¡cZZ2(Bd vi). Since each Bd V[ is

1-connected and dim Bd V[>4, it follows that each A;i can be represented by a

PL embedded 2-sphere Sn such that SiinStl=0 unless j=k and i—l. Since

Al<^(ker v'^) we can, using Irwin's embedding theorem, bound each Su with a PL

3-ball Bn with Int ZZ,¡cInt X¡ such that Bn n Bkl= 0 unless j=k and i=l. For

each Bn, take a regular neighborhood Mn such that M3i n Mkl = 0 unless j=k

and i'=/.

Let A„_3 = C1 (A'-U A/,,). We want to show that An_3 satisfies £fn.3. Clearly

(1) is satisfied since An_3=>Aand Int N^C. One easily checks that the deletion of

the handles and the surgery is such that, o<€ CI (U— Nn_3) = o'£ Cl (U— N') and

d% BdJVn.3 = <rf Bd A', and so (2) follows.

By finite induction, to show that each component of Bd A„_3 is 1-connected, it

suffices to show that Bd (V¡ u Mn) is 1-connected. But Bd V[ is 1-connected and

Bd (V[ u Mn) is obtained from Bd V[ by surgery of index 2. So, using general

position and the van Kampen theorem, it follows that Bd (V¡ u Mjt) is 1-con-

nected. Each component of U— An_3 is 1-connected, for by finite induction we

may assume that such a component is V[ u Mn with MjtxB3 x Bn~3 and V[c\ Mn

■x,S2xBn~3, and since V[ is 1-connected, so is V[ u M;i by the van Kampen

theorem.

It remains to show (4); that i:Nn.3^U induces isomorphisms i'*: ZZr(A/„_3)

-*HT(U) forran-3.

Let P(=F,' u \Jk'=x Mn, i= 1,..., / be the components of Cl (¿7-An_3). To

show (4), it suffices to show that Hr(Vt, Bd F¡) = 0 for r^n — 2 and i— 1,..., t; for

since F¡ n F;= 0 if iV/ this will imply that Z7r((J F„ IJ Bd F¡) = 0. Hence by

excision Hr(U, A„_3) = 0 for r^n — 2, which implies (4). By finite induction we

may assume that F¡ is obtained from V[ by adjoining a single M;i. Let W¡ =

Bd F,'— (52 x Int Bn~3) and consider the following commutative diagram where all

maps are inclusions

Bd v'i -2-> f;

IF, *3

Bd f3. -i2-». p,.

It now suffices to show the following:

(a) i2* : ZZr(Bd V,) -> Hr( V,) is an isomorphism for r / 2 but r ^ n — 4.
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(b) ¿a*: H2(Bd V¡) -> H2(V,) is an isomorphism.

(c) Hr( Vj, Bd V)) = 0 for r = n - 3, « - 2.

To verify (a) it suffices to show that t\, ilt i2, i3 induce homology isomorphisms

in dimension k where k^n-4 but k + 2. We will only check that ix induces iso-

morphisms; the arguments for the others being similar or easy. Let T=S2xBn~3

and consider the reduced Mayer-Vietoris sequence for the triad (Bd F/ ; W¡, T).

Hr(S2 xSn~i) —> ffr(Wi) © Hr(S2 xBn~3)

<?'     ~ <P     ~
—^Hr(Bd V'i)—-^Hr.1(S2xSn-i).

If r 7a 2 but r < « - 4, this sequence has the appearance 0 -> >Y2( W,) -*■ Hr(Bd Vj) -^>

for we know that in this range <f> is injective, since S2 x 0 represents a free generator

of H2(Bd V'j), and hence cp' = 0. Hence, in this range /1Hc is an isomorphism. Now if

3^r=n — 4 the sequence appears as

Z -?U Hn_A[W¿ -^ /Yn_4(Bd Vj) ̂  Hn_5(S2 x S-«) -*-►.

As above <f>'=0. Hence ¿14 will be an isomorphism if a = 0. Notice that Bd W¡

= S2xSn~i and consider the following commutative (up to sign) diagram where

the isomorphisms are given by duality.

H2(W,) H2(Bd W,)

Hn.3(Wh Bd W,) —► #B_4(Bd W,) —> H^AlVj).

