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MULTIPLIER RINGS AND PRIMITIVE IDEALS

BY

JOHN DAUNS

The multiplier ring M(A) of any ring without an identity is the biggest

essential extension A^M(A) where the image of A is an ideal (notation:

A<]M(A)). Recently, M(A) has received considerable attention. B. E. Johnson

studied the multiplier for semigroups, rings, and topological algebras [7]. R. C.

Busby used it for classifying extensions of C*-algebras in [1], and in [2] to

study the spectrum of an algebra. In [6], M(A) is used from a different point

of view; there the question when a C*-algebra A is an ideal in its second dual is

considered.

§1 develops several useful properties of the multiplier for associative rings,

including a characterization of the multiplier as the adjoint of a certain forgetful

functor. Perhaps some of these considerations can be carried over to other cate-

gories, such as abelian or topological groups. In §2 an extension A<\Â is considered.

Not only the connection between Prim A—the primitive ideals of A—and Prim Â

is established, but also simultaneously and within the same framework, the corre-

spondence between the associated regular maximal left ideals as well as the simple

A and ^-modules is completely described. No assumptions other than A<]Â are

imposed; an identity for Â is not assumed. For this reason the above development

might be of interest because some of the above mentioned results about A^Â

had been proved previously with Â = M(A) for special kinds of rings, such as

C*-algebras, by using very special and frequently irrelevant properties of these

rings. §3 deals with more special extensions of the form Ä=S+A, with A<\Ä,

and S a subring, where S n ^4={0} is not always assumed.

The first part of the paper has been written, as far as possible, so as to be self-

contained. However, in the remainder A is specialized to a C*-algebra and some

familiarity with [4] (or [1] and [5]) is required. The center R of M(A) is called the

centroid of A. In [4], Prim (R + A) was described. In §4 a description of Prim M(A)

is given. For M(A), just as was the case for R + A in [4], another space of ideals,

obtained as the complete regularization of the primitive ones, plays an even

more important role. It also is described. It is shown that the primitive ideal

space of the center of A can be identified with a certain subset of ideals of

the complete regularization of Prim A, thus generalizing a result of Busby [2].

The objective of the last section is to identify and characterize closed ideals A2
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in A<=A2<^R + A. With each of the three algebras is associated the regularization

of its primitive ideals M, M2, M3 so that the three algebras are subdirect products

meM  '" m2eM2 '"2 m3eMa '"3

Already in §4 a complete description of Prim A2 is given, while in §5 the picture is

completed by describing each «i2 e M2 and each quotient A2/m2. There are injective

maps

M A*. M2 Ji> A/3

by which «j, /i(»i), and i2iy(m) can be identified and hence the quotients A/m,

A2/iy(m), and A3/i2iy(m) compared. These happen to be either A/m, Cx (A/m), or,

C, where C are the complex numbers. It is determined when each of the three

alternatives occurs.

1. Multipliers of arbitrary rings. In this section the multiplier concept is

developed in as general a setting as possible. All the subsequent definitions and

results for a ring could just as well have been carried through for an algebra A over

a commutative ring K provided all ideals, left ideals, subrings, and additive sub-

groups are assumed to be closed under multiplication from K. Note that K always

contains the integers. Thus the subsequent results which are derived only for rings,

will later be used for algebras over the complex numbers.

1.1. Suppose A and S are associative rings where A is a two sided S-module,

i.e. (Tx)P = T(xP) for all A, A e S and x e A. Assume that

(i) x(Ty) = (xT)y,   (ii) T(xy) = (Tx)y,   (iii) (xy)T = x(yT)

holds for all x, y e A and Te S. Then Ä =Sx A becomes a ring under component-

wise addition and under the following multiplication (A, a)(P, b) = (TP, Tb + aP + ab).

Associativity can be readily verified. The ring Ä contains A = {0}xA as an ideal

(abbreviation: A<3Ä) and S=Sx{0} as a subring with S n ^4={0} and Ä=S+A.

Thus Ä can be viewed either as S x A or as 5+A, and it will be convenient some-

times to employ the one and sometimes the other interpretation.

1.2. Definition. A ring Ä is said to be a splitting extension of A by S (or a

semidirect product) if Ä=S+A, where A<\Ä, and where S is a subring of A with

SnA={0}.

Clearly, every splitting extension is of the form described in 1.1.

1.3. Definition. The multiplier M(A) of any ring A is the set of all pairs (Ty, T2)

of additive homomorphisms A¡ : A -*■ A such that

(i) x(Tyy) = (T2x)y,   (ii) Ty(xy) = (Tyx)y,   (iii) T2(xy) = x(T2y)

for all x, ye A. Write A=(A1; A2) and Tx = Txx, xT=T2x. Left and right multi-

plications by an element xeA give maps Lx, RX:A^-A by Lxa=xa, Rxa=ax
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for a e A. Let p : A —> M(A) and x e M(A) for x e ,4 be defined by p(x) = x = (Lx, Rx) ;

write p = pA if the dependence on A is important.

1.4. For any ring A, the multiplier M(A) is a ring under the componentwise

addition and the multiplication TP = (TxPx,P2T2) where T=(TX, T2), P=(Px,P2)

e M(A). Let T=(7\, T2) e M (A) and xeA. Then x £ M (A) and

7x = (7'1x)",       xT = (T^x)".

Note that Tx=T1x, xT=T2xeA while 7x, xTe A/(/l). If 7x^0 belongs to the

annihilator of A in A, then 7x = 0. Alternatively, M(A) can be described as all T

such that /I is a two sided module satisfying 1.1 (i), (ii), and (iii). The map

p.: A—> M(A) is a homomorphism whose kernel is the two sided annihilator of A

in A, i.e. ann A={ze A | z^4=^z = 0}. Thus A={x \ xe A}^A/ann A. Note that

M(A) has an identity, that M(A) = A if 1 e A, and that I<M(A).

Suppose D is a ring with A<¡D such that for any ring B with A<\B, there is a

homomorphism Tí -> 7) giving a commutative diagram

yl >-» 5

J       J
^ >-* D

Then the ring D = M(A) has this property and ML4) is maximal with respect to

this property. That is, if A<\D is essential (for any {0}#/<lT>, J n A^{0}), then

77 and M(A) are isomorphic under an isomorphism leaving A pointwise fixed. In

particular, if ann A={0}, and A<3B is essential, then A^B^M(A).

1.5. If the right and left annihilators of A in A are zero, i.e. if

{z e A | zA = 0} = {0},       {z e A | Az = 0} = {0},

then conditions (ii) and (Hi) in the Definition 1.3 of M(A) are consequences of(i).

Proof. Since for any x, y e A,

(ii) z71(xy) = (7'2z)xy = z(7,1x)y,

(iii) T2(xy)z = xy(Txz) = x(T2y)z

holds for all z e A, it follows that 7Txy) = (7x)y and (xy)T=x(yT).

1.6. The following left ideals L<^A are left M(A)-ideals:

(i) L = {a — au | a e A} for some ue A;

(ii) L = G : A = {a e A | Aa ç G} where G is any additive subgroup of A ;

(iii) L = AL.

It would be interesting to find out under what conditions every regular maximal

left ideal of a ring is of the form (i) in 1.6.

1.7. Letf: A-+ B be a surjective homomorphism of any rings A, B whose kernel is

I and suppose that {z e B \ zB = 0}={z e B | £z = 0} = {0}. Define Mf: M (A) -* M(B)
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as follows. For Te M(A) and b e B, choose any ae A withf(a) = b and set (Mf)(T)b

=f(Ta). LetI<=M(A) be the ideal7={Ae M (A) \ TA u AT^I}. Define i: M(A)/1:->

M(B) by i(T+I)b=f(Ta) and bi(T+I)=f(aT), where TeM(A) and where aeA

is any element with b=f(a).

(i) There is a commutative diagram

A-^—~ B

Ms

M(A) ——* M(B)

\    /
M(A)

I

The kernel of Mf is I; i is given by the canonical epic-monic factorization of Mf and

hence i is monk.

(ii) M is a functor from the category SS of surjective ring homomorphisms of rings

with zero left and zero right annihilators into the category of homomorphisms of rings

with identity.

Proof, (i) and (ii). If two elements a, a' e A satisfyf(a)=f(a') = b, then since

f(x)f(Ta) = f(xT)f(a),

f(x)f(Ta') = f(xT)f(a'),

f(x)f(Ta-Ta') = 0

holds for all xe A, since f(A) = A, and since {z e B | Az = 0} = {0}, it follows that

f(Ta)=f(Ta') and that Mf(T) is well defined. If T, P e M(A), and b=f(a)eB,

then Mf(PT)b=f((PT)a) = Mf(P)[f(Ta)] = Mf(P)[Mf(T)b]. Thus

Mf(PT) = Mf(P)Mf(T).

Linearity is clear and Mf is a homomorphism with 7ç kernel Mf. Conversely, if

Mf(T)B = BMf(T) = {0}, then f(Tx)=f(xT) = 0 for all xeA; thus TAuAT^I

and Te I. Hence 7 is the kernel of Mf and (i) and (ii) hold.

1.8. It is an open question whether the map / in 1.7 is surjective in case 7 is a

primitive ideal. Consider a Hilbert space 77 of Hilbert space dimension äXj.

Let A77 denote the bounded and 7 the compact operators. Suppose A is a closed

proper ideal in I^A^LH with I^A. The present author is unable even to answer

the question for this particular A and A

One of the exercises in [9, p. 192, Exercise 11] suggests a method for constructing

a complete topological group G and a complete subgroup A7 such that the quotient

group G/H is not complete. It is known that if G has a countable dense subset, that

Pa
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then G/77 is complete. This construction from [9] has inspired the next example,

which shows that even in the commutative case, the map i and hence Mf need not

be surjective.

1.9. Example. Consider a topological space T. For any subset T2 7, Cb(Y)

denotes all bounded continuous complex valued functions on Y; C0(Y)<^C(Y)

denotes those functions which tend to zero outside of compact subsets of Y; while

CE(Y)<=-C"(Y) is the subring of all those fe C(Y) which extend continuously to

all of 7; Y1 is defined as Y1 = {feC\T)\f\Y=0}. Map Cb(T)-* CE(Y) by

restriction/^/| Y; the kernel is Y1. Thus C^Y^C^/Y1. In the notation of

1.7, the restriction map /->/| Y gives a surjection A = C0(T) -» B=C0(Y). In

order for this map to be even defined, i.e. so that/| Te C0(Y), the set Y has to be

closed. (In particular, it is not possible to take F dense in 7.) Thus the fundamental

diagram for this case becomes

C0(7)- C0(Y)

C(T)-► C\Y)

\   /
CE(Y)

Consider Tychonoff's plank T= [0, Ü] x [0, <o]/{(Q, w)} in the usual order

topology, where oi is the first infinite and Q the first uncountable ordinal. Since any

continuous function on [0, Ü] is eventually constant, for any continuous function

on T and each 0^«^co, there is an ordinal a(«) and a real number r(«) such that

f((n,ß)) = r(n) for all ß^a(n). Set a = sup {<*(«) | O^n^w}. Then a^Q, and / is

constant on each horizontal line segment of the rectangle [a, Q] x [0, a>]/{(Q, a>)}.

