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ON THE EXISTENCE OF NORMAL SUBGROUPS
CONTAINING THEIR CENTRALIZER

BY
ULRICH SCHOENWAELDER

Every finite p-group G has a characteristic subgroup N such that G o NS3N
=E;N with an elementary abelian factorgroup N/3N (see W. Feit and J. G.
Thompson [3, Lemma 8.2]). Every hyper-abelian group G has a normal subgroup
N such that N'c3N=C;N (see R. Baer [1, Lemma 4.1]). The proof of Baer’s
lemma is applicable in much more general situations which can best be described
by what we call subgroup theoretical properties. From a general theorem we shall
not only derive both of the above mentioned lemmas but also a variety of similar
results. Here we mention only the following generalization of the Feit-Thompson
lemma and of the case #={p} of a result of P. Hall and G. Higman ([4, Lemma
1.2.3]):

For every abelian, characteristic subgroup M of a p-solvable, finite group G whose
only normal p'-subgroup is 1, there exists a characteristic p-subgroup N of G with
Mc3N=C;N and N3N = Q,3(9,G/3N) (see §6.VII).

I am greatly indebted to Professor R. Baer for many remarks including an
extension of his lemma to certain almost hyper-abelian groups which suggested
the introduction of the property 8 below.

Notation will be standard with (X, Y denoting the subgroup generated by X
and Y.

1. Statement of main theorem. Throughout the paper a group G will be fixed
and v will be a set of subgroups of the group G, called v-subgroups, such that:

(1) 1is a v-subgroup.

(2) X, Yevimplies (X, Y) €.
A subgroup theoretical property on v is a set of triples (X, Y, G) of v-subgroups
X< Y of G. We say that the subgroup theoretical property « is derived from the
group theoretical property e if v is the set of all normal subgroups of G and « as a
subgroup theoretical property on v is characterized by

(X, Y,G)ea if and only if Y/X is an e-group.

The following conditions will be placed on v, subgroup theoretical properties «
and B on v, and a v-subgroup R of G in the main theorem:

(3) X, Yevimplies X N Yew.

(4) The union of a tower of v-subgroups is a v-subgroup.
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B)(Z, X, G)ee,(Z,Y,G)ea,Z=X N Y implies (Z, <X, Y),G) €.
(6) For v-subgroups J and Y the following statements are equivalent:
(i) (JNnY,Y G eEq,
(i) (J,<J, Y),G) e,
(iii) there exists a v-subgroup L=2<J, Y with (J, L, G) € a.

(7) A,Cev, RN C<=A<C, (R, G, G) € B implies (4, C, G) € b.

For a discussion of these conditions see §§3 and 4.

DEFINITION. Let R be a v-subgroup of G and « a subgroup theoretical property
on v. We say R is [v, «]-immersed in G, in symbols R[v, «]G, if

(8) RE K ev implies that there exists a v-subgroup D with K& D=<{K, R) and
(K, D, G) € .

Therefore, if « is derived from the group theoretical property e, G[v, ]G if and
only if G is a hyper-e group.

DEFINITION. A centralizer function ¢ on v is a single valued mapping from v to v
such that after introducing the c-center co X=X N cX for X ev the following
condition is satisfied:

(9) N, Bev, NN B=coN<B<cN implies ¢, N < (N, B).

Note that by definition c¢X is always a v-subgroup for X € v.

We are now in a position to state the main theorem.

THEOREM. Let « and B be subgroup theoretical properties on v and R a v-subgroup
of G such that (1)~(7) are satisfied. Suppose R[v, «]G and (R, G, G) € B. Let c be a
centralizer function on v and assume that there exist v-subgroups A< N such that A
is maximal among the cqv-subgroups and N is maximal among the v-subgroups T
with A=c,T and (A, T, G) € a. Then (coN, cN, G) € B.

The proof appears in the next section.

2. The abstract situation. We break up the proof of the theorem into several
steps.

PROPOSITION 1. Let o and B be subgroup theoretical properties on v and ¢ a cen-
tralizer function on v. Assume that there exist v-subgroups A< N of G such that A is
maximal among the cov-subgroups and N is maximal among the v-subgroups T with
A=c,T and (A, T, G) € .. Let (5) be satisfied by Z=A, X=N and suppose

(10) if A= Cevand (A, C, G) ¢ B, then there exists a v-subgroup B with AcB<C
and (4, B, G) € c.

