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LIE ISOMORPHISMS OF DERIVED RINGS

OF SIMPLE RINGS(1)

BY

RICHARD A. HOWLAND

1. Introduction. A Lie subring £ of an associative ring R is an additive sub-

group of R such that [x,y] = xy—yxeL, whenever x and v are in £. Clearly

[R, R], the additive subgroup of R generated by all commutators [x, y], is such a

Lie subring of R. If £1 is a Lie subring of R and 72 is a Lie subring of S, then a

Lie isomorphism <f> of Lx onto 72 is a one-one additive mapping of £1 onto £2

which preserves commutators, i.e.

</>(x+y) = </>(x) + <f>(y)

<f>(xy-yx) = </>(x)</>(y)-<l>(y)</>(x)

for all x, y e Lx. In this paper, we will assume that LX = [R, R] and L2 = [S, S]

where R and S are simple rings with identity. We shall also assume that the charac-

teristic of R is different from 2 and 3, and that R contains three nonzero orthogonal

idempotents whose sum is the identity. We will then show that (f> may be extended

to either an isomorphism of R onto S, or to the negative of an anti-isomorphism

of R onto S. This result generalizes a theorem of Martindale [4, p. 916, Theorem 5].

2. Lie isomorphisms and the Peirce decomposition.    Let er, e2, and e3 be the

orthogonal idempotents of R, i.e.

3

ef = ex ■£ 0;   2 e¡ = 1> eiei = 0 f°r ' ^ /
( = i

It is well known that we can obtain the Peirce decomposition

3

R  = ®   2    RV     Where RV  = eiRe'-
t.i=l

We will denote an element in Rtj by xtj. The proof of the theorem requires a careful

analysis of those properties of the Peirce decomposition, which are invariant under

Lie isomorphisms.

Let S be a simple ring with identity. Let ST and S¡ denote the right and left

multiplications respectively of 5, and denote the center of S by Z.
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2.1. Lemma. 5* ®z S ~ StSr.

Proof. Let r¡: S* ®zS^StSr be given by

(2 a* <8> ¿i)i? = 2 a«6"-

Since (1* ® 1)17 = 1, we know ^0. Since 5* <g)z 5 is simple, r? is an isomorphism,

and 7] is clearly a surjection.

The following lemma illustrates how one can solve certain "generalized poly-

nomial identities" using the tensor product.

2.2. Lemma. Let S be a simple ring with identity of characteristic not 2 or 3,

such that [S, S]~ = S, where [S, S] denotes the subring generated by [S, S]~.

Suppose [[[x, a], a], a] = 0for all x e [S, S]. Then there is zeZ such that (a + z)2 = 0.

Proof. Since [[[x, a], a], a]=0 for all x e [S, S], we may choose x = [y, a] where

y is arbitrary in 5. Hence [[[[y, a], a], a], a] =0 for all y e S. In terms of mappings,

this gives that (ar—al)i = 0. Since [ar, a,] = 0, we can expand the previous relation

to obtain

ar4-4a3a, + 6a2a2-4ara3 + af = 0.

By 2.1 we may replace this equation by:

(1) 1 ®a4-4a<g>a3 + 6a2 0a2-4a3 ^a + a* 0 1=0.

Since 1 #0, the set {a4, a3, a2, a, 1} is a dependent set over Z. We may assume

that {a3, a2, a, 1} is a dependent set. Otherwise

a4 = aa3 + ßa2 + ya+8,       a, ß, y, heZ.

Substituting this in (1), we obtain:

(a-4a) 0 a3 + (ß + 6a2) 0a2 + (y-4a3) <g> a + (aa3+|Sa2 + ya+S) 0 1=0.

The independence of {a3, a2, a, 1} gives that a — 4a = 0. But then aeZ and z= —a

satisfies the theorem. We now claim that the set {a2, a, 1} is a dependent set. If

this is not the case, then we have :

a3 = aa2+ßa + y       a,ß,yeZ

whence

a4 = (a2 + ß)a2 + (aß + y)a + ay.

These relations, when substituted into (1), give

(-6a2-4aa + a2+ß) 0 a2 + (aa2-3ßa + 2y + aß) 0 a

+ [(a2 + j3)a2 + (ai8-3y)a + 2ay] 0 1=0.

The assumed independence of {a2, a, 1} gives that — 6a2-4aa + a2 + j8 = 0 which

contradicts the independence of {a2, a, 1}. Thus {a2, a, 1} is a dependent set as
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claimed. Furthermore, if {a, 1} is dependent, then aeZ and z= —a satisfies the

theorem. If {a, 1} is independent, then we have that:

(2) a2 = aa+ß

whence

(3) a3 = (a2 + ß)a+ßa.

