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ON THE EXISTENCE OF NORMAL SUBGROUPS

CONTAINING THEIR CENTRALIZER

BY

ULRICH SCHOENWAELDER

Every finite /?-group G has a characteristic subgroup N such that G ° A£jA

=©GA with an elementary abelian factorgroup A/jA (see W. Feit and J. G.

Thompson [3, Lemma 8.2]). Every hyper-abelian group G has a normal subgroup

N such that A'£sA=©GA (see R. Baer [1, Lemma 4.1]). The proof of Baer's

lemma is applicable in much more general situations which can best be described

by what we call subgroup theoretical properties. From a general theorem we shall

not only derive both of the above mentioned lemmas but also a variety of similar

results. Here we mention only the following generalization of the Feit-Thompson

lemma and of the case tt = {p} of a result of P. Hall and G. Higman ([4, Lemma

1.2.3]):

For every abelian, characteristic subgroup M of a p-solvable, finite group G whose

only normal p -subgroup is 1, there exists a characteristic p-subgroup N of G with

Mz%N=(EGNandN/iNçilyi(OpG/iN) (see §6.VII).

I am greatly indebted to Professor R. Baer for many remarks including an

extension of his lemma to certain almost hyper-abelian groups which suggested

the introduction of the property ß below.

Notation will be standard with (X, Y} denoting the subgroup generated by X

and y

1. Statement of main theorem. Throughout the paper a group G will be fixed

and v will be a set of subgroups of the group G, called v-subgroups, such that :

(1) 1 is a v-subgroup.

(2) X, Yev implies (.X, Y>ev.

A subgroup theoretical property on v is a set of triples (X, Y, G) of v-subgroups

Xç, Y of G. We say that the subgroup theoretical property a is derived from the

group theoretical property e if v is the set of all normal subgroups of G and a as a

subgroup theoretical property on v is characterized by

(X, Y, G)e a   if and only if Y/X is an e-group.

The following conditions will be placed on v, subgroup theoretical properties a

and ß on v, and a v-subgroup A of G in the main theorem:

(3) X, Yev implies Xn Yev.

(4) The union of a tower of v-subgroups is a v-subgroup.
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(5) (Z, X, G) ea,(Z, Y,G)ea,Z=Xn Y implies (Z, {X, T>, G) e a.

(6) For v-subgroups / and Y the following statements are equivalent:

(i) (Tn Y, Y,G)ea,

(ii) (T, <T, T>, G) e a,

(iii) there exists a v-subgroup 72<T, T> with (T, L, G) e a.

(1) A,Cev,RnC^A^ C, (R, G,G)eß implies (A, C, G) e ß.

For a discussion of these conditions see §§3 and 4.

Definition. Let R be a v-subgroup of G and a a subgroup theoretical property

on v. We say R is [y, a]-immersed in G, in symbols 7?[v, a]G, if

(8) TÎ^A'gv implies that there exists a v-subgroup D with K<= D^(K, R) and

(A', D, G) e a.

Therefore, if a is derived from the group theoretical property e, G[v, a]G if and

only if G is a hyper-e group.

Definition. A centralizer function c on v is a single valued mapping from v to v

such that after introducing the c-center c0X=Xn cX for Xev the following

condition is satisfied:

(9) N,Bev, N n B = c0N^B^cN implies c0N^c(.N, B}.

Note that by definition cX is always a v-subgroup for Xev.

We are now in a position to state the main theorem.

Theorem. Let a and ß be subgroup theoretical properties on v and R a v-subgroup

of G such that (l)-(7) are satisfied. Suppose R[v, a]G and (R, G, G) e ß. Let c be a

centralizer function on v and assume that there exist v-subgroups A^N such that A

is maximal among the c0v-subgroups and N is maximal among the v-subgroups T

with A = c0T and (A, T, G) e a. Then (c0N, cN, G) e ß.

The proof appears in the next section.

2. The abstract situation. We break up the proof of the theorem into several

steps.

Proposition 1. Let a and ß be subgroup theoretical properties on v and c a cen-

tralizer function on v. Assume that there exist v-subgroups A^NofG such that A is

maximal among the c0v-subgroups and N is maximal among the v-subgroups T with

A = c0T and (A, T, G) e a. Let (5) be satisfied by Z — A, X=N and suppose

(10) ifA^Cev and (A, C, G) i ß, then there exists a v-subgroup B with A^B^C

and (A, B, G) e a.