Then (coN, cN, G) € 8.

Proof. A=c,N by choice of N. ¢ being a centralizer function on v, C=cN is a
v-subgroup. Assume by way of contradiction that (4, C, G) ¢ 8. Then by (10),
there exists a v-subgroup B with A<B<C and (4, B, G) € «. We have ASNN B
NN cN=A, hence A=N N B, and (5) implies (4, <N, B), G) € . Since c is a
centralizer function we get A=c,N< (N, B). So AS{N, B) N\ N, B)=cN, B)
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and A=c,(N, B) by the maximality of 4. But this implies N=(N, B> by the
maximality of N. Hence AcB= N N ¢cN=A4, q.e.a.

LEMMA. (See R. Baer [2, Proposition 1.5].) Let « be a subgroup theoretical property
on v such that (1)-(4) and (6) are satisfied. Let S< R be v-subgroups of G. Then
Ry, a]G implies S[v, ¢]G.

Proof. Let K be a v-subgroup that does not contain S. Then S N K< S. Since v
satisfies the tower condition (4) there exists, by Zorn’s lemma, a subgroup J of G
maximal among the subgroups X of G with

Kc Xey, SNK=8SnX

If RcJ, then ScJ and S=SNJ=SnN K<S, g.e.a. So REJ. By hypothesis,
R is [v, ]-immersed in G and therefore there exists a v-subgroup L with

JSL<{J,R and (J,L,G)eaq,

and by the maximality of J we also have SN K=SNL. Put Y=SNL and
D=(K, Y) so that KcD<=<(K,S>. D is a v-subgroup. Moreover, (J, L, G) € «
implies (J N Y, Y, G) € « by the implication (iii) — (i) in (6). But JN Y=JN S
=KNS=KnN Ysothat (KN Y, Y,G)eaand (K, D, G)=(K, <K, Y>, G)€a by
(6). This proves that S is [v, a}-immersed in G.

PROPOSITION 2. Let o and B be subgroup theoretical properties on v such that
(1)-(4) and (6) are satisfied. Suppose that R is a [v, a]-immersed v-subgroup of G
with (R, G, G) € B. Then (7) implies (10) for all v-subgroups A.

Proof. Let A< C be v-subgroups with (4, C, G) ¢ B. Then (7) implies R N CE 4.
By the lemma R N C'is [v, o]-immersed and therefore there exists a v-subgroup B
with ACB< {4, RN C)<Cand (4, B, G) ce.

Proof of Theorem. By Proposition 2, Proposition 1 is applicable.

3. Examples for properties o satisfying (5) and (6). If » consists of normal
subgroups of G only then subgroup theoretical properties « on » with (5) and (6)
may be defined as follows:

L. For a group theoretical property e inherited by normal subgroups and direct
products and »-subgroups A< B let (4, B, G) € « if and only if B/4 is an e-group.

Proof. A group isomorphic to an e-group is an e-group.

II. For a group theoretical property A that is inherited by subgroups, epimorphic
images and direct products, and v-subgroups 4 < B let (4, B, G) € « if and only if
G/€;(B mod A) is an h-group.

Proof. (5) follows from the fact that G/€;(XY mod Z) is isomorphic to a sub-
group of the direct product of G/€4(X mod Z) with G/€4(Y mod Z). In (6), (i) and
(ii) are equivalent since €z(Y modJ N Y)=E4(JY modJ), and (iii) implies (ii)
because of €x(L mod J)=€4(JY mod J).
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III. Let a=«,; N a, for subgroup theoretical properties «; and o, that satisfy (5)
and (6) for the same set v.

4. Examples for properties S satisfying (7). If v consists of normal subgroups
of G only and if R is a v-subgroup of G, then subgroup theoretical properties 8
which satisfy (7) may be defined as follows:

I. For a group theoretical property g that is inherited by normal subgroups and
epimorphic images, and v-subgroups X< Y let (X, Y, G) € 8 if and only if Y/X is
a g-group.