By exactness of the lower row, it now suffices to show that i* is surjective. But

7* : H2(Bd Wj) ->■ rY2( Wj) carries the generator of H2(Bd Wj) onto a free element of

H2(Wj), since S2 x 0 represents a primitive free element of a basis for H2(Bd V'¡).

Hence there is a split short exact sequence of the form

0 —> H2(Bd Wj) -X H2(Wj) —> G —> 0.

Now consider the commutative diagram

H2(Wj)

,*

ß
-» Horn (H2(Wj), Z)

Horn (7*, 1)

ß'
H2(Bd Wj) —^ Horn (Ff2(Bd Wj), Z)

where ß and ß' come from the Universal Coefficient theorem. It follows that ß

and Horn (/'„,, 1) are surjective. But ß' is an isomorphism since H2(Bd Wj) is free,

and hence i* is surjective.
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(b) follows, for as given in [2],

ZZ2(Bd V,) x ZZ2(Bd V'j)\Aj

X ZZ2(F;)/inc* (A,)

« H2(V,).

To verify (c), one first easily shows that 7~2* is onto for dimensions less than n— 1.

Hence, using (a) and (b) and arguing as we did early in the proof of this step for

(V, Bd A) = (F, Bd V), it follows that Hr(Vh Bd F,)=0 for r¿n-3 and

H^Vi, Bd F,)

is free. From this information, it follows, as it did for (V¡, Bd V'¡), that the following

is an exact sequence.

0^-ZZ"-2(Fy, Bd F;)^ZZn-3(Bd Vj) ̂ -Hn~3(Vj)^0.

By Poincaré duality, ZZ"-3(Bd Fy)xZZn-3(Bd V})IA', where

A'} = «'IH»-2^, Bd F/)).

But since a; (c*; of the diagram on page 381) is a splitting homomorphism,

ZZ"-3(Bd V,) a Hn~3(V¡).

Now

ZZ"-3(F;) ä Horn (ZZn_3(F;), Z) 0 Ext (Hn.¿V¡), Z)

and

Hn-3(V,) X Horn (ZZn_3(F), Z) 0 Ext (ZZn_4(F), Z).

But Hr(V¡)xHr(Vj) for r#2, and since inc* (A,) is a free direct summand of

H2(V'j), from the argument given in (b) above, Ext H2(V¡)zExt ZZ2(Fy). It follows

that Hn'3(Bd Vj)xHn~3(Vj). Since these groups are finitely generated and

Hn~2(Vj, Bd Vt) is free, the above exact sequence tells us that Hn-2(Vj, Bd Fy)=0.

Now by the Universal Coefficient theorem, ZFn_2(F;, Bd F,)=0. This completes

the proof of Proposition 3.1.

Proposition 3.2. If C is a compact subset of the open connected PL n-manifold U

(n>5) such that each component of U—C is q-connected, then there is a compact

connected PL n-submanifold N of U such that

(1) C^lntA,

(2) a%BdN=aV(U-N) = o<Zu(U-C),

(3) each component of Bd N is min {q, [(n —1)/2]— l}-connected, and

(4) each component of U—N is min {q, [nß]—l}-connected.

Proof. For 0 S i ̂  min {q, [n/2] -1} let ^ be the statement that there is a compact

PL n-submanifold N¡ of U such that (1), (2), (3), and (4) hold when i and A¡ replace

q and A respectively. lfq = 0, the techniques used in the proof of Sr\ of Proposition
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3.1 will prove Proposition 3.2; and if q^l, Ji?[ is valid by the proof of «S^. Now

suppose that 2^CX is valid where 1 ;g i < min {q, [n/2] — 1}. Let Mu M2,..., Mt be the

components of Bd A¡, and let ft, ft,..., ft be the components of V—C such

that Qj^Mj. For each j, consider the triad (ft; A//, Cl (ft-AF/)) where A//

is the component of Cl (U—Nj) which contains M¡. Now consider the following

portion of the resulting Mayer-Vietoris sequence

H^(Mj) ^U Ffi+1(M,+ ) © /Yi+1(Cl (ft-A//)) —^ /Yi+1(ft).