Then (c0N, cN, G) e ß.

Proof. A = cQN by choice of N- c being a centralizer function on v, C=cN is a

v-subgroup. Assume by way of contradiction that (A, C, G) i ß. Then by (10),

there exists a v-subgroup 7Í with A^B^C and (A, B, G) e a. We have AzN n B

^N n cN=A, hence A = N n B, and (5) implies (A, (N, B), G) e a. Since c is a

centralizer function we get A = cQN<^ c(N, B). So A ç (N, B} n c(N, Ti> = c0(N, B}
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and A = c0(N, B} by the maximality of A. But this implies A=<A, A> by the

maximality of A. Hence A<^B^N n cN—A, q.e.a.

Lemma. (See R. Baer [2, Proposition 1.5].) Let a beasubgroup theoretical property

on v such that (l)-(4) and (6) are satisfied. Let S^R be v-subgroups of G. Then

R[v, a]G implies S[v, a]G.

Proof. Let A be a v-subgroup that does not contain 5. Then S n K^ S. Since v

satisfies the tower condition (4) there exists, by Zorn's lemma, a subgroup J of G

maximal among the subgroups A" of G with

7C£ Xev,       SnK= S n X.

If A£A, then 5£A and S=S n J=S n K^S, q.e.a. So A$A By hypothesis,

A is [v, a]-immersed in G and therefore there exists a v-subgroup A with

J c A £ <A, A>    and   (J, A, G) e a,

and by the maximality of J we also have S n K<= S n L. Put Y= S n L and

A> = <A, y> so that Ac/)£<A, S}. D is a v-subgroup. Moreover, (J,L,G)ea

implies (J n Y,Y,G)ea by the implication (iii) ->- (i) in (6). But J n Y=J n S

= Kn S=K n Y so that (K n Y, Y, G) e a and (K, D, G) = (K, <A, F>, G) e a by

(6). This proves that S is [v, a]-immersed in G.

Proposition 2. Let a and ß be subgroup theoretical properties on v such that

(l)-(4) and (6) are satisfied. Suppose that A is a [v, a]-immersed v-subgroup of G

with (A, G, G) e ß. Then (1) implies (10) for all v-subgroups A.

Proof. Let A £ C be v-subgroups with (A, C, G) i ß. Then (7) implies RnC^A.

By the lemma A n C is [v, a]-immersed and therefore there exists a v-subgroup B

with A<=B£ (A, Rn C>£C and (A, B, G)ea.

Proof of Theorem. By Proposition 2, Proposition 1 is applicable.

3. Examples for properties a satisfying (5) and (6). If v consists of normal

subgroups of G only then subgroup theoretical properties a on v with (5) and (6)

may be defined as follows:

I. For a group theoretical property e inherited by normal subgroups and direct

products and v-subgroups A^B let (A, B, G) e a if and only if A/^4 is an e-group.

Proof. A group isomorphic to an e-group is an e-group.

II. For a group theoretical property « that is inherited by subgroups, epimorphic

images and direct products, and v-subgroups A^B let (A, B,G)ea if and only if

G/&q(B mod A) is an «-group.

Proof. (5) follows from the fact that G/6G(ZymodZ) is isomorphic to a sub-

group of the direct product of G/&a(X mod Z) with C7/(SG( Y mod Z). In (6), (i) and

(ii) are equivalent since ®G( Y mod Jn y)=ŒG(AymodA), and (iii) implies (ii)

because of ©G(A mod J) £ <£G(A Y mod J).
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III. Let a = ax n a2 for subgroup theoretical properties a, and a2 that satisfy (5)

and (6) for the same set v.

4. Examples for properties ß satisfying (7). If v consists of normal subgroups

of G only and if R is a v-subgroup of G, then subgroup theoretical properties ß

which satisfy (7) may be defined as follows:

I. For a group theoretical property g that is inherited by normal subgroups and

epimorphic images, and v-subgroups A'ç Y let (X, Y, G)e ß if and only if Y/X is

a g-group.