Proof. Under the hypothesis of (7) RY/R as a normal subgroup of G/R is a
g-group. So C/A is a g-group as an epimorphic image of C/R N C~ RC/R.

In many an application g will be the group theoretical property | (and R=G).

I1. For v-subgroups X< Y let (X, Y. G) € 8 if and only if

3(G mod R) < €4(Y mod X).
Proof. Under the hypothesis of (7) with Z=3(G mod R) we have
ZoC<(Z-G)NC<=RNCCcS A,

hence Z<=€4;(C mod A4) and (4, C, G) €.

Note that with this 8 always (R, G, G) € 8 so that in the Theorem we always get
Z <=C4(cN mod ¢,N). In this view the following example becomes useful.

I1I. Let B=pB, N B, for subgroup theoretical properties 8; and B, that satisfy (7)
for the same set v.

5. Examples for centralizer functions. All examples below give centralizer
functions of a special type arising as follows:
5.1. Let o be a relation on v such that:
(a) the intersection of two v-subgroups is a »-subgroup (3),
(b) every set of v-subgroups generates a v-subgroup,
(c) if Nevand if X is a set of v-subgroups X with X ¢ N, then (%> o N,
d) U, X, Nev, US X o N implies U ¢ N,
() U,Vev, Uo Vimplies Vo U.
For N ev define cN=<{X | Xev, Xo N). Then c is a centralizer function on ».
Proof. By (b), c is a single valued mapping from v to ». To check (9), let N, Be v
with B=cN. Then ¢cNo N by (c), NNncNev by (a), and NN cNao N by (d).
Also Bo N by (d), N o B by (e), and N N cN o B by (d). Hence N N ¢N o {N, B>
by (e) and (c). Therefore coN< (N, B).
5.2. The theorem requires the existence of maximal cov-subgroups. Since 1 v
by (1), there always exist cov-subgroups, e.g. ¢ol =1. So if
(11) the union of a tower of cov-subgroups is a cov-subgroup, then by the
Maximum Principle of Set Theory, maximal cov-subgroups do exist. We shall check
the validity of (11) in the following examples for 5.1.
Suppose that v satisfies (1), 5.1(a), and 5.1(b).
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I. For U, Vevlet Uo V if and only if U and V centralize each other. Then
(a)-(e) in 5.1 are satisfied. If €,v<v, then ¢N becomes the centralizer of N in G.
In general however, cN may be smaller than €;N. By 5.1(a), covSv. A v-subgroup
is a cov-subgroup if and only if it is abelian. So by 5.1(b), cov satisfies the tower
condition (11).

II. For U, Vev let Uo V if and only if every subgroup of U permutes with
every subgroup of V. To prove (c) in 5.1 let t € (%), n € N. Then ¢ is a product of
elements x in various X € X. But xn=7#x for some 7€ <{n)<=N, X € {x>< X, since
X o N. So tn=iif with ie{n)< N, e (%) proving (c). (d) and (e) are obvious.
By 5.1, BN=cN={Xev| Xo N) defines a centralizer function c=% on ». A
v-subgroup Z of G is a cov-subgroup if and only if Z ¢ Z. It is now easy to see that
5.1(b) implies the tower condition (11). Finite cov-subgroups are nilpotent (M.
Suzuki [6, p. 7).

III. Let A be a group of automorphisms of G that contains all inner auto-
morphisms and suppose that v consists of -invariant subgroups only and satisfies
(3) (e.g. the set of all A-invariant subgroups meets requirement (3)). An A-com-
position factor U, AU, of G contained in U< G will be a pair (U,, U,) of U-invariant
subgroups U, < U, < U with no other 2-invariant subgroup between them. U, AU,
centralizes VUV, if Uy o ViU, N Vs,

For U, Vevlet Uos V if and only if the €A-composition factors of G contained
in U centralize the %-composition factors of G contained in V. To prove 5.1(c) let
Z,UZ, be an A-composition factor in Z=<X) and N;UN, an A-composition factor
in N. Consider first the case where X has just two members X and Y.