But [[[x, a], a], a]=0 for all x e [S, S], so

xa3 - 3axa2 + 3a2xa - a3x = 0   for all x e [S, S ].

Substituting the relations (2) and (3) this equation becomes after simplification

(4) (a2+4ß)[x, a] = 0   for all x e [S, S].

Now, if [x, a] = 0 for all x e [S, S], then, since [S, S]~ =S, aeZ and we are done

as before. If [x, a]/0 for some x e [S, S], then, since Z is a field, a2 + 4/3 = 0. Let

z= -a/2. Now (a-a/2)2 = a2-aa + a2/4 = a2-aa-ß = 0.

2.3. Lemma. Let S be simple with identity and with characteristic different from 2.

Suppose a, be S are such that a2 = b2=[a, b] = 0. If, in addition, [[[x, b], a], b]=0

for all x e [S, S], then ab = ba = 0.

Proof. Since [[[x, b], a], b]=0 for all xe[S, S], letting x=[y, a] where y is

arbitrary in S, we have [[[[y, a], b], a], b]=0 for all y e S. Expanding this equation

and using a2 = b2 = [a, b]=0, we obtain 4abyab=0 for all y e S. Since S is simple,

ab=0.

2.4. Lemma. Let S be a simple ring such that [S, S]' =S. Suppose further that

a[S, S]b = 0for some a, be S. Then either a = 0 or b = 0.

Proof. Letx,yeS. Since xy —yxe[S,S], wehavea(xy —yx)b = 0 oraxyb = ayxb.

Now let 7 = {x e S | xb = 0}. Lisa left ideal of S and a[S, S]^L. LS is a two-sided

ideal of S, and so either 75 = 0 or LS = S. If 75=0, then £ = 0, so a[S, S]=0.

Since [S, S]'=S, this gives aS=0 and hence a=0. Hence we may assume that

LS = S. Let xe S, then x = 2il=i Uy\ where /( e£ and yx e S. Then

axb = a(2 lty)b = 2 <hyi)b = 2 W) = °-
\l=l / ¡=1 i=l

Thus aSb=0, so either a=0 or b=0.

We now state in the form of a remark a useful result which may be found in [1].

Remark 2.5. If £ is a simple ring of characteristic different from 2 and is not

afield, then [R,R]~=R.

Henceforth R and S will be as stated in the introduction. The "off-diagonal"

elements Rxj, i^j of the Peirce decomposition of £ are in [R,R]. In fact Xj^fo.Xy].
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Remark 2.6. The characteristic of S is not two or three, and ([S, S])~ =S.

Proof. Since the ideal {x e A | 2x = 0} must be zero, 2A12^0. Thus 2^(A12)^0

and 2S #0. Similarly the characteristic of S is not three.

By 2.5 [A, A]" = A, so [A, A]#0. Since </> is a bijection [S, 5]/0. Thus by 2.5

[S, S]~ =S.
We now begin to examine the image of the Peirce decomposition under t/>. If

xtJ e Ri„ i^j, then xtJ e [A, A]. Thus </> may be applied to these elements.

2.7. Lemma. Let xit e Ru, i^j. Then (p(x¡,)2=0.

Proof. If xw = 0, then </>(xij)2 = 0. So we may assume that x(J^0. Since x2=0,

[[[x, xtj], xtJ], xi;]=0 for all x e [A, A]. Because <j> is a Lie isomorphism this gives

[[[tf>(x), tf>(xij)], tp(xtj)], tp(xij)]=0. But tf> is a surjection, so

[[[x, ¿(x„)], #*„)], *(*„)] = 0

for all x e [S, S]. By 2.2, </>(x^ = b + X, where A eZ(5) and Z»2=0. This is true for

all i,j where /'#/. Furthermore, ¿»^0. Otherwise <p(xtj)eZ, so [<£(xi;), ̂(x/fc)] = 0

for k^i, kjtj. Since ^ is a Lie isomorphism, this gives <£([xi;, xjk]) = 0. Hence

[xi;, x;(c] = 0, so xtjxjk = 0. But then xiyA;fc = 0. Hence xi7 = 0, a contradiction.

