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1. Introduction. Let X(z) be a stable process and p(z, x) be the density of X(¢).
For all the stable distributions of index « on the line, |x|**%p(1, x) is bounded [11].
This ensures that the hitting probabilities of spheres for these processes (as long as
the processes are type A) are of the same order of magnitude as for the symmetric
stable process of index «. In higher dimensions the situation is more complicated,
and there has been little study of the asymptotic behaviour of the density function
except in the symmetric case and in the case of Brownian motion. There is no
problem for Brownian motion since the density function is known so we may as
well assume that «<2. For the symmetric stable density of index « in R¥,
|x]¥*ep(1, x) is bounded (and, in fact, tends to a limit as |x| — o) [1]. To see
that this is not the case in general consider the stable density of index « in R?
given by

p2(1, x) = pi(1, x1)pa(1, x2)

where x=(x;, x;) and p, denotes the density of the symmetric stable process of
index « in R™. If we let x tend to infinity along one of the axes, p,(1, x) decays like
|x] -, while if we go along any other ray from the origin it behaves like | x| =2~ 2.
This example extends to RY and we shall prove that it illustrates the worst possible
behaviour of the density p(1, x) so that |x|**p(1, x) is bounded for any stable
process. (Our treatment of the stable processes of index one is restricted to those
which satisfy the scaling property; see §2.)

One of our objectives is to obtain conditions on the form of the stable distribu-
tion which will ensure a decay rate for the density closer to that for the symmetric
process. In terms of the measure n in the usual representation of the characteristic
function (see §2), we use a condition that u is ““not too concentrated” near any
point to improve the estimate of the asymptotic behaviour. The form of this con-
dition is fairly satisfactory for N=2, but it does not give enough information for
N2 3. It seems plausible that, at least when the defining measure p has a bounded
density on the unit sphere, |x|¥*%p(1, x) should be bounded. Our method of proof
does not get us anywhere near this result for general N. However, it does imply
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that for such a p, |x|2*¢~¢p(1, x) is bounded for every fixed >0, which is close
to the conjecture when N=2. The proof of the main Theorem 1, as given in §3,
is rather involved as it requires the use of N-dimensional Fourier transforms.

It was pointed out to us by S. Port that the alleged proof of the estimate (16)
in [12] is invalid. The example we have already considered—the convolution of
symmetric 1-dimensional distributions of index « on each axis—shows that the
kernel U(x) may take the value +co for some x with |[x|=1, if «S(N=1)/2. It
follows that Lemma 4 of [12] is false in general. Thus the hitting probabilities for
spheres in dimension N2 are not of the same order of magnitude for all type 4
stable processes of index «. The main object of §5 of the present paper is to obtain
valid estimates of these hitting probabilities. In order to do this, we first have to
estimate the average value of U(x) over a small neighbourhood; this is done in §4.

There are other consequences of Theorem 1. For example, it shows that if
«>(N—1)/2, then U(x) is continuous on the unit sphere and it is then a conse-
quence of the discussion in Port [8, p. 367] that his Theorem 2 is valid if the
process is type A. This theorem concludes that the limit as the initial point tends to
infinity of the conditional hitting distribution of a bounded Borel set exists and is
the normalized cocapacitory measure of the set.

§6 contains a detailed discussion of the example where u consists of point masses.
This discussion shows that the results of §§3, 4, and 5 are best possible in general.
An intuitive explanation of why the hitting probabilities are different for this
example is also provided.

It is worth remarking that the inaccurate estimates of hitting probabilities in [12]
do not invalidate the main results of that paper. The evaluation of the correct
Hausdorff measure function for measuring the range of the process is accurate as
one can use Lemma 6.1 of [10] to give an estimate of the number of cubes entered
by the process. Furthermore, Theorems 2 and 3, stated without proof, are correct
because it turns out that if we estimate the “‘delayed hitting probability” of a
sphere, i.e. the probability of entering the sphere after unit time has elapsed, then
this does have the same order of magnitude for all stable processes of type 4
and index o in R". This estimate of the ‘“‘delayed hitting probability” is given in
§7. Some remaining problems are discussed in §8.

2. Preliminaries. The N-dimensional characteristic function of a stable process
X(t) of index o has the form exp [t(£)] where

$(é) = i(¢, b)—cl€|® fs wo(€, 0)u(do),
with b€ RY, ¢>0,

w§, 6) = [1—isgn (¢, 0) tan 7c/2]|(§/€], )%, @ # 1,
wi(€, 6) = |(¢/1€], O)|+i/m)(¢/1€l, 6) log |(£, O)],
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and p is a probability measure on the surface of the unit sphere Sy in R¥ [5].
We shall assume that u is not supported by a proper subspace of R¥, and that
b=0, c=1. The process is called the symmetric stable process of index « in R¥
when u is uniform.

The density function p(t, x) of X(¢) is continuous and bounded in x for fixed .
It also satisfies the scaling property (except for some nonsymmetric processes of
index 1)

2.1 p(t, x) = p(rt, riiex)riie

for all >0, or in terms of the process itself, X(r¢) and r*/*X(¢) have the same
distribution. The scaling property is satisfied when «=1 if and only if the u dis-
tribution satisfies

2.2) 6u(d6) = 0.

SN
We shall consider only those processes which satisfy (2.2) when «=1. The stable
processes have been classified in [12] as being of type A4 if p(1, 0)>0 and of type B
otherwise. When o1, only processes of type 4 can occur.

