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THE UNIQUENESS OF THE CAUCHY PROBLEM
FOR PARTIAL DIFFERENTIAL EQUATIONS WHICH

MAY HAVE MULTIPLE CHARACTERISTICS

BY

PETER M. GOORJIAN

1. Introduction. Nirenberg [1] proved uniqueness of solutions to the Cauchy

problem across convex surfaces for equations of order m with constant leading

coefficients and with characteristics of multiplicity at most r,0<r^m. Only lower

order derivatives of order at most m — r were allowed in the equations. In §2 we

shall prove uniqueness of the Cauchy problem across certain convex surfaces for

equations of order m with constant leading coefficients, with complex character-

istics of multiplicity at most r and with real characteristics of multiplicity at

most s. Only lower order derivatives of order at most m—q are allowed in the

equations, where q is the maximum of s and the largest integer no greater than

i/+l)/2.
Protter [7] proved uniqueness across arbitrary surfaces for certain elliptic

equations of order m with variable leading coefficients, with characteristics of

multiplicity r and with lower order derivatives of order no greater than m — r/2.

The principal part was derived from the product of r second order elliptic operators.

In §4 we shall generalize these results to allow factors of arbitrary order with simple

characteristics, and the equations will have Lipschitz continuous leading coefficients.

In §5 we shall compare the present results with Cohen's [1] counterexamples.

We shall see that if a lower order derivative of order higher than we allow should

occur in the equation then uniqueness fails. In §3 we shall prove uniqueness across

certain convex surfaces for parabolic equations in which the elliptic operator has

constant coefficients. Finally, in the above equations for which uniqueness holds,

the lower order terms are merely required to have locally bounded, measurable

coefficients, whereas Cohen's counterexamples have continuous coefficients. In

§6 we shall prove some special uniqueness results for equations with lower order

terms of order greater than previously allowed, provided all coefficients of terms

above a certain order are constant, the remaining ones being measurable and

bounded.

Notations and definitions. Let Q be an open set in real n-dimensional

Euclidean space Rn, /iâ2; x=(xx,.. -, .vn)e £i; a = (ax,.. .,an) is a multi-index

where the ak are nonnegative integers; |a| =22-1 afc- £=(£i> • • • » in) £ -#"• £a=

fi1- • •£?"• £»(£i» • • -, in) 6 Cn, where £fc, k = \,..., « are complex numbers and Cn
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is complex n-dimensional Euclidean space. £° = iï1 • • • ££". Let P(x, £) be a poly-

nomial of order m in n variables Çx.£„ with complex variable coefficients

defined for leil. [a] is the largest integer less than or equal to a. k is always a

single index, k = l,..., n.

£)fc= -id/dxk. D=(Dy,..., Dn). Da = Dayi- ••/>£«. Let P(x, D) denote a linear

partial differential operator of order m with complex variable coefficients defined

for xeQ.. P(x, D) is obtained by replacing £k with Dk in P(x, £); thus P(x, D)

= 2i<rism ûa(x)£)„. P(x, £) is called the symbol associated withF(x, D). The principal

part Pm(x, D) of P(x, D) is 2,.,.. ^)D.. Pw(x, t,) = VP(x, Ö/3&- • .3E- and

the special case when the latin letter k is used Pim(x, Ç) = dkP(x, £)/d£ï- When

P(x, D) has constant coefficients, then P(x, D)=P(D).

The equation Pm(x, £ls £2,..., £„)=0 is called the characteristic equation for

P(x, D), where £2,..., £„ are real and not all zero and £x is complex. Assume the

coefficient of £? is not zero. If the m roots Rx,..., Rm of the characteristic equation

at x0 e O are always distinct for all real choices of (£2,..., £„)#0, we say that

P(x, D) has simple characteristics at x0. If for some choice of (f2,..., f„)^0 we

have a (real) root of multiplicity r we say we have a (real) characteristic of multi-

plicity r at x0. If real characteristics do not occur we say P(x, D) is elliptic at x0-

2. Equations with constant leading coefficients and with complex or real character-

istics.   We shall study solutions of the differential inequality

(2.1) \P(D)u\ S K    2     \Dau\,
lalSm-d

where P(D) is a homogeneous operator of order m with constant coefficients, with

complex characteristics of multiplicity at most r and with real characteristics of

multiplicity at most s, q=max (s, [(r+1)/2]). u e Cm is a solution of the differential

inequality which vanishes for xxS*(x&l-l-x2), c>0, when x is in a neighbor-

hood of the origin. We shall prove that u vanishes in a neighborhood of the origin.

The symbol P(Ç) has the following two properties: the set of polynomials

Pm(£), OSkSs, 0^£eRn have no common zero, and the set of polynomials

Pm(ti, &,... L), OSkSr, 0#(f2,..., ¿n) e R"-1, ii e C have no common zero.

We drop the restriction on the symbol P(£) that the coefficient of £? is not zero.