Since/is continuous, the r(n) tend to r(a>). Let Y be the closed subset T={£2} x [0, <o)

of T. Then CE(Y)=¿Cb(Y); for example the function g((il, «)) = (- l)n defined on

Y cannot be continuously extended to all of 7. The sup-norm makes C0(T),

C0(Y), C(T), C(Y), and Y1 into C*-algebras. Then the quotient norm on

Cb(T)/Y± is the sup-norm on CE(Y). Another different topology may be put on

these rings. They are additive topological groups in the topology of uniform con-

vergence on compact subsets. Again the quotient topology on C(T)IY1^CE(Y)

also in this case is the one of uniform convergence on compact subsets of Y. This

second topology is properly smaller than the sup-norm for all the rings except C0(T)

and C0(Y). Although both C(T) and Y1 are complete, CE(Y) is not complete.

The functor M will be characterized as the left adjoint of a certain forgetful

functor. In order to avoid a lengthy discussion, the terminology and some of the

notation of [8, pp. 61-67] which by now is standard, will be used.

1.10. Suppose si and !% are categories and T: si'-»■ 88, S: 38 -> si are functors.
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Then S is a left adjoint of A if there is a natural equivalence of hom-functors

t/>: sé(S-, ■) -+38(-, A). A necessary and sufficient condition for this is that there

be a natural transformation p: I—> TS of the identity functor I on Sä such that for

any morphism y: A-> TA in 38, there exists a unique x: SB -> A such that the

following diagram commutes:

Pb
B TSB SB

T(x)

TA

It should be noted that x is unique only subject to choice of p.

1.11. Now specialize 38 as the category of surjective morphisms of rings with zero

left and zero right annihilators. A category sé will be defined. The objects (notation:

Ob sé) of the category sé will be all the functions p.D: D -*■ M(D) which map a

ring D into its multiplier. If p.D, p.E e Ob sé, then the maps of sé (notation : Map sé)

are pairs (/ Mf), where f:D->Eis any surjective ring homomorphism, i.e. a

morphism of sé is a commutative diagram:

D
Pd

f

Pe

M(D)

Mf
▼

M(E)

Let S: 38 -► sé be the functor which maps a morphism /:£)-> A of 38 into the

morphism (/ Mf) of sé. If objects and identity maps are identified, then in par-

ticular, the value of S at an object D e Ob 3d is p,D e Ob sé. Let A: sé -> 38 be the

forgetful functor which sends the above (/, Mf) e Map sé into/ Note that A maps

p.D e Ob sé into D e Ob 3S.

Since 5 is essentially the same as the functor M, a characterization of 5 as in the

next proposition is also a characterization of M.

1.12. Proposition. Suppose T:sé^38 and S: 38

the left adjoint of the forgetful functor T.

sé are as in 1.11. Then S is

Proof. The condition in 1.10 will be verified. Suppose y: B->T(p.A) in 38 is

given, where pA e Ob sé and T(pA) = A. Then SB = p.Be Ob sé. It will be shown

that there exists a unique morphism x=(f Mf): SB-^ pA in sé such that the

following diagram commutes with p as the identity on 38:

B
Pb

f

Pa

M(B)

Mf
r

M(A)
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But SB=p.B and TSB=T(p.B) = B, thus let p be the identity. But A(;c)=/and

T(p.A) = A. If x is defined by setting/^ and x = (y, My), then clearly the diagram

commutes. There can be only one map x, because necessarily Tx=y, and then x is

uniquely determined as x = (y, My).

The next observations are a partial attempt to determine all rings A2 containing

a given ring A as a subring and having the same multiplier or centroid. Only those

rings A2 will be considered which contain A as an essential subring, i.e. if I^A2

is an ideal with In A ={0}, then 7={0}.

1.13. Consider a ring A withA2 = A, with ann A = {z e A | zA = Az = 0} = {0}, and

an ideal A2<\M(A) with A^A2gM(A). Then M(A2) = M(A).

Proof. Clearly, ann A2={0}, because A2^M(A). Since A2<iM(A), and since

ann^4 = {0}, it may be assumed that A<^A2^M(A)^M(A2). It suffices to show

that A<M(A2) and that A^M(A2) is essential. Note that A2=A and A2^M(A)

implies that A is automatically an ideal in any subring of M(A) or M(A2) that

contains A. Thus in particular A<¡A2 and also A<¡M(A2). If {0}^J<\M(A2), then

J n A2j^{0}. Then J n A2<\M(A2). Since A<\M(A) is essential and since J n A2

<¡M(A), {0}^A n(J n A2) = A nj. Thus A<M(A2) is essential and hence

M(A2)^M(A).

1.14. Let A be any ring with A2 = A and let R be the centroid of A, i.e. A =

center M(A). Suppose ann ^4 = {0} and that A<=A2^R + A, where A2<\R + A. Then

the centroid of A2 is also R.

Proof. Let A2 be the centroid of A2. If S=A2 n R, then A2 = S+A is an extension

of A where S is a subring of A2 with 5 = center A2 and with 5<1A. Since A2<\ R + A,

it follows that AçA2. Thus A^A2^R + A^R2 + A and A2 = A implies that A is

an ideal in A2, R+A, and R2 + A. Furthermore, for any peR2, ^(center A2)

= p(S)^S. The restriction p\A:A->A belongs to A. Suppose p^oeR2 with

p|y4 = a|^. For s e S^A^ the elements p(s), o(s) e S. Since p#<j, there is an s e S

at which p(s)^o(s). Since 5sA, this means that there is an element xeA with

p(s)xjío(s)x. But then peR2<=M(A2), s, x e A2 and thus p(s)x = p(sx) = s(px).

Hence s(px) = s(ox) = a(s)x gives a contradiction.

2. Arbitrary extensions. The primitive ideal structure of a splitting extension

S + A of a C*-algebra A with 5<=center M(A) can be described rather thoroughly

[4]. Thus it seems that the next logical step in developing the subject further would

be to drop all the C*-assumptions and determine the primitive ideal structure of

an arbitrary extension A<^Â in terms of A and Â/A. Unfortunately, at this level of

generality the results are meager, and the little that can be said is contained in the

next theorem and its corollaries. For us, the main application of the theorem will

be in the case when Â is a splitting extension, and even more important, for the

case when Â=M(A). However, in this section no assumptions are imposed on
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A<^Â other than that A is an ideal in Â; it is not even assumed that Â has an

identity.

Some notation and facts about primitive ideals are recalled in a form in which

they will later be applied.

2.1. A simple ,4-module V is a left module containing no submodules with

AV= V=/={0}. Suppose A is any ring and L is a regular maximal left ideal, i.e. with

a right unit u e A such that a —au eL for all a e A. Then q=L:A={a e A \ aA^L}

is primitive and V=A—L = {a+L \ aeA} is simple. In particular, AV= K#{0} in

this case simply means that A2+L = A. For any ring, Prim A will denote the set of

all primitive ideals of A. The next three observations apply to any quotient ideal q

of the form q=L:A for some regular left ideal L. (To be more precise, (i) and (ii)

only require that L:A^L, while (iii) holds for any q=L:A for some left ideal L.)

■ (i) If L is any regular left ideal, then L:A is the unique biggest ideal of A con-

tained inside L. (Thus if every primitive ideal is contained in a unique regular

maximal left ideal, then clearly the modular primitive ideals coincide with the

maximal modular ideals. The converse fails even for a finite matrix ring.)

(ii) q:A=L:A. Clearly, q:A^L:A since q^L if L is regular. Conversely,

L:A=qçq:A, since q is a two-sided ideal.

(iii) If Z = center A, then LnZ^q. For if zeLnZ, then zA=Az^AL^L. If

q^L, then q r\ ZçL n Z and L n Z = q r\ Z.

2.2. Notation. Suppose Â is any ring containing A as an ideal. For any ideal

I<= A define î={a e Â \ aA^I}. For any left ideal L<^A, define L = {a e Â \ Aa<=L}.

Then / is a right and L a left ideal of Â. Elements of A will be denoted by small

Latin letters a, x,y,... while those of Â by small Greek a, ß, y,....

In view of the usual embedding of Prim A as a subset of Prim Â, it may be

asked whether there is a similar correspondence between the associated left ideals.

Among other things, the next Theorem I and its Corollary 1 completely answers

this question.

B. E. Johnson showed [7] that for a ring with no left and also no right annihila-

tors, there is a one to one correspondence between maximal modular left and

maximal modular two sided ideals of A and M(A). The proofs below require no

assumptions on the annihilators and replace M(A) by an arbitrary ring Â containing

A as an ideal.

2.3. Theorem I. Let Â be any ring and A<]Â. (It is not assumed that Â has an

identity.) Suppose L^ A is any regular maximal left ideal of A with right unit ueA such

that a —au e Lfora e A. For q e Prim .4 of the formq=L:A={ae A \ aA^L}, define

L = {a e Â I Aa Ç L},        q = {a e Â | aA Ç q}.

Then the following conclusions hold.

(1) (a) L is a left Â ideal, i.e. ÂL^L;

(b) q is an ideal of Â;

(c) q is an ideal of Â.
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(2) L is a regular maximal left ideal in Â with ue A a relative right identity for L.

(3) L n A=L, â n A=q.

(A) q=L:Â = {ae Â I aÂ^L}; in particular, q e Prim Â.

(5) Any simple A-module V becomes a simple Â-module under a unique natural

action. Furthermore, if q = {a e A \ aV=0}, then q = {ae Â | aK=0}.

(6) The simple A-module A—L = {a + L \ a e A} becomes an Â-module under

a(a+L) = aa + L,       aeA,aeÂ.

(7) The simple Â-module Â — L is Â-isomorphic to the Â-module A—L under

Â—L-+ A—L,        a + L~>au + L,    aeÂ.

Proof. (1) (a) By the maximality of L, if ÂL^L, then A = ÂL+L. Thus A =

A2 +L = A(ÂL+L) + L^L gives a contradiction and hence ÂL^L. (1) (b) If

aeÂ and xeq, then xA^L and axA^aL^ÂL^L. Also xaA^L. Thus q is

actually an ideal in Â. (1) (c) Clearly, q is a right /î-ideal. Suppose a e q, or uA^q

and ß e Â is arbitrary. Then ßaeq provided for any x e A, ßax eq or ßaxA çL.