Since ft is (/+ l)-connected, a is onto; and hence it follows that Hl+l(Mjr) is

finitely generated. Let A be a generator of Hi+1(Mj+). Choose 7t e Hi+1(Mj) such

that a(p.) = (X, 0). Since M¡ is /-connected, let/: 5i + 1 -> A/ be such that, via the

Hurewicz isomorphism, [/] = m. By a general position argument, we may assume

that/is a PL embedding. Now (A, 0) = a(p) = «([/]) = ([/], -[/]) and hence [/] is

trivial in Hi+1(Cl (Q — A//)). But, since A/; and ft are both /-connected, so is

Cl(ft —A//), and hence / is homotopically trivial in Cl(ft-Af/). Hence, we

extend / to /: Bi + 2 -> Cl (ft- M¡+). One easily verifies the hypothesis of Irwin's

embedding theorem [23], and hence we may assume that/is a proper PL embedding.

Let F be a regular neighborhood of/(Fi+2) in Cl(ft-A//), and let A/+1 =

Cl (N,—P). A/+1 will be our first approximation to Ai+1. Since F<= ft c ¡j- ç it is

clear that A/+1 satisfies (1). It is easy to see that neither the deletion of handles, nor

surgery in this dimension range disconnects N¡ or any M¡, and hence A/+1 satisfies

(2).
Now let us see what happened to the connectivity conditions. Consider the triad

(A// u P; M¡+, P). By Proposition 2.6 (3), F n Mt+xSi + 1 x S"-'"2. Now consider

the reduced Mayer-Vietoris sequence

Hk(Si + i x B"-<~2) ^U Hk(Mn © Hk(P) i nk(M}+ U P)

—>Hk-1(Si + 1xBn-i-2).

Note that A// u P e if Cl (U- A/+1) replaces M}+ e V Cl (U-Nj), and what we

wish to show is that A// u P is as nicely connected as Mjr, and that in addition

we have killed the generator A of //i+1(A/",+ ). It is easy to show that Hk(Mj+ u F)

is flanked by zeros in the above sequence if k ^ /, and using the van Kampen and

Hurewicz theorems, it does follow that A/"/ u P is /-connected. For k = i+l,

/7fc_1(5'i + 1 x Bn~i-2) = 0, and hence /Si + 1 is surjective. It follows that

#,+1(A//)/im«i+1 « Hi+1(Mf* UP).

But [/|Si + 1] generates F/i+1(5i + 1 x £-'-') and ai+1[/|5i + 1] = [/]/í¡ + l(V) = A.

Hence r7i+1(A// u F)£#i+1(A//)/(A), and we have reduced if4+1(A//) by one

generator. Hence we will be able to alter A¡ inductively to Ai+1 which satisfies (4)

of -3ÉÎ+1, if we can show that Bd (A// u F) is min {/, [(«-l)/2]-l}-connected.

By Proposition 2.6, we obtained Bd (A/+ u F) from Bd A/,+ = A/5 by surgery of
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index i+l. Let AZ; = Bd(AZ;+ u P), TxxSi + 1 x Int Bn~i-2 and T2xBi+2xSn-¡-3,

so that M'j=(Mi-Tx)v>T2 with (M¡-Tx) n T2xSi + l xS"-1"3. Consider the

triad (M¡; M¡-Tx, T2) and the resulting reduced Mayer-Vietoris sequence,

fí^Mi-T,) © Hk(T2) -> Z7fc(AZ;) -> Hk.x((Mi-Tx) n F2).

For A: ̂ min {/, [(n-1)/2] -1} ; n-1—3 > k and hence

Hk(T2) = 0 = a^&Mt-TÙ n F2).

Mj — Tx has the homotopy type of A/3 —Si + 1 and since M, is min {/, [(n—1)/2]— 1 }-

connected, general position arguments give that M¡ — Tx is also

min {/, [(n-1)/2]- l}-connected.

It follows that M'j is min {/, [(n-1)/2]- l}-connected.