Rather, we require the property of P(Ç) concerning the complex roots to still be

valid, and that the multiplicity of the real characteristics of P(D) is at most s in the

sense that the set of polynomials P(a)(f) with \a\—s have no common zero for

0,¿ f e Rn. By Euler's theorem on homogeneous polynomials, this class of operators

will include those previously defined. Also included in this class are operators such

as the wave operator in two dimensions P(D)= — DXD2, for which the Xy axis is a

characteristic direction.

We use these two properties of P to prove a key inequality.
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Proposition 1. Let NQ=(-l, 0,..., 0), £=(&,..., f,)eÄn and reR. Then

there is an open cone V<=-Rn with N0 e V such that for Ne V

|£+iVAT(m~s) á CÍ 2 \Pw(i+irN)\2

(2.2) W'

+   2    (T\N\)2(k'3) I P(k)($+irN)\2\

If r^s, then there is no second sum in (2.2).

Proof. Because of the continuity and homogeneity properties of P, we shall first

prove (2.2) when N=N0 and |f+/tA/0| = 1; then \N0\ = 1 and

If+MVol2 = t2+ 2 ñ = 1.
fc-i

When t=0, F(<t)(f)#0 for some |a| = j because F has real characteristics of

multiplicity at most s.

When t/0 and (£2,..., £„)#0, then the polynomials P(k)(¿¡+irN0), k=0, ...,r

have no common zero, since P has complex roots of multiplicity at most r. By

Euler's theorem on homogeneous polynomials, the set of polynomials P<a)($+irN0),

\a\ =s and P(k)(í¡+ÍTN0), k=s+1,..., r have no common zero.

When t#0 and (£2,..., £„)=0, then the set of polynomials P(a)($+ítN0),

\a\ =s becomes a set of monomials ca($x — ir)m~' with constant ca. For this set to

have a common zero with ff + -r2=l would require all ca=0, but that would

contradict the assumption on the multiplicity of the real roots of P(Ç).

Hence for N=N0 and for all (f, t) such that \$ + ítN0\ = 1, the sum on the right

side of (2.2) is nonzero. That sum is a continuous positive function on the compact

set t2 + 22=i fic= 1, hence it has a minimum value m0>0. Let c= l/mQ, then (2.2)

is proven for |f+MV0| = 1. Since both sides of (2.2) are continuous functions in N,

it follows that with a C larger than l/m0, the proposition is true for all N in some

neighborhood Uof N0 with |JV| = 1 and \í+irN\2 = r2 + 2k=x ñ=l-

Next consider $+irN such that (Ç, t)#0 and N e U. Let

? + Ít'N=($ + ÍtN)/\{ + ÍtN\.

Since the proposition is proven for |f' + iV7V| = l and since F(£) is homo-

geneous of degree m, substituting into the inequality for $' + ir'N yields (2.2) for

(Ç, t)#0 and Ne U. Finally if (f, t)=(0, 0), both sides of (2.2) are either zero if

m>ior constant if m=s. Hence (2.2) is proven for N e U.

Since N and t occur in (2.2) only as the product tN, it follows that (2.2) is valid

for those A^^O in the cone V, where Ne V if N/\N\ e U. When #=0, (2.2) holds

because of the multiplicity of the real roots.

In the integrals to be studied, we shall use as a weight function exp (2rcp(8, x)),

where t is a parameter which will eventually be allowed to increase toward +oo
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and S is a positive parameter which will be taken sufficiently small and then fixed.

8 is the parameter introduced by Malgrange [4] and it enables us to include in (2.1)

the terms of order m—q.

(2.3) rp = 9(8, x) = (xy - 8)2 + S2(x| +---+X3).

Notice that the surface 9(8, x)=<p(S, 0) = 82 has a contact of the second order at

the origin with the paraboloid Xy = (8/2)(x2 + • • ■ + x2), which apart from the

origin lies in the set Xy < S(xf + • ■ • + x2.). Let U6 be a neighborhood of 0 such that

when x e U6 then grad <p(S, x)e V and |grad <p(S, x)-grad 90(8, 0)| <8, where V is

defined in Proposition 1. Using the methods of Hörmander [3], we shall now

prove the basic Carleman type estimate.

Theorem 1. Let P(D) be a homogeneous operator of order m with constant

coefficients, with complex characteristics of multiplicity at most r, and with real

characteristics of multiplicity at most s. Then when u e Cô(U6), \a\ Sm—s, 1 > 8>0,

t>S~2s_2, r=max (r, s), p=2s ifs^r andp=0 ifs<r,

(2.4) SP(i + 82T)m-i«i-'T'"-i'»i f\Dau\2e2x° dx S C (\P(D)u\2e2™ dx.

Proof. First we introduce a partition of unity, which is necessitated, as will be

seen, by the fact that <p is nonlinear. Let x(x) — x(x\, ■ ■ -, xn) be the characteristic

function of the unit cube defined by \xk\ <%, k = I,..., n. With a function 0^0

in Co(Rn) with integral 1, we form the convolution

8(x) = (x* @)(x) = f  x(x-y)Q(y)dy.