We assume that our process satisfies the conditions of Hunt’s hypothesis (A) [3].
Thus the sample functions X(¢#) will be right continuous and have left limits
everywhere. The process will also have the strong Markov property. Since we only
need to consider N 22, and since there is no problem with planar Brownian motion
we can and will assume N> o. This allows us to use the ordinary potential kernel
for the process. Since we have a continuous density p(t, x), the kernel of the process
has a density with respect to Lebesgue measure given by u(x, y)= U(y—x) where

2.3) Utx) = fo ® ot %) dt,

and Hunt’s hypothesis (F) is also satisfied. This means that, at least for compact
sets E of positive natural capacity, there is a nonnull measure v, concentrated on E,
such that

2.4) ®(x, E) = P*[X(¢) € E for some ¢ > 0] = f u(x, y(dy).
E

The defining integral in (2.3) may diverge for some x, but it is well defined. We will
see in §4 that (2.3) converges for a.e. x.
We shall use the notation

@5) g(6) = f wal€, 8)u(db)

and note that for the processes being considered this is actually a function of
£/|€|. Let the real valued function a, be defined by
al(y) =y ifyz0,

2.6
(2.6) =0, ify<O,
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and let

£1® = [ ad(&/18], 6)u(ds),
2.7 VSN

g:(8) = f a.(— (&£, 0))u(do).

Then for «#1, we have

8(§) = sec (ma/2){g:(§)e™ "% + go(£)e!™2}.

Furthermore

Reg(®) = 2x(&)+¢40) = [ 1@, Ol u(ap)

Since we assumed that u does not concentrate on a proper subspace of Sy, we have
Re g(¢)>0, and since it is continuous Re g(¢) is bounded below by a positive
constant y. (Recall that g is actually a function on the compact Sy.) We also have
0=g.(§)=1, 0=5g,(é) =1, so that all values of g(¢£) are taken in the rectangular
domain

D={c=u+iv:y 2usgl,|v £ tanne/2}.

It is important to note that while the rectangle D depends on u through y, ¥ (and
hence D) is invariant under orthogonal transformations on u. For a=1, a similar
analysis with (assuming (2.2)) g(£) =ggr(£) +ig,(¢) where

&x(6) = [ 1(€/18l, Olucan),

2() = /) j (€/1£], 6) log |(¢/|£], 6)|u(d6),

shows that g(¢) takes its values in the rectangle
D={o=u+iv:y 2uzl,|v| £2/ne}.

The inversion formula allows us to write

P, %) = @0 [ exp (=ix, - [€178(6) de:

In estimating the asymptotic behaviour of the density, we are only interested (for
the application to hitting probabilities) in letting x tend to infinity along rays
from the origin and we want bounds which are independent of the particular
direction of approach. Therefore there will be no loss in assuming that the direction
we take to infinity is along the positive first coordinate axis since this can be
achieved in any case by an orthogonal transformation on x, which can be converted
to one on g, and all the bounds obtained will be invariant under orthogonal
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transformations on u. We shall use the shorthand notation p for (p, 0, 0,.. ., 0);
then

plL, ) = @n) 7 [ exp (~ipu—£[%(6) dk.

Making the usual change to spherical coordinates,
& =rsine, sin ;... sin ¢, cOS @, 1sj=N-1,
Ey = rsing; sin @g... sinpy_osin py_4,

where 05r<w, 0S¢, <7 for 1SjSN-2, 0S¢y, S2n, the Jacobian is

J(r, @1, ..y 1) = r¥ 7 sin @)V 3, L., (Sin @y -3)? Sin py_j,
and

2% n ®
(1, p) = @m)~¥ j f j exp (—irp cos g1 —r*h(@y, . . ., py-1))

J(r’ P1s - -0 ‘PN—].) dl’d¢1 s d(PN-ly

(2.8)

where we have let

2.9) h(pyy ..., Py-1) = g(rcos @y, ..., rsin @, sin @y ... sin py_;).

This is the formula which will prove most useful in estimating the asymptotic
behaviour of p(l, x).

We will use M, ¢, K to denote finite positive constants whose precise values are
unimportant; these may differ when the same symbol occurs in distinct contexts.

3. Asymptotic bounds for the stable density. Our main aim is to give a proof of

THEOREM 1. Suppose that for some B=0, there is an M such that

[ 1 o1-2utae) < e

Sor all ¢ € Sy. Then there is a constant K such that p(1, x) < K|x| ~*~8-1,

COROLLARY. For any stable distribution of index « (satisfying (2.2) if e=1) in R",
|x|t*2p(1, x) is bounded.

The corollary follows immediately from the theorem since the hypothesis is
trivially satisfied for 8=0. Unfortunately the improvement in the bound on the
rate of decay given by the theorem is limited since the hypothesis can only be
satisfied if B< 1. In the planar case, this is not too important as we believe the
result is close to best possible. We will see later what would be necessary in order
to sharpen the method of proof to yield better results for N2 3. The proof of the
theorem requires heavy computation so we break it into a sequence of lemmas.

The first lemma establishes a result about the order of magnitude of an integral
involving Bessel functions. We give the proof because we have been unable to find
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the exact result in the literature. However, the method of proof is that used to
obtain the asymptotic behaviour of the symmetric stable density by Polya [7] in R?
and Blumenthal and Getoor [1]in R¥, N2 2. The notation and integration formulas
for Bessel functions can be found in [2] or [13].

LEMMA 1. Ler J,(y) denote the Bessel function of the first kind and let o € D.
Then if p>0,v20, B+v> —1,
f J(rp) exp (—or)rf dr = O(p=*~%"1), if B =v+1,
0
= 0=, i # v+,
the constants being uniform for o € D.

Proof. An integration by parts and change of variable yield
[T ey exp (—arre dr = pmes=2 [ 1,.406) xp (= o(slp) o3 ds
0 0

—(B—v—1)p- f J, +1(5) €xp (= o(s/p))s® =1 ds.