Clearly

Zl =Zz(ZlnX) or ZlnX§22,

since Z;AZ, is an A-composition factor and Z,(Z, N X) is A-invariant. In the
first case

ZyoN, S [Zao N)[(Zy N X))o N1l € Zy(Z. N X) € Z,,

since (Z; N X)A(Z, N X) is an AY-composition factor in X o N. Also XZ,AXZ,
and (XZ; N Y)A(XZ, N Y) are A-composition factors, and

XZ, = (XZ)Z, = XZ,(XZ, N Y).
Hence
XZ,oN;, € [XZyo N, JUXZ, N Y)o Nyl € XZy(XZ; N Y) S XZ,
so that in the second case
ZioNySZN(XZyoN)SZiNXZy,=2,(Z,NX) S 2Z,.

Clearly Z; o N;SXYo N, S[XoN,J[YoN,]JEN, since XAX and YAY are
A-composition factors. This proves XY o N.
In the general case there exists a v-subgroup W of (¥)> maximal with W o N by



164 ULRICH SCHOENWAELDER [November

the Maximum Principle of Set Theory and 5.1(b); the argument is similar to the
one given below for the existence of maximal cov-subgroups. Let X € ¥. Then
WX o N by the special case, hence X< W by the maximality of W. Therefore
(X>=W o N proving (c). (d) and (e) follow immediately. By 5.1, cN={N=
{X| Xev, Xo N) defines a centralizer function c=8 on .

Let T be a tower of cov-subgroups Z. Every Z € T is a v-subgroup with Z o Z.
By 5.1(b), W=\J Z ev. For an %-composition factor W, AW, of G in W let
wy € W, and we W. Then there exists Z €T which contains both w; and w.
Moreover (W, N Z)A(W,NZ) is an A-composition factor in Z. Therefore
wy o we Wy N Z showing that W, o« W< W, and hence that W o W. (11) holds.

5.3. Let v satisfy (1) and 5.1(b) and let f be a function from v into a set # of
subgroups of G. Suppose that 7 and a relation & on » satisfy (1) and 5.1(b)—(e).
Then the relation ¢ on v defined by

UoV ifandonlyif fUGfV

satisfies 5.1(c)-(e) provided that

(i) If X is a set of v-subgroups, then f{X)>={f%).

So if 5.1(a) holds for v and 7, we have a centralizer function ¢ on # defined by &
and a centralizer function c[f] on v defined by o.

Proof. For a set X of v-subgroups X with X o N, i.e. fX 6 fN, we get {f%)> 6 fN
by (c) for v and &. Therefore f{X) & fN by (i), i.e. {X) o N, proving (c) for v and o.
(d) follows from

(ii) U, Vev, U<V implies fUSfV,
which is a consequence of (i). (e) is obvious.

5.4. Let y be a set of triples (X, Y, G) with X ev, Y € . Note, however, that we
do not require X< Y. For X ev let

yX=GNnN{T|(X,T,G)ey}.

We make the following assumptions:
(y.a) v satisfies (1), 5.1(a), and 5.1(b).
(y.b) If9 is a set of #-subgroups Y with (X, Y, G) € y, then (X, GN N Y, G) € y.
(y.c) Xiev, XiSX,, (X,, Y, G) ey implies (X,, Y, G) € y.
(y.d) If X is a set of v-subgroups, then ((X), {y%>, G) € .
Then (X, yX, G) ey for X ev by (y.b), and y{X>=<{yX) by (y.d). Let (%>, T, G)
€y. Then (X, T, G) e y for all X € X by (y.c), hence yX<T and {yX) =T. Therefore
{yX)<y{X>. This shows that

fX=vyX

satisfies (i) in 5.3. The following functions f arise in this manner:
I. If every v-subgroup of G is a normal subgroup of G, and if v satisfies (1),
5.1(a), and 5.1(b), then a function f with property (i) is defined by

fX=XoG for Xev, v = set of all normal subgroups of G.
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f may be obtained from the set y defined by
(X,Y,G)ey ifandonlyif Xev, Ye?, XoG S Y.
If ¢ is a centralizer function on # defined by a relation & according to 5.1, then
c[fIN=<KX|Xev,Xo G5 NoG).
In particular,