It remains to show that (3) can be satisfied on the i'+1 level. If i'+ 1 ä [(n-1)/2],

we are done; for any M¡ e <€ Bd A/+ x is min{i, [(n-l)/2]-l}-connected. Now

suppose ¡+1 <[(n-l)/2]. Let A be a generator of ttí+x(M¡). Since we are in the

trivial range, there is a PL embedding /: S'i + 1 -> M¡ such that [f] = X. Since

i'+1 ^ [n/2]-1 and A// u F is min {/+ 1, [n/2]- l}-connected, we can extend/to a

proper PL embedding/: Bi + 2 ->■ A// u P. Let P' be a regular neighborhood of

f(B'+2) in Mj+ u F and let Ai+1 = A/+1 u P'. By Proposition 2.6, we have obtained

A/; = BdCl((AZ,+ \JP)-P')e<€ BdAi+1 from A// e if Bd A/+ t by surgery of

index i+l. But, we are in the trivial range for surgery, and by Proposition 2.6,

ttí+1(M")xtt1+x(M¡)I(X). Hence the proposition will follow by induction, if we can

show that (M+ u P)-P' etf(U-Ni+x) which replaces M+ u Pe^(U-NUx) is

min{i+l, [n/2]-l}-connected, so that we will not destroy (4) at the i+l level.

But by Proposition 2.6, F's:/(Zii + 2)xZin-i-2 and hence (M,+ uF)-F' is of the

homotopy type of (A// uF)-/(ßi + 2). Now using the connectivity of A// u P,

general position, and the fact that i+l<[(n— l)/2]; the desired result follows easily.

Remark. Proposition 3.2 is an important step in proving the PL Hauptvermutung

for the open PL manifolds that we consider, for it enables us to take a connectivity

(at infinity) condition, which is not a priori related to any PL structure, and relate

it to a given PL structure.

4. A connectivity characterization of Sn (n > 5) minus a nonempty tame compact

0-dimensional subset.

Lemma 4.1. Let U be an open (p, q)-connected PL n-manifold (n > 5) with p ^ [n/2],

qH andp+q^n — 2. Then U is (n — 2)-connected.

Proof. Using Proposition 3.2, it follows that i/is the monotone union of compact

PL n-submanifolds A¡ such that

(1) Each component of Bd A¡ is 1-connected.

(2) Each component of U-Nt is min{<¡r, [n/2] —l}-connected for each i.

(3) a^BdN^a^'U-N,).

(4) N¡ is 1-connected for each i.
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(1), (2), and (3) are immediate. To see (4) consider the decomposition U= A( u ft¡

u- • -u Qr¡i where the ft¡'s are the closures of the components of U—A¡. Since U

and each ft¡ n A¡ (a component of Bd A¡) are l-connected, an application of the

van Kampen theorem, a finite number of times, tells us that A¡ is l-connected.

Let ft = Cl (U-Nt). Now consider the exact reduced homology sequence for the

pair (U, ft)

Hk(U) -> Hk(U, ft) -> Hk^(Qj) -> Hk.,(U).

Since U is /»-connected and each component of ft is min {q, [«/2]- l}-connected,

it follows, using excision, that /7k(A¡, Bd A¡)=0 if 2á/cámin{c + l, [«/2]} and

/7i(A¡, Bd A¡) is free. By duality and the Universal Coefficient theorem,

F/r(A,) « Hn~T(Ni, Bd A¡)

X Horn (Hn_r(Nh Bd A,), Z) © Ext (/Y,.,.^, Bd Nt), Z).

But p+l^r^n-2 implies that 2á«-r^min {q+ 1, [«/2]|, and hence /7r(A,) = 0

for p+l ^rfín — 2. Since {/ is the monotone union of the A¡'s, Hr(U) = 0 for

p+l^r^n — 2; and since U is/»-connected, U is (« — 2)-connected.

Proposition 4.2. Fe7 U be an open (p, q)-connected PL n-manifold (n > 5) with

P=[n¡2], q^l andp+q^n — 2. Let C be a compact subset of U such that each

component of U—C is l-connected. Then there is a cored n-ball CBk such that

Cclnt CBl andk = a%u(U-C) = o%(U-CBl).