Thus when B=v+1, it only remains to show that the first integral on the right is
bounded as p — 0. In order to do this, we introduce the Bessel function of the
third kind H®;(s)=J,.1(s)+iY,..(s) and work separately with the real and
imaginary parts of the integral. Letting o =u+iv,

Re j:’ Jy +1(5) exp (= o(s/p)?)ouse 81 ds

= J‘: Jy +1(5) exp (—u(s/p)®)a{u cos [v(s/p)*]+v sin [v(s/p)“]},;-“+3—1 ds
= Re [ H:(6) exp (—u(s/p))alu cos [o(s/p)¥] + s [ofsfp)Tjs*** 2 d.

Now choose a small positive angle ¢, so that
v cos ap—tan (wa/2) sin ap > 0

for all ¢ € [0, o). (If =1, tan me/2 should be replaced by 2/me.) This choice of ¢,
ensures that
u cos ap— |v] sin ap > 0
for all ¢ € [0, ,] and o € D. By considering the usual contour integral, we see that
we can change the integral to one along the ray s exp {ipo}, s=0. This gives the
Bessel function a negative exponential behaviour so that the passage to the limit
may be carried out. The imaginary part of the integral can be handled in exactly
the same way.
For the other estimate (when B#v+ 1), we start with a change of variable:

j " 1re) exp (—orr dr = 5= [ " 1,() exp (= o(s/p))s ds.
0
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Again we must show that the integral is bounded, but if we proceed as before there
are integrability difficulties near zero when B<v—1. So we first observe that the
integral from zero to one is bounded, independent of p and o, since |J,(s)| £ cs’.
To handle the integral from one to infinity, we introduce H{*(s) and work separately
with the real and imaginary parts of the integral as before. With the same ¢,, we
now use the contour made up of a segment of the real axis, an arc of the circle
|z| =R, a segment of the ray from the origin through exp {ip,}, and an arc of the
unit circle. The integral along the large arc and along the ray in the ¢, direction are
bounded as before, while it is easy to see that the integral along the arc of the unit
circle is also bounded, independent of p and o.

We now want to establish estimates (contained in Lemmas 2, 3, and 4) for
integrals which will occur when we invert the characteristic function to obtain the
stable density. The proof of Lemma 2 is very similar to that of Lemma 1, while
the other two are easy consequences of Lemma 1.

LEMMA 2. Let o€ D and B=0. Then

J‘w exp (—iry) exp (—or)rf dr = O(|y|~%~Y),
0

the constant being uniform for ¢ € D.

Proof. If y <0, make the change of variable s= —ry and then use the same
contour used in the proof of the first part of Lemma 1 to change the integral to the
ray in the g, direction. If y>0, the change of variable is s=ry, and then the angle
@, should be the negative of the previous one.

LeEMMA 3. Let o€ D and p>0. Then
@© T
f f exp (—irp cos p—or®)r¥ ~(sin )" "2 dp dr = O(p~*%),
0 o
the constant being independent of o.

Proof. Since

T
f exp (—irp cos @)(sin ¢)" 2 dp = cJoy_ pya(rp)(rp)~ D1,
0

this is an immediate consequence of Lemma 1.

LeEMMA 4. Let m, n be nonnegative integers and o € D. Then if 20, p>0,

@ n
f f exp (—irp cos p—or®) sin™ ¢ cos™ prf dp dr = O(p~%71),
] ]

the constant being independent of o.
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Proof. By use of the identity cos? ¢=1—sin? ¢, it suffices to consider n=0, 1.

Then the formulas

n
f exp (= irp Cos @) SIN™ g dp = Cma(rp)(r) ™2,
0

b4
f exp (= irp COS @) SI™ @ COS @ dp = CJon 4 2ya(rp)(rp)~ ™2,
0

together with Lemma 1 complete the proof. *

To estimate the integral involved in inverting the characteristic function, we
shall use a finite number of terms from a power series expansion in the integrand.
The next three lemmas establish the estimates we need for this.

LeMMA 5. Let 0,,0,€ D, p>0. Then

@® m-1 — '
f exp (—irp cos qa)(exp (—ogr®)—exp (—o,r% Z gg‘—j—'f-"l)— r"')r” “ldr
V] .

=0
_ {0(|°2‘°1I"')
O({p|cos @[} =¥ ~™|oy— oy |™.
Proof. The first bound follows easily from the observation that
m-1 _ j
exp (—oar®)—exp (—oyr% z (02 .'02) pha

f=o J

(31) g, 2, 2,
2 m 2
= (—l)mf f f exp (—zyr®)r™ dz, . .. dz,,
oy [-5% o3
and then using integration contours on the straight line from o, to o, which has
the effect of keeping the contours in D and also of making intermediate distances
smaller. Thus

m-1 _ 5
exp (—ogr®)—exp (—o,r%) Z M e

7 < exp (—yr)r™log—oy|"
j=0 :

and this suffices for the first bound. Now, if we substitute in the integral we are
estimating the right-hand side of (3.1) and do the r-integration first, we have the
integral equal to

02 Zm zz @ . No1
(-=n» f j . f f exp (—irp cos p—zyr)rm**¥-1drdz ... dz,.
0y Joi oy JO

Applying Lemma 2 to this expression yields the second bound.

LEMMA 6. Suppose «>0 and o is not an integer, 820, and k is chosen so that

(3.2) k—1<a+B <k
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Then
5 @ (v
a(0)= 3, o () S (0=1)

i=0

(Here (0);=a(a—1) ... (e—j+1), and a, is defined in (2.6).)

(min {Ju, [o})y* = O(lo—uls*9).

Proof. We give the proof only for |v] < |u|, the two cases being essentially the
same. First suppose 0 Sv=u; then

va_kil w1 (;‘_!)f (v—uy

i=0

vﬁ = vﬁf f . 'J. ﬂ-kl(“)kl d}'1 “ee dyk
v Vi Va2
s [ [ oo o
v Vie V2

<[ j S R A ONPA
|(°‘)k|

= 22 (u—v)**h.