Now ax eq implies that axA^L and ßaxA^ßL^L, since L has been shown to be

a left /î-ideal. Thus ßax eq, or ßa eq, or q is an ideal in Â.

(2) Since for any x e A and aeÂ, x(a — au) = (xa) — (xa)ueL, it follows from

the definition of L that a — aueL. Thus u is also a relative right identity for L.

If Lx^Â is a proper left ideal Lj of Â with LcLj properly, then ALx^L. Since

/ILi+L is a left ideal of ,4, by maximality of L, A = ALX+L. Since L^L^Lx,

ue ALx+L^Lx. Since 7j contains its relative identity, LX=Â which is a contra-

diction.

(3) Clearly L^L n A={ae A \La<^L}. Since A(A-L) = A-L, for any xeA

we have

x^Lo Ax+L = A o /lx $ L o x fiL.

Thus L n A ̂ L and 7=7, n ^. It follows from the definition of q that

<7 O y4 = {a e A | co4 Ç </} = q.

(4) To show that q^L:Â, take a eç = {a | aA^q}. It has to be shown that

aA^L = {ß I Aß^L}, i.e. that for any y e Â, ay eL, or that A ay çL. Since yu — yeL,

also y4a(yu —y)çL. Thus it suffices to show that Aayu^L. But aeq implies that

a(yu) eq and hence that Aayu^Aqçq. Thus â^L:Â.

To show the other inclusion that L:Â^q, take a eL:Â, i.e. aÂ^L. It has to be

shown that aeq, or aA^q, or that (aA)A^L. But for any x e A, a(xA)çaA

£a/îç/_ and axAç Lc\A=L, or axeq. Since x was arbitrary, a^Sç. Thus

aeq and L:Â=q e Prim /Î.

(5) If K is any simple y4-module with q = 0: V={ae A | aV=0}, then for any

fixed 0#u e K, Av= V. Set L' = 0:i; = {a 6 A \ av = 0}. Since 7' is a regular maximal

left ideal of A, it follows from (1) that ÂL'^L'. Define an action of Â on V as
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follows. For we V and aeÂ, write w = av for some aeA and define aw = aav.

If av=ayV for some other ax e A, it has to be shown that aav=aayV. Set x=a—ay.

Since xv = 0, xeL' and axeaL'^L'. If «K=0, then since V=AV, aV=aAV,

so txA^q or a eq. Thus («e^ | aV=0}=q. The above definition of the action of

Â on K does not depend on the choice of O^v e V. For if O^t'i, t?2 6 V with

fliü1=fl2i,2, then it will be shown that for all aeÂ, we have aayVy = aa2v2. With

O^ve V as above, map /t -> K by a -> at> so that the kernel is A' = 0:t;. Then

A—L' and F are isomorphic ^-modules and xt+L' -^-v¡ for some x¡$L' for

/=1,2. Now axVy = a2v2 implies that aiXi+A'=östX2+i-' an<3 ayXy — a2x2eL'.

Since aA'sA', also «(uTjA-! — a2x2) e A', and thus aayVy = aa2v2.

(6) Since for any element a e A, au + L = a+L, the preceding extension of the

action of yi to V=A— L becomes aau+L = aa+L.

(7) An element aeÂ belongs to Á if and only if aueL; for if aeL, then

au = (au—a) + aeL n A=L. Conversely, if aueL, then since a—aueL, also

a = (c£—a«) + aî/ e L. Thus the map

Â — L-+ A—L, a + L^-au+L

is an isomorphism of Â — L onto ^4-A. If yi acts on A—L under the action given

by (6), then this clearly is an ^-isomorphism.

It is well known (also see 2.3(3)), that there is a bijective map

q-^-q: Prim A -> {J e Prim Â \ A $ /}

with inverse J-^-JnA.

2.4. Corollary 1 to Theorem I. Under the hypotheses and in the notation of

Theorem I, let q e Prim A be fixed and â e Prim Â be the unique primitive ideal with

â n A=q. Let L(q) and L(q) denote the set of regular maximal left ideals determining

q and q respectively. Then

(8) L^-L: L(q) -> L(q) is a bijection,

(9) whose inverse is N-> Nn A: L(q) —»■ L(q).

Proof. By Theorem I, A —> L is well defined, since for A e L(q), also L e L(q).

(a) Next it will be shown that for N e L(q), N n A is a regular maximal left

ideal of A. Since A^q and q = {ae A | aÂ^N} it follows that AÂ + N=Â. If r¡ e Â

is a relative right identity for N modulo Â, then -q = e + t for some e e AÂ and

ieJV. If a e yi is any element, then ar¡ — a = ae — a+at. Since at e N, we have

ae — aeN. Thus e e ^4 is a relative right identity for Â modulo N, and consequently

also for A modulo A n N as well. Now suppose N n A^Ly, N n A+Ly, where A,

is a regular maximal left ideal of A. Then Ly^N, since Ly^Nn A. Theorem I

shows that ÂLy^Ly. Thus Ly + N, being a left ideal of Â properly containing N,

is actually Ly + N=Â. Then e = x + n with xeLj and ne N. Since ne N n AçLy,

eeLy. Since A! contains its relative right identity, Ly=A, a contradiction.

(b) Now we show that N n A eL(q). Since q = {aeÂ | aig^}, and since by
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2.3(3),q nA=q, it follows that q=q nA={aeA | aA^N} = {a e A | aAçN n A}

= (N n A): A. Thus N n A eL(q). Hence the maps in (8) and (9) are well defined,

(c) To complete the proof and show that they are bijections, it suffices to show

that if N e L(q), that then (N n AT = N. Since by definition

(N n Ar = {ß e Â I Aß ç N},

it follows that N^(N n AT. However, since both N and also (N n AT (see

2.3(2)) are maximal, N=(N n AT.

2.5. For any A<\Â, there is a map of the ideals of A into the ideals of Â given by

I^-I={ae Â | aA u AaÇl}. Note that 7s/. Define î={ae Â \ aAçI}, a right

ideal of A. Then 1=1 provided one of the following two conditions holds:

(i) I=N:A={ae A \ aA^N}, where N^A is any regular left ideal of A with

relative right unit ue A.

(ii) An 1=1.
(iii) 7« particular, for any q e Prim A, q=q e Prim Â.

Proof, (i) Clearly always /Ç /. If a e Î, then ae Ï provided Aa £ 7, or (Aa)A ç N.

For any x e A, xeN if and only if xueN. But aAu^aA^I^N and hence

AaAu^N. Thus/W.

(ii) First, AÎ^Î, since A(ÎA)^A(I)^I. Thus AÎ^Î n ^ = 7 and again /=/.

(iii) Either (i) or (ii) implies (iii).

The last theorem and the last observation are now specialized to the case when

Â = M(A).

2.6. Corollary 2 to Theorem I. If A is any ring and V is any simple A-module,

then

(i) V is also a simple M(A)-module.

(ii) If Ä=S+A with A<\Â and S a subring, then there is a homomorphism

S -> M(A). Thus V is an S and an Ä-module.

Use of 2.3(l)(c) gives immediately a known result (see B. E. Johnson [7]).

2.7. Corollary 3 to Theorem I. Assume A is any ring with

ann A = {z e A \ zA = Az = 0} = {0}

and view A as an ideal in A^M(A).

(i) Each q e Prim A is an ideal of M (A).

(ii) The standard embedding of Prim A -> Prim M(A) is given by

q-+q = {TeM(A) \TA^q} = {Te M(A) \ TA U AT £ q}.

The next corollary gives a method which could conceivably be used for com-

puting M(A) for primitive rings A.

2.8. Corollary 4 to Theorem I. Consider a primitive ring A without an identity

and a simple A-module V with 0: V={a e A \ aV=0}={0}. Let D be the skew-field
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of all endomorphisms of V which commute with A. Let E(V) be the ring of all D-linear

maps of V into V and view A<^E(V). Then M(A) consists of all Te E(V) such that

TA u AT^A.

Proof. All Te E(V) with the above property clearly belong to M(A). Now Fis

an AfL4)-module. If Ae M(A), de D, and weV, then pick O^veV and write

w = av for some aeA. Then Tdav = (Ta)(dv) = d(Ta)v. Thus Td=dT and TeE(V)

with TA u AT^A.

3. Splitting extensions. The multiplier concept is particularly well-suited for

dealing with splitting extensions Ä=SxA of a ring A where S acts faithfully on A.

The case when S^R, the centroid of A, is a special instance which was treated in

[4]. Some portions of [4] can be generalized to apply in this more general case and

these will not be considered here in detail.

3.1. If Ä=S+A is any ring with A<\Äand where Sis a subring of Ä, then there

is a homomorphism S-> M(A), defined by A-»- (A1; A2), where TyX=Tx, T2x=xT

for A e Sand all xe A. The kernel of this homomorphism is (As S \ TA u AT=0}.

Of course a ring of the form S+A is interesting only if S n A is known. However,

if Sx A is the semidirect product of S and A as in 1.2, and if

D = {(s, -a) | í = a e S n A},

then Ä^(Sx A)/D. Then D belongs to the two sided annihilator of {0}xA in

Sx/I. Furthermore, if S^M(A) and ann A={zeA \ zA=Az = 0} = {0}, then D is

exactly the annihilator of A.

3.2. Definition. Consider a completely arbitrary extension A<3Ä of any ring A

(1 e Ä is not assumed) and express Ä=S+A, where S is some subring of Ä (no

assumptions on S n A). An ideal of the form Sx+Ay<\Ä with

(a) Ay<\Â,        Sy<S

will be called a box ideal and a splitting box ideal (with respect to S) provided also

(b) (S + Ay)n(Sy+A) = Sy+Ay,

(c) (Sy + Ay)nA = Ay,

(d) Sn(Sy + Ay) = Sy.

It follows as a consequence of (c) and (a) respectively that

(e) SyAU  ASy^Ay,

(f) SAyV  AyS^Ay.

3.3. Consider a splitting box ideal Sy + Ay in an extension S+A of A of the form

3.2 and define A = A/AX, S = S/Sy. Then

(i) Sx A is a splitting extension where for T=T+Sxe S and ä = a + Aye A,

Tâ= (Ta) ~ and äAs (aT) ~ ;

(ii) there is an isomorphism

(T, à) ̂ T+a + (Sy+Ay): SX I ->(S + A)/(Sy + Ay).
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Proof. Conclusion (i) follows from 3.2(e) and (f). The map in (ii) is clearly a

homomorphism. If (T, a) is in the kernel, then 7+a = 71+a1 e Sx+Ax with

Tx e Sx, ax e Ax- Then by 3.2(b) we get

T-ax = Tx-ae(S+Ax)n(Sx + A) = Sx + Ax.