For convenience in notation, let us assume that i= 1 andy=2, that is, we wish

to show that <£(x12)2 = 0. For this purpose let y13 e A13, y12 e A12, and .y32 e A32

be arbitrary nonzero elements such that y13y32¥=0. By the above argument we

have:

(a) tf>(y13) = b + X,   b2 = 0, b^0,XeZ(S),

(b) <p(yy2) = c + p,   c2 = 0, c^0,peZ(S),

(c) 4,(y13y32) = d+ v,    d2 = 0,d+0,ve Z(S).

Now [[[x, y13], y12], y13] =0 for all x e [A, A], thus

[[[x, 4>(yi3)l ¿tea)], <p(yi*)] = 0   for all x e [S, S].

Since X,peZ(S), this gives [[[x, b], c], ¿»] = 0. Since [j13,>'i2] = 0, [<¿(j13), ̂ (j]2)]

= 0, and so [b, c] = 0. By 2.3 bc = cb = 0. Hence,

(D   <p(yy3)c = (b+X)c=Xc.

Since [y32,yy2]=0, y>(y32), <p(yi2)] = 0 and so [<f>(y32), c] = 0. Commuting (1) with

<f>(y32), we obtain

(2) [<p(yi3)c, </>(y32)] = [Ac, tf>(y32)]=0.

Since [t/>(y13)c, </>(y32)} = [</>(yi3), <p(ya2)]c = </>([yi3, y32\)c, we have

(3)   ^(>'13>'32)C = 0.

But then from (c),

(4) (d+v)c=0.

An application of 2.3 shows that dc=0, hence

(5) vc=0.

(6) v=0.
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We have shown that 0(ji3>,32)2 = O. Since £i2 = £i3£32, we may write

n

XX2  =   2ii  J'137;32-

i=l

Hence ^(x12) = 2"=i «fK/isV^). We have just shown that </>(yx3y32)2=0. Because

Mrtl/â), <p(y&y(â)] = o
and

[[I*, <¡>(y%yf2)l <p(y(ây£)l KyBjtö)] = o,

we have by 2.3 that 4>(yT3y(à)<f>(ylây(â) = 0. Thus

<f>(xx2? = (| MM)   = o.

2.8. Lemma. Let xxj e Rxj, xkl e Rkl where i=£j andk + l. If xwx(J=XyXfc¡ = 0, then

¿(XiiMXki) = 4>(xkí)<¡>(A,) = 0.

Proof. Since [[[x, xxj], xkl], xf/]=0 for all x e [R, R] and [xxj, xw]=0, we have

[[[x, <Kxti)], <f>(xkl)], <p(xxi)} = 0   for all x e [S, S],

and [(p(Xi,), <p(xkl)] = 0. Furthermore <^(xi/)2=0 and <£(xw)2=0. Hence by 2.3

<p(xij)cP(xkl)=0.

In order to continue the study of the Peirce decomposition under a Lie iso-

morphism, we must examine the relationship between [R, R] and the " off-diagonal "

components Ru, iV/ To this end we have:

2.9. Lemma. [R, R] is additively generated by £w, iV/', and [Rtj, Rjx]for i^j.

Proof.

[R, R] = \ © £„, © Rt]
Li,/= i        i.y=i       J

3

= 2 *u+ 2 iRv> R^+2 W"*J-

Thus we need only show that [RH, Rix]^ [Ru, Rjx] for i#7- Without loss of generality,

we may assume that z'=l and/'=2. Then £11=e1£e1 = e1£e2£e1. Let ïje/î,,.

Write x = 2u £xX\e2yjex and >> = e1u'e1. Then

[x,y] = [2 ejXtea^e!, «jwej = 2 \t\X%e2yfix, exwex].
li.i 1        i.i

So it suffices to show that [e1xie2yje1, exwex] e [R12, R2l]- But

[exXxe2y¡ex,exwex] = [exXxe2, e2yie1we1]-[exwexXie2, e2y,ex\

which is in [£12, £21].
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Since ^ is a Lie isomorphism, 2.9 can be carried over to S.

2.10. Lemma. [S, S] is additively spanned by <£(xy), i=£j, and <f>[xtj, xH]for i^j.

Proof. The result is immediate from 2.9 and the fact that $ is a surjection.

We are trying to show that </> can be extended to either an isomorphism or the

negative of an anti-isomorphism. Lemma 2.7 hints that t/> is well-behaved. The

next lemma, which is the key to the main theorem, determines tf> on certain of the

off-diagonal components.

2.11. Lemma. Let (/,/, k) be any permutation of (1, 2, 3). Suppose xtj e Ru and

xjk e R]k. Then either:

(1) t/>(xijxjk)=^tf>(xij)tp(xjk), or

(2) <f>(xiJxjk)= -¿(Xjjtp&i,).

