
transactions of the
american mathematical society
Volume 146, December 1969

2-TRANSITIVE SYMMETRIC DESIGNS!1)

BY

WILLIAM M. KANTOR

1. Introduction. The study of a finite 2-transitive group T from a geometric

point of view involves intransitive subgroups A displacing all points. For, at least

two block designs may be associated with such a pair V, A. These are constructed

by choosing an orbit B of A, and letting points be the points permuted by Y and

blocks be the distinct sets Br, y e I\ In the particular case in which the degree v of

T is ¡P:A|, this construction produces two designs, both of which are symmetric

designs. That is, there are v points and blocks, A:=|2?| points on each block, k

blocks on each point, and, if A=k(k— 1 )/(v— I), every two distinct points are on A

blocks and every two distinct blocks are on A points. Moreover, Y acts as a 2-

transitive automorphism group of these symmetric designs, and A is the stabilizer

of a block. Conversely, if a symmetric design admits an automorphism group T

2-transitive on points, then T has such a subgroup A of index v, namely, the

stabilizer of a block. We are thus led to the problem of determining all symmetric

designs admitting 2-transitive automorphism groups. The design of points and

hyperplanes of a finite projective space has this property. The unique Hadamard

design ^n with »=11, k = 5 and A=2 admits a 2-transitive automorphism group

isomorphic to PSL(2, 11) ([31]; see §2). We will place restrictions on symmetric

designs and their automorphism groups in order to obtain characterizations of

projective spaces and ^n among symmetric designs. However, we will not attempt

to classify the groups themselves, as this is an entirely different type of problem [32].

Throughout this section, and most of this paper, we will assume that k\(v— 1).

This condition is satisfied by both projective spaces and J^i- Let Y, A and B be as

before, suppose that |T:Aj = v and k\(v— 1), and let 2 be the corresponding sym-

metric design. A has two orbits, B and its complement ^B. Y has a simple normal

2-transitive subgroup Y* such that T* O A is still transitive on both B and ^B;

this generalizes a result of Wagner [32] concerning 2-transitive collineation groups

of finite projective spaces. If A is not faithful on B then 2 is a finite projective

space and Y contains the little projective group ; this is a special case of a result of

Ito [17]. If A is faithful and 2-transitive on B, then it has a simple normal subgroup

which is 2-transitive on B and transitive on ^B. These results, proved in §5, depend

heavily on the fact that A is primitive on ^B.
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In Theorem 7.2 we consider the case where A has a cyclic subgroup sharply

transitive on A. In §8 this theorem is used to determine the full automorphism

groups of Paley designs [28] and to prove the following result on permutation

groups of prime degree. If v is prime, the order of the normalizer of a Sylow

t'-subgroup is at least vk, and k1'2 + l>(v-l)/k, then TxPSL(3, 2) or PSL(2, 11).

The difficult part of the proof of these results involves showing that A is primitive

on A.

Other characterizations use additional numerical or transitivity conditions. If p

is prime and dS 2 then AG(d, p) is the only 2-transitive symmetric design with the

same parameters as PG(d,p) (Corollary 12.2). If A is 2-transitive on A, then 3

is of known type provided that either (i) 3 has the same parameters as a projective

space, or (ii) 3 is a Hadamard design (Theorems 11.1 and 11.5). Set n = k—X

=k(v-k)/(v-l) and s=(v-l)/k. If A is 2-transitive on both B and ^B, then 3

is of known type if either (i) («, 2s—1) = 1, or (ii) n is a prime power and A^2

(Theorems 11.2 and 11.3). These results are proved by means of Diophantine

conditions obtained from the action of the stabilizer of two points. In Theorem

9.3, different methods are used to show that, if « is prime, then Tä;A5A(3, n),

PGL (3, n) or PSL(2,ll).

We also consider the larger class of symmetric designs consisting of those

symmetric designs admitting an automorphism group fixing a block and transitive

on the remaining blocks. Such groups have been considered in projective planes by

Wagner [33]. It will be convenient to make the following standing assumption.

The only symmetric designs to be considered are those for which X > 1. Although

many of our results can be stated so as to hold for projective planes, they are not

of interest in this case in view of the results of Ostrom and Wagner [27] and [33].

2. Definitions. The definitions of (symmetric) designs and their parameters v,

b, k, r and A can be found in [7], [11], [20] or [30]. Incidence will generally be

identified with set-theoretic inclusion. Ifp and q are distinct points of a design, the

intersection of all the blocks on p and q is called the line joining p and q; there is a

unique line containing any two given distinct points. If A is a block, <ëB denotes

the set of points not on B.

In a design, v — 1 > k and distinct blocks are not on precisely the same sets of

points. It will occasionally be necessary to allow the possibility that at least one

of these requirements does not hold. It will be clear from context when this is

occurring. Similar considerations will also apply to incidence structures other than

designs.

The parameters of a symmetric design satisfy the relation

(2.1) X(v-l) = k(k-l).

n = k—X is the order of the design. Set s=(v— 1, k — l). (2.1) implies the following

Lemma 2.1. The following statements are equivalent for a symmetric design.

(i) Jfc|(»-1); (ii) v-l=sk; (iii) v-k=sn; (iv) (k,X)=l; (v) v=(s2n-l)/(s-l),
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k = (sn-l)/(s-l) and A = (n-l)/(j-l); and (vi) v=s2X + s+ 1 and k = sX + I. In

particular, if all these conditions hold then (v, k) = 1 and n > A.

The stabilizer in Y of the objects 0,0',... is denoted by r00-.... Thus, for

example, Ys is the global stabilizer of the set S, and Yxy is the stabilizer of the

points x and y (and never denotes the stabilizer of the line joining x and v). If S is

a subgroup of Y then Nr(I.) is the normalizer of S in Y.

A permutation group is said to be ^-homogeneous if it is transitive on the set of

^-element subsets of the set of permuted points. The rank of a transitive permuta-

tion group is the number of orbits of the stabilizer of a point.

By convention, isomorphic groups and designs will be identified. Also, a pro-

jective space will be identified with the design of its points and hyperplanes.

A Hadamard design is a symmetric design for which v — 1 = 2k. There is a unique

Hadamard design ^fu with p=ll, k = 5 and A=2, and the full automorphism

group T ofJ^xi is isomorphic to PSL(2, 11) (Todd [31]). Y is 2-transitive on both

the points and blocks of 3#[i- If B and B' are distinct blocks of &X\ and q is a point

not on B, then the following statements hold and should be regarded as models

for many of our results.

(2.2i) rB acts faithfully on B as PSL(2, k— 1) in its usual representation. In

particular, YB is sharply 3-transitive on B.

(2.2ii) rs acts faithfully on r€B as PSL(2, 5) in its usual representation.

(2.2iii) rB acts faithfully on the blocks ¥= B as A5 in a primitive rank 3 representa-

tion of degree 10 (cf. [34, p. '94]).

(2.2iv) r,B acts on B as a Frobenius group of order k\.

(2.2v) rflB. acts faithfully on B—B n B' as a Frobenius group of order nX.

(2.2vi) rBS. acts unfaithfully on B n B' as a sharply 2-transitive group.

3. Known results. For future reference we state some known results which will

be needed several times.

Proposition 3.1 (Dembowski [4]; Hughes [14]; Parker [29]). An automorphism

group of a symmetric design has equally many point- and block-orbits.

The method used by Dembowski [4] in order to prove Proposition 3.1 will

frequently be employed in our proofs.

Lemma 3.2. Every line L of a design has at most (b — X)/(r—X) points.

Proof [8]. There are b — X— \L\(r- X) blocks not meeting L.