Then 3.2(c) and (d) show that

ae(Sx + Ax)nA = Ax,       Te S n (Sx+Ax) = Sx,

and hence that (7, ä) = (0~, Ö).

3.4. Remarks. 1. The isomorphism in 3.3(ii) can also be obtained indirectly in

another way that brings out the significance of conditions 3.2 more clearly. If

J= Sx+Ax, then

S+A _S+J   A+J

J     ~    J   +   J

is an internal semidirect product because (A+J)/J<\Ä/J, where (S+J)/Jby 3.2(b)

is a subring with (S+J) n (A+J)=J. Furthermore 3.2(d) and (c) show that

S+J _    S S        A+J ^    A A_

J    =SnJ~Sx J    = AC\J~ Ax

As abelian groups, Ä/JztSxA. By simply transferring the multiplication from

Ä/J to the abelian group Sx A, both 3.3(i) and (ii) follow.

2. In 3.3, the two sided annihilator of I in S is {f e 5 | Te S, TA u ATçAx}.

In particular, S acts faithfully on Jif St={Te S\TAv AT^Ax}.

3. In the previous remark, a second algebra (S+Ä)/Ax = Sx(A/Ax) = SxA may

be formed; S^Sx^ and SxA = ASx={0}. Thus even when originally S acted

faithfully on A, now S no longer acts faithfully on A. For this reason it is not

sufficient to consider only splitting extensions of the form Sx A where 5CM(A)

and 5 acts faithfully on A.

All ideals of a splitting extension Sx A will be identified. If A = S+A is the

more general kind of extension as in 3.1 with Â=(SxA)/D, then this will also serve

to determine all the ideals of Â.

3.5. Suppose Sx A is any splitting extension and let n: S x A -> S be the natural

projection. Suppose Sx, <p, Ax is a triple where Sx<¡S is an ideal in S, Ax<lA is an

ideal in all of Sx A, andf. Sx^- A/Ax is a homomorphism satisfying the following for

all re Sx, se S, and ae A:

(1) <p(sr) = scp(r),   <p(rs) = <p(r)s,

(2) <p(r)[a + Ax] = ra + Ax,    [a + Ax]<p(r) = ar + Ax.

If I is defined to be 7={(r, —c)\ re Sx, c e <p(r)}, then

(i) I^SxA is an ideal,

(ii) tt(I) = Sx,   IC\A = AX.
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(iii) TT(I) = Sy<¡SxA o SyA u ASy={0}; since SyA u ASy = Ay (see 3.2(f)), in

particular, Ay ={0} implies that tt(I)<\S x A.

(iv) The kernel of tp is an ideal in Sx A if Ay={0}.

(v) 7/V(7) = S, and ifleS acts as the identity on A, then pick an e e A such that

tp(l) = e + A n le A/A n I. Then tp(l) is the identity of A/A n I, then I=S(l-e)

+ ln A,and SxA=I+A (where A={0}xA, S=Sx{0}).

Conversely, every ideal I of Sx A is of this form. Given I, define Ay=In A,

Sy=Tr(I), and tp: tt(I) -+ A/A n I by tp(r)=a + A n I if (r, -a)e I, where re-Tr(I)

and a e A.

Proof. Given tp, a trivial computation shows that the above defined 7 is an ideal.

The proof of the converse is omitted because the same techniques that have been

used to prove the analogous result for Ss A = center M(A), may also be used here

[4, Proposition 1.5].

The next corollary will be needed later.

3.6. Corollary. Consider an extension A<\Â=S+A as in 3.1 and an ideal

AOX Then T can be of the following forms:

(i) (T+A) n SsA => A= An S+ Tn A.

(ii) IfleS acts as the identity on A and if (T+A) n S=S, then there exists

eeA,    1 = e + TnAeA/Tn A   suchthat   T = S(l-e) + T n A.

Proof. Conclusion (i) is trivial, (ii) Set D = {(a, -a)eSxA \ a e S n A}<SxA.

Then/ is an isomorphism

SxA -^— ^^   -.   fl    >■   S + A

(s,a)-* (s,a) + D -*  s + a.

Define J and I by

A = /fi(D<]£^       Imff\J)<SxA.

A  routine computation  shows that 7 satisfies 3.5(v), and consequently that

fif2l=T=S(l -e) + TnAis of the above form.

Now it will be convenient to utilize the notation of Theorem I.

3.7. Consider any extension Â = S+A of the form 3.1, where A is an ideal in

Â and S is a subring and a primitive ideal q^A. Form q = {a e Â \ aA^q}, and

q = {T e S | TA^q}<¡S. Assume S n A={0} and without loss of generality also that

S^M(A) and q = {l e M(A) \ TA çq}.

(i) There are monomorphisms p : A/q ->■ M(A/q) and X : S/q -*■ M(A/q).

(ii) p.(A/q) n X(S/q) = {0}oq=q+q.
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Proof, (i) By 3.1 and 1.7, there is a commutative diagram

S

M(A) -►

Obviously, A = /' o v and A is given by

X(T+q)[a+q] = Ta+q,        [a + q]X(T+q) = aT+q    TeS,aeA.

Since A/q is isomorphic to a dense ring of linear transformations, ann (A/q) = {0}

and p ismonic. Now kernel X = {T+q e S/q | TA u ATçq}<={q}. But 7^4 ̂ q implies

also that AT^q by 2.7(ii). Thus kernel v=q and also v is monic. I.e., A/q and S/q

may be viewed as an ideal and a subring of M(A/q).

(ii) Clearly, q+q^q. By definition, q = {T-c \ TeS, ce A, (T-c)A^q}. How-

ever, for T—ceq, also A(T—c)^Aq<^A C\q=q. Thus

T-ceqo(T-c)AKJ A(T-c) £ qop(c+q) = X(T+q)e p.(A/q) n X(S/q).

But then q = {T-c \ p.(c+q) = X(T+q)e p(A/q) O X(S/q)}. If p.(A/q) n X(S/q) = {0}

then T—c eq only if Tec and c eq, so that^=^+^. If, on the other hand, q=q+q,

and if p(c+q) = X(T+q)e p(A/q) n X(S/q), then T—ceq and hence is of the form

7'-c = 7'1-c1 with Txeq, Cxeq. But then 7-71 = c-c1 e 5 n ^={0}, so that

p(c+q) = X(T+q) = 0.

4. The primitive ideal space of the multiplier. Since at the present time the

main application of multipliers is for C*-algebras, from now on A will be a C*-

algebra. The results of [4] will be freely used in the remaining sections.

4.1. Notation. First, those algebras which will be later considered and their

primitive ideal spaces are described. Consider an arbitrary C*-algebra A with or

without an identity, with primitive ideal space Prim A = B, with centroid R, and

Z = R n A the center of A. SetP = Prim M(A), where M(A) is the multiplier algebra

of A. There is a map of ideals of A into ideals of M(A) given by

7-> / = {TeM(A) \TA\J AT Ç I}.

Thus B^B={b | beB}<=-P is the usual embedding of Tí as a hull-kernel dense

open subset of P (see 2.7). If Y is the maximal ideal space of R, let F: B -> Y be the

map F(b) = b n R = {r e R\ rA^b}. SinceZ<= R is an ideal, the maximal ideal space

Z( Y) of Z may be embedded as an open subset Z(Y)^ Y. If Cx A is the splitting

extension obtained by adjoining an identity to A in the usual way, set 7i' =

Prim (Cx A) and let nlt n2 be the projections t^: B' x Y^ B' and tt2: B' x Y^~ Y.
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Our interest will be focused on four rings A = Ay<=,A2ç,A3=R + A'=-M(Â),

where A2 is any closed ideal in R+A, but A2 is not necessarily an ideal in M(A).

As previously, A2<!A3 means that A2 is a (not necessarily closed) ideal in A3,

although we will never encounter a nonclosed ideal. If 1 e A, then A=A2 = R + A

= M(A), R=Z, and all our statements about these algebras become trivial. Although

A2 will not be used until §5, it will be much more economical to define the objects

associated with the four algebras all at once. Furthermore, a single statement

about A2 gives two others by specializing A2 = A or A2 = R + A. Set A3 = Prim^3.

As usual there are hull-kernel open subsets By^B2^B3 with Bi = {b3 \ At^b3e B3},

and Aj^Prim Ai = {bi n A¡\ b¡e B¡}. The following table may be helpful.

algebra

primitive

ideal space embedding

A   =   Ay

A2

A3 = R + A

M(A)

R = center M(A)

Z = center A

ByCl

B2

B3

P

Y

Z(Y)

B~ B By c A3, A c A

A2 <= A3

Z(Y) c Y

It is necessary to isolate a few facts from [4, §§3.1 and 3.3].

4.2. For any C*-algebra A whatever with or without an identity, there is a set

of ideals M and a map tp: B^ M where

b e B,   p = F\b),   m = m(p) = tp(b) = (~){b e B \ F(b) = p}.

By the adjoint-functor theorem or otherwise, there is the complete regularization

<p' : B -> A in its hull-kernel topology so that any map of B into a completely regular

space factors uniquely through tp'. If for t e T, r(t) is defined as

r(t) = f\{beB\tp'(b) = t},

then t:T->M is a bijection and tp=ro(p'. (Alternatively, M is the canonical

image of B in the Stone-Cech compactification of A.)

Some known or easily derivable useful properties of the maps tp and A are listed.

If b, qe B, if p = F(b), and m=m(p) = tp(b), then:

(i) F(b) = F(q)otp(b) = tp(q).

(ii) There is a bijective map of the subset A(A)<= Y onto M given by

F(B)->M,       p^m(p) = C\{qeB\F(q)=p}.

(iii) Rnb = Rn m=Z n b=Z n m=Z n F(b); furthermore

F(b) = {reR\rA^m}.

(iv) If le A, then F(b)=Z n b and <p(b) = f) {qeB\qn Z=b n Z}.
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4.3. If A is any C*-algebra (\ e A or \ $ A) with center Z and q>: B^ M as

above, then for b e 7i = Prim A, conditions (i)-(iii) are equivalent:

0) Z^b;
(ii) Z^F(b);

(iii) Zc#).

Proof. First note that since b=L:A for some regular maximal left ideal L of A,

it follows that A n F(b)=Z n b. (i) => (ii). If zeZnb, then zeR, zA^b, and

hence z e F(b). (ii) => (i). Since Z^F(b), it follows that Z^F(b) r\ A=Z n bçb.