Proof. Without loss of generality we may assume i=l, 7=2, and k=3. The

method of proof will be to show that

tt>(xy2)tf>(x23)[S, S]tp(x23)t/>(xy2) = 0.

That this suffices, can be seen as follows:

By 2.4 either t/>(x12)tf>(x23) = 0 or </>(x23)<£(x12)=0. Since <f> is a Lie isomorphism,

<rK*12*23)  = <M[*12, *23]) =  [<p(Xy2), tf>(x23)]  = •¿(x12)<¿(x23)-<rKx23>rKx12).

This gives the result.

Since [S, S] is additively spanned by elements of the form tp(xtj), i^j and

[<p(xxj), <l>(Xjù], i¥=j, it suffices to consider these elements only.

tf>(Xy2)tp(X23)tp(yy2)tl>(x23)tp(Xy2)   =  tp(Xy2)<f>(x23)tf>(yy2)tp(x23)tp(Xy2)

-<p(xy2)tp(yy2)tf>(x23)t/>(x23)tf>(xy2)       (by 2.7)

= </>(xi2)^(x23y12 -yy2x23)tp(x23)tp(xy2)

(1) (since 4> is a Lie isomorphism)

= -<f>(xy2)4>(yy2x23)4>(x23)tt>(xy2)

= 0   (since by 2.8, tp(xy2)tf>(yy2x23) = 0).

(2) <¿(x12)¿(x23)¿(>>w)¿(x23)¿(x12) = 0,   for (/,/) = (1, 3), (2,1), (2, 3)       (by 2.8).

<p(Xy2)tp(x23)</>(y3y)<f>(x23)tp(Xy2)   =  <p(Xy2)<p(x23)tp(y3y)<p(x23)<p(Xy2)

- <p(xi2)<f>(yai)t/>(x23)tl>(x23)4>(Xy2)

ty, = <p(xy2)<p(x23y3y-y3yx23)t/>(x23)tp(xi2)

(since <f> is a Lie isomorphism)

= <A(Xi2)<rKx23.)'31)<¿(x23)<rKx12)

= 0   (since by 2.8, tp(x23y3y)tp(x23) = 0).
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(p(x12)<l>(x23)<p(y32)<t>(x23)<p(xx2) = <t>(Xx2)<t>(x23)<t>(y32)<t>(x23)<t>(Xx2)

- <t>(X23)<l>(Xx2)<l>(y32)<l>(X23)<l>(Xx2)

= <p(xx2x23-x23Xx2)<p(y32)<p(x23)<f>(xx2)

(since (/> is a Lie isomorphism)

= <f>(xx2x23)<f>(y32)<f>(x23)<p(xx2)

= <¿(x12X23)<M}>32)<rXx23)rMx12)

(4) -<?Kj32>rK*12*23),rK*23)'¿(*12)

= <f>(Xx2X23y32 -y32Xx2X23)</>(X23)<f>(Xl2)

= <t>(Xl2X23y32)<f>(X23)<p(x12)

= <p(xx2x23y32)</>(x23)<p(x12)

- <f>(X23)<p(Xx2X23y32)<f>(Xl2)

= <p(xx2x23y32x23)<f>(xx2)

= 0   (by 2.8).

(5) <p(xx2)<l>(x23)([<f>(yi1), <Í>(yM<l>(x23)<¡>(xx2) = 0   for i + j      by 2.8.

This concludes the proof.

This lemma points the way of the main theorem. It says that </> is either an

associative isomorphism or the negative of an anti-isomorphism on certain parts

of R. It is most convenient to break the proof of the main theorem into two cases

depending on the outcome of this lemma. The two cases will occupy §§3 and 4

respectively.

3. The isomorphism case. In this section we will continue the proof of the

theorem under the following assumption :

3.1. Assumption. There is r12 £ £i2, ^23 G 7^23 such that r12r23¥:0 and

^>(ri2r23)   =  (t>(ri2)4>(r23)-

The first task is to show that 3.1 determines the behavior of </> on all products

7;12>;23-

3.2. Lemma. Ify12 e R12, v23 £ £23, then <^(v12 v23) = ^(v12)^(v23).

Proof. We may assume J^T^^O. Otherwise, <^(>'i2>'23) = 0. But then

0  =  </>[yi2,y23]   =  lfKjl2>rK.>;23)-<rKj'23>rK.>;12)-

Thus <j>(yx2)<i>(y23)=ct>(y23)<t>(yi2)- But by 2.11 one of these terms is zero. Hence

0=<p(yi2y23)=<f>(yi2)<f>(y23)-

Now suppose the lemma is false. Then <^(>'12>'23)= — <A(>'23)^(7;i2) by 2.11.