6 is a function in C0x(Rri) ; moreover we may assume 0 is so chosen that the support

of 0 is contained in the cube \xk\ < 1, k=l, 2,..., n. For fixed x and j, ¿i,x(x—g—y)

= 1 except on a set of measure zero, note g = (gx,..., gn) runs through all the

integer coordinates. Hence 29 6(x—g) = .fR» 0(j>) dy= 1, and the functions 8(x—g)

form a partition of unity. We shall use the partition of unity given by the functions

6(xyTll2-gy,x2oT1'2-g2,.,.,xnhT1,2-gn) with T, 8>0. Hence for ueC^(U6)

u = J,gu, where

(2.5) ug(x) = 6(xyr1<3-gy, x28r1'2-g2,..., x^-gXx).

Notice that at most 2n functions u9 are different from zero at any one point.

Let ArB=grad <p(8, xB) where x^gy/r1'2, gjor1'3,..., gJSr1'2). Utx=xge Uô,

hence NBe V and Proposition 1 is valid for N„. Let ûg^+irN,,) be the Fourier

transform of ug(x) exp «x, tA^», <x, Ars,> = 22=i xk(Ng)k. With N=Ng, we multiply

(2.2) by \ûg(i+hNg)\3 and integrate,

j \£+iTNg\*m-s)\ug(i+iTNg)\2 d£

(2.6) S C f ( 2  \P(aKi + irNg)\2+   2   (T\Ng\)2(k-s)\P(k)(é + iTNg)\2)
J   \|ct| = s fc = s + l /

■\ûg(è + irNg)\3 de.
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Let |F>m"s«|3 = 2i<ri=m-s |A*"|8- We shall use Parseval's formula; for/e Co"

f   \P(a)(i+iTN,)f(Ç + iTNg)\2d$= ¡   \exp«x,TNgy)P™(D)f(x)\2dx.

Using Parseval's formula on (2.6) yields

(\D""%\2 exp (2r<[x, Ng» dx

(2.7) =CÍÍ2   \Pw(D)ug\2 +   2   (.T\Ng\)2«-s)\Pm(D)us\2)
J   \|a|-j fc-» + l /

•exp(2r<x, Ng))dx.

Multiplying (2.7) by exp (2r(<p(8, xg)-(xg, Ng})), we have

\ [&*-%[* exp (2r$) dx

(2.8)
= cf(2   \Pitt\D)ug\2 +   2   (r\Ng\)2(l(-s)\PM(D)ug\2)exp(2ri;)dx,

J   \|a| = s fc = s+l /

where tfi=<p(8, xg) + (x—xg, Ng}.

Lemma 1. <p(8, x)^</i(8, x)^cp(8, x)—n/r in the support ofug.

Proof. ?(*, x)=<K8, x) + (Xl-xgx)2 + 82 Zl,2(xk-xgk)2Zi(8, x) by Taylor's

formula. In the support of ug, by (2.5), (jci—-vsi)2< 1/t, and (xk — xgk)2< 1/82t,

k=2,...,n; hence cp(S, x)¿</j(8, x)+n/r.

Since xg e U6, \Ng—grad <p(S, 0)| < 8 and \Ng\ < 38. Using Lemma 1 and \Ng\ < 38

in (2.8)

(2.9)

(\Dm-'us,\2exp(2rcp)dx

= CÍÍ2  |F(a)(F>K|2+   2   (■■S)2<fc-s>|F('c'(i>K|2) exp (2t«p) dx,

where henceforth C is a generic constant depending on n, m and F but independent

of T, S and u.

Since at most 2" of the supports of the ug meet at any one point, we have in

view of Cauchy's inequality

(2.10) \Dm-'u\2 = 2n2 |F>m_s«,2
91    •

Let a denote the multi-index obtained by setting the first component of a equal to

zero.

Lemma 2. 2» \P(a)(D)ug\2 = Cla \P^a+s\D)u\2rw82^.
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Proof. By (2.5) and Leibniz' formula

(2.11) P(a\D)ug = 2 (F("+a)(I>)m)(í?ío)tiai'28i«'i/|/S| !.
e

Since 6e Co, Smsm \Dßü\2 >s bounded. Also no more than 2" functions ug are

nonzero at any one point. Let N(m) denote the number of terms in the set P{B),

and let C be a bound on 2nN(m) 2iíiÉm \DB6\2. By use of Cauchy's inequality from

(2.11) we have 2, \PM(D)ug\2¿C2e \P{a+f)(D)u\3Tw83^'K

Using Lemma 2 together with (2.10) on (2.9) yields

(2.12)

[\Dm-su\3 exp (2r<p) dx S C f 2 t^'S21"'1

■( ^ \Pia + ß\D)u\3+   2   (rS)2'k-s)\P(k+e)(D)u\2) exp (2t<p) dx.