(ii) => (iii). Since <p(b) = f~){q e B | F(q) = F(b)}, and since ZçF(q) nA^qfor each

# in the intersection, also Zc<p(¿>). Conclusion (iii) => (i) is trivial, since <p(b)<^b

implies Zçè.

4.4. For A<^A2<\R + A as in 4.1, 7? is also the centroid of A2 by 1.14. If S is

defined as S=A2 n R, then A2 n 5=center A2 and A2 = S+A. Since Fis defined

in 4.1 for any C*-algebra, there is also such a map F2: B2 -> 7for /12:

Ti, >- Prim Ao

-* b2c\A2 ->• F2(b2) = {reR\rA2Q b2n A2} e Y.

Thus   F2(b2) = {r eR \ rA2^b2}^b2   and   F(b2) = b2r\ R.   The   above   holds   in

particular for A2 = A or A2 = R + A. Thus there are maps as follows:

Bx

Ft

- B2

F21

•Tí,

7^)        T"2(7í2)       F3(B3)

A distinct advantage of taking B^B3 is that for b{ e B{, Ft(bt) = bi n R.

4.5. Taking the map <p as in 4.2 separately for A, A2, A3 and identifying only

here Prim A <-> 7^, Prim ^42 <-> 7i2, and Prim A3 <-► 7i3, and using 4.4 we obtain

maps

Bx >-> B2 >-> B3

1

Mx = M     M2 M3

FÁBx)

P

<P*

Mi

7-2(52)        F3(B3) = Y       F4(P) = Y



142 JOHN DAUNS [November

For A¡eA¡, andp = Fi(bi)e y write tpi(bi) = mi = mi(p). It should be stressed that

although By, B2, and A3 consist of ideals of A3, nevertheless My, M2, and M3

consist of ideals of A, A2, and A3 respectively. Also, <p: A-> M=My differs from

tpy-. By ->- My only in that A has been replaced by By.

4.6. Lemma. If i: M -> M3 is defined by i(m(p)) = m3(p), then:

(i) i(m) = tp3(by) for any bye By with m = tpy(by); thus there is a commutative

diagram

By     *■-►    B3

<P\ 93

M  >—r-* M3
i

(ii) i is an embedding;

(iii) i(M)<=M3 is a dense subset.

Proof, (i) Since center A3 = A, 903(61) = fl {b3\b3n R = byn A}. If q e By<=B3

with tpy(by) = tpy(q), it suffices to show that c>3(¿i) = 9>3(<7). However, tpy(by) = tpy(q)

implies that Fy(by) = Fy(q). Thus Fy(by) = by n R and Fy(q)=q n A, and hence

93(bi) = <p3(q).

(ii) and (iii). It follows from [4, 3.16(2), (3), p. 194] that i is an embedding. Since

Ai is dense in A3, so is also M in M3.

Remark. That the restriction ç>3|(A3\Ai) is a homeomorphism of compact

Hausdorff spaces has been observed in [5].

In [4], Prim (R + A) was computed. In the next paragraph these results are now

utilized to concretely identify every primitive ideal of A2.

4.7. Write B = J( u Jf, where Ji are the modular and Jf the nonmodular

ideals of B. There is a one-to-one correspondence between By and the graph of A,

graph F={(b, F(b)} \beB} given by

b e Jt, e+b = 1 e A/b:       (Jo, F(b)} = R(l-e)+b;

bejV: <b,F(b)} = b+F(b).

Since the center of a primitive Banach algebra is either {0} or C, and since

(Z+b)/b^ center A/b, it follows that for b e Jf, we have Zsè.

Define S by S=A2 n R so that A2 = S+A with S n AçZ and S<IA. If Sx ,4

is the semidirect product (see 1.2) and D^SxA is the ideal of Sx A which

annihilates A, i.e. D = {(z, -z)\zeZ}, then S + A^(SxA)/D. Since for b eB,

An(b,F(by=b^A, it follows that also A2^<fi, F(b)). Thus all the spaces

By^B2^B3 can be identified as subsets of graph Au {(A,p} \pe Y} as follows:

By = graph A,

B2 = ByU {(A,Py \Z^peY,S$p},

B3 = ByU{(A,p}\Z^pe Y}.
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Set Y3 = {peY\ Zçp}, and Y2 = {pe Y3 \ Z^p, S^p}. Thus

Prim A2 = {b2 n A2 | b2 e B2}

consists of

beJÍ,   (S+A)c\[R(\-e) + b} = S(\-e)+b;

beJf, (S+A) n [F(b) + b] = F(b) n S+b;

peY2, (S+A)r\[p+A]= pnS+A.

Next, the quotients A2/b2 are computed. For beJf, F(b) n S+b is a splitting

box ideal. Conditions 3.2(a)-(d) are easily verified with the exception of 3.2(b)

that (S+b) n (F(b) n S + A) = F(b) n 5 + b. Let s + c = r + a e (S+b) n (F(b) n 5*+A)

with í e S, ceb, r e F(b) n S, and ae^. Then s — r=a—ceSc\A=Z. But if

Z> e jV, then Z£¿>. Thus a e b, r + a e F(b) n S+b and 3.2(b) holds.

Thus by 3.3 we get

Ù + A O Ai SI       A -,     ,      „.. -.

F(b)nS+b-FW^Sx-b=CxT   S*m>

= 1, S £ F(b).

For b e Jt, we have

S+A A _ A
S(\-e) + b = An [S(l-e) + b] ~ b'

Finally, for p e Y2, since S n A=Z, since Z^p, and since S n (p n S+A)

=pn S+SnA=pn S+Z=p n S, it follows that

S+A S _     S
p n S+A = S n(p n S-M) " p n S

Since 5<17<, Prim Ss {/> n 5 | p e Y}, and for any pe Y, either Ss/> or S/p n 5s C.

Since B2<=B3 and p+A eTi3 if and only if Zs/>, it follows that any p e Y satisfies:

5
p + AePrimA2oZCp   and    S^poZ^p,       -? = C-

/? n o

If Z$p, then Z$/> n S, Z^S. Thus S/p n SsC, S=p n S+Z, and

/l2/(/> nS+A) = 0,

i.e. p+A $B2.

4.8. For I e P define a map #: P -> B3 as follows:

0(1) = In(R + A) = A + InR   if I 2 A,

= (I n A, F(I n A)} ifl^A.

For any pe Y, either p+A = R+A or p+A e B3. This follows from

P+Ä-_P_ = _*_ = *~C    Zen
p+A = Rn(p+A)     p+Z     p =    '       -^

= {0}, Z$/>.
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If 7eA, then p = In Re Y. If I^A, then R+A = In R+A cannot hold, for

otherwise 1 e R + A^I. Thus 0 is well defined, i.e. either 7=2/4 and A + I n Re B3,

or I^A, and In AeB. Note that in the last case I=(I n A)~ e B={b \ beB}.

Thus there is a commutative diagram

A

B »-»B Y

4.9. Lemma. Aor any IeP, 6(1) = I n(R + A) and 6(I)n R = In R. Further-

more, for any be B,bn(R + A) = (Jb, F(b)}.

Proof. If A^I, then 0(7) = 7 n (A + ,4). If ,4 $7, then 7=6 e A, where b = In A.

By 2.5(iii), 6,4 u Ab^b. Clearly, <6, A(6)>£6 n (A + /Í). Conversely, let r-a e 6

n (R + A). If <6, A(6)> = A(1 -e) + b, then

/■ — a = (r-a)(l — e) + (r — a)e e r — re + b + bA.

If <6, A(6)> = 6 + A(6), then for any x e A, (r — a)xeb, x(r — a)eb, and xr = rx

imply that ax + b = xa + 6. Thus a + b e center A¡b = {0}. Hence aeb, r e F(b), and

bn(R + A) = (b, A(6)>. Thus 0(I) = I n (R + A), and 8(1) n R = I n (R + A) n R

= ln R.

4.10. Lemma. A«e «zap 0: A—s- A3 «ai the following properties:

(i) 0|A: A —»- graph A is a homeomorphism.

(ii) 0 is continuous and open.

Proof, (i) Since B —> graph A and B—>B are homeomorphisms and since there

is a commuting diagram of bijective maps

B -»- graph A

B

it follows that also <6, A(6)> -> 6:graph F—>- B is a homeomorphism and that the

corestriction of 8\B is simply the inverse of this homeomorphism.

(ii) In view of (i), it suffices to let 8(J)=J n (R + A) with Je A;

N = {b3 e B3 | « i b3}

is a typical neighborhood of 9(J) where ae R + A but a ¡£ 0(7). Then IeP satisfies

8(1) e N o a $ 6(1) = 7n(A + /4)o<*eA
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Thus 0~\N) = {IeP\a^I} and 0({I eP\a$ I}) = N. Already {IeP\r<£P} for

all r e R is a basis of open sets for P. Thus 0 is continuous and open.

The next result has already been observed in [2] for 2? and P and in [5] and [4]

for Tí and Ti3.

4.11. The primitive ideal spaces of the algebras A<=A2<=R + A<=M(A) all have

isomorphic Stone-Cech compactifications ßB^ßB^ßB^ßP.

Proof. For any C*-algebra A whatever (1 g A or \ i A) with <p: B-^ M the

complete regularization of Prim A and with R the centroid of A,

R ~ C»(B) = C»(M),

r + b     r + m dud „
r->—t->-» r e R, b e B, me M.

b m

The assertion follows, since by 1.14, the algebras A<= A2<= A3<= M(A) all have the

same centroid R. (Note that since ßB^ßM, also ßM^ßM^ßM^ßM^)

4.12. Since 1 e A3 = R + A<=M(A) and since 7? = center A3 = center M(A), it

follows that Y = F3(B3) = Fi(P), and that there are bijective maps Y^-Mh

p -> mt(p), i=3, 4 (see 4.2(H)). Define a map/ M3 -» Af4 by j(m3(p)) = mi(p).

4.13. Lemma. 77ze above map j: M3 -> M4 has the following properties.

(0 j(m3) = n {7 | IeP,InR = m3 n R}, m3 e M3.

(ii) j: M3 ->■ M4 is a homeomorphism.

(iii) 7«ere w a commutative diagram:

B3~-^~ P

93 9i

M3 >—r-»-* Mi
J

Proof, (i) For any m3 e M3, if m3 = m3(p) with/? e Y, then m3n R=p by 4.2(iii).

But the definition of m^(p) is m±(p) = (~){I \ I e P, I n R =p} and (i) follows.

(iii) First note that if A is any C*-algebra whatever with centroid R, and if

cp: Prim A —>■ M is the complete regularization, then for any b e Prim A, <p(b) n R

= b n R. It has to be shown that j<p30=<pi. Since 0(J) n R=J n R for J e P, we

have

m3 = <p30(J) = C]{b3eB3\b3nR = 0(J) n R = J n R},

j(m3) = fl {7eP | In R = m3 n R}.