RN

Next, consider the case 0 £ —v<u. Then we must show that

{kil us=1 (—7-,!)1 (u—v)’}lvl“ = O((u—v)**%).

i=0
In this case, the bound is valid for each individual term, i.e.
W i(u—v)|v]f £ P (u—vy £ (u—v)***8

since uSu—v and «+pB—j>0. Finally, if u<0, the bound is trivial.

Next we give the lemma which will take the place of Lemma 6 when «=1. In
this case, gz(¢) is easy to deal with, but g,(¢) is complicated because of the log
term. In order to get rid of the log term, we use symmetric second differences. To
make the later work easier we will also use second differences for the real part.
The first part of the lemma is valid for all 8, and the second part could be made to
work for 8> 1 by subtracting more terms in the series expansion. We restrict our
attention to 8= 1 since that is the only case that can be used.

LEMMA 7. Suppose 0=B=1. Then
| |u+ol+[u—v]—2[u| |(min {|u], |u+0v], |u—2[})® = O(v]**¥)
|(u+v) log |u+v|+(u—v) log |u—v| —2u log |u| |(min {|u|, |u+v|, |u—v[})?
= O(|v]**%).

Proof. It clearly suffices to consider v> 0. The first statement is trivial. To prove
the second, note that

Uu+z
u-—-z

(u+v) log |u+v|+(u—v) log |u—v| —2ulog |u| = f log dz.
_ [
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The integrand is nonnegative for # > 0 and is an odd function of u. We will therefore
consider only u 20 and consider only upper bounds for the integral. If ¥ = 2v, then

V2
flg dzgf (“—+-i—1)dzg r
o \U—2Z u—v

|(min {[u], |u+2], [u—-v[)|* = (u=0)",

u+z

and since

combining these estimates gives the desired bound in this case. If vSu <20,

Je

and in this case we use the u term from the minimum function to get the final
bound. Finally, if 0Su=v,

f log

dz = log|—

dz = f logy(y+1)2 dy £ cu £ 2cv,

u+tz dz

dz = j log

dz+flg

© 2u
< cu+ 1
= cu j; ogy( 1)2

U +0)/(v=1u)

A

® 2u
cu+(v—u)+f2 logyG—_-l—)zdy S o

and the v term can again be used from the minimum function.
Now we are ready to apply Lemmas 6 and 7 to obtain estimates on the function
g defined by (2.5). For a1, we need to introduce some new functions. Let

gt = & [ au- (& 00—, OYuta),

gaily 1) = ”’ f G- (= (&, O)(E~, OYp(db),

and
g/(& ) = sec (me/2){g1,(§, n)e~ "2+ g, (€, n)et™2},

where we are assuming for the moment that the defining integrals converge. Then
we have

LeEMMA 8. Suppose «# 1, and that for some B2 0 there is an M such that
(33) [ e o-ouan s m
N
for all £ € Sy. Then, choosing k as in (3.2), we have for all §£,n€ Sy

k-1
g(n)—g(f)-; gilé ) = O(|E—|**5).



1969] THE GENERAL STABLE PROCESS IN R¥ 309

Proof. First note that the defining integrals for g;(£, 1) converge due to the
assumption (3.3). Now apply Lemma 6 with v=(y, 8), u=(¢, 0):

k-1
al(n, )= D G () % (n—¢, 6

i=0
= K|(m=& 9)***{|(n, O)|~* +1(& 0)] ).

Integrating with respect to u over Sy and using |(n— &, 8)| < |n— £|, we obtain

< 2MK|n—¢|**s.

k-1
g —g.(8)- /zx g6 m)

The same technique works for g, and the estimates for g follow.

COROLLARY. For £, 7€ Sy,

gm)—g(€) = O(|¢—n|9), fa<,
=0(é-1]), fe>1

Proof. Since (3.3) is always valid with 8=0, the bound for « <1 is an immediate
consequence of the lemma. For «> 1, we have

gm)—g(é)—g.(¢, n) = 0(|§—7[%),

and it is clear that

[g1(¢, m)| £ afsec me/2| [€—n]
for a>1.

Before proving the sharp estimate that we need for «= 1, we shall consider what
we could get by using the same technique used for «# 1. The result corresponding
to the corollary is not valid, but since [log |x| | is dominated by |x| ~¢ for small | x|
for any ¢>0, one can prove very much as above that for «=1 and any fixed ¢>0,

34 g —g(§) = O(|§—n|*"*).

In fact, the estimate can even be improved to O(|(£—1) log |¢§—7]| |), but (3.4) is
good enough for our purposes. However, we do need an improved estimate
involving the symmetric second difference of g. This is the subject of

LEMMA 9. Suppose «a=1, and that for some 0<B =<1 there is an M such that (3.3)
holds for all ¢ € Sy. Then

g+ +g(§-0—2g(6) = O(|¢***)
whenever £ € Sy, |+ 21, |€-¢[21.
Proof. We apply Lemma 7 with u=(¢, 6), v=(¢, 6) to obtain

= K| O O P+ 1(E+E O P +[(6=E, )%
S K[ O P+ [E+UIE+LL Ol P +[(E=L/I6=1], )74,
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the last inequality being a consequence of the fact that |é+¢|21, [é-¢|=1.
Integrating with respect to n and using (3.3), we get

[€+|gn(é+ 0+ €= ga(§ =) —2gr(§) = O(|L]**5).
Now by the parallelogram law,

242802 = [§+L2+ 6012 2 14613
and thus

_rl2_ 2
Ge=2-neae-01 s E2t < A < min g0, 119

§ 2l§ll+3.

In the same way we see that |(|¢+ | — 1)ga(¢+ )| £2|{|**2. The imaginary part of
g can be estimated in exactly the same way by using the other half of Lemma 7
and the fact that

(§+, 0) log |(§+/|6+|, 0) = (§+¢, 0) log |(§+E, B)|—(£+, ) log [+

so that when the 6 integration is performed the last term is zero because of the
assumption (2.2). Thus we have that both the real and imaginary parts of g satisfy
the conclusion of the lemma.