Proposition 3.3 (Dembowski and Wagner [8]; cf. [7] and [19]). The following

statements are equivalent for a symmetric design 3).

(i) £à is a projective space.

(ii) All lines have (v — X)/(k — X) points.

(iii) S> admits an automorphism group such that the stabilizer of each line is

transitive on the points not on the line.
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Lemma 3.4. If p and p' are orbits of a finite permutation group V, and if x e p,

then the lengths of all the orbits ofTx on p' are divisible by |p'|/(|p|, \p'\).

Lemma 3.5 (Livingstone and Wagner [22]). Let V be a group t-transitive on a

set 5. If p is aprime, andZ is maximal among the p-subgroup s of T fixing more than

t points of S, then Ar(E) is k-transitive on the set of fixed points of"L.

We will generally use the well-known special case of this lemma in which S is a

Sylow subgroup of the stabilizer of t points and 2 fixes more than t points [34,

p. 20].

4. Preliminary results. Proposition 3.1 readily implies that an automorphism

group of a symmetric design is 2-transitive on points if and only if it is 2-transitive

on blocks (Dembowski [4]). Thus, we may unambiguously use the terms 2-transitive

automorphism group (of a symmetric design) and 2-transitive symmetric design.

Lemma 4.1. From a 2-transitive group V of degree v having an intransitive subgroup

A of index v displacing all points a symmetric design 3 may be constructed on which

T acts as an automorphism group. The points of 3 are the points permuted by V,

and the blocks are the images under V of one of the orbits of A. Conversely, every

2-transitive automorphism group of a symmetric design has such an intransitive

subgroup.

Proof. The construction yields a design with at most |T: A| = v blocks, and thus

a symmetric design. The converse follows from the preceding remarks.

We list some simple, useful facts.

Lemma 4.2. Let A be an automorphism group of a symmetric design 3 with

(v, k)=l such that A fixes a block B and is transitive on the remaining blocks.

(i) A is transitive on B and ^B.

(ii) If p e B and q$ B, then Ap is transitive on <€B and A, is transitive on B.

(iii) If k\(v— 1) and q $ B, then Aq is transitive on the blocks on q.

(iv) With the notation and hypothesis of (iii), all orbits of Aq in <€B — {q} have

lengths divisible by k. In particular, if 3 is a Hadamard design then A is 2-transitive

on KB.

(v) A is 2-transitive on B if and only if, for p e B, Ap is transitive on the blocks j=B

on p and on the blocks not on p.

(vi) lfk\(v— 1), A ¿s 2-transitive on B, andp andp' are distinct points of B, then all

orbits o/Apj,. in ^B have lengths divisible by n.

(vii) With the hypotheses of (vi), if p e B and q$ B then all orbits of Apq on

B—{p} have lengths divisible by X.

(viii) With the notation and hypotheses of (vi), App. is transitive on the blocks on

p' but not on p.

(ix) With the hypotheses ofi(\ï), ifp eB,p e C^B andp fC, then ApC is transitive

on B—B n C and ApC. is transitive on B n C".
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Proof, (i) and (ii) follow from Proposition 3.1 and Lemma 3.5.

(iii) By (i), A has orbits of lengths v — k on <€B and v— 1 on the blocks #i?.

Lemmas 3.4 and 2.1 then imply that the lengths of the orbits of A, of blocks ¥=B

are divisible by (v— l)/(v—k, v—l)=k.

(iv) Consider the tactical configuration &" consisting of the blocks on q and the

points of <<§B—{q}, with induced incidence. Since A, is block-transitive on 9" by

(iii), the desired lengths are divisible by (v—k— l)/(v—k — 1, Ar—A— 1) = A: by [20,

Proposition 4.5] and Lemma 2.1.

(v) This follows from (ii) by applying Proposition 3.1 to A„.

(vi) Ap has orbits of lengths v-k on B and k-l on B—{p}. The result then

follows from Lemmas 3.4 and 2.1.

(vii) By (vi), all orbits of A on ordered triples (p, p', q) with p, p' e B, p #/>' and

q$B, have lengths divisible by k(k-\)n. By (ii), all orbits of APQ on B-{p} have

lengths divisible by k(k — l)n/k(v—k) = X.

(viii) Ap has orbits of lengths v-k on the blocks not on p and k— 1 on B—{p}.

By Lemmas 3.4 and 2.1, the lengths of the orbits of APP. of blocks not on p are

divisible by n. (viii) then follows from the fact that there are n blocks on p' not on p.

(ix) For, by (viii), A is transitive on the ordered triples (p, p', C) with p, p' e B,

peCandp' $ C.

Lemma 4.3. Let B be a block of a symmetric design such that every line contained

in B has h points. Then (h — l)\(k— 1, A— 1).

Proof. If/? is a point of B and B' is a block ^Bonp, then there are (k—\)/(h— 1)

lines on p contained in B, (X—l)/(h — l) of which are also contained in B'.

Lemma 4.4. Let S be a design whose lines all have the same number h>2 of

points. If Si admits an automorphism group à. fixing a block B and 2-transitive on ^B,

then S is a projective space.

Proof. Each line $ B contains at least two points of ^B. Since some such line

meets B, all such lines meet B and the result follows from [19]. (We require this

result in the special case where 3> is assumed to be a 2-transitive symmetric design,

in which case Proposition 3.3 could have been used.)

Lemma 4.5. Let Y be an automorphism group of a design 2> which is 2-transitive

on points and transitive on blocks and such that, for each block B, YB is 2-transitive

on both B and <€B. Then, for each point p, Yp has rank p ̂  5 on the points i=-p.

Moreover, p=3 if 2¡ is symmetric and p>3 only if v—2k.

Proof. Suppose first that v > 2k. If p e B then rpB is transitive on WB (Burnside

[2, p. 204, Ex. 10]). Thus, ifp¥=q then rp, has four block-orbits, namely, the blocks

on p but not q, those on q but not p, those on both p and q, and those on neither p

norq. Then p^3 by [20, Theorem 4.1]. By Proposition 3.1, p = 3 if 2> is symmetric.

If v < 2k then 3> may be replaced by its complementary design.
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Suppose that v=2k. If rpB is transitive on ^B we may proceed as before. If

rpB is intransitive on ^B then, by Lemma 4.1, it has precisely two orbits on ^B.

Thus, T has precisely two orbits of triples (p, B, q) with p e B and q $ B, so that

Tpq has six block-orbits in this case. As before we conclude that p^5. (That p=3

for symmetric designs has been obtained independently by H. Wielandt.)

5. Primitivity and simplicity. Given a 2-transitive automorphism group T of a

symmetric design 3, it is useful to know whether or not the stabilizer TB of a

block A is 2-transitive on A or on ^B. Many of our results involve either proving

or assuming the 2-transitivity of TB on A or ^B. According to Lemma 4.2 (iv), if

3 is a Hadamard design then TB is 2-transitive on ^B. The following simple result,

which will not be needed later, is the corresponding result for projective spaces.

Proposition 5.1. If T is a 2-transitive collineation group of a finite projective

space and H is a hyperplane, then TH is 2-transitive on ^H.

Proof. By [27] we may assume that the space has dimension > 2. Let p and q be

distinct points of a line A. If rp5 has t orbits of points not on A, by Wagner [32,

Lemma 3] Tpq has t + 3 point-orbits and t orbits of planes =>A. By Proposition

3.1, rp, has t orbits of hyperplanes =>A, and thus 3 orbits of hyperplanes 3>L.

These must be the hyperplanes on p but not q, those on q but not p, and those on

neither p nor q. This implies the result.