But <p-i(b3) = m3 implies b3n R = m3n R=J n R, where b3 = 0(J); hence

j930(J) = C]{IeP\InR = JnR} = <p4(/).
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(ii) To show that j is monic, take two typical points m3(p) = tp3(b3), m3(p')

= 953(63) e M3 with 63, 63 e A3 and p, p' e Y; and suppose jtp3(b3)=jtp3(b3). In the

notation of 4.5, m3(p) — m3(p') if and only if p=p'. Also, m3(p) n R=p. Thus

9(63) n A=95(63) n A and 95(63) n R = b3 n R = 95(63) n A=63 n A. Consequently

95(63) = 95(63) and 7 is one to one. Now A=center (A + A) = center M(A) and

R^C(M3)^C(Mi), the ring of continuous complex functions on M3 and M4.

If r e A and «z3 e M3, then

r t£m3o r $m3n R,       r $j(m3) o r $j(m3) n R.

But by definition of j, j(m3) n R=m3 n R. Thus r $ m3 if and only if r $j(m3)

and the map j is a homeomorphism.

The main results of this section, i.e. the description of Prim M(A) and its com-

plete regularization in terms of the known spaces Prim A and Prim (R + A), are

recapitulated in the next theorem.

4.14. Theorem II. Let A be any C*-algebra and let the notation be as in 4.1-4.12.

(i) There is a commutative diagram of continuous maps

<6,A(6)> i

Aside from the usual maps, the maps 0, i, andj are given by

8(1) = In(R + A) IeP,

i(m) = H {63 e A3 I 63 n R = m n A}       m e M,

j(m3) = C]{IeP\InR = m3nR} m3eM3.

Furthermore, each b e B satisfies b n (R + A) = (b, A(6)>.

(ii) Viewing By as a subset AjC graph A u {A} x Y, let wlt tt2: (A u {A}) x Y

B u {A}, Y be the projections. Then

B B-^graphF^UB

is the identity. Furthermore, for I,JeP

InR^ JnR 0(7) * 6(J).

Thus 0 induces afibering ofP above Y. Since p +A ->/>: B3\By -s- 7r2(A3)\7r2(Ai)<= Y

is bijective, A can be viewed as fibers above B3 with the projection 8: A—^ B3 one to

one above By<^B3.
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(iii) i embeds M as a subspace of M3 ; j is an isomorphism ; the restriction and

corestriction 8\B: B —> By is a homeomorphism.

The next observation completely determines ^2(A3) as well as answers a question

which was left open in [4]. The proof depends on some technical facts about

C*-algebras.

4.15. 7« the above notation, Y\F(B)Çtt2(B3); in particular Z^p for all p $ F(B).

Proof. For p0 6 Y, p0$ tt2(B3) o R—p0+Z. If so, then l=z + c with zeZ and

c ep0. Let p0 $ F(B). Since for any be B,Z n b=Z n F(b), we have

Z+b _ Z+F(b) ,_   A
6    =    A(6)    - A(6)'

Since Cb(Y) = R=>Z, \\z\\=sup{\\z+p\\ \pe Y, z+p e R/p^C}. Also

||z| =suP{||z+6|||6gA}

holds in any C*-algebra. For any real A>0 and any element z in a C*-algebra A,

the set A = {6gA| ||z + 6|| 2: A} is compact. Consequently, since Ais continuous,

so is also A(A) <= Y. There is an r e R, \\ r || ̂  1, such that r +p0 = 1 +p0 and r e C) F(K).

Then 1 +p0 = rz +p0, while rz e rZ^Z with ||rz|| á A< 1, a contradiction.

4.16. Corollary to Theorem II. If B=JÍ u Jf (see 4.7), then

(i) B3 = graph Au {{A,p} \pe Y, Z^p}; furthermore

{peY\Z^p} = F(Jf) u (T\A(A)) u {p e F(Ji) \Z^p},

(ii) e-\(b,F(by>)={b}forbeB,

(iii) 0 - \B3\By) = {7 g A | A S 7} ~ Prim M(A)/A.

Ifip: Prim M(A)/A -> Y is the function <fi(I/A)=In R, then

(iv) i(>(I/A) = F° Try o 0(7); in particular, i/r is continuous.

4.17. Remarks. 1. In 4.16(i) for p=F(b) e F(Jt), not only Z$ A(6), but also the

unexpected possibility Zee and Ze A(6) actually may happen (see Example 4.22).

2. For/7 g 7T2(A3\Ai), i/>~1(p) need not have a largest element nor does it have

to be linearly ordered (see Example 4.21).

In [2], Busby shows that if A is a C*-algebra (with or without an identity) and

Z = center .4, that then PrimZ can be embedded as an open subset of Prim A,

provided Prim A is Hausdorff. In order to have an embedding, the latter assumption

is necessary. The next proposition deals with the case when Prim A is not necessarily

Hausdorff. Then afterwards, Busby's result is obtained as a corollary. It seems

interesting that even though both the question and the answer could be formulated

entirely in terms of A alone without reference to the centroid, the solution requires

the use of A.

The usual logical symbols "3" (there exists) and "V" (for any) are used whenever

convenient.
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4.18. Lemma. Define Z(B), Z(M), and Z(Y) as the set of ideals of B, M, and Y

which do not contain Z.

(i) For p e Y, conditions (a)-(d) are equivalent:

(a) 3 b e B such that F(b) =p andZ^b.

(b) V b e B such that F(b)=p, Z^b.

(c) Z$m(p).

(d) Z$p.

(ii) For p e Y and m = m(p) e M, if (i) holds, then there is an eeZ that is a

relative identity simultaneously for the following ideals:

(e) V b eBsuch that F(b)=p, \=e+b e A/b;

(f) \=e + meA/m;

(g) \=e+peA/p.

(iii) <p~1(Z(M))=Z(B) andF~X(Z(Y))=Z(B).

(iv) Z(7i), Z(M), andZ(Y) are open; Z(Y)<=F(B).

Proof, (i) If b, q e B with F(b)=F(q)=p and m=m(p) e M, then it follows from

Z n b=Z nq=Z n m=Z np that Z\b=Z\q=Z\m=Z\p. Consequently, (i)

follows.

(ii) If (i) holds, choose qeB with F(q)=p and <p(q) = m = m(p). Take eeZ\q.

Since q^e+q e center A/q^C, by multiplying e by an appropriate scalar, it may

be assumed that \=e+q e A/q. Since eeZ<^R, and since (1 — e)A^q, it follows

that 1— e e F(q)=p = {r e R | rA^m}. Thus l=e+p e R/p and \=e + me A/m.

Conclusion (iii) follows easily from (i).

(iv) Clearly, Z(7i) is open since {beB\Z^b} is closed, while Z(Y) is open

because R^C(Y). Recall that R^C(M) under r ->■ r, where at m = m(p) e M,

„,  . R + m     R      _
r(m) = r + «2 e-~ — ~ C.

m p

Thus for any zeZ, {me M \ z$m}={me M \ z(m)^0} is open, and hence also

Z(M). By 4.15, Z(Y)^F(B).

4.19. Proposition. Let A be a C*-algebra, B=Prim A, Z=center A, <p: B -> M

the complete regularization ofB, andZ(B) = {b e B \ Z^b}, Z(M) = {m e M | Z^m}.

Then

(i) Z(B), Z(M) are open, consist of modular ideals and Z(B) = cp~x(Z(M)).

(ii) Prim Z^Z(M).

Proof. Conclusion (i) follows from the previous lemma, (ii) Then Z=R n A<]R,

and Prim Z^Z(Y)={p e Y \ Z%p}<=- Y is open. Define X^Bx by

X = tt2x(Z(Y)) n Bx.

If b e B and p = F(b), then peZ(Y) if and only if Z $ b. Since F(b) = n2(<b, F(b)}),

ttx(X)=Z(B). Since ^graphF is a homeomorphism, Z(B)^X. (Note that for

peZ(Y), p+A$B3, and n2(X)=Z(Y).) Since rr2\Bx: Bx->F(B) is known to be
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one of the equivalent forms of the complete regularization of B ([4, 3.16(4), p.

194]), it follows from Z(A)^A-, that tp(Z(B))^TT2(X)=Z(Y).

4.20. Corollary. Suppose that in addition to the hypotheses of the previous

proposition, Prim A is Hausdorff. Then Prim Z^Z(A)sPrim A.

Proof. Since Prim A is always locally compact it is completely regular if and

only if it is Hausdorff. In this case TT2\By: Ai -> A(A) is a homeomorphism and

hence Z(Y)^Z(B).

A twofold counterexample is given. It shows that <p~\p) need not be linearly

ordered by inclusion. For me M, recall that m<iM(A) is

m = {A g M(A) | TA u AT £ m} = f) {6 | 95(6) = m} 2 j(i(m)).

(Note that if m = m(p), then m = {Te M (A) | TAçb, all 6gA with F(b)=p}

= p| {6 I 6 e B, F(b)=p}.) The example also shows that the conjecture j(i(m))=m

is false.

4.21. Example. Consider a Hubert space H=Hy © 772 © A73 which is an

orthogonal sum of three mutually perpendicular closed infinite dimensional sub-

spaces 771; 772, and H3. The bounded and the compact operators are denoted by

A/7 and ACT/; A//¡ and LCH^LCH denote operators leaving //¡ invariant and

which are zero on H¿. Consider the ring A of all continuous functions g: [0, 1] ->

LCH such that g(l) = gy+g2 eLCH, where gt e AC//t. Then M(A) consists of all

continuous functions G: [0, 1] ->LHsuchthat G(l) = Gy + G2 + G3, where G¡ eLHt.

Small letters are used for A, capitals for M(A). Note that giG, = G]gi = 0 for i+j.

The centroid A consists of all al, where 1: H-> His the identity and a: [0, 1] -> C

is continuous. Thus Y={p(t) \ Oútú 1} where p(t) = {a\ \ a(t) = 0}. For 0^/< 1,

define b(t), I0(t), and Iy(t) by

b(t) = {geA\g(t) = 0};

I0(t) = {Ge M(A) I (7(0 = 0} c /(;) ={Ge M(A) \ G(t)eLCH}.

While at t = 1, define 6", Aj, and IÏ to be

ô* = {^6^|ifc = 0},      * =1,2;

Ik0={Ge M(A) \Gk = 0}^ Py = {Ge M(A) \ GkeLCHk},       k = 1,2, 3.

Thus A = {6(/) I 0^t< 1} U {61, 62} and

P = {/o(0. «0 I 0 = r < 1} u{/; |y = 0, 1;k = 1,2, 3}.