We claim /•i2723 = 0. For this, consider

(1) <t>(ri2(y23 + r2S)) = <p(rx2y23) + <p(rx2r23)-
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By 2.11, <p(ry2y23) = t/>(ry2)tj>(y23) or <¿(r12j23) = -tf>(y23)<f>(r12). Suppose

(2) $(ri2y23) = -<f>(y23)tf>(r12).

Then from (1) we have

(3) <f>(ri2(y23 + r23)) = -<t>(y23)</>(ry2) + <p(ry2)tp(r23).

On the other hand, by 2.11 either

(4) tp(r12(y23 + r23)) = </>(r12)<l>(y23 + r23)

or

(5) <p(ri2(y23 + r23)) = -tp(y23 + r23)<f>(r12).

If (4) is true, then using (3) we obtain

(6) -<p(y23)<p(ri2) = </>(ri2)<f>(y2z)-

It is immediate from (6) that r12>>23 = 0, and the claim is true. If (5) is true, then

again from (3) we obtain

(7) <f>(ri2)<l>(r23) = -</>(r23)tf>(r12).

It follows from (7) that ri2r23=0, a contradiction. Thus if (2) is true, the claim

has been proven. If (2) is false, then we have

(8) <p(r12y23) = <p(r12)tp(y23).

Reasoning as before, we find that either y12y23 = 0 or r12y23 = 0. Hence r12_y23 = 0.

We claim also that ^i2r23=0. The proof is analogous to the above.

In order to complete the proof of this lemma we consider t/>((r12+ y12)(r23+ y23)).

By additivity and the claims, we have

<^((''i2+>'i2)(''23+j23)) = <p(r12r23) + tp(y12y23)

(9) = tp(ry2)tP(r23)-tf>(y23)t/>(yy2)

(by 3.1 and the denial of the lemma).

By 2.11 we have either

(10) ^(('•l2+>'l2)(''23+723))   =  <¿(ri2+>'l2)9K'-23+>'23)

or

(11) ^(('-12+>'12)(''23+J23))   =   -^('-23+>'23)^(''l2+7l2)-

Combining (10) with (9), we obtain

(12) <p(yi2)<p(y23) = -4>(y2z)</>(yi2)-

This gives ^12^3=0, a contradiction. Similarly (11) and (9) give

(13) <p(ri2)<t>(r23) = -<f>(r2è<l>(ri2)-

Hence r12r23 = 0, another contradiction. This completes the proof of the   lemma.

3.3. Lemma. tf> is a homomorphism from A12 © A23 © A13 into S.
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Proof. Since cf> is additive, it suffices to check the various products y¡,y¡m, i^j,

l¥=m.

(1) <?K.Fi2;>'23) = <rK.yi2>rKv23)    (by 3.2).

(2) <¿OWi2) = 0. But

<J>(y23)4>(yi2) = [<f>(y 2s), <f>(y 12)]+<f>(yi2)<l>(y23)

= 4>([y23, yi2])+<l>(yi2)<t>(y23)

= </>(-y I2y23)+<f>(yi2y23)     (by 3.2)

= o.

(3) Each of the other possibilities are trivial since v(Jv,m = 0 and <f>(yij)<p(yim)=0

by 2.8.

3.4. Lemma. Let (i,j, k) be a permutation of (I, 2, 3). Then <f> is a homomorphism

of Rxj © Rjk © Rtk into S.

Proof. We will prove the lemma by showing, if the lemma is true for (/', / k),

then it is true for (/, k,j) and for (j, i, k). Noting that these two transpositions

generate 53, we see then that the lemma is true either for all permutations or for

none. By 3.3, we will then be done.

It clearly suffices to let i=l,j=2, k = 3. Thus (/> is a homomorphism on £12 © £23

© £13. Suppose there are x13 e £13, x32 e £32 such that <^(x13x32)^^(x13)^(x32).

By 2.11, <¿(x13x32)= -<¿(x32)<¿(x13). Let x23 e £23. Then

<rK(-Kl3X32)*23)   =  <rK*13*32>rK*23)   =   ~ <t>(x32)^(Xx3)^>(x23)   =  0 by 2.8.