Proof. Under the hypothesis of (7) RY/R as a normal subgroup of G/R is a

g-group. So C/A is a g-group as an epimorphic image of C/R n C^RC/R.

In many an application g will be the group theoretical property 1 (and R = G).

II. For v-subgroups Ig Y let (X, Y. G) e ß if and only if

¡(GmodR) £ (ia(Ymod X).

Proof. Under the hypothesis of (7) with Z=%(G mod R) we have

Z ° c s (Z ° G) n C ç /? n C £ ^,

henee Zg¡eG(C mod ^) and L4, C, G) g ß.

Note that with this ß always (R, G, G)e ß so that in the Theorem we always get

Z£ßG(cAf mod c0N). In this view the following example becomes useful.

III. Let ß=ßx n ß2 for subgroup theoretical properties ßx and ß2 that satisfy (7)

for the same set v.

5. Examples for centralizer functions. All examples below give centralizer

functions of a special type arising as follows:

5.1. Let <7 be a relation on v such that:

(a) the intersection of two v-subgroups is a v-subgroup (3),

(b) every set of v-subgroups generates a v-subgroup,

(c) if N e v and if 3£ is a set of v-subgroups X with X o N, then <3£> o- TV,

(d) U, X, N g v, [/£ X a N implies U a N,

(e) U,Vev,UaV implies V o U.

For A' g v define cN=(X \ Xev, X a N'y. Then c is a centralizer function on v.

Proof. By (b), c is a single valued mapping from v to v. To check (9), let N, B ev

with B^cN. Then cAro-Ar by (c), NncNev by (a), and N n cN a N by (d).

Also 7Í a A-7 by (d), N o B by (e), and A n cA o- Tí by (d). Hence N n cN a (N, B}

by (e) and (c). Therefore c0N^c(.N, B).

5.2. The theorem requires the existence of maximal c0v-subgroups. Since 1 e v

by (1), there always exist c0v-subgroups, e.g. c0l = 1. So if

(11) the union of a tower of c0v-subgroups is a c0v-subgroup, then by the

Maximum Principle of Set Theory, maximal c0v-subgroups do exist. We shall check

the validity of (11) in the following examples for 5.1.

Suppose that v satisfies (1), 5.1(a), and 5.1(b).
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I. For U, V e v let U a V if and only if U and V centralize each other. Then

(a)-(e) in 5.1 are satisfied. If 6Gv£v, then cN becomes the centralizer of A in G.

In general however, cN may be smaller than <£GA. By 5.1(a), c0v£v. A v-subgroup

is a c0v-subgroup if and only if it is abelian. So by 5.1(b), c0v satisfies the tower

condition (11).

II. For U, Kg v let U a V if and only if every subgroup of U permutes with

every subgroup of V. To prove (c) in 5.1 let t e <3£>, « g A. Then r is a product of

elements x in various X e X. But xn = ñx for some « g <«>£A, x e (x}s.X, since

XoN. So tn = ñi with «€<«>£ N, ?e<3£> proving (c). (d) and (e) are obvious.

By 5.1, $A = cA=<A'gv| XoN} defines a centralizer function c=% on v. A

v-subgroup Z of G is a c0v-subgroup if and only if Z o Z. It is now easy to see that

5.1(b) implies the tower condition (11). Finite c0v-subgroups are nilpotent (M.

Suzuki [6, p. 7]).

III. Let 21 be a group of automorphisms of G that contains all inner auto-

morphisms and suppose that v consists of 91-invariant subgroups only and satisfies

(3) (e.g. the set of all 91-invariant subgroups meets requirement (3)). An ^-com-

position factor Uy%U2 of G contained in (/£(? will be a pair (Uy, U2) of 91-invariant

subgroups i/2£ i/i£ U with no other 91-invariant subgroup between them. Uy%U2

centralizes V& V2 if Uy ° Vy £ U2 n V2.

For U, V e v let U o V if and only if the 91-composition factors of G contained

in U centralize the 91-composition factors of G contained in V. To prove 5.1(c) let

Zj9iZ2 be an Si-composition factor in Z = <3£> and N1'äN2 an 91-composition factor

in A. Consider first the case where 1 has just two members X and Y.