Next we use a fundamental inequality, proven by Trêves [8]. If Q(D) is a linear

partial differential operator with constant coefficients, then for u e C™

(2.13) (ttt)3 [\Q{a\D)u\3ev dx S |a|!2m"|a| f\Q(D)u\2e7' dx,

where -n = t\x\ + ■ ■ ■ + t2x3, t = (tx,..., tn) and re = rfi- • •£«. For the operator

P(Z>) in (2.1) we let í2=2t, í|= •• - =í2=2t82 and multiply (2.13) by exp (2tS2)

to obtain

(2.14) t1"^21"'1 [\Pw(D)u\3 exp (2r(<p+p.)) dx S C [\P(D)u\2 exp (2r(9+p.)) dx

where p.(8, x) = 28.Xy. We apply (2.14) with ue-1" replacing u and P(a)(D + 2iToN0)

replacing Pia)(D). Since F(a>(#+2ir8No)(ue-7ií) = e-wPM(D)u we obtain

(2.15) ri«i83i«'i [\pw(D)u\3e3™dx S C Ï \P(D)u\2e27" dx.

Using (2.15) to estimate two typical terms on the right side of (2.12)

(2.16) riiigaii'i (\P'«*"(D)u\2eat,'dx S C(82r)~s ( {P^ufe2™ dx

since 8< 1 and |o| =s, and

TiÄiS2iri(T§)2(k-S) (\pc+ey(D)u\2e3z,f dx

(2.17)
= C^t^St)"28    \P(D)u\2e3™ dx.

If J = r, using (2.16) in (2.12) yields

(2.18) (\Dm-su\2e2l"dx S C(o3t)-° Up^u^e2™ dx.
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If r>s, then by choosing t>8-23~2 and using (2.16) and (2.17) in (2.12)

(2.19) I \Dm-au\2e2,° dx á Ct-"(I-t-tS2)'-» ( \P(D)u\2e2z° dx.

All lower order derivatives are estimated by integrals of J Z>m_s«|a.

Lemma 3. Ifv e Cô(Uô) then

r(l + 82t) f|i>|V2"°¿* = [\Dxv\2e2™ dx.

Proof. Let w=ve™, then

[\Dxv\Wdx = [\dw/dxx\2 dx + 4-r2 Uxx-8)2\w\2 dx

-2r[(xx-S)d\w\2/dxxdx.

Using integration by parts — 2-r j (xx-8) 8\w\2/ôxx dx=2r j |w|2</,v.

f | Dxv\2e2t» dx^  Ut+4t2(.-C! - S)2)| w\2 dx.

ForxeU6,4(xx-8)2>82.

Using Lemma 3 repeatedly with v= Dau and \a\^m—s

(2.20) (r-r-SV2)"-""-« [\Dau\2e2x° dx = (\Dm-'u\2e2t" dx.

(2.18) and (2.20) yield

82s(l + 82T)m-|a|-sT"-iai (\Dau\2e2z"dx < C [\P(D)u\2e2x9 dx.

(2.19) and (2.20) yield

(l + c.2T)m-ia|-V-"»i [{DM^^dx ^ C UpWu^e2™ dx

and the theorem is proven. C depends on m, n and F but is independent of u, r

and 8.

We shall now use Theorem 1 to prove uniqueness of solutions to the Cauchy

problem for (2.1).

Theorem 2. Let P(D) satisfy the hypothesis of Theorem I and let ue Cm be a

solution of (2.1) which vanishes for Xx = e(x|-l-r-x2), e>0, when x is in a neigh-

borhood of the origin. Then u vanishes in a neighborhood of the origin.

Proof. Let U6 be a neighborhood of 0 such that (2.4) is valid and U6 belongs to
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the neighborhood given in the hypothesis of this theorem. Let x€Co(Uó) such

that x=l in a neighborhood U'ofO and let v = x«. Thus in U'

(2.21) \Pv\ S K    2     IA,P|-
lalêm — Q

When x e U6 and x is also in the support of v then e(x|-l-hx2)^Xi S 8. Let

8 S £, then <p(S, x) < 82 except when x=0. If in addition x g CU', the complement

of U', then <p<h2-L where 0<L<82/2. Also let U"<=U' be a neighborhood of

the origin where <p>82-L/2; note <p(o, 0) = S2.

Since Co(U¡) is dense in L2(U¿) we may apply (2.4) to v:

2    Sprm-|al(l + 82T)m-|<r|-t (\Dav\2e2,*dx

(2.22) = C [\P(D)v\2e2™ dx

SKC[      2     |^at'|2^2"'^+C f     IPÍ^pIV" ¿x,

where (2.21) is used to obtain the second inequality. When r is an even number,

¿<r/2 and \a\=m-r/2, then as t^ -f-oo, SV-^'O+82T)m-|or|-r-* 8~r; choose

S-1»A'C and then fix 8. In all other cases as t -► +oo, then 8pTm-|al(l -f-S2^"1-1"1-'

-> -f-oo. Thus in all cases for 8 sufficiently small and then fixed and for t sufficiently

large we may move the terms involving Dav on the right side of (2.22) to the left

side to obtain with a larger C

2     SpTm-|a|(l-r-8Vr-|a|-' (\Dav\3e3,0dx S C [     \P(D)v\3e2,c dx.

Dropping all terms on the left side except the one for |a| =0 and restricting the

integration for that term to U"

(2.23) f    \v\3e2t*dx S C f     \P(D)v\af dx.
Jv" Jew

Using in (2.23) the fact that q>S83—L when x e CU' and x is in the support of v

and <p>83—L/2 when x e U", we have

f   \v\3 dx S Ce~xL {    \P(D)v\3dx.
Jw Jew

When t^- -(-co it follows that the inequality can hold only if «=t'=0 in U", and

the theorem is proven.