Since </> is an injection, x13x32x23 = 0. Hence x13x32£23 = 0, so x13x32 = 0. Thus

<f>(x13x32)=0. On the other hand, -<A(x32)^(x13)=^(x13x32)=<^([x,3, x32]) =

[<p(xi3), <p(x32)1 So <¿(x13)r¿(x32)=0. But then <¿(x13x32) = <^(x13)^(x32), a contra-

diction.

Now

<t>(X32)<!>(Xx3)   =   [^(^32), ^(^13)]+^(^13)^(^32)

= <p[x32, X13]+<¿(x13)r¿(x32)

= -<p(xx3x32) + <t>(xx3x32) = 0 = </>(0) = <¿(x32x13).

</> is multiplicative on x32x12 and x12x32 by 2.8. The argument for the triple (2, 1, 3)

is similar to the above.

3.5. Lemma. Let xu, yx, e Rt, andxjx e Rn, i^j. Then <p(xijxjiyii)=cP(xij)<p(xii)<p(yij).

Proof. In order to simplify notation, let /'= 1, and 7=2. We will show that

[^(x12x21>'i2)-^(x12)^(x21)^(>'12)][5, 5] = 0.

The result will then follow from 2.4. By 2.10 it suffices to show

[<^(^i2^2i>'i2)-^(^i2)^(^2i¥(7;i2)]^(7;v) = 0   for / ¿ j.

(1) <p(xx2X2iyi2)<f>(zx2)-<p(xx2)<r'(x2i)<p(yi2)<p(zi2) = 0       (by 2.8)
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(2) <p(xy2x2yyy2)tp(yy3)-t/>(xy2)tl>(x2y)tp(yy2)tp(yy3) = 0       (by 2.8)

<f>(xy2x2yyy2)<p(y23)-tp(xy2)tf>(x2y)4>(yy2)tp(y23)

= <p(xy2x2yyy2y23)-<p(xy2)</>(x2y)t/>(yy2y23) (by 3.4)

= <t>(xi2x2yyy2y23)-tf,(xy2)tp(x2yyy2y23) (by 3.4)

= <p(xy2x2yyy2y23)-tp(xy2x21yy2y23) = 0 (by 3.4).

(4) Letting y2y = 2ï=1y2%y3\, we then have <P(y2i) = I?=y<p(y2i3)<p(y3i\) by 3.4.

Thus

<p(xy2x2yyy2)tp(y2y)-tp(x12)<p(x2y)<p(yy2)tp(y2y) = 0 (by part (3)).

(5) tp(xi2x2yyy2)<p(y3y)-<f>(xy2)<p(x2y)<t>(yy2)tp(y3y) = 0-0 = 0       (by 3.4).

(6) <p(xy2x2yyy2)tp(y32)-<p(xy2)tp(x2y)tp(yy2)tp(y32) = 0 (by 3.4).

The key to extending t/> to all of A is given by:

3.6. Lemma. Let (i,j, k) be any permutation of (I, 2, 3). Suppose that

n m

2v(s)v(s)   _   "C   v(Ov(f)
xu Xfi  — £ xikxki,

s=l t=l

then

2 «*8W*8D = 2 WMxig).
s = l t=l

Proof. To simplify notation, take (i,j,k) = (l,2,3). As before, the method of

proof will be to show:

"   n m

2 k*8wws)-2 ¿tasWta's [s> s] = o.
.s=l ¡=1

By 2.10 it suffices to verify this for elements of [S, S] of the form tf>(yiJ), i^j.

n m

2 <p(xi%)<i>(xïï)<t>(yi2)-2 ¿WWWWtoa)

n m

= 2 ¿(«Stta)- 2 <p(xï%)<p(xfiyi2)       (by 3.5 and 3.4)
S=l É=l

n m

W = 2 ^WVA^ia)-^ MM**) (by 3.4)
s=l t=l

(n m \

2 x<x24sí>'i2-2 *ia*ííl^ia) (since tf> is additive)
s=l f=l /

= t/>(0) = o.
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n m

2 íWDKxfJKy^-lL «WWW
s=l i = l

n m

= 2 <¿WsM4sí*i3)-2 ¿WS*»*«)       (by 3.5 and 3.4)
(2) «-i t = i

n m

= 2 «*M*i«)-¿ K^M.^)        (by 3.4)
s=l (=1

= <^(0) = 0       (since </> is additive).

n m

(3) 2 ^WS2)W(4s0^(7'2i)-2 ¿taWWWCyai) = 0-0 = 0       (by 2.8).
s=l i = l

n m

(4) 2 ¿W*M4W(.K23)-2 «^(x^W = 0-0 = 0       (by 3.4).
s = l (=1

(5) The computations for v31 and v32 are the same as (4).