Clearly

Zy = Z2(Zi n X)   or   Zi n X £ Z2,

since Zy%Z2 is an 91-composition factor and Z2(Zy n X) is 91-invariant. In the

first case

Zi o Ai £ [Z2 o Ai][(Zi n X) o Ny] £ Z2(Z2 n X) £ Z2,

since (Zj n A')9J(Z2 n X) is an Si-composition factor in XoN. Also XZX%XZ2

and (A'Zi n YpH(XZ2 n Y) are 91-composition factors, and

XZy = (XZ2)Zy = XZ2(XZy n Y).

Hence

XZy o Ai £ [XZ2 o Ny][(XZy n Y) ° Ny] £ XZ2(XZ2 n Y) £ XZ2

so that in the second case

Zy o Ny £ Zi n (XZy o Ny) £ Zi n XZ2 = Z2(Zi nj)c Z2.

Clearly  Zi o Ny £ XY o Ny £ [X ° Ax][ y ° Ny] £ A2   since   A'giA' and   y«l y are

91-composition factors. This proves XY a N.

In the general case there exists a v-subgroup W of <3£> maximal with Ifa A by
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the Maximum Principle of Set Theory and 5.1(b); the argument is similar to the

one given below for the existence of maximal c0v-subgroups. Let Xe£. Then

WX o N by the special case, hence X<=,W by the maximality of W. Therefore

(f£)=WoN proving (c). (d) and (e) follow immediately. By 5.1, cN=SslN=

(X \ Xev, X<jN) defines a centralizer function c = £ on v.

Let 3; be a tower of cvsubgroups Z. Every Z e % is a v-subgroup with Z aZ.

By 5.1(b), W=\J%ev. For an 21-composition factor Wx%tW2 of G in W let

Wx e Wx and w e W. Then there exists Ze% which contains both wx and w.

Moreover (W\ n Z)9i(H/2 n Z) is an Si-composition factor in Z. Therefore

Wx °we W2nZ showing that Wx ° If £ W2 and hence that W a W. (11) holds.

5.3. Let v satisfy (1) and 5.1(b) and let /be a function from v into a set v of

subgroups of G. Suppose that v and a relation ö on v satisfy (1) and 5.1(b)-(e).

Then the relation o on v defined by

UoV   ifandonlyif/175/K

satisfies 5.1(c)-(e) provided that

(i) If 3c is a set of v-subgroups, then /<£> = </£>.

So if 5.1(a) holds for v and v, we have a centralizer function c on v defined by ö

and a centralizer function c[f] on v defined by o-.

Proof. For a set 3£ of v-subgroups X with X a N, i.e. /Z â//V, we get </3¿> öfN

by (c) for v and a. Therefore/<£> ct//V" by (i), i.e. <3f> o- A7, proving (c) for v and a.

(d) follows from

(ii) U,Vev, i/£K implies/C/£/K,

which is a consequence of (i). (e) is obvious.

5.4. Let y be a set of triples (X, Y, G) with Xev, Y ev. Note, however, that we

do not require Z£ Y. For X e v let

yX=Gn(~){T\(X,T,G)ey}.

We make the following assumptions:

(y.a) v satisfies (1), 5.1(a), and 5.1(b).

(y.b) If'S is a set of v-subgroups Y with (X, Y, G) e y, then (X, G n f) •§, G) e y.

(y.c) Xx e v, Xx £ X2, (X2, Y,G)ey implies (Xx, Y, G) e y.

(y.d) If 3: is a set of v-subgroups, then «3f>, (yX), G) e y.

Then (X, yX, G) e y for Xe v by (y.b), and y<3Ê>£<y£> by (y.d). Let (<£>, T, G)

e y. Then (X, T,G)ey for all X e 3£ by (y.c), hence yX£ 7 and <yX> £ J. Therefore

<yï>£y<£>. This shows that

fX=yX

satisfies (i) in 5.3. The following functions/arise in this manner:

I. If every v-subgroup of G is a normal subgroup of G, and if v satisfies (1),

5.1(a), and 5.1(b), then a function/with property (i) is defined by

fX=X°G   for X e v,       v = set of all normal subgroups of G.
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/may be obtained from the set y defined by

(X, Y,G)ey   if and only if A-g v, Yev, X°G £ Y.