Since a typical hull-kernel neighborhood of bk is of the form {6(f) | c<?<l}

ufó''} for some 0<c<l, it follows that any two hull-kernel neighborhoods of

61, b2 intersect; t'^P^n^U? 17=0, l;k=l,2, 3}, but any three ideals with one

out of each of the pairs

I1 c ri- Iz tz T2- I3 a I3
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are not ordered by inclusion. Also any two neighborhoods (they are of the same

form as those of bk) of If and Irp for any k, j, r, p intersect. Now

M = {b(t) | 0 ^ t < \}\j{bxn b2},

while A/4={/0(r) | O^f < 1} u {/¿ n/g n 7g}. For 0gr<l, b(t)=I0(t), while

(bxnb2)~={G\ GAv AG<^bx nb2} = {G\ G1 = G2=0}$Mi since j(bx nb2) =

I1, n I2 n I$={G \ Gx = G2 = G3=0}. This example is noteworthy in that

center (M(A)/A) ^ (A + R)/A.

Here (7? + A)/A s C, the complex numbers, while

M(A)/A £ (LHx/LCHx) ® (LH2/LCH2) ® LH3.

Thus center (M(A)/A)^C ® C@C.

The next example shows that it is actually possible that Zçm g M=B, but that

m nevertheless is still modular (see 4.17,1).

4.22. Example. Again let 7C77 denote the compact operators on some infinite

dimensional Hubert space; let Hx^H be a finite dimensional subspace. Let A be

the ring of all continuous functions /: [0, \]^~LCH such that f(\)\(H\) = 0 and

f(\)Hx^Hx. For O^xá 1, let b(x) = {feA |/(x)=0}. Then

M = B = {b(x) |0^x^l}.

center A={0}^b(l), while b(l) is modular.

5. Classification of abelian extensions. Only extensions of the form S + A

where S is an ideal of the centroid will be considered here. The more general kinds

of extensions where S need not act faithfully on A will not be considered. The

notation, definitions, and conclusions of §4 will be used as well as [4].

5.1. When talking simultaneously about/? and m¡, it will be tacitly assumed and

it will be abundantly clear from the context that p and m¡ are related by

m. = m¡(p) = (~){binAi\ bi e Bt; Ft(bt) = p},       i = 1, 2, 3;

the subscript one is sometimes omitted in A = Ax, M=Mlf and m = mx. This

definition uses the fact 1.14 that the centroid of A2 and A3 is also R. Note that for

i'=3 the above becomes

m3 = f]{b3\b3eB3;b3nR= p}.

It may be helpful to observe that it will be necessary to complete the diagram in

4.5 with injective maps also along the bottom rows; it is no longer possible to

obtain Mx and M2 simply by intersecting certain distinguished elements of M3 with

Ax and A2 as is the case with the 7í¡. The next definition among other things will

accomplish this.

5.2. Definition. For any p e F(B), define an ideal m' of Aa by

m  = m'(p) = H Kb, F(b)> \ b e B, F(b) = p}.
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Again it will be clear from the context that when m! and/? are used simultaneously

that they are related as above. Define M' ={m'(p) \pe Y}.

The next lemma is easier to visualize if A2 is viewed as a subset B2CB' x Y.

5.3. Lemma. Each b2 e B2 with A^b2 satisfies F2(b2) = F(b2 n A) = F(iry(b2)).

Proof. By 4.4,

A2(62) = {r e A | rA2 ç 62 n A2} = {r e R \ rA2 S 62} = b2 n R.

Set b = b2nAeB. For r e F2(b2), rAzA since A<\R + A; thus rA<=,b2n A=b.

Consequently

A(6) a {r e R \ rA S 6} 2 A(62).

But both A(6) and A2(62) are maximal ideals of A. Hence

A2(62) = A(62 O A) - A(tti(62)).

In (ii) of the next lemma, in particular A2 may be taken as A2 = A3, in which case

S = R, B2 = B3, and M2 = M3.

5.4. Lemma. The sets of ideals My, M2, and M3 can be constructed from M' and

Y as follows:

(i) My={m' nA \m'eM'};

(ii) M2 = {m'(p) nA2\pe F(B), A+p$ B2}

u {m'(p) nA2n(A+p)\pe F(B), A+pe B2}

u {(A +p)nA2\pi F(B), A+pe B2}.

(iii) There is a commutative diagram where all the maps except possibly <plt tp2,

and tp3 are monk while j\ is an isomorphism.

(iv) n M'=n iy(My) = n Mi(M1)=n í2(m2)={0}.

Proof, (i) Since <6, A(6)> n A=b, (i) follows.

(ii) By definition, m2(p) = C]{b2 nA2\b2e B2, F2(b2)=p}. By 5.3, if <6, A(6)>

appears in the intersection defining m'(p), then <6, A(6)> n A2 = b2 also appears

in the intersection defining m2(p). The latter intersection, however, may or may not

include A +p. Finally, if p <£ F(B), then the intersection defining m2(p) becomes

trivial, i.e. m2(p) = (A+p) n A2.
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(iii) Define /, and i2 by ix(mx(p))=m2(p), i2(m2(p)) = m3(p). If px,p2 e F(B) and

tn'(Pi)=m'(p2), then m(px)=m'(px) n A=m'(p2) n A = m(p2). Thus by 4.2(H),

Px =p2 and / is bijective. Again 5.3 shows that the diagram commutes. By 4.2(ii)

applied to Ah the map Fi(TÍ¡) -*- Mh p -> mt(p) is bijective. Consequently ju j2, j3,

ix, and i2 are monic.

(iv) Since f]B={ae M(A) | aAcf] Ti=0}={0}, and since Bx ={b n A3 | b e B},

also H Bx^D B={0} (i.e. Bx is hull-kernel dense in 7i3). However, C\ M' = f) Bx,

and so f)M'={0}. Since

n h(Mx), n iMM2), n ;2(m2) s n w,

it follows that all these intersections are zero.

5.5. Ifp e F(B)^F2(B2) andp2 e F2(B2)^F3(B3) = Y, then

(i) mx(p)=m2(p) n Ax;

(ii) m2(p2)=m3(p2) n A2;

(iii) in particular, i2(m(p2)) n A2 = m(p2) and ix(m(p)) n A=m(p).

Proof, (i) Since (A+p) n A2 n A = A, in either of the two possibilities for m2(p)

in 5.4(H), we get m2(p) n A = m'(p) n A=m(p).

(ii) and (iii). Use of 5.4(H) with A2 = A3 gives m3. If p2 $ F(B), then m3(p2)

=p2+A and m2(p2) = (p2+A) n A2=m3(p2) n A2. Let p2=p e F(B) and consider

the following cases.

Case 1. m3(p) = m'(p) with A+p $ B3. Then A+p $ B2, and

m2(p) = m'(p) nA2 = m3(p) n A2.

Case 2. m3(p) = m'(p) n (A+p) with A+p e B3\B2. Then m2(p) = m'(p) n A2.

But since A2çA+p, we have A2 n (A+p) = A2 and again m2(p)=m3(p) n A2.

Case 3. m3(p)=m'(p) n (A +p), A+peB2. Thus

m2(p) = m'(p) nA2n (A+p) = m3(p) n A2.

Each A2/b2 was concretely identified in 4.7; in order to identify A2/m2, first m'

and then m2=j2(m') have to be described (see [4, 1.5(5)—(8), p. 179] and [4, 3.18(1),

p. 196]).

5.6. Lemma. The ideal m'=m'(p) e M' can be expressed in terms ofm=m(p) e M

as follows:

(i) \<£A/mom'=p+m;

(ii) eeA, l=e+meA/mom'= R(l-e) + m.

Proof. Sincep+m^(Jb, F(b)} and <Jb, F(b)} n A=b, it follows that

p + m ç m' = H {<b, F(b)} \ F(b) = p}   and   m' n A = m.

Since the projection (m' + A) n R of m' into R satisfies p^(m'+A) n R<iR, by
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maximality ofp, (m' + A) n R=p or R. Thus by 3.6, m' is of one of the following

two mutually exclusive forms

(i') (rrí + Â) n R=p => m' =p + m,

(ii') (m' + A) n R = R => m' = R(l-e) + m.

But then (i) and (ii) of the lemma follow from

1 = e + m e A/m oVb eB withp = F(b), <6, A(6)> = A(l-e) + 6

o m' = H {R(l-e) + b \ b e B, F(b) = p}

o m' = R(l—e) + m.

To prove the latter, let 6 and qe B with A(6) = F(q) =p. Let

r(l-e) + a = s(l-e) + c e[R(l-e) + b] n [R(l-e)+q]

where r, s e A, a e b and c eq.lt suffices to show that ceb. Since e is an identity

modulo both 6 and q, it follows that r(l—e), s(l —e) e 6, where

b = {ae M(A) | aA s 6}.

But then c = r(l-e)-s(l-e) + aeb n A = b.

The previous conditions 1 ̂  A/m or 1 e A/m are useless for applications (see

[4, 3.17, p. 196]).

5.7. Lemma. With the above notation, the following hold:

(i) m' = m+p o m is not modular in A => Z^m.

(ii) m' = R(l—e) + m o (a) either Z<^m, (b) or Z^m but m is nevertheless still

modular in A.

Proof. In view of 5.6, it merely suffices to show that if Z^m, then m is modular.

Since Z^«j=P|{6eA| F(b)=p}, there is a 6 g A with Z£6 and F(b)=p. Since

all 6 appearing in the above intersection satisfyp = F(b) = {r e R \ rA^b}, it follows

that F(b) = {r e A | rA^m}. Since b=L:A for some regular maximal left ideal A,

we have ZA $ 6 ; hence ZA ^ m, and consequently Z <^p. Thus A =p+Z. If 1 = c + e,

cep, eeZ, then cA^pA^m and e is an identity for A modulo m.

The next observation will be used frequently.

5.8. Corollary. No matter whether m' is of the form (i) or (ii) in 5.7,

m' n (p+A) = p+m.

Proof. If r + ae[R(l—e) + m]n (p + A)  with   rep,   aeA   then  reerA^m

implies re R(l—e) + m. But then ae [R(l—e) + m] n A=m and r + a ep + m.

At last m2(p) can be computed.

5.9. Proposition. Each m2(p) e M2 with m—m(p) e M and m'(p) e M' satisfies:

(i) For p + A $ B2, m2(p)=m'(p) n A2 = p n S+m      if 5.7(i) holds;

= S(l - e) + m   if 5.7(ii) holds.
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(ii) For p + A e B2; m2(p) = m'(p) n A2n(p + A)=p n S+m.

(iii) m2(p)=p n S+m => Z^m   (converse may fail).