Ce[fIN = 3(G mod G4(N o G)) for Nev

provided that 3(G mod €4(N - G)) is a v-subgroup.
I1. Let v satisfy (1), 5.1(a), and 5.1(b) and let # be the set of all A-invariant
subgroups of G for a fixed group % of automorphisms of G. Then

(X,Y,G)ey ifandonlyif Xev, Yes,and X = Y

defines a set of triples with properties (y.a)-(y.d) and consequently a function f
with property (i); fX=yX is the U-invariant hull of the v-subgroup X.
III. One may derive functions f from suitable group theoretical properties e via

(X, Y,G) ifandonlyif X, Y G, X < Y, G/Y is an e-group.

However, the resulting centralizer functions €g[f] do not lead to interesting
applications in connection with the theorem.

6. Some applications of the theorem.

I. (R. Baer [1).) For every abelian, normal subgroup M of a hyperabelian group G
there is a normal subgroup N of G with M <3N =C€;N and N' <3N.

Proof. We let v be the set of all normal subgroups of G. The group theoretical
property e of being abelian is inherited by normal subgroups and direct products.
Hence the subgroup theoretical property « derived from e satisfies (5) and (6) (see
3.1). R=( satisfies (8) by definition of ‘“hyperabelian. 8 may be defined as in
4.1 with g=1 so that (7) holds trivially. There exists a maximal zv-subgroup 42 M
as indicated in 5.2.1 and there exist subgroups N maximal among the normal
subgroups of G with N’ A=3N. By the theorem 3N =C;N.

I1. For every abelian, normal subgroup M of a finite, solvable group G there is a
normal subgroup N of G with M =3N=C;N and N/3N abelian of squarefree exponent.

Proof as in I where, however, e-groups are abelian of squarefree exponent.
Since N is nilpotent this result implies that the fitting subgroup of a solvable
group contains its centralizer.

I11. Let v be the set of all normal subgroups of the group G, g a group theoretical
property that is inherited by normal subgroups and epimorphic images, and « the
subgroup theoretical property derived from e=abelian as in 1. Suppose that G has a
[v, «]-immersed normal subgroup R whose factor group G[R is a g-group. Then for
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every abelian, normal subgroup M of G there exists a normal subgroup N of G with
the following properties:

M < 3N,

N/3N is abelian,

CsN/3N is a g-group,

Ce(CzN mod 3N) 2 3(G mod R).

Proof. Define 8, as 8 in 4.1, B, as B in 4.1I, and B=pB, N B, as in 4.1II so that
(R, G, G) e B and (7). v satisfies (1)-(4) and « meets requirements (5) and (6) as
pointed out in 3.I. As in the proof of 6.1 there are normal subgroups 4 and N
with M= A4 and the properties mentioned in the main theorem, namely

A =3N9 (A7N>G)ea, (3Na@GN$ G)EB‘
This means that M <3N, N/3N is abelian, €;N/3N is a g-group, and
Cs(CeN mod 3N) 2 3(G mod R).

In II1, v, « and 8=p, satisfy the hypothesis of Proposition 4 in §7 below. There-
fore, if every epimorphic image of G is a g-group or has an abelian, normal sub-
group, not 1, then the [v, «]-hypercenter b, ;G as defined in §7 has the properties
imposed on R above.

Of course, 6.1 is a special case of I11.

IV. Let G have a [v, o]-immersed, normal subgroup R as in 111 whose factor
group G|R is abelian. Then there exists for every abelian, normal subgroup M of G
a normal subgroup N of G with M-N'-(G - €;N)<3N.

Proof. This is a special case of I1I.

V. For every characteristic, abelian subgroup M of a hypercentral group G there
is a characteristic subgroup N with M(N o G)<3N=GC;N.

Proof. Let v be the set of all characteristic subgroups of G and let « be defined
as in 3.II with A=1. Then R=G is [v, «]-immersed in G by the definition of
“hypercentral”, and the main theorem is applicable.

VI. (W. Feit and J. G. Thompson [3].) For every abelian, characteristic subgroup
M of a finite p-group G there is a characteristic subgroup N of G with M(N ° G)
<3N =C;N and elementary abelian factor group N|3N.