Hence solutions of the Cauchy problem for (2.1) are unique across those convex

surfaces S which at any point x of S admit coordinates such that in a neighborhood

of x, S does not lie below Xi=e(xiH-hx2.), for some e>0.
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3. Parabolic equations with constant leading coefficients. For this section only

we change the notation slightly. Here Q. denotes an open set in real n +1 dimen-

sional Euclidean space F!n+1, n^ 1. x=(t, xu ..., xn) e £i.

n

a = (at, ax, ■ ■ •» an)- «' = (°. "i, • ■ ■. «n)> |«| = «t+ 2 "*•
Jc-l

è = (ft, &,..., L) eRn+1-      f = tf'íí1 ■ • • ä». e = (0, fi,. • •, L).

£ = (it, Zl, ■ ■ ; Cn) s Cn+1.       A = -i s/ar. F» = (A. -Oi.^n).

A = A'F>ï----F>î».

An operator F(Z)) of order m with constant coefficients will be called para-

bolic if it has the form

(3.1) F(A^ = d/dt-P.(D).

Pe(D) is a polynomial in Dk for k = \,..., n. For «^2, Pe(D) is a homogeneous

elliptic operator of order m with characteristics of multiplicity at most r when

considered as an operator in the variables xlt ■ ■ •, xn. For n = 1, Fe(D) = cDx with

c a nonzero constant, m even and z'mc>0.

We shall consider two problems. First we study the solutions of the differential

inequality

(3.2) \P(D)u\ZK    2     IA»-«|,

where P(D) is the parabolic operator (3.1). q = [(r+1)/2].

Proposition 2. Let N0 = (0, -1, 0,..., 0), ÇeRn + 1, re R, then there is an open

cone V<=Rn + 1 with N0eV such that for NeV, N=(Nt, Nlf..., Nn), N' =

(0, Nx, ■ ■ -, Nn) we have

If+iTiV'l«"-"
(3.3) /  ^ ' \

áC    2 \Pia'X£+irN)\2+ 2 (T|Af|)*fc-1)|i>(W(£+MV)|a .
\|a'| = l fc = 2 /

Proof. From (3.1) we have PW)(Q= -F<°(0 for |«'|il. Since both sides of

(3.3) are independent of ft, we prove (3.3) with £=0. The remainder of the proof

is the same as for Proposition 1, but here we replace F with Pe and use the elliptic

and homogeneous properties of Pe. Note if r= 1 then there is no second sum in (3.3).

Using Proposition 2 a Carleman type estimate analogous to Theorem 1 can be

proven for the parabolic operator (3.1) with a replacing a, s=l and <p(8, x)

= (x1-8)2 + 82(x2i+ ■ • • +.r2 + i2) in (2.4). Using that estimate and following the

proof of Theorem 2, it follows that solutions u e Cm to (3.2) which vanish for

Xxèe(x%-{-+x2 + t2), e>0, when x is in a neighborhood of the origin, do in

fact vanish in a neighborhood of the origin.
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Next we study uniqueness of the Cauchy problem for parabolic operators across

the surface t = e(xi-\-hxjj), e>0. We study solutions of the differential inequality

(3.2) but with q= 1, hence now (3.2) is independent of the multiplicity of the complex

characteristics of Pe(D).

Proposition 3. Let N0 = (-1, 0,..., 0) e Rn+1, ¿¡ e Rn + 1, r e R, then there is an

open cone V^R71*1 with N0eV such that for N e V, N=(Nt,Ny,..., Nn),

N' = (0,Ny,...,Nn)wehave

(3.4) |f+ zYAH2("-1> S el 2   \PW)(î+irN)\3\
\|tt'i-i /

Proof. Since both sides of (3.4) are independent of £t, we prove (3.4) with £¡=0.

We first prove (3.4) when N=N0 and \e+ÍTN0\2 = r2 + 2^i ft«l. Then

(3.5) |f+itJV"|!K"-1) = |f + irN0\3lm-1) = |f I*»-»

and from (3.1) for |ot'| = 1

(3.6) PwXt+irN) = -P^(C+ítNo) = -P?\ft.

When t=0, |f+WV0| = |f| = l, hence Pf'X&^O for some |«'| = 1, by the use of

Euler's theorem on homogeneous polynomials and the fact that Pe(£) is elliptic in

f. Therefore the sum 2i<ri-i |F(a>(f)|2 is a continuous positive function on the

compact set |f = 1, hence it has a minimum value m0>0. Let C= l/m0, then

(3.7) |f I*-« = 1 S C  2   \Pw\t)\\   for |l| = 1.
la'l-l

Since both sides of (3.7) are homogeneous of order 2(m— 1) in £k, k= I,..., n,

(3.7) is valid for all f Using (3.5) and (3.6) in (3.7) yields

|f+ /ViV0|2(n,-1) S C  2   \Pia'Xé+iTN0)\*

and (3.4) is proven when N=N0 and ||+WV0] = 1.