3.7. Corollary. Suppose i<¿j and 2?=1 x\?xff=0. Then Il=x<l>(x\?)<f>(xf)=0.

Proof. Choose x\k}=xkx?=0, k^i, k^j, and w=l in 3.6. The result is then

immediate.

Corollary 3.7 gives the necessary information to allow us to extend </> to all of R.

This is done as follows:

3.8. Definition. Let </> be the mapping of R into S defined by:

(1) For x e Ri}, i^j, tp(x)=<p(x).

(2) For x e /?„, let x = 2?- i x$x$ = 2?-1 *SMJ!? where (/',./', k) is a permutation

of (1,2, 3). Then
n m

-A(x) = 2 «W40 = 2 «Oí(xií)       by 3.6.
¡=1 s=l

(3) For xe R, let x = 2L = i *y where xi} e Rxj. Then <A(x) = 23í=1 <A(a'ü)-

3.9. Remarks. Part (2) of the definition gives a well defined mapping by 3.7.

Part (3) is legitimate since the Peirce decomposition is a direct sum. The mapping

i/r is an additive mapping of R into 5 since <f> is additive on RX], i+j, and <¡> is by its

nature additive on Rti. We hope to show that ifi is the desired extension of </> and

that it is an associative isomorphism. We begin with,

3.10. Lemma. <p is an extension of</> to R.

Proof. We must show that i>\lR,R] = <t>. By 2.9 [R, R] is additively generated by

elements of the form xxj, ii=j, and by xikxki — xkixik where ijkk. Thus it suffices

to check ifi on elements of this type.

(1) By definition, >fi(xxj) = </>(xij) for /'//

,„ KXifXjl-XflXu) = ¡/í(xiíxíi)-^(xJixi;)

= ¿(*y)¿(*íl)-¿(*/iW(*y) = KXijXfi-XjiX^,

by the definition of i/i.
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3.11. Lemma, i/r is a homomorphism of R into S.

Proof. Since </> is already known to be additive, it suffices to show that <A(xi;xw)

= >P(xij)t/j(xkl) i,j, k, 1= 1, 2, 3.

(1) /#/, k^l,j¥=k. Then <p(xtjxkl) = <f>(0) = 0. But then </<xi))<(Kxw)=<¿(xi/)<¿(xw).

But this product is zero by 3.4 if /=/, and by 2.8 if i^l.

(2) i^j, k=£l, j=k. If /=/, then </>(xijxn) = (p(xiJ)<p(xjl) by the definition of <ji.

But </>(xli)<p(xn) = >p(xi})il>(xjl). If i+l, then 4>(xlj)<p(xjl)=tp(xij)<P(xjl)=4>(xijxn) =

<P(XijXn) by 3.4.

(3) /=/ k + l, i^k. By 3.9 we may assume xu = xikxki. Then

>P(xikxki)ip(xk¡) = tf>(xik)4>(xki)<p(xkl) = tf>(xik)0 = 0 = </-(0) = >A((xifcxfci)^fci)-

(4) /'=/ k^l, i=k. We may assume xii=xiix,i. Then

KxuXuMyu) = <Kxu)<l>(xii)<p(yti) = </>(xu)<p(xu)t/>(yu)

= <p(xuXuyu) = ip(xüxHytí) = «/«((XüXiOxk,)

by 3.5.

(5) i#/» k=l. This case is handled exactly as cases (3) and (4).

(6) /=/, k = l, i^k. Then we may assume Xj¡=xifcxfci and xkk=ykiyik, then

>P(xikxki)t/j(ykiyik) = <p(xtk)tp(xkt)<p(ykt)<p(y¡,c) = 0       (by 2.8).

But <fi((XikXkl)(yMyik)) = i(0) = 0.

(7) /'=/, k=l, i=k. In this case we may assume xli = xipXpi and xkk=yipypi. Then

<l>(xivxpl)</>(yipypi) = tf>(xtp)tp(xpi)<f>(ylp)tp(ypi)

= ^(^íp^pí>'¡p)^(>'pí) = <l>((xlPxp(yip)ypi)

by 3.5 and the definition of <p.

3.12. Lemma. </< is an isomorphism of R onto S.

Proof. All that is needed is to show that 0 is a bijection.

(1) i/i is an injection; i/i is nonzero, since tf> is nonzero. The kernel of </> is an ideal

of the simple ring A. Hence </> is one-to-one.