By specializing A2 = R + A in the above proposition, a complicated result from

[4, 3.21(1), p. 197] follows very simply. In the next corollary, as well as in subse-

quent proofs, the four implications in (a) and (b) below can be reduced to two by

observing that m3 is necessarily of one of two mutually exclusive forms.

5.10. Corollary. Each m3 = m3(p) e M3 and m=m(p) e M with pe Y satisfies:

(a) Z^m om3 = R(l—e) + m,

(b) Z^mom3=p + m.

Proof. First note that

Z Ç mo Z £ p o p + A e B3.

If 5.9(i) holds then Z$m, and by 5.7(ii)(a), m3 = R(\-e) + m. If 5.9(H) applies,

then Zçm, p+A e B3 and m3=p+m by 5.8.

Conclusions (ii) and (iii) in the next lemma are established in slightly greater

generality than actually later needed.

5.11. Lemma. Ifm=m(p) e M, m2=m2(p) e M2 with p e Y, then

(i) m2 = S(l-e) + mo-2-~ —
m2    m

Now assume further that Z^m. The latter holds in particular if m2=p n S+m

(see 5.9(iii)). Then

(H) p n S+m is a splitting box ideal (see 3.2);

(iii) consequently

S+A     _     S       A.

p n S+m = p n S   m'

(iv) -= s Co S i pop + A e B2 => m2 = p n S+m.
p n S

Proof, (i) If m2 = S(l — e) + m, then 5.9 shows that p + A $ B2 and m2 = m' n A2.

Furthermore m' = R(l—e) + m, and A+m' = R + A. Thus

^2 _       A2      ^ A2 + m' _ R + A

m2     m'n A2=     m' m!

Since A n m'=m, it follows that

A+m' A A

m!    = A n m'     m

Conclusion (iv) is immediate while (iii) follows from (ii). Condition 3.2(a) holds

with Sx=p n S, Ax = m. (b) First, p n S+m^(S+m) n (p n S+A). Conversely,

suppose i + « = r-|-a belongs to this intersection with s e S, nem, r ep n S, and

a g A. Then a — n = s — re S n A=Z^m. Thus aem and r + a ep n S+m. Hence
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(b) holds. Since (p n S)A^m, condition (c) (p n S+m) n A =m follows. Next, if

s = r + ce S n(p n S+m) with s e S, r ep n S, and ce m, then c=s — rem n S

=m nZ=p n Z^p n S. Thus sep n S and (d) S n(p n S+m)=p n S holds.

5.12. Remarks. 1. A2^SxA/{(z, -z) | zgZ},   S n A=Z.

2. It may happen in the above proof that Zs«?, but nevertheless m is modular

with m2 = S(l—e)+m. In this case p n S+m is still a splitting box ideal although

m2^p n S+m.

For the readers convenience the foregoing results about the quotients A2/m2

are summarized below.

5.13. Proposition. For A2 = S+A, Z=center A, m = m(p) e M, pe Y, the ideal

m2 = m2(p) e M2 is one of the two ((i) and (ii)) mutually exclusive forms and satisfies

the following:

(i) m2=p n S+m => A2/m2^S/(p n S)x(A/m); ZGp (and ZGm). Further-

more,

Z^p,A2^p+Ao S/(p nS)zC;

Zsp,A2^ p+A o S/(p nS) = {0}.

(ii) «i2 = S(l-e) + «i => A2/m2%A/m.

Specialization of A2 as A2 = R+A above together with 5.11 immediately yields

a result of [4, 3.21(2), p. 197].

5.14. Corollary. If m3=m3(p) e M3, then

(i) — = CxA\mom3 = p+moZ £ m.
m3

(ii) ^-om3=A(l-í)+moZíffl.
m3     m

The next classification of cases will simplify the solution of the present problem.

5.15. Consider

Case 1. A+p$B2. Case 2. A+pe B2, and subdivide Case 1 further as follows:

Case 1(a). m' = m+p,

Case 1(b). m' = R(l—e) + m, where e + m=l e A/m.

If A +p $ B2, then m2=m! n A2, while if A+pe B2, then m2=m' n A2 n(A +p) ;

thus

Case 1(a) => m2=m+p n S,

Case 1(b) => m2 = S(l—e) + m,

Case 2 => m2 = m+p n S.

Note also that m'=m+p implies m3=m+p and Z^m (see 5.7(f)) and thus

A+pe B3 by 4.3 and 4.7. Case 1(b) holds if either Z$ m (in which case A+p$ B3)

or even if Zsm, but m is still modular. Finally, in Case 2, A+p e A2£ A3 so that

then Z^m.

5.16. Utilizing the previous notation the tables below summarize all of the
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information contained in the previous lemmas concerning A72, M3 and the quotients

A2/m2, A3/m3, as well as the inclusion relations among Z, m, and among S, p.

A+p

A+p$B3

A+peB3\B2

A+peB2

A+p

Z and m

Z d: m

Z ç m

S and p

S £ p

S$p

A2/m2

A/m

A/m

A+p$B3

A+peB3\B2

m modular

yes

yes

Case

1(b)

1(b)

m

CxA/m

m2(p)

A3/m3

A/m

CxA/m

R(\-e) + m

R(\-e) + m

CxA/m

m3(p)

S(l-e) + m

S(l-e) + m

R(\-e) + m

m+p

A+peB3\B2 no 1(a) m+p m+p n S m+p

A+peB2

A+peB2

yes

no

7?(l-e) + m

m+p

m+pnS

m+p n S

m+p

m+p

Finally, the solution of the problem is summarized in the next theorem.

5.17. Theorem III. Consider a C*-algebra A without an identity and with centroid

R. Suppose A2 is any closed ideal in A<=A2<=R + A. Let M, M2, and M3 be the

canonical spaces of ideals obtained by the complete regularization of the respective

primitive ideal spaces. For me M, let p = {r e R\ rAÇm} and denote m(p) by m.

Write M=M(\) u A7(2) u M(3) as a disjoint union of subsets

M(\) = {m | Z $ m},

717(2) = {m | Z £ m(p), A2 ç A +/?},

M(3) = {m\Z £ m,A2$ A+p}.

(i) There are injective maps

M-^M2-^>M3.

Furthermore f) M=(~) h(M) = C\ i2h(M) = {0}.

.... i>/i\       A A2 R + A
(n) m e M(\) => — = —-r = ,

m     tx(m)      t2ix(m)

m e M(2)
m

Ä2    /  R + Ä      CvÁ
ix(m)      i2'i(m) m

m e M(3) ^-- + -^\
m     ix(m)

m2 e M2\ix(M) => — = C
m2

„   A      R + A
= Cx— = . .

m      i2h(m)

m3 e M3\i2ix(M)
R + A

m3
= C.
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5.18. Remark. The fact that A2 is a subdirect product of \~[ {A2/m2 \ m2 e M2}

does not tell the whole story (see [3]). Each a e A2 defines a function M2 ->• reals,

m2 -> ||a + »i2||. Suppose M2 is endowed with the complete regularization topology.

If 1 £ A2, i.e. if A2^A3, then each such function tends to zero outside of compact

subsets of M2.

5.19. Corollary to Theorem III. Under the hypotheses and in the notation of

the previous theorem, if M, My, M2 are endowed with the complete regularization

topology, then

(i) iy, i2, and i2iy are embeddings;

(ii) iy(M) is dense in M2;

(iii) i2iy(M) is dense in M3;

(iv) If Z=center A, then A/*(l)^PrimZ.

Proof. Conclusions about i2ix (that is (iii) and part of (i)) follow immediately

from 4.6, while the method of proof of 4.6 also works with M3 replaced by M2.

Conclusion (iv) follows from 4.19.

In conclusion, a simple example is given where the conclusions of the theorem as

well as those of the corollary may be checked directly.

5.20. Example. Let X be a locally compact Hausdorff space, H an infinite

dimensional Hubert space, and LCH the compact operators on H. Let

A = C0(X, LCH)

be the ring of all continuous functions g: A'-^LCH such that \g(x)\ tends to

zero for x outside of compact sets. Then A is the ring C(X) of all bounded con-

tinuous complex-valued functions on X. The typical element of A + A will be

written as g + Gl where g e A, G e R, and 1 : H -> H is the identity. Let gB and Ge

denote the extensions of g and G to the Stone-Cech compactification ßX of X,

where ge\(ßX\X) = 0. For teßX, let p(t)={G e A | Ge(t)=0}<=R and b(t) =

{geA\ge(t) = 0}<=A. Note that for t e ßX\X, b(t) = A. Thus Prim^4 = A=M

= {b(x) | x g X} and Prim A= Y={p(t) | t e ßX}. The function A: B -* y is given

by F(b(x))=p(x), so that A(A)^ Y. In this case M = B^X, while

A3 = M3 = {b(t)+p(t)\teßX},

where b(t)+p(t) consists simply of all functions vanishing at t. Suppose now

that A2 is a closed ideal in A^A2<^R + A. Then Z = {0} and hence M(l)= 0. Thus

M(2) = {b(x) eM\xeX,Vg + GleA2, G(x) = 0}

= {6(x) g M | .42 £ A+p(x)},

M(3) = M\M(2) = {b(x) e M | 3 g+Gl e A2, G(x) / 0}

= {b(x) eM\A2^ A +p(x)}.

Let Ac X be the set T={x e X | b(x) e M(2)}. Set

V = {teßX\X\Vg+G\eA2, G\t) = 0}.
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Thus A2 is determined exactly as all those functions g+Gl for which Ge vanishes

on 7U V^ßx(i.e. G vanishes on T<=-X, and GB on V<=ßX\X), but where g + Gl

is arbitrary otherwise. The sets V and T are closed. Then

M2 = {b(t) + (p(t) nA2)\t eXu(ßX\V)}.

(Only those points of ßX are used in M2 at which some function of A2 does not

vanish.) The maps iu i2 are

ii : M-> M2, h(b(x)) = b(x) +p(x) n A2 for xeX;

i2:M2^M3^ ßX,       i2[b(t) + (p(t) n A2)] = b(t) +p(t)   for teßX.

In our previous notation for m e M, we get

ix [M(2)} = {b(x) | x g 7}, ^ ~ LCH ;

ix[M(3)] = {b(x) + (p(x) n A2) | x g X\T},       -^\ s C x LCH ;
tx(m)

m2 e M2\ix(M) = {A + (p(t) n A2) \ teßX\X, 3 g+Gl g A2 with G\t) ^ 0},

m2

m3 e M3\i2ix(M) = {A +p(t) | t e ßX\X},       ^±^ s C.
m3

Since X^i2ix(M)<^M3=ßX, it follows that ix(M)^M2 and i2ix(M)<= M3 are dense.
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