If c is a centralizer function on v defined by a relation 5 according to 5.1, then

c[f]N = <X | X e v, X ° G ö N ° G}.

In particular,

®a[f]N = h(G mod ©G(A o G))   for A g v

provided that ¡(G mod KG(A ° G)) is a v-subgroup.

II. Let v satisfy (1), 5.1(a), and 5.1(b) and let v be the set of all 91-invariant

subgroups of G for a fixed group 91 of automorphisms of G. Then

(X, Y,G)ey   if and only if J g v, yev,and X £ Y

defines a set of triples with properties (y.a)-(y.d) and consequently a function /

with property (i);fX=yX is the 9f-invariant hull of the v-subgroup X.

III. One may derive functions/from suitable group theoretical properties e via

(X, Y, G)   if and only if A", Y <¡ G, X £ Y, G/ Y is an e-group.

However, the resulting centralizer fonctions SG[/] do not lead to interesting

applications in connection with the theorem.

6. Some applications of the theorem.

I. (R. Baer [1].) For every abelian, normal subgroup M of a hyperabelian group G

there is a normal subgroup N of G with M £jA=ßGA and A'£ jA.

Proof. We let v be the set of all normal subgroups of G. The group theoretical

property e of being abelian is inherited by normal subgroups and direct products.

Hence the subgroup theoretical property a derived from e satisfies (5) and (6) (see

3.1). R = G satisfies (8) by definition of "hyperabelian". ß may be defined as in

4.1 with g= 1 so that (7) holds trivially. There exists a maximal jv-subgroup A^M

as indicated in 5.2.1 and there exist subgroups A maximal among the normal

subgroups of G with A' £.4=4A. By the theorem jA=©GA.

II. Aor every abelian, normal subgroup M of a finite, solvable group G there is a

normal subgroup NofG with M £ j A = (£G A and N/%N abelian of squarefree exponent.

Proof as in I where, however, e-groups are abelian of squarefree exponent.

Since A is nilpotent this result implies that the fitting subgroup of a solvable

group contains its centralizer.

III. Let v be the set of all normal subgroups of the group G, g a group theoretical

property that is inherited by normal subgroups and epimorphic images, and a the

subgroup theoretical property derived from e = abelian as in I. Suppose that G has a

[v, a]-immersed normal subgroup A whose factor group G/R is a g-group. Then for
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every abelian, normal subgroup M of G there exists a normal subgroup N of G with

the following properties :

M £ jA,

A/j-A is abelian,

&GN/iN is a g-group,

eG((£GA mod 0A) 3 j(G mod A).

Proof. Define ßy as ß in 4.1, ß2 as ß in 4.II, and ß=ßy n ß2 as in 4.III so that

(A, G, G)e ß and (7). v satisfies (l)-(4) and a meets requirements (5) and (6) as

pointed out in 3.1. As in the proof of 6.1 there are normal subgroups A and A

with A/£v4 and the properties mentioned in the main theorem, namely

A = a A,       (A, N, G) e a,       (jA, <SGA, G) g ß.

This means that A/£0A, A/3A is abelian, SGA/jA is a g-group, and

©G(eGA mod jA) 2 j(G mod A).

In III, v, a and 3=/?! satisfy the hypothesis of Proposition 4 in §7 below. There-

fore, if every epimorphic image of G is a g-group or has an abelian, normal sub-

group, not 1, then the [v, ct]-hypercenter f)[v,a]G as defined in §7 has the properties

imposed on A above.

Of course, 6.1 is a special case of III.

IV. Let G have a [v, a]-immersed, normal subgroup A as in III whose factor

group G¡R is abelian. Then there exists for every abelian, normal subgroup M of G

a normal subgroup N of G with M-N' (G ° ®GA) £ jA.

Proof. This is a special case of III.

V. For every characteristic, abelian subgroup M of a hypercentral group G there

is a characteristic subgroup N with M(N ° G)£ jA=(SGA.

Proof. Let v be the set of all characteristic subgroups of G and let a be defined

as in 3.II with «=1. Then A = G is [v, «]-immersed in G by the definition of

"hypercentral", and the main theorem is applicable.