Proof. By Lemma4.1, Uis («-2)-connected. Hence i:C<^Uinduces a surjective

homomorphism /*: Hr(C)-^~ Hr(U) for r^n — 2. Now let A be a compact con-

nected PL n-submanifold of U which satisfies Proposition 3.1 for C. We will show

that A is the cored «-ball we are seeking. Note that C<=Int N and cfâ Bd A=

a^u(U-C) = a^(U- A) by Proposition 3.1. Also, Hr(N) = 0 for rá«-3. Hence A

will be (« — 3)-connected, if A is l-connected. Let ft, ft...., ft be the com-

ponents of Cl (U-N). Hence £/=Au ft u ft u- • u ft with each An ft

being a component of Bd A and hence, l-connected. Since U is l-connected, as we

remarked in the proof of Lemma 4.1, A is l-connected. The proposition will follow

from the following.

Claim. A compact (n — 3)-connected PL n-manifold A (n>5) with nonempty

boundary such that each component of Bd A is l-connected, is a cored n-ball.

Proof. By Lefschetz duality, Hn.r(N, Bd N)xHr(N) and since A is («-3)-

connected, Hr(N) = 0 for l^r^n-3. Hence, Hk(N, BdA)=0 for 3^A:^«-1.

Now consider the exact homology sequence for the pair (A, Bd A),

Hk(N) -> Hk(N, Bd A) -> Hk^(Bd A) -> /Y^ÍA).

Since A is (n-3)-connected, /Yk(A, Bd A)s;/7fc_1(Bd A) for 2gkgn-3; and

hence //r(Bd A) = 0 for 2 ̂  r ^ « - 4. Since each component of Bd A is l-connected,

it now follows that each component of Bd A is («-4)-connected. But since «3:6,
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n —4^ [(«—1)/2] and n- 1 ̂ 5. Hence, by a strong form of the Poincaré conjecture

(essentially [17]), each component of Bd Ais a PL (n— l)-sphere. Let Sx, S2,..., Sm

be the components of Bd A. Let A' be the closed PL n-manifold obtained from A

by inductively coning over the components of Bd A, i.e.,

A' = A u C(SX) u • • • u C(Sm)

where C(St) is the cone over St and Cl (N'-C(St)) n C(Si) = St. By inductively

applying the van Kampen theorem it is easy to see that A' is 1-connected. Suppose

we have shown that Hr(N') = 0 where 1 ikr< [n/2]. Consider the triad

(N';N,{JC(Sd)

and the following portion of the resulting exact Mayer-Vietoris sequence,

ZZr+1(A) © ZZr+1(U C(S()) -> ZZr+1(A') -> ZZr(U $).

Since n^6, n — 3ä [n/2], and since A is (n —3)-connected, Hr+x(N) = 0. Since each

C(S¡) is a ball and C(S,) n C(S,)=0 if t*j, Hr+x([J C(St))=0. Also 1 ̂ r< [n/2]

<n-l, and hence Z7r((J St) = 0. It follows that Hr+1(N') = 0, and A' is [un-

connected. Again by the Poincaré conjecture for spheres, N' is a PL n-sphere, and

hence A is a cored n-ball.

Theorem 4.3. An open PL n-manifold U (n>5) is PL homeomorphic to Sn

minus a nonempty tame compact O-dimensional subset K of cardinality a if and only

if there are positive integers p and q such that /?ä [n/2], p+q^n — 2, U is (p, q)-

connected, and SU has cardinality a.

Sufficiency. Since U is 1-connected at infinity, let {C¡} be a sequence of compact

subsets of U such that U=(J Int C¡, Cj<=Ci+1, and each component of U—Ct is

1-connected for each /'. Now by Proposition 4.2, U is the monotone union of cored

n-balls. By Theorem 2.2, U is PL homeomorphic to Sn — K for some nonempty

tame compact O-dimensional set K. By Lemma 2.1 and the fact that homeomorphic

manifolds have the same number of ends, aSU=aK.

Necessity. Let UxSn — K where K is a nonempty tame compact subset of

cardinality a. By Lemma 2.1, oK=o$U. A theorem of McMillan [8], implies that

U is the monotone union of cored n-balls, and hence it follows easily that U is

(n — 2,n- 2)-connected.

Remark. The conditions on the integers/? and q in Theorem 4.3 cannot be made

any weaker. Consider the following examples, all of which have exactly one end,

but none of which are homeomorphic to En.

Example 1. In [5], for n^5, contractible open PL n-manifolds which are not

1-connected at infinity are shown to exist.

Here q^l fails. (Note that/» = oo.)