(2) </> is a surjection: Since <p is an extension of </>, [S, S]^image of </«. Since the

image of a homomorphism is a subring, this gives [S, S]- Sim t/>. But [S, S]~ =S.

Hence ¡/r is onto.

4. The general case.   Suppose that assumption 3.1 is false. Then in particular,

we have by 2.11 :

4.1. Assumption. There is r12 e A12, r23 e R23, such that r12r23^0 and

</>(ri2r23) = -<p(r23)tt>(r12).

By using the opposite ring S* of S, and the results of §3, we will prove the main

result.
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Let S* denote the opposite ring of S. Let t¡ denote the canonical anti-isomorphism

of S onto S*. Let v= — t¡. v is the negative of an anti-isomorphism of S onto S*,

and hence v is a Lie isomorphism of S onto S*. It is clear that v([S, S]) = [S*, S*].

Let k denote the restriction of v to [5, 5]. k is a Lie isomorphism of [S, S] onto

[S*, S*]. Thus k o ̂  is a Lie isomorphism of [A, A] onto [S*, S*]. Furthermore,

k o tf>(ry2r23) = K(-tp(r23)<p(r12)) = K ° tp(r12)K o <¡>(r23). Thus k ° j> is a Lie isomorphism

of [A, A] onto [S, S] satisfying 3.1. By 3.13, k o <f¡ can be extended to an associative

isomorphism £ of A onto S. Let </j = v-1 ° $. i/> is clearly the negative of an anti-

isomorphism of A onto S. We must show that </> extends tf>. Let [rlt r2] e [A, A],

KVi, r2]) = v-1 o i([ru r2\) = V1 ° K ° ^[r1; r2] = k"1 o k o 0[ri, r2] = </>[ry, r2\

We have now completed the proof of:

4.2. Main Theorem. Let R be a simple ring containing three nonzero orthogonal

idempotents {e¡}3=i such that 1 = 2?=i e¡- Let S be a simple ring with l.Iftpisa Lie

isomorphism of [A, A] onto [S, S], and the characteristic of R is not two or three,

then </> can be extended to an additive bijection </> of A onto S such that >p is either

an associative isomorphism or the negative of an anti-isomorphism of R onto S.

We give now two corollaries of the main result. The first is the classical result,

which is due to Landherr [4].

4.3. Corollary. Let Fn be the nxn matrices over A, afield of characteristic 0.

Let Gm be the mxm matrices over G, afield of characteristic 0. Suppose either « ä 3

or m ^ 3. Iftf> is a Lie isomorphism of [Fn, Fn] onto [Gm, Gm] then </> may be extended

to a mapping </> of R onto S such that </> is either an associative isomorphism or the

negative of an anti-isomorphism of Fn onto Gm.

Proof. The corollary follows immediately from 4.2, by using e¡ = eu, the standard

matrix units.

4.4. Corollary (Martindale [5]). Let A, S be simple rings of characteristic not

2 or 3. Suppose A contains three orthogonal idempotents {e¡}f=y such that 2f=i ei=l.

Let t/> be a Lie isomorphism of R onto S. Then t/> = o+T, where o is either an iso-

morphism of R onto S or the negative of an anti-isomorphism of R onto S, and t is an

additive mapping of A into Z(S), the center of S, such that t maps [A, A] to zero.

Proof. Let r¡ be the restriction of tf> to [A, A]. It is clear that -»[R, R] = [S, S],

and so t» is a Lie isomorphism of [A, A] onto [S, S]. Let o be the extension of r¡

to A guaranteed by 4.2. Let T = <p — o. t is an additive mapping of A into S, since

both </> and o are additive. Furthermore, t[x, y] = (4> — <r)([x, y]) = </>[x, y] — o[x, y]

— v[x,y]—y[x, y]=0. It remains to show that r maps A into the center of S.

That is we wish to show that [t(x), S] = 0 for all x e A. Since [S, S]-=S, it

suffices to show that [t(x), [S, 5]]=0 for all x e A. But r¡ is a surjection of [A, A]



396 R. A. HOWLAND

onto [S, S], hence it suffices to show [t(x),-q(y)]=0 for all xe£ and for all

y e [R, R]. But

[r(x),v(y)] = [4>(x)-<x),r,(y)] = [<Kx),v(y)]-Hx),v(y)]

= tí>(x), <Ky)]-["(x), a(y)] = <p[x, y]-o[x, y]

= (<¿-cr)[x,v] = 0,

since both <f> and a are Lie isomorphisms.

By definition, </> = o+t, and the proof is complete.
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