VI. (W. Feit and J. G. Thompson [3].) Aor every abelian, characteristic subgroup

M of a finite p-group G there is a characteristic subgroup N of G with M(N ° G)

£ ¿A=(£GA and elementary abelian factor group A/jA.

Proof. As for V. Special case of VII below.

Remark. In the situation of V and VI, the (characteristic) subgroup A in the

main theorem uniquely determines a subgroup A as described in the theorem. In

the notation of [5], A= £G(A). However, the generalizations of V and VI contained

in [5] though of a similar formal nature do not fit in our present context and

certainly cannot be expected to follow from such a simple observation as Proposition

1 in §2.
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VII. Result on finite, p-solvable groups as stated in the introduction.

Proof. Let v be the set of all characteristic subgroups of G and define the sub-

group theoretical property a on v by

(X, Y,G)ea   if and only if Y/X = YJX <g> Y2/X

with a //-group YJX and an elementary abelian /»-group YJX that centralizes

OpG.

We have to show that G is [v, a]-immersed in itself and that a satisfies (5) and (6).

Let A/ G be a characteristic subgroup of G. Since G is /7-solvable,

DP.(G/K) ® £P(G/K) ¥> 1.

If Op.(G/Ä)^l, let D/K=£>„iG/K). £>PG induces a/»-group of automorphisms of

£>P(G/K). So if £>p.(G/K) = 1 then £}p(G/K)¿ 1 and the fixed elements in £>„(G/K)

under the action of DPG form a subgroup F/K+ 1 ; it is invariant under all auto-

morphisms of G and so is D/K= Q.xh(FIK) + 1 ; D is a characteristic subgroup of G

and D/K is elementary abelian and centralizes CPG. Therefore T7 is in both cases

a characteristic subgroup of G with K<= D and (/C, T7, G) g a. This proves G[v, a]G.

One checks easily that a meets requirements (5) and (6).

Thus, G has a characteristic subgroup A with M^zN=(iaN and (jN, A7, G) g a.

Since Cp.G= 1, ¿A must be a /»-group and N/iN must be a /»-group. Hence

N/iN £ Ql5(OpG/jA0-

VIII. Let e be a group theoretical property inherited by normal subgroups, direct

products, and unions of towers of normal e-subgroups of a group. Then every hyper-e-

group G has

(1) normal subgroups Nx and Zx such that

(a) Zx o G centralizes Nx ° G,

(b) // the normal subgroup X of G has the property that X o G centralizes

Nx ° G then XsZx,

(c) Zx £ Nx and Nx/Zx is an e-group,

(2) normal subgroups N2 and Z2 such that

(a) every subgroup ofZ2 permutes with every subgroup of N2,

(b) // the normal subgroup X of G has the property that every subgroup of X

permutes with every subgroup of N2, then X^Z2,

(c) Z2 £ N2 and NJZ2 is an e-group,

(3) normal subgroups N3 and Z3 depending on the choice of a group 91 of auto-

morphisms of G containing all inner automorphisms such that

(a) every %-composition factor in Z3 is centralized by N3,

(b) if the normal subgroup X of G has the property that every %-composition

factor of G in X centralizes every %-composition factor of G in N3, then A'£Z3,

(c) Z3 £ N3 and NJZ3 is an e-group.
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Proof. Let v be the set of all normal subgroups of G and define a as in 3.1 so

that (l)-(6) are satisfied. The centralizer functions ©G[/]> $> and ff on v as described

in 5.4.1, 5.2.II and III have the right properties to ensure the existence of a sub-

group A as in the main theorem. Since the union of a tower of normal e-subgroups

of G/A is an e-group, there will exist a normal subgroup A with the properties

required in the main theorem. By the theorem and the definition of the centralizer

function c to be used Z¡ = c0A and A¿ = A have the properties (a), (b), (c).

7. Excursion on [v, a]-S-immersion. Proposition 4 below will clarify the role of

the hypothesis about A in the main theorem. Let v always satisfy (1) and (2). For

v-subgroups A^Q and subgroup theoretical properties a and 8 on v we define:

Q is [v, a]-b-immersed over A in G, or Q[v, a]-8G over A, if

(12) A£Ag v, (K, <A, Q}, G) $ 8 implies the existence of a v-subgroup A with

A<=A£<A, g> and (A, A, G) g a.