Theorem 5.2. If A is an automorphism group of a symmetric design 3 with

k\(v — I) fixing a block B and transitive on the remaining blocks, then A is primitive

on<6B.

Proof. By Lemma 4.2iii, A is transitive on the incident point-block pairs of the

design 3B of points not on A and blocks # A. Here rB — k and AB = A are relatively

prime by Lemma 2.1. The result then follows from [20, Theorem 4.8].

We note that [20, Theorem 4.7] may be used to replace the condition k\(v — 1)

by weaker conditions.

Corollary 5.3. If V is a 2-transitive automorphism group of a symmetric design

3 with k\(v— 1), and if some nontrivial element of V fixes a block pointwise, then 3

is a projective space and T contains the little projective group.

Proof. By Theorem 5.2, the pointwise stabilizer of a block B is transitive on 'SB.

The result then follows from [19, Theorem 3], which in the present case is merely a

simple application of Proposition 3.3.

It is also clear that an automorphism group of a symmetric design is faithful on

the complements of blocks provided that n> A. Ito [17] has proven Corollary 5.3

independently and without any restrictions on parameters. The preceding proof is

somewhat simpler than his, and we are only concerned with the case k\(v— 1).

Ito's result implies that, if T is a 2-transitive automorphism group of a symmetric

design with (v, k) = l (and A> 1), and if A is a block, then TB is nonsolvable. For
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otherwise, TB has an elementary abelian normal subgroup 2. Since either (| 2|, k)— 1

or (|2|, v—k)= 1, E fixes a point of B or WB, and thus fixes B or #A pointwise by

Lemma 4.2i. By Ito's theorem, TB is nonsolvable, a contradiction. Thus, TB is

nonsolvable.

If A is the stabilizer of a block in a 2-transitive automorphism group of a sym-

metric design, then A is transitive on the pairs (p, C) with/? e B—Br\C (Lemma

4.2ii). Although [20, Theorem 4.8] can then be applied to the design of points of A

and intersections of B with the complements of the blocks # B, the results are not

satisfactory: A is primitive on B if k\(v— 1) and n is square-free. Somewhat more

can be proved concerning the transitivity of normal subgroups of A on A; see the

proof of Lemma 7.3.

Theorem 5.4. Let A be an automorphism group of a symmetric design 3 with

k\(v—l) which fixes a block B and is faithful on B. If A is 2-transitive on B and

transitive on &B, then A has a simple normal subgroup which is 2-transitive on B

and transitive on %!B.

Proof. Let II be a minimal normal subgroup of A. Since A is primitive on both

B and ^B by Theorem 5.2, and A is faithful on these sets, II is transitive on B and

#A and Lemma 4.2 applies to II. II is nonabelian since kj^v—k. It then follows

from a result of Burnside [2, p. 202] that II is simple.

We will assume that II is not 2-transitive on B and obtain a contradiction from

a detailed examination of the orbits of lip for peB.

lip has the following orbits: (i) {/>}; (ii) ̂ B; (iii) (k—l)/t point-orbits on B-{p},

each of length t; (iv) {A}; (v) (k-l)/u orbits of blocks # B on p, each of length u;

and (vi) (v—k)/w orbits of blocks not on/7, each of length w. Here the constancy of

the lengths of the orbits of types (v) and (vi) follows from IIP< Ap and Lemma 4.2v.

p, 33* and 23 will denote orbits of types (iii), (v) and (vi), respectively. Proposition

3.1 implies that

(5.1) snw~i-l = (v-tyw-^l = (yc-lXr-1-«-1).

If A'7*B then all orbits of IIB. on B n B' and B-B n B' have lengths

m/s and w/s, respectively.

For, consider an orbit of II of incident (nonincident) pairs (p, B') with p e B.

U is transitive on B, and each orbit of np of blocks B' has length u (resp. w). Tl is

transitive on the blocks B', and, since AB. is transitive on both B n B' and B—BC\B'

by Lemma 4.2v, all orbits of IIB. on An B' (resp. B—BnB') have the same

length u0 (resp. w0). The length of an orbit of II of pairs (/>', B) is thus ku = (v— l)u0

(resp. kw=(v— l)w0), and (5.2) follows from the fact that v— 1 =sk.

We note that

(5.3) u > t.

For, (5.1) implies that u^t and u=t only if w=sn. Since (u/s, w/s)\(X, n) = l, (5.2)

and Lemma 3.4 then imply that fIp.B- is transitive on B—BnB' whenever
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p' e B O B'. If p', x and y are distinct points of B they are noncollinear in the

complementary design of Q¡ by Lemma 3.2. There is then a block B' on p' but on

neither x nor y. Since we have shown that IIp.B. has an element moving x to y,

II is 2-transitive on B. This contradiction proves (5.3).

If SB is an orbit of up of blocks not on p, let <*^S8> be the set of points i^p of B

lying in the complement of each block in SB; although different SB's may yield the

same set C^SB), we will regard (fëS&y as depending upon SB. This definition implies

that

(5.4) If Bx e SB then \BX n [(B-(<#%))-{p}]\ = A.

As Ap is transitive on the SB's, w'= |<^SB>| is independent of the choice of SB.

Note that w' may be 0. Since p' e <#S8> and p' ep imply that p£<if93>, <^S8>

contains w'/t orbits p. Since Ap is transitive on the (k— l)/t p's and the (v—k)/w

SB's, it follows that

(5.5) Each p is contained in (w't-1)-(v-k)w-1/(k-l)t-1 = w'n/wX sets («'SB).

Fix p' e B—{p}. App. is transitive on the blocks on p' but not on p (Lemma

4.2viii), and hence also on those orbits SB having a block on p'. (5.5) and the

definition of <#SB> imply that there are (v—k)w~1 — w'n(wX)~1 such orbits SB.

The number of blocks of such a SB which are on p' is independent of SB, by the

transitivity of t\T1>.. Since each of the n blocks on// but not on p belongs to exactly

one such SB, it follows that

Every point =£p of B—<#SB> is on

(5.6) nttsnw-i-w'ntyX)-1} = Xw/(sX-w')

blocks of SB.

Let p' e p. Lemma 4.2viii implies that ¿\pP is transitive on those orbits SB such

that p$<SÍS8>. (5.6), \p\ = t and |S8| = w then imply that

If p $ <#S8>, then the number of

(5.7) points of p on each block of SB is

t-{Xw(sX-w')-1}/w = Aí/(íA-h>').

Each block =¿5 contains n points oftfB, so that there are wn/(v—k) = w/s blocks

of SB on each point of ^B. Fix SB and Bx e SB and count in two ways the number

of pairs (x, B2) with Bx¥=B2 e SB and x e Bx n B2. By (5.4) and (5.6)

0+0 + X{Xw(sX-w')-1-l}+n(ws-1-l) = (w-l)A

(the four terms on the left correspond to {/?}, <#S3>, Bx n [(5-<<TS8»-{/>}] and

^B, respectively), which reduces to

(5.8) X/(sX-w') = (A-1 +nsw~i)/(k-1).

(5.1), (5.7), and (5.8) imply that

(5.9) r(A -1 + nsw ~ *)/(k -1) = ts "1 + t(t ~x - u "x) is an integer.
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Since k— 1 = sX, (5.6) and (5.8) imply that

w(X-l+nsw~1)/(k-l) = {(A-l)ws-l + n}/A

is an integer. By (5.2), ws'1 is an integer, so that «= 1 + X(s— 1) implies that

(5.10) -ws'i + l = 0   (mod A).

By (5.10) and (5.1),

0 = nsw~1(l — ws'1) = nsw~1—n

= nsw~1-l = (/fc-lXr-1-«"1)       (mod A),

so that

(5.11) j(i_1 — u'1)   is an integer.