Example 2. (5t»'axStitt+1)/a]) minus a point is an ([n/2]-l, n-2)-connected

open PL n-manifold which is not homeomorphic to En. Here p}t [n/2] just fails.

(Note that for n = 6, ([n/2] -1) + (n - 2) ä n.)
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Example 3. For «2:7 and [n/2]^p^n-4, Sp + 1xEn~p-1 is a (p, n-p-3)-

connected open PL «-manifold which is not homeomorphic to F\ Here p+q

=ï« — 2 just fails.

(Note that we need « 5: 7 here, because for « = 6, [«/2] +1 = « - 2 ; and hence the

theorem applies.)

5. On the Hauptvermutung.

Theorem 5.1. Let U and U' be homeomorphic open (p, q)-connected PL n-mani-

folds (n>5) where p and q are two positive integers such that p^ [n/2], q^ 1 and

p+q^n — 2. Then U and U' are PL homeomorphic.

Proof. Let «: t/-»- U' be a homeomorphism. Since U is l-connected at infinity,

let {C¡}¡™ ! be a sequence of compact subsets of U such that each component of

U—Ct is l-connected for each /, C^lnt Ci+1, and \J Int C¡=£/. For each i, let

C'i=h(Cj). Let A/i and M[ be cored «-balls in U and U' respectively which satisfy

the conclusion of Proposition 4.2 with respect to Cx and C[ respectively. Hence

CicInt A/j, Q'clnt M[, and (index of Mx)= (index of A/Í). Let Sn,..., Slkl be

the boundary spheres of Mx. Now let S'xl,..., S[kl be the boundary spheres of Mi

such that if ft, is the component of U—C1 which contains Su, then Siy<=A(fty).

Let g! : A/j -> F" be a PL embedding. Using Lemma 2.5, it follows easily that there

is a PL homeomorphism g[: M'1^s-g1(M1)suchthatg[(S'1j)=g1(S1j)forj=l,.. .,kx.

Let h1 = (g[)~1g1. Hence «j is a PL homeomorphism of A/j onto M[ such that

bi(Sij)—S{)foTJ=l,..., ki. Suppose now for l^iúr— 1, we have found a positive

integer s(i), cored «-balls A/¡ and M[ in U and t/' respectively, and a PL homeo-

morphism «i : A/j -* A/"/ such that

(1) Mt and A// satisfy the conclusion of Proposition 4.2 for Cs(i) and Cs'(i)

respectively,

(2) IntA/^AF^U C,,

(3) IntAfi'=>A//_1uC,',

(4) «i|Mi_1=/ij_1, and

(5) ht(Sij) = Sjj, 1 Hkjúki where the >Si;'s are the boundary spheres of Mu and 5,';

is the boundary sphere of M{ such that if ft, is the component of U— Cs(j) which

contains StJ, then S^h(Qn).

We wish to define •$(/), A/r, M'„ and «r. Since i/=(J Int Cf, C/' = U Int C/, and

A/,.,! u Cr, A/r'_x u C'r are compact; choose an integer s(r) such that Int Cs(r)

3Mr.j u Cr and Int Qr) => A/r'_t u Cr'. Now apply Proposition 4.2 to Cs(r) and

Cs'(r), obtaining cored «-balls A/r and M'r such that Cs(r) c Int A/r and Cs'(r>c Int A/r'.

It follows that Mr and A/r' have the same index. Let Srl,..., Srkr he the boundary

spheres of M„ and let $'1X,..., S'rkt be the boundary spheres of M'r such that, if

ft, is the component of U-Cs(r) which contains Srj, then SjjCh(Qrj). Clearly MT

and M'r satisfy (1), (2), and (3) for i—r. We must construct a PL homeomorphism
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nr: Mr-»- Mr which satisfies (4) and (5). By Lemma 2.4, letArX,..., A,kf_v A'rX,...,

A'rk,-l be the pairwise disjoint cored n-balls such that

\S Ari = ci (Mr - Mr_ x),      u1 ATi - Cl (az; - AZr'_ J,

yir> n A/r_1 = S(r_lu, and A'rjr\ M'r_x = S'íx-1)¡. It now suffices, to complete the

inductive step, to define for 1 ¡£J£&r-i9 a PL homeomorphism nrí: yiry -» A'rj such

that

(a) nr3|5,(r_lw=nr_1|S'(r_lwand

(b) hrj(srm)=s;m if Srm^ATj.