We denote by 1 the subgroup theoretical property {(X, X, G) \ X e v}. Then

[v, a]-l-immersion over 1 amounts to [v, a]-immersion as defined in §1. If l£â

then every [v, a]-immersed v-subgroup is also [v, a]-S-immersed (over 1). We shall

have to consider the following conditions on S and a:

(13) X, Yev, XS Y, (X, G,G)e8 implies (Y, G, G) e 8.

(14) If A is a v-subgroup and if 9JÍ is a set of v-subgroups X with (K, <A, A">, G)

g 8, then (K, <A, 2JÎ>, G) g S.

(15) X^Kev, (X, Y,G)ea implies (K, (K, Y}, G) e a.

Note that (15) is satisfied whenever a is derived from a group theoretical property

that is inherited by epimorphic images.

Proposition 3. (See R. Baer [2, Proposition 1.1]). Let A^Q be v-subgroups.

(1) // Q is [v, a]-8-immersed over A and if the v-subgroup B contains A, then

(Q, B) is [v, a]-8-immersed over B.

(2) If P is [v, a]-l-immersed over A and Q is [v, a]-8-immersed over PsQ, then

Q is [v, a]-8-immersed over A.

(3) Suppose 5.1(b) and (14). Ifïïl is a set of v-subgroups X [v, a]-8-immersed over

A, then <90f> is [v, a]-8-immersed over A.

(4) One may substitute [v, a]-8for [v, a] in the lemma of §2 if 8 meets requirement

(6) (with a replaced by 8).

Proof. (1) and (3) are immediate applications of the definition of immersion.—

With regard to (2), let A be a v-subgroup with A^K and (K, (K, Qy,G)$8.

Assume first that A£K or equivalently that (A, <Af, A>, G) £ 1. Since A is [v, a]-l-

immersed over A, there exists a v-subgroup A with AcA£<A, A>£<A, Q) and

(K, L,G)ea as desired. If however A£K then we may use that Q is [v, a]-8-

immersed over A.—To verify (4) define J as in the proof of the lemma. If

(J, </, A>, G) g S, then (J nS,S,G)e8 by the implication (iii) -> (i) in (6). But

J n S=Kn S, hence (K, (K, S>, G) e 8 by (6). Therefore we may assume

(J, </, A>, G) g S and using A[v, a]-8G proceed as in the lemma.
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We define the [v, a]-8-hypercenter i)[va].aG of G to be the subgroup generated by

all [v, a]-S-immersed v-subgroups (over 1) (see R. Baer [2]). Assuming 5.1(b) and

(14) we conclude from Proposition 3(3) that í)[V,a]-¿G is [v, a]-S-immersed. In

particular, since S= 1 satisfies (14), h[V,a]G is a [v, a]-immersed v-subgroup whenever

5.1(b) holds.

Proposition 4. Let v satisfy 5.1(b) and suppose that the subgroup theoretical

properties 8 and a meet requirements (13) and (15). Then the following statements

are equivalent:

(a) There exists a v-subgroup R with R[v, a]G and (R, G, G) e 8.

(b) (f)[v,a]G[v, «]G and) (f)[v.a]G, G, G) g 8.

(c) G[v, a]-8G.

Proof. The equivalence of (a) and (b) follows from 5.1(b) and (13). Assume (b)

and let 77=i)[Via]G. Let K be a v-subgroup with (K, G, G) i 8. By (b) and (13),

H% K so that K<=(K, H). But T7[v, a]G guarantees the existence of a v-subgroup L

with K^L^{K, 77> and (K, L, G) e a. We proved (c). Conversely, assume G[v, a]-8G

and by way of contradiction that (H, G, G) $ 8. Then there exists a v-subgroup

Lc// with (77, G, G) g a. This implies that L is [v, a]-immersed over 77, since for

any v-subgroup K with 77£ K^ (K, L) we have (K, L> g v with K^ (K, 7> £ {K, L)

and (K, (K, L), G) e a by (15). Now Proposition 3(2) yields that L is [v, a]-immersed

and is hence contained in 77=h[va]G, a contradiction, since 77<=L. Therefore

(77, G, G) g S, and the proof is complete.
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