These estimates on g convert directly to bounds on the function 4 defined in
(2.9). The situation which will interest us is when

fl = 09

(3.5) fj = sin P2. .. Sin ®;-1 COS @y, 2 §j _S_ N- 1,
Ev =sing,...singy_oSinpy_;,

and
71 = COS @y,

(3.6) 7; = sin @, ... sin g;_, COS @y, 2<j=N-1,

7y = SiN @, ... SiN @y _5 SiN @y _;.

For this particular case, it is useful to note that |§—n|<|p, —=/2|. Then, for
example, we have from the corollary to Lemma 8 that

h(‘Pb P25 -+« ?N-l)"'h(ﬂ/za P2s - - -5 ¢N-1) = 0( ‘Pl_g )9 if“ < 1,

), ifa>1,

3.7 - 0( -3

the bounds being uniform in @, . .., py_;. For the case of «=1, we have

COROLLARY. If a=1, 0SB=<1, and there is an M such that (3.3) holds for all
f € SN, then

h(‘Pb P25 -+« ‘PN—I)"'h("_‘Pla P2y -y ‘PN-I)—Zh("/Z’ P2y -0y 'PN-I)
= O(lpr—m/2|**%).
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Proof. Let ¢ be asin (3.5) and {=(ctn ¢,, 0, . . ., 0). Then |é+{| =(1 +ctn? p,)*/3
=(sin ¢,) ! and we have (¢+{)|£+{| ~*=n as given in (3.6). Thus

g(¢+0) = g((§+D|6+L™ = hl(oy, @2, - - ., Py -1)s
and in a similar way
8(¢—=0) = h(m—@1, @2 . .., Py -1)-
Lemma 9 now yields the corollary for ¢, € [7/4, 37/4], say; there is no problem for
¢, outside this interval since 4 is bounded.

Proof of Theorem 1. We consider first the situation when «# 1. Recalling (2.8),
let

(-] n
Ip) = f f exp (= irp 08 gy — r*h(py))r™ = X(sin py)"~? dp, dr
0 0

where the arguments ¢,, ..., py-; have been suppressed in the function A. In
order to prove the theorem, it will suffice to show this integral is O(p~%~%"1)
uniformly in @, . . ., py-;. First choose m so that

mz2 (N-1l+a)fe, ife<]l,
=2 N-1l+g¢, ifae>1.

Then let
410,90 = exp (~rhaf2) 3, LIDHRI
Ax(r, @) = exp (—r®h(m/2)),
As(r, ¢1) = exp (—=r*h(e,)) — As(r, ¢1) — Aa2(r, 91),
and

G8) L) = f ) f " exp (= irp c0s @1)An(r, p)rY - (sin @y)¥ 3 dpy dr,
0 0

for n=1, 2, 3, the remaining ¢ arguments still being suppressed. Now

(3.9) 1(p) = Li(p)+ I:(p) + I3(p),
and
(3.10) Ip) = O(p~*~")

by Lemma 3. If «<1, by Lemma 5 and (3.7)

A

Iip) = K _, K@) —h(=[2)|" dp,

|0y -n/2|Sp
+K | . |p cos 1] ~¥=4{(gy) ~ h(m[2)| dpy
|o1-n/21>0

cP-ma-1+CP-ma-1 § c'p-N a

A
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In the same way, one shows that if «>1,
(3.11) Ii(p) = O(p~*~").

To find suitable estimates for I;(p) we must expand h(p;)—h(=/2) to k—1 terms
where k is determined by (3.2). Define h,(p,)=g.(, 1), where ¢ and 5 are as in
(3.5) and (3.6). Then by Lemma 8

k-1
h(@) = h([2)— 2 ho(@:) = O(|py—m[2|**5).

n=1l

Furthermore,

k-1 )
(h(a[2) = ()Y { _S h,.(m}

n=1

_ {h(ﬂ/Z) —h)+ S hn(m} S thm2) = gy (- 5 h,,(%)}’- -

n=1 v=0 n=1

= O(lps—7/2|**?)

for jSm—1, since m and k depend only on «, 8, and N, and h, h, are bounded.
Thus we define

m-1 k-1 F A
Adr, 91) = exp (= rh(n2)) S ({— S hn(%)} [t}
ji=1 n=1
and I,(p) by (3.8). We have shown that
m-1
A, 91)— Adr, 91) = 0( (pamm217 exp (=yr) 3 r),

and it follows that
(3.12) J.o exp (—irp cos @ ){Ay(r, ¢1) — Au(r, @)}r" 1 dr = O(|p, —=/[2|**7).
By applying Lemma 2 to the difference of the jth terms in the sum, we find that for
large values of p|cos ¢, | (3.12) is also
O(|p cos @y | =N ~%|py —m/2|**5).

Performing the @, integration yields

|11(P)"I4(P)] £K X I?’l—“/zla”d%

loy=~n/2]Sp”

(3.13) + K , |pcos @y |V~ ¢|py —m[2|** 4 do,

|0y =a/21>0"

< cp-a-ﬂ—l,

where at the last step we have used B+ 1 < N. (As pointed out in the introduction,
the hypothesis of the theorem can only be satisfied if <1 and we have N22.
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Even apart from this, the best one could hope for in (3.13) is to get B=N—1.)
The next step is to investigate the functions 4,(p;). When ¢ and 5 are given by
(3.5) and (3.6), then

(§—m, 6) = By(6) cos @, + By(6)(sin ¢, — 1),

where the dependence of B; on ¢, ..., py-; has been suppressed, but B, is
bounded. Thus, for all n, h,(p,) is a polynomial in the two variables sin ¢;, cos ;.
The same must then be true for {3%-} h,(p,)}. It follows that Lemma 4 may be
applied to show that I,(p)=0(p~%~").