For if we can do this, then

hT = hr-x   onMr-u

= hrj      on ¿ri

will clearly satisfy (4) and (5). We will need the following.

Claim. Srm c Arj if and only if Sr'm <= A'rj.

Proof. Srm<=ArJ implies that Sm<=&-«/; since /4rJ n Afr_1 = 5,(r.lw, ß(r-iM is

a component of Í/— Cs(r_D, and y4ry is connected and lies in U— Cs(r-X). By our

construction, Srmc Qm. Hence since ß(r-iy £^(£7—Cs<r-i))> Qrme<^(U—Cs(r)), and

Cs(r-i)cCs(r); we have that ß(1-1W = ßrm. Hence A(ß(r-1M) = /!(ßm)35;. But

Sqr-D/CA'rj n n(ß(r_lw), and using the fact that n(ß(r_lw) is a component of C^-d,

we conclude that A'rj<=h(Q(r_Vj). It follows that A'rk n n(ß(r_lw) = 0 if £#./ and

hence it must be that Sr'm<=j4^.

Conversely, if 5rmd:^r/, then 5mc^ri for t^j since 5rm 6 # Bd Mr and

Bd A/r c Q1 Bd ¿rfc.
k = l

Hence by the first part Srm<=A'rt and A'n n /f^ = 0. Hence Srm^A'rt.

Now for 1 újúkr_x, let gri: y4ry -> 5n be a PL embedding. Hence

fri = «■«(AT-llS'cr-lw)

is a PL homeomorphism of 5£._iy onto gr;(5(r_lw). By Lemma 2.5 and the claim,

let g'n be an extension of grj to .4^ such that gri(Srm)=gri(Srm) whenever S¡m^A'rj.

Now let hTj — (g'n) ~ 1grj. One easily verifies (a) and (b).

Now define H: U-> U' by Z7(x) = n¡(x) whenever x 6 A/¡. It follows that H is a

PL homeomorphism.

In view of Theorem 4.3, we obtain the following corollary.

Corollary. The Hauptvermutung holds for PL manifolds whenever the manifolds

are topologically Sn (n>5) minus a nonempty tame compact O-dimensional subset.

For example the manifolds may be topologically Sn minus a tame Cantor set,

Sn minus any countable set, an open n-annulus, or En. (Stallings [19] has proven

the corollary for En (nâ 5).)
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Theorem 5.2. For n = 6,7 homeomorphic differentiable manifolds which are

topologically Sn minus a nonempty tame compact 0-dimensional subset are diffeo-

morphic.

Proof. Let F be a nonempty tame compact 0-dimensional subset of Sn, and let

U and F be differentiable manifolds which are homeomorphic to Sn — K. By [22],

give U and F PL triangulations Tx and T2 respectively, which are compatible with

their differentiable structures. By the preceding theorem, (U, Tx) and (F, T2) are

PL homeomorphic. By [8], U is the monotone union of cored «-balls; and hence it

follows that Hk(U)=0 if k + n-l and Hn_x(V) is free. It follows from [12], [4],

[17], [7], and [9] that the least positive integer a such that Ta+0 is 7. For « = 6, 7;

H6(U) is free and Hk(U) = 0 for k^l. Now applying Theorem 6.5 of [12], it

follows that U and F are diffeomorphic.

Remark. Theorem 5.2 does not hold for arbitrary « > 5. For let E" be an exotic

«-sphere. Hence Y^xE1 is topologically an open («+l)-annulus, but is not

diffeomorphic to -Sn x E1. For, if so, then I> can be smoothly embedded in Sn + 1.

Now by 3.6 of [11 ], 2n is bicollared in S n +1 and by [3], the closure of a component

of Fn + 1—X¡ is a topological ball B. By the smooth Hauptvermutung for balls [18];

F, as a smooth manifold, is diffeomorphic to Bn + 1. Hence Bd Fn + 1 = S" is diffeo-

morphic to Sn, contradicting the fact that Sn is exotic, i.e., the existence of an

exotic «-sphere implies the existence of an exotic open («+ l)-annulus.
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