By (5.2) and (5.3), su'1 and i«-1 are £ 1. Also, either íí _1 or ts'1 is á 1. Since

both ts'1 — tu'1 and i/"1—ím_1 are integers by (5.9) and (5.11), it follows that

one of them must be 0. st~1-sw1^0 by (5.3). Thus,

(5.12) u = s.

(5.11) then implies that t\s=u, and by (5.3) we have

(5.13) t ^ s/2.

If ws'1—I, then (5.12) and (5.2) imply that IIB. fixes B pointwise; however, A is

faithful on B and nB.# 1 by Lemma 4.2i applied to n. From (5.10) it follows that

ws~1^X+l, or

nsw'1 S n/(X+l) = {1 + A(j-1)}/(A+1) á 5-1.

Then (5.9) and (5.13) imply that

sX = (k-l) << ̂ X-l+nsw'1) Z (s/2)(X-l+s-l),

or 2A g A — 1 + s — 1. In particular,

(5.14) (A—l)/j   is not an integer.

We now show that (5.12) and (5.14) are incompatible. Fix an orbit 33* of lip of

blocks 7e B on p. Since each block of 33* contains n points of WB, each point of

^B is on un/(v—k) = u/s=l block of 23*. Then distinct blocks of 23* have no

common point in WB, and thus meet B—{p} in the same set <23*> of A— 1 points,

lip fixes <23*>, so that <33*> is a union of (A— l)/r p's. Since Ap is transitive on the

(k— l)/t orbits p and the (k- l)/u orbits 23*, it follows that each p is contained in

(k-Vu-'^x-iy-'Kk-iy-1 = (x-i)/u = (x-i)/s

sets <23*>. This contradicts (5.14) and proves Theorem 5.4.
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Lemma 5.5. Let Y be a 2-transitive automorphism group of a symmetric design 3

having a nontrivial regular normal subgroup 2. Then n is a power of 2 and v = 4n.

Proof. 2 is an elementary abelian/>-group of order p" where d^2 (Burnside [2,

p. 202]). The points of Q may be regarded as the points of an affine space

s/=AG(d, p). T is a 2-transitive collineation group of si and 2 is the translation

group of si. Dually, the blocks of 3 are the points of an affine space s/#. si and

si# are isomorphic but are clearly not identical.

Temporarily regarded si as embedded in 3P=PG(d,p). Y induces a collineation

group of & which is transitive on the hyperplanes at infinity. According to Lemma

4.2v, applied to the complementary design of 9>, if x is a point of si then Yx has

precisely two orbits of hyperplanes of si. Equivalently, if H is a hyperplane of si

then YH has precisely two point-orbits in si, namely, H and <€H (the complement

is taken within si).

2H is a subgroup of 2 of order p"'1. Since 2H is a group of translations of si#,

it follows that 2H=2H#, where H# is any one of a unique class of parallel hyper-

planes of si#. We now prove that

(5.15) YH and YH# are conjugate in Y.

Certainly Nr(LH) = Nr(LH#), where A = Nr(ZH) is the subgroup of T consisting

of those collineations fixing the parallel class of H as a whole. Then AH = rJi.

A contains the centralizer of 2H in Y and so contains 2. Then A is transitive on the

parallel class of H, so that

(5.16) |A:AH| = |A:AH#| =/>.

Let A(H) be the set of all elements of A fixing all hyperplanes || H. Then A/A(H)

is a transitive, faithful permutation group on the hyperplanes \\H. If si is once

again embedded in the projective space SP and we pass to the dual of SP, we see

that A/A(H) is similar to a group of projectivities on a line of á? More precisely,

since A fixes the hyperplane at infinity A/A(H) may be regarded as a group of

linear mappings x -*■ ax+b, a#0, on GF(p).

A(H) may be described as the set of elements of A fixing all cosets of 2ii=2H#

in 2. Thus, A(H) = A(H#). By (5.16), AH/A(H) and AH#/A(H) are conjugate in

A/A(H). Since rw=AH and rH# = AH#, this proves (5.15).

By (5.15) we may assume that YH = YH#. Then YH has two point orbits H and

#H in 3, and, dually, two block orbits H# and ^#H# (where <£*//# is the comple-

ment of H# within s/#, that is, within the set of blocks of S>). Let / be the number

of points of H on each block e H#, and ie be the number of points of H on each

block e ^H#. Then there are \H#\i/\H\ = i blocks of H# on each point of H

and \(0H#\ic/\H\ =(/>- l)/c blocks ofV#H# on each point of H. Thus,

(5.17) » + (P-I)i« -*•
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Fix x e H and count in two ways the pairs (y, B) with x and y distinct points of

B n H and B a block of 3:

(|A/[-l)-A = i-(i-l) + (p-l)ic-(ic-l),

which together with (5.17) implies that

(5.18) (i-icf = n.

We now show that

(5.19) n\kp(i-ic).

Consider the action of V on the ordered pairs (B, H), where A is a block of 3

and H is a hyperplane of s/. We know that TH has two block-orbits H# and ##//#.

Thus, rB has two hyperplane-orbits in si. Moreover, one of these orbits, say B^,

has the following property :

(5.20) BeH#oHeB\

It follows that ^(/7d-l)(/;-l)-1|A/#| = r|A''|, so that \B*\=(v-l)/(p-l). The

number of points of A on a hyperplane H e B> is \B n H\, which is also \B n H\

where B e H#, by (5.20). By the definition of /', each hyperplane in B9 is on i

points of A and hence is onpi'1-i points of£B. It follows that each point of %B

is on

l/^K;/-1-/) = (»-no»"-1-') = ¿O?"-1-;)
\VB\ ~~     (p-l)(v-k) (p-l)n

hyperplanes of B9. Thus, mod n(p— 1),

0 m k(v-pi) = k(v-k) + k2-kpi = n(v- I) + k2-kpi

(by (2.1)), so that, by (5.17),

k2 = kpi = kp{k — (p—l)ic}

or

k2(p-l) = kp(p-l)ic   (mod n(p-1 )).

It follows that kpi=k2 = kpic (mod n). This proves (5.19).

By (5.18) and (5.19), nll2\kp. Everything that has just been proved must hold if

3 is replaced by its complementary design. Then also nll2\(v — k)p. It follows that

nlt2\vp. Then n is a power ofp, and the lemma follows from Mann [24, Theorem 1

and Proposition 1].

The hypotheses of the preceding lemma are satisfied, for example, by the design

in (6.4).

Theorem 5.6. A 2-transitive automorphism group T of a symmetric design with

k\(v—l) has a simple normal 2-transitive subgroup Tl. If, in addition, TB is 2-transitive

on the block B, then the same is true of UB.
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Proof. Let n be a minimal normal subgroup of Y. By Lemma 5.5, I1B# 1. Then

nB is transitive on ^B. All orbits of UB on B have lengths dividing k and hence

relatively prime to v-k. By Lemma 3.4, ripB is transitive on WB for each point p

on B. Then np is transitive on (J {^B \ B is on p}, so that II is 2-transitive. II is

simple by [2, p. 202]. Although the last assertion follows from Theorem 5.4, we

note that, in the present situation, only the proof of (5.3) is needed because of the

dual of Lemma 4.2ii, applied to II.

The preceding proof depends upon the fact that II is not regular. For the purpose

of Theorem 5.6, instead of Lemma 5.5 we could have used the fact that some block

of an abelian difference set design with (v, k)=\ is fixed by all (not necessarily

numerical) multipliers [11, p. 140].