Combining this with (3.9)—(3.11) and (3.13) completes the proof except for a
comment on the situation when N=2 and the case of e=1. When N=2, the range
of integration for ¢, is [0, 2=] and we have only discussed [0, »]. However, it is
clear that the integral over [, 2=] can be split up in the same way with A(3=/2)
playing the role of A(w/2).

We now sketch briefly the argument for «=1. Consider

@ T
1) +1(=p) = [~ [ exp (=irp cos g~ rhig))r~sin )"~ dpy ar
0 0
) n
+ f f exp (irp cos @, — rh(py))r” ~X(sin @,)¥ =2 do, dr
0 0

- j L exp (—irp c0s @ ){exp (—rh(py)) +exp (= rh(m—gp1)))
x r¥=(sin ¢,)¥ "2 dp, dr;

the substitution @, — m—¢; having been made in the second integral. Since
I(p) < I(p) + I(— p), it will suffice to prove the last integral is O(p~275). Let

As(r, 1) = exp (—rh(w|2){2h(7/2) — h(p,) — h(m — @1)}r,

Ag(r, p1) = 2 exp (—rh(n/2)),

Aq(r, 1) = exp (—rh(p,)) +exp (—rh(m—,)) — As(r, @1) — 467, P1),
and define I,(p) by (3.8). Then

I(p)+1(—p) = Is(p) + Is(p) + I(p),

and Ii(p)=0(p~1~") by Lemma 3 as before. Using m=2 in Lemma 5 and (3.4)
with e < (1 —B)/2 and splitting the @,-integration as we did with I;(p), we see that

Li(p) = O(p=2*%) = O(p~2-%).

Finally, using the corollary which follows Lemma 9 together with Lemma 2, the
estimate I5(p) =0(p~2"%) is obtained in the same way as the estimate for

Li(p)— L(p).

REMARKS. In the proof of Theorem 1, note that good estimates were found for
the integrals I7(p), I3(p), and I, (p). The difficulty in improving the theorem in
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dimensions higher than two comes with the estimate for I;(p) — I,(p). This required
an expansion for g and more terms in the expansion would be required in order to
obtain better results from the present method of proof.

4. The potential kernel of a stable process. If «>(N—1)/2, the estimate of
Theorem 1 shows that if 7 is small, |x| =1, then

p(t, x) =p(l, I—l/ax)t-N/a < KritQ-Mia — Kgc

with ¢> —1. This implies that (3 p(z, x) df converges uniformly for |x|=1. Since
the density is bounded, we also have p(z, x) < Kt ~¥'® and since we are assuming
N> (see §2) [T p(t, x) dt converges uniformly for |x|=1. The argument given in
[12] is therefore valid in this case so that

4.1) U(x) £ Kl|x|*=¥

for any stable process in R¥ with index o> (N-—1)/2.

We now go on to consider the case «<(N—1)/2. In order to show that the
integral of the potential kernel is not too badly behaved (even though the kernel
itself may be infinite on some rays) we will need to show that the average behaviour
of the stable density is the same as in the symmetric case so that on average it
decays like |x| ~¥~¢ even though the decay may be slower in some directions. It is
convenient to have this result in the following slightly different form.

THEOREM 2. Let p(1, x) be a stable density of index « in R¥ and let D(p, h) denote
a spherical shell:

D(p,h) ={xeR¥:p £ |x| £ p+h}.
Then there is a constant K such that
f p(l,x)dx £ Kp~'~¢h.
D(p,h)

Proof. By the inversion formula

[ smac=@n | | exp(-itx - lele) dx de.
D(po,h) R D(p,h)

Now for each fixed ¢ we make an orthogonal transformation on x given by = Bx
with b,;=¢,/|€], j=1,2,..., N. Then

N N
(x, 6 = le x,€; = I§l121 byx; = |€lm

and since the orthogonal transformation has Jacobian +1 and preserves D(p, /)
we have

[ pmax=@n [ [ exp(—imlél— ¢l dn .
D(p,h) R D(p,h)
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Next change 7 to spherical coordinates:

o+h 27 n
a2t = @ [ [ 7 [Cexp (-ircoslél = oe(6)
'J(l', P1y ooy (PN-],) dq’l e d‘PN-I d" dg
p+h r2n n
= cfnu J; fo "'J; Jov—aya(r|€)(r| €]) - ¥ -2 exp (— | £]°g(£))

"'N-I(Sin ¢2)N-3 ...sin PN-2 d?g e d¢~-1 dr df
o+h
= [ [ Tuv-malrl€D) exp (= |£l7g@D €1~ dr dg.

o
The next step is to change ¢ to spherical coordinates and perform the integration
with respect to |£|. The Jacobian contributes a factor of |£|¥ . Recalling that g(¢)
is independent of |£| and applying Lemma 1, we see that this integration produces
an integrand of order r~*~1-¥/3,¥/2 times the angular components of the Jacobian

from the change of ¢ to spherical coordinates. After integrating the angular
components of ¢, we have

o+h
f p(l,x)dx £ Kf r-*ldr < Kp~%"1h.
D(o,h) "Jo

If (r, ¢1,..., py-1) denotes the representation of a point in RY in spherical
coordinates, then restricting the angles ¢, by

lp—t| <8, i=1,2,...,N-1,

where >0 and ¢, ..., $y_, are fixed, gives a type of cone in RY with vertex at
the origin. Let

D(P1h9 8) = {(r9¢1’~--a¢N-1) P é r § P+ha [(Pi_'pil < 89 i= 19-"9N—l}’

the intersection of such a cone with the shell D(p, #). The remainder of this section
will be devoted to the application of Theorems 1 and 2 to the estimation of the
integral of the potential kernel U(x) (see (2.3)) over the set D(p, A, 6).