Proof. As for V. Special case of VII below.

REMARK. In the situation of V and VI, the (characteristic) subgroup A in the
main theorem uniquely determines a subgroup N as described in the theorem. In
the notation of [5], N=¥X4(4). However, the generalizations of V and VI contained
in [5] though of a similar formal nature do not fit in our present context and
certainly cannot be expected to follow from such a simple observation as Proposition
1 in §2.
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VII. Result on finite, p-solvable groups as stated in the introduction.

Proof. Let v be the set of all characteristic subgroups of G and define the sub-
group theoretical property « on v by

(X, Y,G)ee ifandonlyif Y/X = Y /X ® Y,/X

with a p’-group Y;/X and an elementary abelian p-group Y,/X that centralizes
9,G.

We have to show that G is [v, «]-immersed in itself and that « satisfies (5) and (6).
Let K#G be a characteristic subgroup of G. Since G is p-solvable,

9,(G/K) ® D,(G/K) # 1.

If ©,(G/K)#1, let D/K=9,(G/K). £,G induces a p-group of automorphisms of
9,(G/K). So if ©,.(G/K)=1 then D,(G/K)#1 and the fixed elements in O,(G/K)
under the action of ©,G form a subgroup F/K#1; it is invariant under all auto-
morphisms of G and so is D/K=Q,3(F/K)#1; D is a characteristic subgroup of G
and D/K is elementary abelian and centralizes £,G. Therefore D is in both cases
a characteristic subgroup of G with K< D and (K, D, G) € «. This proves G[v, «]G.

One checks easily that « meets requirements (5) and (6).

Thus, G has a characteristic subgroup N with M <3N=E€;N and (3N, N, G) € o
Since £,,G=1, 3N must be a p-group and N/3N must be a p-group. Hence

N3N = Q,3(9,G/3N).

VIIL. Let e be a group theoretical property inherited by normal subgroups, direct
products, and unions of towers of normal e-subgroups of a group. Then every hyper-e-
group G has

(1) normal subgroups N, and Z, such that

(@) Z, o G centralizes N, - G,

(b) if the normal subgroup X of G has the property that X o G centralizes
N, G then X<Z,,

(¢) Z, =N, and N,|Z, is an e-group,

(2) normal subgroups N, and Z, such that

(a) every subgroup of Z, permutes with every subgroup of N,

(b) if the normal subgroup X of G has the property that every subgroup of X
permutes with every subgroup of N,, then X<Z,,

(c) Z, =N, and N,|Z, is an e-group,

(3) normal subgroups N3 and Z3 depending on the choice of a group N of auto-

morphisms of G containing all inner automorphisms such that

(a) every N-composition factor in Zg is centralized by N,

(b) if the normal subgroup X of G has the property that every -composition
factor of G in X centralizes every U-composition factor of G in N, then X< Z,,

(c) Z3=N;3 and N3[Z; is an e-group.
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Proof. Let v be the set of all normal subgroups of G and define « as in 3.1 so
that (1)-(6) are satisfied. The centralizer functions €;[f], ‘B, and & on v as described
in 5.4.1, 5.2.11 and 111 have the right properties to ensure the existence of a sub-
group A as in the main theorem. Since the union of a tower of normal e-subgroups
of G/A is an e-group, there will exist a normal subgroup N with the properties
required in the main theorem. By the theorem and the definition of the centralizer
function ¢ to be used Z;=c,N and N;= N have the properties (a), (b), (c).

7. Excursion on [v, «]-8-immersion. Proposition 4 below will clarify the role of
the hypothesis about R in the main theorem. Let v always satisfy (1) and (2). For
v-subgroups 4 < Q and subgroup theoretical properties « and 6 on v we define:
Q is [v, «]-6-immersed over A in G, or Qv, «]-6G over A, if

(12) A=K ev, (K, <K, @, G) ¢ 8 implies the existence of a v-subgroup L with
KcL<=(K, Q) and (K, L, G) € c.