6. A = 2. In §§7 and 9 we will reduce the proof of two theorems to the case

A=2. Special techniques are needed to handle such symmetric designs. The

following simple result will be used in §7.

Lemma 6.1. ^n is the only symmetric design with X=2,k—l=2e,e^2, admitting

a 2-transitive automorphism group Y such that, for each block B, YB acts on B as a

subgroup ofPYL(2, 2e) containing PSL(2, 2e) as a subgroup of odd index.

Proof (Wielandt). If B^C then a Sylow 2-subgroup 2 of YBC has order 2 and

fixed 2e "1 pairs of points of B. Then 2 fixes 2e "1 +1 blocks, so that by Lemma 3.6,

(2e"1 + l)| |r| = {l+k(k-l)/2}k(k-l)(k-2)t,

where t\e. This implies that e—2, as claimed.

The preceding argument can also be used to show that PSL(2, q), represented as

a permutation group on the unordered pairs of points in its usual representation,

admits no transitive extension if q > 4 is a power of 2 or a prime power = 3 (mod 4).

A result of Hall [12] suggests that, with a single exception for which k = 9, it

may be possible to weaken the assumption of 2-transitivity in Lemma 6.1.

Lemma 6.2. Let 2 be a symmetric design with X=2\k admitting an automorphism

group A fixing a block B and transitive on the remaining blocks. Then A is 3-transitive

onB.

Proof. Since A=2, A is 2-homogeneous on B. A is nonsolvable, as otherwise A

would have a normal abelian subgroup transitive on both B and 'tfB (Theorem 5.2),

which is impossible. A is thus 2-transitive on B [20, Proposition 3.1]. By Lemma

4.2v, if p is on B then Ap is 2-homogeneous on B-{p}. Since A: — 1 is even, A„ has

even order and thus is 2-transitive on B—{p), as claimed.

Theorem 6.3. Let S be a symmetric design with X = 2\k admitting an automorphism

group A fixing a block B and 2-homogeneous on ^B. Then one of the following holds:

(i) 3>is^xi,

(ii) k=9andA acts on B as PSL(2, 23) or PYL(2, 23); or

(iii) 3\k, v is even and n is a square.

The proof of Theorem 6.3 will be preceded by several lemmas.
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Lemma 6.4. Conclusion (i) or (ii) of Theorem 6.3 holds if, in addition, A is not

4-transitive on B.

Proof. Two points of #A are on precisely two blocks, each of which meets B in

two points. Conversely, two disjoint pairs of distinct points of B determine two

blocks ,£ B which meet in two points ofifB. Since A is 2-homogeneous on &B it

follows that A is 4-homogeneous on B. Moreover, A is transitive on disjoint

unordered pairs of distinct points of B, and thus induces At or 54 on each set of

4 points of B. If A is not 4-transitive on B and k> 5, then by [21] k = 9 and A acts

on B as ASA(2, 23) or ArA(2, 23).

From now on we will consider the case where A is 4-transitive on B. It will

frequently be necessary to consider several points at the same time. For this purpose

it is convenient to temporarily adopt some new notation. Points will be denoted by

positive integers, distinct numbers representing distinct points. 1, 2, 3 and 4 will

always denote points of B. The block ^B on 1 and 2 is B12. The expression

B12 n B3i will have its usual meaning; however, B12 n B13 will denote the point

# 1 common to BX2 and B13.

The complementary design of AG(2, 2) is the only symmetric design with A=2

and k = 4. We will exclude this case.

Lemma 6.5. Let 3 be a symmetric design with A=2 andk>4 admitting an auto-

morphism group A fixing a block B and 4-transitive on B.

(i) If X is a block # B then Ax is 2-transitive on X—B n X.

(ii) A is 2-transitive on ^B.

(iii) A does not act on B as 5S, A-, or Mn.

(iv) If A1234 fixes more than four points of B, then k = 6 and A is A6.

(v) A Sylow 2-subgroup of A1234 fixes 4, 5, 6, 7 or 11 points of B.

(vi) Let p be an odd prime and let 2 be a Sylow p-subgroup of A1234. Then the

set 3* of fixed points and blocks of"L is a symmetric subdesign of 3 with A* = 2, and

NA(Z) is 4-transitive on the set of points of B in 3*.

(vii) A12, B13 and B23 concur.

(viii) A12, A13 and B3i do not concur.

(ix) Ifik>6 then 5=A12 n B13 n B23, 6=A12 n A14 n B2i, 7=B13n 7J14 n B3i

and 8 = A23 n A24 n B3i are distinct points lying on a block B910, where 9 and 10 are

inB- {1, 2, 3, 4} (see Figure 1).

Proof, (i) Ax is transitive on the unordered pairs of points of B—B n X. Each

pair determines a unique block #A which meets X—B nlina pair of points.

It follows that Ax is 2-homogeneous on X— B n X. Since Ax has even order, it is

2-transitive on X—B n X.

(ii) follows from (i) and the fact that A is transitive on the blocks # B.

(iii) Since JPyX does not admit 55 as an automorphism group fixing a block, A is
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2 4 10

Figure 1

not S5. There is no symmetric design with A = 2 and k = l (Hussain [15]; this also

follows from a result of Chowla and Ryser [7, p. 61], since 1+7(7- l)/2 is even).

If A were Afu then, by (ii), A/n would have a 2-transitive representation of degree

r-A:=45, which is not the case [1].

(iv) According to Nagao [26], A is A6 or one of the groups in (iii).

(v) follows from Lemma 3.5 and a theorem of Hall [10, p. 73].

(vi) Both points of intersection of two blocks of 3* are in 3*, and dually.

3* is thus a symmetric design with A* = 2 (Majumdar [23]; Dembowski [5, p. 269]).

The last assertion follows from Lemma 3.5.

(vii) Otherwise, 5 = B12 n B13 and 6 = 512 n B23 are distinct fixed points of A123

on B12- There is a unique block X^B12 on 5 and 6. Then A123 fixes X and neither

1 nor 2 is in X. B n X is fixed by A123 and contains at least one point #3. Since

A is 4-transitive and k>5, this is impossible.

(viii) By (vii), B13 and B23 are the only blocks on both 3 and 5=B12 n B13 n B23.

(ix) The four points are distinct by (viii). Let X be the block #i?12 on 5 and 6.

Since A1234 fixes B12, 5 and 6, it fixes X. Then A1234 fixes the point y #5 of B13 n X.

If S = (l, 2)(3, 4)- ■ • e A then also 8= • • • (5, 6)(7, 8) • • •. Since 8 fixes X it follows

that y6 e X. If y=l, then X is on 7 and 8 and the remaining assertions are trivial.

If y=3 then /=4, so that X=B3i and S-Bia n B2Z n 534, contradicting (viii).

The only other possibility is that y is a new point. A1234 then fixes the block

Y¥=B13 on 3 and y, and hence also the point z#3 on B n £13. z is a new point

and is fixed by A1234, contradicting (iv).

(vii), (viii) and (ix) are essentially configuration theorems, (vii) is a " tetrahedral "

condition, while the remaining two are "cubic" conditions (cf. Figure 1). In order

to identify the subdesign generated by four points of B a further property, (6.1), is

needed. The proof is, however, slightly more difficult than those of the preceding

lemma.
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Lemma 6.6. There is a unique design 316 satisfying the hypotheses of Lemma 6.5

and which is generated by any four points of B. In this design, v= 16 and k = 6.

Proof. Let 3 be a design with k>6, satisfying the conditions of Lemma 6.5,

and such that any four points of A generate 3; that is, 3 has no proper subdesign

3* with A* = 2 which contains four points of B. We will use the notation of Lemma

6.5ix.