The first step is to use a change of scale to convert the estimate in Theorem 2 into
one involving ¢:

f p(t, x)dx = J‘ p(1, t=Yex)=Nie gy =
Do,y Dok

< Kp~'7°ht.

p(1, 1) dn
h)

D¢t~ llﬂn - llea

(4.2)

Here we have used the change of variable n=¢~'%x. The volume of D(p, A, 8) is
proportional to p¥~18¥ 14 so the upper bound on the density given by Theorem 1
(with 8=0) leads to

f p(l, x)dx S cp¥ 2288 -1p,
D(o,h,8)
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Using the change of scale as before, this yields
4.3) f p(t, x) dx € cp¥-e-28N-1py1-N-Dia,
D(p,h,06)

Now let us work on the kernel; under the assumption «<(N—1)/2,

f U(x) dx = J' dr f p(t, x) dx
D(p,h,d) 0 D(p,h,6)

(06)* @
§ Kp—l—ah’ dt_'_f CPN-a-zsN-lhtl-(N—l)/a dt

[} (060)*

using (4.2), (4.3), and D(p, h, 8)< D(p, h). Performing the integration,
4.9 j U(x)dx £ ¢'p~1*°hé%,
D(p,h,6) .

For the case a=(N—1)/2, we need one more estimate which comes from the
fact that the density is bounded

j pt, x)dx = f p(1, 17 Yex)~Ne dx
D(p,h.6) Do, 1,8

< oyt~ NapN-18N-1p
Now if 61,

~ a

(06)&
U(x)dng Kp-l-ahrdz+f cpN e~ 28N -1py1-(N-Dia gy
[} «

J D(p,h,0) 06)"

+f cp¥ 18N It~ Ne gy,
pﬂ
Evaluating the integrals and remembering that «=(N—1)/2 gives
4.5) J‘ U(x) dx < cop=2**hd%5(1 + cq|log 8]).

. 4 D(p,h,6)

If 8> 1, the upper limit in the first integral can be changed to p* and the middle
integral ignored with the result that (4.5) is still valid.

5. Hitting probabilities. We start with an interpretation of the potential
generated by Lebesgue measure on a set.

LeMMA 10. If F is a set of positive Lebesgue measure, and Ty denotes the total
time spent in F by the process, then

T = [ UG- .
Proof.
EXT} = fo P[X(t) € F) dt

= r dtf p(t, y—x)dy
(4] F

- L U(y—x) dy.
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Now if = is any stopping time, since shifting the path can only reduce T, the
strong Markov property gives

E*{T} 2 EXEX®{Tg}.
We will apply this when = is the hitting time of a set E, i.e.
e =inf{t > 0: X(¢) e E}.
If E is closed, then X(r;) € E, so if we put A=inf,.z E*{T:}, then we will have
é.D E*{T¢} 2 AD(x, E)

where ®(x, E) denotes the probability of hitting E, starting at x. This will now be
used to obtain bounds for ®(x, E) when E is a sphere.

THEOREM 3. Suppose E is a sphere of radius r and x is at a distance d from E
with r=d. For a fixed stable process of index « < N in R¥ (restricted to satisfy (2.2)
if «=1), there is a constant ¢ such that

(i) f e>(N=1)/2, ®(x, E)sc(r/d)¥~¢;

(i) if e=(N-1)/2, D(x, E)sc(r/d)¥ (1 +logd|r);

(iii) if a<(N=1)/2, O(x, E)Sc(r/d)*+=.

If the process is of type A, there is a constant K with ®(x, E) 2 K(r/d)" ~°.

REMARK. The estimates in (ii) and (iii) can be improved if we know that the
measure p appearing in the characteristic function of the stable process satisfies
the condition of Theorem 1 for some 8>0. We do not state the general result as it
seems far from best possible; note, however, that if

[ 1€ 012 wide) < m

for some 8> N—1—2«, then we have ®(x, E)Zc(r/d)¥ ~¢, so that in this case the
hitting probability of a sphere has the same order of magnitude as for the corre-
sponding symmetric process. The example considered in the next section shows that
the estimates (ii) and (iii) cannot be improved in general.

Proof. The lower bound for processes of type A was obtained in [12]. If
a>(N—-1)/2, it is a consequence of Theorem 1, with 8=0, that the arguments in
[12] are valid for the upper bound also as we have observed at the beginning of §4.
We proceed to prove (ii) and (iii). First note that we can assume that d= 2r since
these estimates are trivially true otherwise. The total time spent in a sphere of
radius r by a process starting at its centre has expectation Kr® by the scaling
property (2.1). If we take for F the sphere of radius 2r, concentric with E, then the
sphere with centre at x, radius r will be contained in F for every x € E. Thus
A=inf,ex E¥{Ts} 2 Kr%, so that by (5.1) and Lemma 10,

(5.2) O(x, E) £ K-ir-SE(T;} = K-1r-¢ f Uly—x) dy.
F
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To estimate the last integral, let D(p, h, 6) be a sector which contains F—x; it
suffices to let p=d—r, h=4r, and §=2rp~1. Applying (4.4) in case (iii) and (4.5)
in case (ii) completes the proof since in (5.2) we have

L Uly—x)dy = J U(z) dz.

D(o,h,6)

The assumption d2 2r lets us replace d—r by d/2 at the last step.