Since both sides of (3.4) are continuous functions in N, it follows that with a

larger C than l/m0, the proposition is true for all N in some neighborhood of N0

with 1^1 = 1 and \£+ÍTN\2 = r2 + '2.k^x{2 = l. The remainder of the proof is

exactly the same as that of Proposition 1.

So we see that when N0 points in the / direction of Ä"+1, then we can choose V

"narrow" enough so that we miss the complex roots of Pe(t). Now we shall prove

a Carleman type estimate for P similar to (2.4), but here we set

(3.8) <p(o, x) = (/-8)2 + 82(xf+ • • • +x2).

Let U6 be defined as in §2 except that here we use (3.8) and the V defined by

Proposition 3.
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Theorem 3. Let P(D) be the parabolic operator defined by (3.1). Then when

ueC?(U»), |o'|íw-l, T>0a/iû?l>S>0

(3.9) (tS2)"-1«'1 (\Du.u\ae*"dx = C f|F(ö)«|2^2"p dx.

Proof. The proof is similar to that of Theorem 1 so we shall only indicate the

changes. Let |.Dm~1«|2 = 2ia'i-m-i I A'«l2- The proof proceeds as before but now

instead of Proposition 1 we use Proposition 3 to obtain the basic estimate (similar

to (2.18))

(3.10) tS3 (\Dm-1u\ie2t<'dx á C f |^(/>)«|"ea,# dx.

Lemma 3 is not useful here because its use is dependent upon the basic estimate

estimating derivatives in the NQ direction, which (3.10) does not do. However

when tp is defined by (3.8) we have

Lemma 4.1fve C0°°(£/,,) and A = -' â/dxx

(3.11) T&* t\v\2é*" dx £ Uuxv^e2™ dx.

The proof is similar to that of Lemma 3. Using Lemma 4 repeatedly together

with (3.10) yields (3.9).

Using (3.9) and following the proof of Theorem 2, it follows that .solutions

u e Cm to (3.2) which vanish for t-=e(x2-\-hx2.), e>0, when x is in a neighbor-

hood of the origin, do in fact vanish in a neighborhood of the origin.

4. Elliptic equations with variable leading coefficients. We shall study the

solution of the differential inequality

(4.1) \P(x,D)u\ $K    y     \D„u\,
lalSm-a

where P(x, D) is an elliptic operator of order m with characteristics of multiplicity

at most r and ^=[(r+l)/2]. u e Cm is a solution of (4.1) which vanishes for

Xx áx\+ • • • +x% when x is in a neighborhood of the origin. P(x, D) also has the

following form.

(4.2) P(x, D) = Px(x, D)P2(x, D) ■ ■ Pr(x, D).

Each of the factors Pk(x, D), k=l,...,r in the product (4.2) satisfies the

following conditions.

(4.3) Pk(x,D)=    2   4WA

is an operator of order mk with coefficients a„(x) such that for k=2,..., r, a!i(x)

have Lipschitz continuous derivatives of order (2!c=~ilwi)- U and for k — \, a£(.v)
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are Lipschitz continuous for |a|=mi and Lx for |a|<mi. Let Pkm(x, D) =

l.\a\^mkak(x)Da denote the principal part of Pk(x, D); we assume Pk(x, D) is

elliptic at the origin, i.e.,

(4.4) Pk,m(0,f)#0   forO^ teR\

Finally we assume that Pk(x, D) has simple characteristics at the origin, i.e.,

(4.5) Pk.m(0,£i,£2,...,f,) = 0

has distinct roots for £j complex and 0^(£2,..., f,) e R71'1.

Each Fk,m(x, 0 satisfies an inequality analogous to (2.2) for operators with

constant coefficients. Let

P«>(x, 0 = dP(x, £)/%,       /= l,...,n.

Proposition 4. Let N0—( — 1, 0,..., 0), Ce Rn, re R; then there is a compact

neighborhood Uk of the origin andan open cone Vk<^Rn with NQe Vk such that for

xeUkandNeVk

(4.6) \ê+irN\2^ S C(\Pk,m(x, ¿ + zVA0|2 + (t|AT|)2|F¿» (x, f+WV)!2),

(4.7) |f+WVI2""*-1' S CÍ2 \PlUx, f+/riV)|2).

Proof. The proof of (4.6) for N=N0, x=0 and \£+hN0\ = 1 is exactly the same

as that for Proposition 1. The extension to a compact neighborhood Uk of the

origin follows from the fact that the right side of (4.6) is a continuous function of x.

The remainder of the proof of (4.6) is exactly the same as for (2.2). Using Euler's

theorem on homogeneous polynomials, a similar proof yields (4.7), and the

proposition is proven.

Just as in §2, we shall use e3™ as a weight function in the integrals, but in this

section

(4.8) <p = <p(S, x) = (xi-8)2 + 8(xi+ • • • +X2.).