By Lemma 6.5vi and iv, 2 = A1234 is a 2-group fixing only four points of A. By

Lemma 3.5, A* = ArA(29)|F is 4-transitive on the set A of fixed points of 29 on B.

Clearly |A| 2:6. If/e A-{1, 2, 3, 4} then 29^ 2, implies, by the maximality of 29

in 2, that 29=2/. Then A*234/ = 1. A* is thus Ae, A7, Afn or M12 (cf. [9] and [10,

p. 73]). |/2| = |2:29|=2 implies that |A| is even, while 2 fixes {9, 10}. It follows

that A* is Ae. We use this to prove that

5 = A49 n Bt 10 n B910,       6 = A39 n B310 n B910,

(6.1)
7 = A29 n B210 n B910,       8 = 519 n By 10 n B910.

For, let a = (l)(2)(3, 9)(4, 10)- ■ • e A. a interchanges B3i and A910. Then a fixes

A34 n B9 io={7, 8} (see Figure 1), that is,

7 or 8 = Ia - (A13 n A14 n B3i)a = A19 nB110n B910.

Ia —1 e B13 would imply that 1 and 7 are on the three blocks A13, A19 and By 10.

Thus, Ia = 8, proving the final relation in (6.1). In terms of Figure 1 this means

that the two blocks containing the opposite vertices of the "cube" 12345678 pass

through 9 and 10, respectively. This implies the remaining assertions of (6.1).

Replace the initial points 1, 2, 3, 4 by 9, 10, 3, 4. By Lemma 6.5viii, 11=A34

n B39 n A49 and 12 = A34 n B3 10 n £410 are distinct points. They are new points

since A = 2 implies that 5, 6, 7 and 8 are on no blocks #5^, l¿/</¿4 or /'=9,

7=10. By (6.1) and Lemma 6.5ix, 5, 6, 11 and 12 lie on a block Yj=B9 10. Since

A12 and 7J9 10 are the only blocks containing 5 and 6, it follows that T=A12. At

this point we have the following sets of points lying on blocks, where the first two

points of each set are on B.

1   2  3 4  9   10       19  8

1 2  5 6 11  12       2  9  7

13  5 7 3   9  6 11

(6.2) 14 6 7 4  9  5 11
2 3   5 8 1 10 8

2 4  6 8 2 10 7

3 4  7 8 11  12       3 10 6 12

9 10 5 6   7   8        4 10 5 12

We now show that the 16 blocks involved in (6.2) are the blocks of a symmetric

subdesign 3* of 3 with A* = 2 and k* = 6. Set x=512 n B19 n B29 and y-Bl2
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Pi Bx 10 n B2 xo- If we replace 9, 10, 3, 4 by 9, 10, 1, 2 in the preceding argument,

or use the symmetry provided by A*, we find that

{11, 12} = £12n534 = {x,y}.

x# 11 as B39 and Bi9 are the only blocks on 9 and 11. Thus,

(6.3) 12 = B12 n B19 n B2S   and    11 = B12 <~\ Bx 10 n .B2 10.

13=j523 n fi29 n B39 and 14=523 n ,B2 10 n i?310 are distinct new points by

Lemma 6.4vii and viii and (6.2). Replacing the pairs {1,2} and {3, 4} by {2, 3} and

{1,4} in (6.2) we find that B23 n £14={13, 14}, l3=Blt n Bx 10 ̂  Bt 10 and

14=1?14 n B19 n jB49. Similarly, points 15 and 16 may be introduced so as to

obtain the following points and parts of blocks.

1 2 3 4  9 10 1   9  8 12 14 15

1 2 5 6 11 12 2  9  7 12 13 16

1 3 5 7 15 16 3   9  6 11 13 15

1 4 6 7 13 14 4  9  5 11  14 16
(    '                           2 3 5 8 13 14 1  10 8 11  13 16

2 4 6 8 15 16 2 10 7 11 14 15

3 4  7 8 11 12       3 10 6 12 14 16

9 10 5 6   7   8        4 10 5 12 13 15

It is straightforward to check that (6.4) defines a symmetric subdesign 3* of 3

with A* = 2, k* = 6 and t>* = 16. The minimality of 3 implies that 3=3*, contra-

dicting the assumption that k > 6.

(6.4) defines a design 316 ([12] and [15]) with the property that every permutation

of the points of one of the blocks of 316 extends to an automorphism of 316-

Thus, 316 satisfies the required conditions, completing the proof of Lemma 6.6.

Lemma 6.7. Under the hypotheses of Lemma 6.5, every four points of B generate

a subdesign 316. If S is the set of six points of B of such a subdesign and As does not

act on S as S6, then 3 is 316.

Proof. The first assertion follows from the preceding lemma. Let 316 be the

subdesign of which S is, in effect, a block. Since A=2, any element of A moving

four points of S to four other points of S fixes 316 and hence also S. By hypothesis,

As|s is A6. If 5={1, 2, 3, 4, 5, 6} then A1234 fixes 5 and 6. Then A=Ae by Lemma

6.5iv, and 3 is 316.

Proof of Theorem 6.3. By Lemma 6.7, three points of B belong to (k—3)/3

subdesigns 316, so that 3\k. Two points of B belong to (2)/(2)—n(n —1)/12 sub-

designs 316 which contain B. We now obtain, successively, n=0, 1 (mod 4),

k=2, 3 (mod 4) and v= I+k(k-l)/2=0 (mod 2). By a result of Chowla and

Ryser [7, p. 61], n is a square.

7. Cyclic subgroups of YB. For k and v prime the following result has been

obtained independently by Ito [18].
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Theorem 7.1. JPyy is the only 2-transitive symmetric design, not a projective space,

for which k is prime.

Proof. We will show that, for a 2-transitive automorphism group T of such a

design 2, (2.2iv), (2.2v), (2.2vi) and (2.2i) hold. By (2.1), Jfc|(t>-1), so that v-k>k

and rB acts faithfully on the block B (Corollary 5.3). Also, if p e B then (v—k)\ \ TpB\

by Lemma 4.2ii. A theorem of Burnside [2, p. 341] then implies that TB is 2-transi-

tive on B. However, if q £ B, then T,B is not 2-transitive on B by Proposition 3.3.

r,B thus acts faithfully on A as a regular or Frobenius group. By Lemma 4.2viii,

T is transitive on the ordered quadruples (B, p, p', C) with p, p' e B, p e C and

p' $ C. rpqB is thus transitive on the blocks onpandq, so that A | |rp,s|. Moreover,

rpaB is cyclic since k is prime. Thus, if |rpaB|>A, there is a nontrivial element

y e rpaB fixing all blocks onp and q. If £ and £' are two such blocks, then y e TqBEE.

= 1 (since r,B acts as a Frobenius group on the blocks on q), which is a contra-

diction. This proves (2.2iv). Moreover, TpqB is transitive, regular and faithful on

the blocks on p and q, so that |r„,| =«A. If B'^B and B' is on p but not on q,

then | rp«Bs-1 I A- If y 6 Tjkibb' has prime order then y fixes p e B n B' ; it follows

that y fixes a second point p' e B n B', and then y e YqBpp.= 1, a contradiction.

This proves (2.2v).

We next prove

If p and p' are distinct points of B, then FpP.B

fixes every block on p and p', and dually.

For, by (2.2v), rpp. has a unique subgroup 2 of order n. Since rppB- has order «

it follows that rpp.B. = 2 for all blocks B' on p and p', proving (7.1). Claim : If B' is

another of these fixed blocks on p and p', then B n B' is a line. For otherwise,

there is a third point p" e B n B' and a block B" on p and p' but not on p". By

(7.1), 2 fixes p" and B", so that 2 ^ rp-B.pp. = 1 (since rp-B. acts as a Frobenius

group on B"). This contradiction implies that lines have A points.