We denote by 1 the subgroup theoretical property {(X, X, G) | X € v}. Then
[v, «]-1-immersion over 1 amounts to [v, «]-immersion as defined in §1. If 1<$
then every [v, «]-immersed v-subgroup is also [v, «]-6-immersed (over 1). We shall
have to consider the following conditions on 6 and «:

(13) X, Yev, X< Y, (X, G, G) € & implies (Y, G, G) € 8.

(14) If K is a v-subgroup and if 9 is a set of v-subgroups X with (X, <K, X>, G)
€ 3, then (K, <K, M), G) € 8.

(15) XcKev, (X, Y, G) €« implies (K, <K, Y), G) € c.

Note that (15) is satisfied whenever « is derived from a group theoretical property
that is inherited by epimorphic images.

PrOPOSITION 3. (See R. Baer [2, PROPOSITION 1.1]). Let A< Q be v-subgroups.

(1) If Q is [v, a]-8-immersed over A and if the v-subgroup B contains A, then
<Q, B> is [v, «]-8-immersed over B.

(2) If P is [v, «]-1-immersed over A and Q is [v, a]-8-immersed over P< Q, then
Q is [v, a]-6-immersed over A.

(3) Suppose 5.1(b) and (14). If M is a set of v-subgroups X [v, «]-8-immersed over
A, then (M is [v, «]-8-immersed over A.

(4) One may substitute [v, «]-8 for [v, ] in the lemma of §2 if 8 meets requirement
(6) (with o replaced by ).

Proof. (1) and (3) are immediate applications of the definition of immersion.—
With regard to (2), let K be a v-subgroup with A< K and (K, <K, 0>, G) ¢ 8.
Assume first that P< K or equivalently that (K, <K, P>, G) ¢ 1. Since P is [v, «}-1-
immersed over A, there exists a v-subgroup L with KcLc (K, P><<(K, Q> and
(K, L, G) € a as desired. If however P K then we may use that Q is [v, a]-5-
immersed over P.—To verify (4) define J as in the proof of the lemma. If
(J, {J, R>, G) € §, then (J N S, S, G) € § by the implication (iii) — (i) in (6). But
JNnS=KnNS, hence (K,<(K,S>, G)ed by (6). Therefore we may assume
(J, <J, R, G) € & and using R[v, «]-8G proceed as in the lemma.



1969] ON THE EXISTENCE OF NORMAL SUBGROUPS 169

We define the [v, a]-8-hypercenter Y, ,,.sG of G to be the subgroup generated by
all [v, «]-8-immersed v-subgroups (over 1) (see R. Baer [2]). Assuming 5.1(b) and
(14) we conclude from Proposition 3(3) that Y, 415G is [v, «]-8-immersed. In
particular, since 8 =1 satisfies (14), 9, ;G is a [v, «]-immersed v-subgroup whenever
5.1(b) holds.

PROPOSITION 4. Let v satisfy 5.1(b) and suppose that the subgroup theoretical
properties 8 and « meet requirements (13) and (15). Then the following statements
are equivalent:

(a) There exists a v-subgroup R with R[v, «]G and (R, G, G) € 8.

(b) (f)[v.alG[V9 o‘]G and) (b[v.a]Ga Ga G) €3d.

(c) G[v, «]-8G.

Proof. The equivalence of (a) and (b) follows from 5.1(b) and (13). Assume (b)
and let H=Y%, »,G. Let K be a v-subgroup with (K, G, G) ¢ 8. By (b) and (13),
H4£ K so that K< (K, H). But H[v, «]G guarantees the existence of a v-subgroup L
with Kc L= (K, H) and (K, L, G) € «. We proved (c). Conversely, assume G[v, «]-6G
and by way of contradiction that (H, G, G) ¢ 8. Then there exists a v-subgroup
L< H with (H, G, G) € . This implies that L is [v, «]-immersed over H, since for
any v-subgroup K with HS K<<{K, L) we have {K, L) e v with K=<{K, LY>={K, L)
and (K, {K, L), G) € « by (15). Now Proposition 3(2) yields that L is [v, «]-immersed
and is hence contained in H=¥, ,,G, a contradiction, since H<L. Therefore
(H, G, G) € 8, and the proof is complete.
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