6. Example. Suppose XP¥(1)=(X{(1), X¥(t),..., X§(t)) denotes the stable
process in R¥ obtained by assuming that the coordinate processes X7(z) are
independent symmetric stable processes of index o« in R!. This corresponds to a
measure . on Sy which consists of 2N equal point masses at the points where the
coordinate axes intersect Sy. We could also think of X%(¢) as the sum of N in-
dependent linear processes in different directions. It is clear that the density p(¢, x)
for this process is of the form p(t, x)=p,(1, x,)pi(t, x2) ... pi(t, xy) where
x=(xy, Xa ..., Xy) and p,(¢, x;) is the density for a linear symmetric stable process
of index «. Since [11]

¢ Sp1,x) 2 ¢ for |x

6.1

it is easy to check that U(x)=[g p(1, x) dr will be finite for x#0 if «>(N—1)/2,
but will be infinite for x on a coordinate axis if « £ (N —1)/2. (The scaling property
is used in this computation much as it was in (4.2), for example.) We now estimate
U(x) for points close to one of the axes. Consider the set

C={x:p=x, Sp+h|x| £a,i=2,...,N}

for @ and h small compared to p, say max {2a, h} < p. Then C will differ very little
from D(p, h, 8) with 8=ap~1. For x € C,

@ « N
Ux) = f o, %) dt 2 J‘v [T pa(l, = Vet ds
] a%

j=1

1Y%

Cacll‘v'-lxl-l-—afp (1—1/¢)~1-al—N/a dt

aa

by (6.1), since t~*ex, 21 for t<p* and 1~ *|x;/ =1 for tZa" Performing the
integration, we obtain

(6.2) Ux) 2 Kyp~t %2 ¥+l ifa < (N-1)/2,

(6.3) Ux) 2 Kyp~t-%logpla, ifa = (N-1)/2.

These estimates could be used to show that (4.4) and (4.5) are best possible in
general, but we will procede directly to the estimation of the hitting probabilities.
Recall that

O(x, E) = f U(y— x)w(dy)
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where v is the capacitory measure for the compact set E. If E is the sphere of radius
r centred at the point (d+r,0,...,0), then E<C with p=d, h=2r, a=r. Thus, if
a<(N—-1)/2 and d=2r, it follows from (6.2) and the fact (Lemma 3 of [12]) that
the capacity of a sphere of radius r is K3V ~¢ that

®(0, E) 2 Kd~ 12~ N+1y(E)
= Ky Kod~ 1o+,

Similarly, if e=(N—1)/2 and d=2r,
D0, E) 2 K. Kzd™1~2r**1 log (d/r).

These results show that the estimates in Theorem 3 (ii) and (iii) for ®(x, E) are of
the right order of magnitude.

Further examination of this example shows that while the hitting probabilities
of spheres located in certain directions from the starting point can be larger than
for the symmetric stable process of the same index as we have seen, in other
directions these probabilities will be of the same order of magnitude as they are in
the symmetric case. Thus, for the process we are considering, completely different
orders of magnitude are possible for the hitting probabilities of spheres located in
different directions. Intuitively this is explained by the possibility of a large jump
in the preferred direction in a small time before the other components of the
process have had a chance to grow. This intuitive idea becomes precise in the next
section.

7. Delayed hitting probabilities. The purpose of this section is to state for
purposes of comparison the result that if we consider the probability of hitting the
sphere after a fixed positive time T (and if the starting point is not too far away)
then the “delayed hitting probability’” will be of the same order of magnitude for
all stable processes of a given index. Let

Q(x, E,T) = P*[X(t) € E for some t =2 T].
Then we have

THEOREM 4. Suppose E is a sphere of radius r. For a fixed stable process of index
a< N in RY (restricted to satisfy (2.2) if a=1), there is a constant c¢ such that

Q(x, E, T) S c(r/TH=)¥-¢,
If the process is of type A, x € E, and r <T"*, then there is a constant K such that
O(x, E, T) 2 K(r/TVe)N-q.

ReMARk. The upper bound shows that for a sphere of radius r at a distance d,
the probability of hitting this sphere after time d* is no larger than c(r/d)" ~¢, as
it is in the symmetric case. Thus, as we mentioned earlier, the large estimates in (ii)
and (iii) of Theorem 3 must be due to large excursions in specific directions in
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relatively small times. (Note that the expected length of time to first travel the
distance d is of order d*.)

Proof. The upper bound is Lemma 2.2 of [4]. From the proof of that lemma, we
take the equality

(7.1 O, E,T) = f JwC p(1, s~Y%(z—x))s~¥'* dsv(dz)
EJT

where v is the capacitory measure for E. (There is a misprint in [4], the exponent for
s there reading N—«. However, (7.1) is the correct version.) Now |s~!%(z—x)|
ST-*2r <2 and since the process is type A4, the density is bounded below on the
sphere of radius 2, centre the origin. Thus

QOx, E,T) 2 Kyw(E) J;.w s~ N de.

Performing the integration and recalling that w(E)=K,r¥~¢ (Lemma 3 of [12])
completes the proof.

As we have pointed out in the introduction, Theorem 4 is sufficient to justify
Theorems 2 and 3 of [12].

8. Further problems. The problem of improving the hypothesis of Theorem 1
(particularly for N 2 3) has already been mentioned in the introduction. In addition,
it would seem desirable to know whether it is possible to obtain the more complete
information about the asymptotic behaviour of the stable density that is available
in one dimension [11].

There are some interesting problems concerning polar sets. For e=1, N=1, it
is known that the nonsymmetric Cauchy processes have no nonempty polar sets
[9], while the symmetric process has nonempty polar sets. If N=2, does the class
of polar sets for a=1 vary with the process? It seems likely that (as in R?) it may
differ at least for processes not having the scaling property. A similar problem now
exists for general «. Orey [6] showed that all stable processes of index « in R
which satisfy

8.1) U(x) £ c|x|*~¥

have the same polar sets. However, we have seen that (8.1) is false in general. It
remains an open question, therefore, whether the class of polar sets is the same for
all stable processes with given N2 2, a#1. For N=1, there is no problem since
(8.1) is then satisfied for a<1.

Another question we have ignored entirely is the behaviour of processes with
index «=1 not satisfying the scaling property. For example, in this case we have
not even considered the asymptotic behaviour of the density. Of course, for N=1
this is given in [11]. Also the asymptotic behaviour of U in this case is obtained
in [9].
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