Since L=B n B' is a line, TBt is 2-transitive on A and on the blocks ^ B con-

taining A. |rBL| =(A— l)|rBB.| =(A— 1)-A« then implies that TB2,/2 acts on A as a

sharply 2-transitive group. The Frobenius kernel of rBt/2 is elementary abelian of

order A. On the other hand, if p* e B—B n B', then by (2.2iv) r„.B. acts as a

Frobenius group of order kX on the blocks on p*, so that r„.BB. ̂  rB1 has a cyclic

subgroup of order A. Thus, A is prime.

k is odd. If A is odd, then n is even. If p and p' are distinct points of L=B n B',

then there is an involution a e 2 _ rpp,B fixing no points of B—L. By (7.1), a fixes

all blocks containing L. By Proposition 3.3, there is a point x lying on no block

containing A. Since a is an involution, a fixes either x or the line joining x and x".

As k and A are odd, a must fix a block X on x. Then a fixes B n X. Since A is odd,

a fixes a point y e B n X. By (7.1), a e VyBX implies that <x fixes B n X pointwise.

By the choice of x, X^L, so that a fixes points of B—L, contradicting the choice

Of <T.
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Thus, A = 2. Since |rB1| =(A—l)Aw = 2«, YB is sharply 3-transitive on B. A result

of Zassenhaus [35] now implies that the hypotheses of Lemma 6.1 are satisfied.

This proves the theorem.

The main result of the present section is the following generalization of Theorem

7.1.

Theorem 7.2. Let 3 be a symmetric design with k\(v— 1). Suppose that Y is a

2-transitive automorphism group of 3 having a cyclic subgroup fixing a block B and

a point q $ B and sharply transitive on the points on B and the blocks on q. Then 3

is a projective space or ^n provided that either

(i) k has no proper divisor = 1 (mod A), or

(ii) k<(X+l)2.

We begin by proving a lemma which does not require (i) or (ii). The proof uses

ideas from [20].

Lemma 7.3. TB is 2-transitive on B.

Proof. If A = TB is not 2-transitive on B, then k is not prime (Theorem 7.1)

and A is imprimitive on B by a result of Schur [34, p. 65]. Fix a system J of non-

trivial imprimitivity classes of A on B of maximal length c. ß will denote a typical

member of J. Fix p e B and let /? e Gj. Let n be the elementwise stabilizer of J

in A. n<] A and A/Ü is primitive and faithful on J. 2 r\ JT is transitive on each S

[34, p. 74], where 2 is the given cyclic group.

Let á? be the set of block-orbits of II other than {B}. A typical member of âS

will be denoted SB. As A is transitive on the blocks #1?, |S8| =d is independent of

SB e@.

By Theorem 5.2, fl is transitive on ifi?. Thus, n has the following orbits: ^B,

k/c classes S, {B} and (v-l)/d orbits SB. By Proposition 3.1, (v-\)/d=\âS\ = \J\

= k/c. By Lemma 2.1,

(7.2) d = sc.

It follows that

(7.3) |np| £ d/c > 1.

By Lemma 4.2ii, Ap is transitive on the blocks not on p. Then |(£i n <€X\ = r is

independent of the block A'not on p. As n is transitive on ©l5 while A is transitive

on J, t= |d n <€X\ for each © e J and each X3>&.

Define 3* as follows. J is the set of points and SS the set of blocks. E is on SB

if and only if some point of© is not on some block of SB. There are k/c points and

blocks.

Fix X+B. There are precisely n/t classes d: X. That is, each block of 3* is on

n/t points of 3*.

Let <£ and ©' be distinct classes and count in two ways the triples (x, x', X) with

x e e, x' e <T, x £ X, x' i X. This yields that there are (v-2k+X)cz/t2 = (s- \)nc2/t2
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blocks X containing neither (£ nor (£'. If X is such a block then so is each block in

Xa. Thus, 6 and <£' are on [(s-l)nc2/t2]d'1 = (s- l)nc/st2 blocks of 3*. This

shows that 3* is a (possibly degenerate) symmetric design with

(7.4) v* = k/c,       k* = n/t,       X* = (s-l)nc/st2.

By (2.1), [(s- l)nc/st2](k/c- l) = (n/t)(n/t-1). As sn-1 =(í- 1)át, this reduces to

(7.5) (j-l)c = ir-l.

Then also

(7.6) i* > 1,

and

(7.7) v*-k* = (k- c)/sct = (v* - 1)/jí.

A/n is an automorphism group of 3* primitive on points. 2n/n is cyclic and

transitive. Thus, if A/IÏ is not 2-transitive on points, then results of Burnside [2,

p. 341], and Schur [34, p. 65] imply that | A./T11 divides v*(v* — l) properly. How-

ever, as Ap is transitive on the blocks not on p, (A/iI)ei is transitive on the blocks

of 3* on ©t. Then v*k* \ | A/I1|, so that k*\(v*-l). By (7.6) and (7.7), k* = v*-l,

whereas | A/II| divides v*(v* — I) properly. This contradiction shows that A/fl is a

2-transitive automorphism group of 3*. In particular, as ACl = Apfl, Ap is transitive

on the classes ©#©1.

Ap fixes the set of v* — k* blocks of 3* not containing G^. Then Ap fixes a set of

d(v*-k*)=(k-c)/t blocks of 3 containing &lt by (7.2) and (7.7).

By Lemma 4.2v, our hypotheses and conclusion are self-dual. We may thus

define c and i as before, using the blocks on p. Moreover, we may assume that

All previous statements dualize. In particular, Ap = rpB fixes a set p of (k—c)/i

points of A. By (7.7), (k-c)/i>c^c, so that p' = p-p n (£17¿ 0. a-\p' n (S| is

independent of the class ©#©1 by the transitivity of Ap on these classes. Then

\p'\=a(v*-l), so that

(k-c)/i= \p\ = a(k/c-l) = a(k/c-l).

By (7.5), a-¿c/i<2, so a=l.

It follows that the set (S# of fixed points of np on B contains p' u {p}. By (7.3)

and Corollary 5.3, S# is a nontrivial imprimitivity class of A on B. The maximality

of c, (7.7) and (7.5) imply that

c = |(£#| > |p'| = Ar/c-1 ^ st = l + (j-l)c,

a contradiction.

Proof of Theorem 7.2. If 3 is neither Jtfyy nor a projective space, then k is

composite by Theorem 7.1. A=r,B is not 2-transitive on B by Proposition 3.3.

Since A has a cyclic subgroup transitive on B, A is imprimitive on B by Schur's
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theorem [34, p. 65]. Let (£ be an imprimitivity class of A on B; |(£|=c, where

1 < c<k. Let p e @. By Lemma 4.2vii, the length of each orbit of Ap on ©—{/?} is

divisible by A. Then c—l=0 (mod A) and (i) does not hold. Since k= 1 (mod A), it

follows that k/c=l=c (mod A) and (ii) does not hold. This completes the proof.

We mention without proof a result analogous to Theorem 7.2; the proof is

similar to the previous one.

Theorem 7.3. Let 3 be a symmetric design with k\(v— 1). Let Y be a 2-transitive

automorphism group of 3 having an abelian subgroup 2 fixing a block B and sharply

transitive on B. Suppose that some nontrivial Sylow subgroup of£> is cyclic and that

2 is centralized by a polarity of 3. Then 3 is ^"u if either (i) k has no proper divisor

= 1 (mod A), or (ii)k<(A+l)2.