Let Uk <= Uk be a neighborhood of 0 such that when x e U¿ then grad <p(8, x) e Vk

and | grad 95(8, x)-grad 93(8, 0)| < 8, where Vk is defined in Proposition 4. Finally

let U6 = CYk=y Uk; we shall prove the basic Carleman-type estimate.

Theorem 4. Let P(x, D) be an elliptic operator of order m with characteristics

of multiplicity at most r and let P(x, D) satisfy (4.2). Then when u e Cq(U6), \a\ S m,

t > 0, 80 > 8 > 0, t8 > M, where M and 80 are constants

(4.9) (i + S2T)m-|a|-V-1*i [\Dau\2e2ta dx S C [\P(x, D^e2™ dx.

Note that (4.9) is similar in form to (2.4).
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Proof. By induction on r. First we simplify the notation. Let v=1 + S2t,

¡|M||2=J* | Ar«!*«21* dx and \\u\\2=¡ \P(x, D)u\2e2t» dx. \\u\\lk and \\u\\2,k.m are the

integral \\u\l2, with Pk(x, D) and Pk,m(x, D) respectively replacing P(x, D).

First let r= 1 ; Hörmander [3(b)] proved (4.9) for P(x, D)=Px,m(x, D), the princi-

pal part of Px(x, D). Hence

(4.10) 2  •^-|"|-1Tmi-|8,|«¡2 ú C\\u\\lx.m,
\a\Smx

where C denotes a generic constant which depends on n, m and F but is independent

of T, S and u. By using Cauchy's inequality on (4.3) with k= 1 and the fact that the

a\(x)eLm

(4.11) \PxM,D)u\2 = 2\Px(x,D)u\2 + C   2   \DA2-
\a\<mx

(4.10) and (4.11) yield

(4.12) 2   Kmi"|a|"1Tmi"""l|"||a Ú C|m|2.i + C   2   Wl2-
]a\imx la|<Tin

For t > 2C the second term on the right side can be moved to the left to obtain

(4.9) when r=l.

Next assume (4.9) is valid for r— 1 ; we shall prove that (4.9) is then valid for r.

Let wi' = 2fc=i"Ifc and P'(x, D)=Px(x, D)- ■Pr^1(x, D). From the assumption

that (4.9) is valid for r— 1 we have

(4.13) 2   "m'"|a|"r+1Tm'~l',lN|2 á C\\u\\2:
lalám'

Next we replace u in (4.13) with Pr(x, D)u; that the resulting inequality is valid

follows from approximation since C0°° is dense in L2 and we obtain

(4.14) 2   vm'-M-r+1Tm'-M\\DaPT(x, D)u\\20 = CM2,
lorlSm'

where |]m||0= HI« with |a|=0.

Now

(4.15) APr(*, D)u = Pr,m(x, D)Dau+      2     ^0)A",
\ß\<mr+\a\

where the c'ß(x) are bounded and measurable in the support of u. Hence by using

Cauchy's inequality on (4.15) and the result in (4.14)

2   vm'-[a[-r+lTm'-w\\Pr,m(x,D)DAl
\a\Sm-

(4.16) _ „
á c||«|2+c 2 »"■'-""-'♦V'-1"    2    HIS-

laISm' |/3|<m, + |n|

(4.17) |j8| < wir+|«| ^ mr+m' = m.
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From (4.17) m'—\a\Sm — \ß\-l, let t> 1 and since v>l

(4.18) Tm'-la|  ^  Tm-lil-l     an£J     „m'-lal-r + l  < „m-|il-r_

Using (4.17) and (4.18) in (4.16) yields

2   >'ra'-|tI'-r + 1Tm'-'al||Fr>m(x, D)Dau\\o

|e|Sm'

(4.19) „
s c||m||2+c 2 v"-'"-'»"-1"-1!"!!"-

Ifil<m

Since Daue Co(U¿) and since (4.9) has been proven for F(x, D) with simple

characteristics, i.e., r= 1, we may use (4.9) for F(x, D)=PT,m(x,D)

(4.20) 2   v"r""''lrn'''"ID»DAÎ = C\\Pr,m(x, D)Dau\\l-
ItfISm,

Using (4.20) in (4.19), with DBDa = DB+a, and |/S+a| = |/3| + |a|

(4.21)     2 vm-|a|-v-|al||«||2 s c|«|2+c 2 v*"-1"-'^-101-1!«!!2.
lalëm |a|<m

Since the power of t is one higher on the left side of (4.21), we take t>2C and

move the second term on the right to the left to obtain

2  vm-'«i-'T"-""||«||2 S C\\u\\2.
lalSm

So (4.9) is proven for r and the induction is completed.

We now use Theorem 4 to prove uniqueness of solutions to the Cauchy problem

for (4.1).

Theorem 5. Let P(x, D) satisfy the hypothesis of Theorem 4 and let u e Cm be a

solution o/(4.1) which vanishes for X!^x2+ • • • +xjj when x is in a neighborhood of

the origin. Then u vanishes in a neighborhood of the origin.

Proof. The proof is exactly the same as the proof of Theorem 2 with e= 1, but

here we use the estimate (4.9) instead of (2.4).

Let S be an arbitrary surface of class Cm and let x be a point on 5. By a change

of coordinates the surface Scan be made to coincide with the paraboloid Xi=x| +

• • • +x2 in a neighborhood of x with x at the origin of the new coordinates. The

class of differential inequalities considered in (4.1) is invariant under the change of

coordinates and hence Theorem 5 implies uniqueness of solutions to the Cauchy

problem for (4.1) across arbitrary surfaces.

The results of §2 and this section can be combined. Consider the differential

inequality

(4.22) \P(x,D)u\SK    2     IAH
la|Sm-P

where F(x, D) is an operator of order m with complex characteristics of multiplicity
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at most r and real characteristics of multiplicity at most s, q=max (s, [(r+1)/2]).

P(x, D) also has the following form

(4.23) P(x, D) = Px(x, />)••• Pn(x, D),

where each of the factors in (4.23) is the type of operator considered in either (2.1)

or (4.1). By the method used to prove Theorem 4, a Carleman type estimate similar

to (2.4) can be proven for (4.23). But now <p(8, x)=(xx-8)2 + 8\xl+ ■ ■ ■ +x2),

l<b<2. That estimate then implies that solutions u e Cm of (4.22), which vanish

for Xx = e(x2A-r-x2), e>0, when x is in a neighborhood of the origin, do in fact

vanish in a neighborhood of the origin.

5. Comparison of the results in §§2 and 4 with counterexamples. Paul Cohen [1]

has constructed equations for which solutions to the Cauchy problem are not

unique. First, he has constructed an equation of order m, with constant leading

coefficients, with a real characteristic of multiplicity s, and with a lower order term

of order m—s+l with C°° coefficients for which uniqueness fails. Second, he has

constructed an equation of order m, with constant leading coefficients, with a

complex characteristic of multiplicity r, and with a lower order term of order m — 1

with C coefficients, k<r—2 for which uniqueness fails.

In this second case, he claims that the lower order term can be chosen to be of

order m — b with C coefficients, k<r—b — l. Although this generalization is not

proven, it is stated that the proof proceeds in the same manner as for b = l.

Proceeding with the proof for general b, we find his condition for the lower order

term to have C coefficients becomes

A?-r(Af,)-<r+fc)->0   as/->oo.

We choose, as he does, A, = /2, r. = c/_i, 8>0 and c>0; note A/, = ?( — tl + 1. Since 8

can be made small, the condition on k becomes k<r—2b. For k=0, b<r/2.

Hence for complex characteristics, Cohen has constructed a counterexample with

a lower order term of order m—b=m — [(r+l)/2] + l with C° coefficients.

In comparing these counterexamples with the results of §§2 and 4, we see that if

a lower order derivative of order higher than we allowed in the right side of the

differential inequalities (2.1) or (4.1) should occur, then uniqueness fails.

6. Uniqueness results for equations of a special form. In §2 we have proven

uniqueness of the Cauchy problem for

(6.1) P(D)u=     2    ^(x)Dttu,       t7 = max(i,[(r+l)/2]).
|<r|Sm-ï

The coefficients aa(x) are merely required to be locally bounded and measurable.

If we allow a term of order greater than m-q on the right side in (6.1) then

uniqueness fails as was seen in §5.
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However one may ask if uniqueness would hold when terms of order greater

than m—q are allowed on the right side in (6.1) provided their coefficients aa(x)

are sufficiently smooth. Plis [6] has constructed the following elliptic equation for

which uniqueness fails :

/«It i8"       -8U\6   ,    ,685"       3*1/ , ,       -,
(6-2) [W-l8x)+lt6ëF-âP=^     'eC •

In this section we shall prove uniqueness for certain equations of the type (6.1),

which include terms on the right side of order greater than m—q but with constant

coefficients. We shall study solutions of the differential equation

(6.3) Q(D)u = P(D)u-     2      caDau=     2    "a(x)Dau,
m-sÉla|=s \a\<m~s

where P(D) is a homogeneous differential operator of order m with constant

coefficients, with complex characteristics of multiplicity at most r and real charac-

teristics of multiplicity at most s, [(r+ l)/2] = j<m. ca are constants and aa(x) are

locally bounded measurable functions.

Now QiaXQ=P(a)(Ç) for |o|^s+l, and hence an inequality analogous to (2.2)

can be proven with Q and s+1 replacing P and s respectively in (2.2). Using that

inequality a Carleman type estimate analogous to Theorem 1 can be proven with

Q and s+1 replacing P and j respectively. Therefore let u e Cm be a solution of

(6.3) which vanishes for Xi^e(x2+ • —hx2), for some e>0, when x is in a neigh-

borhood of the origin. By using the Carleman type estimate for Q and following

the proof of Theorem 2, it follows that u vanishes in a neighborhood of the origin.

Some examples of equations of type (6.3) are:

(1) Equation (6.2) with the coefficient of d5ujdx5 replaced by a constant.

(2) P(D)u =     2     caDau+a(x)u.
0<|a|<m

(3) P(D)u= 2 C«D«U+     2    aa(x)Dau,       d=[(r+l)/2].
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