8. Applications to difference set designs. Let v be an odd prime power and set

F=GF(v). Let B=B(v, k) be the subgroup of F* of order k = (v— l)/s, where s is

an integer > 1. B is a difference set in F* if and only if the elements of F and the

sets B+a, aeF, are the points and blocks of a symmetric design 3(v, k). The

designs 3(v, (r-l)/2) are the Paley Hadamard designs [28]; here it is necessary

and sufficient that r = 3 (mod 4).

The group S(v, k) of mappings x -*■ bx°+a, aeF, be B and a e Aut (F), is an

automorphism group of 3(v, k). It follows from Dembowski [6] that 3(v, k) is not

a projective space if A > 1. If A = 1 the only desarguesian exceptions are PG(2, 2)

and PG(2, 23). In view of Ostrom and Wagner [27], these are the only designs

3(v, k) which will actually be disregarded.

The problem of determining the full automorphism group of 3(v, k) was first

raised by Todd [31] in the case k = (v—1)/2. S(v, (v- l)/2) is not the full automor-

phism group if c = 7 (PG(2, 2)) or 11 (^u). Todd checked some other cases with

small v and found that S(v, (v -1)/2) is the full automorphism group of3(v, (v-1)/2)

in these cases; Hering [13] obtained analogous results for additional small values

of v by using a computer. We will prove the following

Theorem 8.1. Ifvis a prime power with 11 <t>==3 (mod 4), then S(v, (v—1)/2) is

the full automorphism group of 3(v, (v—1)/2).

Proof. Suppose that, for some such v, the full automorphism group Y of

3(v,(v-l)/2) is >S(v, (v-l)/2). By [20, Proposition 6.1], S(v,(v-l)/2) is a

maximal subgroup of Y of odd order. As S(v, (v—1)/2) is 2-homogeneous on points

and |T| is even, it follows that Y is 2-transitive. As &=2A+1<(A + 1)2, Theorem

7.2 applies. This contradiction completes the proof.

Corollary 8.2. Let v> 11 be an odd prime power and set F=GF(v). If fand g

are permutation polynomials such that, for all xeF, f(x+q)—g(x) is a square

whenever q is a square, then f(x)=g(x)=bx° + afor all x, some square b^O, some

a and some o e Aut (F).
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Proof. Let B be the set of nonzero squares of A. Let 3 be the tactical configura-

tion consisting of the elements of A as points and the sets B+a, ae F, as blocks.

Each pair (/ g) induces an automorphism y(fi g) of 3. If v=3 (mod 4), Theorem

8.1 implies the result. Let v = 1 (mod 4). If x e Athen B+x={y\ \(B+x) n(B+y)\

=(v-5)/4}. Thus, (B+x)«f-g) = B+x«f-'\ that is, g(x)=/(x). A result of Carlitz [3]

completes the proof.

Theorem 8.3. Let v be a prime power, let k\(v— 1) and suppose that B(v, k) is a

difference set in GF(v) + . If the automorphism group of 3(v, k) is 2-transitive, and if

1 +kll2>(v- l)/k, then 3(v, k)=3(l, 3) or 3(11, 5).

Proof. By (2.1), X=k(k-l)/(v-l)>kll2-l. Theorem 7.2 thus applies.

Note that, if v is prime, then the automorphism group of 3(v, k) is either S(v, k)

or 2-transitive. This follows from a theorem of Burnside [2, p. 341], and the fact

that B(v, k) is fixed by all multipliers. By Lemma 4.1 we have the

Corollary 8.4. Let Y be a nonsolvable 2-transitive group of prime degree p

having a subgroup of index p with an orbit of length k^l, p—l. If the normalizer

of a Sylow p-subgroup has order ^pk and l+kll2>(p — l)/k, then Y is similar to

PSL(3, 2) in its usual representation or to PSL(2, 11) in its representation of degree 11.

9. Automorphisms of prime order > A. Automorphisms of this type are probably

rare in symmetric designs for which A is not small. However, when they occur it is

frequently possible to relate them to lines.

Lemma 9.1. Let 3 be a symmetric design such that n has a prime divisor p > A > 1.

If x and y are distinct points of 3, then every two distinct blocks on x and y have the

line joining x and y as their intersection, provided that 3 admits an automorphism

group A satisfying one of the following conditions:

(i) A fixes x and is transitive on the points ¿x; or

(ii) A fixes x and y and is transitive on the blocks on y not on x.

Proof. Let 2 be a Sylow p-subgroup of A„. 2 fixes all blocks on x and y since

p > A. Let X and Y be two such blocks whose intersection is not the line joining x

and y. 2 fixes X n Y pointwise.

(i) Let Z be a block on y but not on x and assume that \X n Y n Z| ^ 2.

2 fixes Xn YnZ pointwise, and thus fixes any block containing two points of

Xn YnZ. In particular, 2 fixes Z. However |A| =(v-k)\Az\=(v—l)\Ay\, so

that n\ Az\ =&|Ay| and |2| \ \AZ\, a contradiction.

(ii) This time suppose that Z is on both x and y but that there is a point

ze Xn Y-Xn YnZ, so that x, y and z are not collinear. Then there is a

block A on y and z but not on x. 2 fixes y and z and hence also B. Then 2 fixes a

certain number/- 1 of blocks on y but not on x. Here f=k — X=0 (modp). Since

A = Aj, is transitive on the blocks on y but not on x, Lemma 3.5 implies that AA(2),

restricted to the fixed blocks of 2 on y but not on x, is a transitive permutation
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group of degree/sO (mod/)). This is impossible since this permutation group has

a trivial Sylow /^-subgroup.

The preceding lemma has been stated in a form dual to our usual form because

the present version can be extended to nonsymmetric designs. For example, in (ii)

one would need to assume in the more general situation thatp\(r— A), p> X, andp

is greater than the number of points common to any three distinct blocks containing

x and y, one of which does not contain the intersection of the other two.

Lemma 9.2. Let A be an automorphism group of a symmetric design fixing a block

B and transitive on the remaining blocks. If n is prime and > A, then A = 2 and, for

some prime e, A acts on B as PSL(2, 2e) or PYL(2, 2e) in its usual representation.

Proof. By the dual of Lemma 9.Ii, every block i=B meets B in a line. Then

(A-1)|(A:-1) by Lemma 4.3, so that (A—l)|w and A=2. By Lemma 6.2, A is

3-transitive on B. If A is not 4-transitive on B the result follows from [2, p. 341]

and [9]. If A is 4-transitive, Theorem 6.3 applies. Lemma 6.1 now yields the

following

Theorem 9.3. Jtt\x is the only 2-transitive symmetric design for which n is aprime

>A>1.

Theorem 9.4. JFxx is the only symmetric design 3 admitting an automorphism

group A fixing a block B and transitive on the remaining blocks, and such that

A2 +1 - k> 4 and n has a prime divisor p>X.

Proof. The dual of Lemma 9.Ii implies that every block #5 meets B in a line.

Then (A— \)\(k-X) by Lemma 4.3, so that

A <;>|(A:-AXA-1)-1 ¿ (A2+1-AXA-1)-1.

It follows that A = 2 and A: = 5, so that 3 is J^xi-

Lemma 9.1 involves groups of automorphisms, some of which have prime order

> A. Some information can also be obtained in the case of a single automorphism

of prime order p>X, even without the assumption that p\n. First, we prove a

generalization of Bruck's Lemma [10, p. 398].

Lemma 9.5. Let 3* be a proper symmetric subdesign of a symmetric design 3

such that A* = A. Then either n = (k*-l)2 or Xv* = k. (Thepossibility that k* = X+l

is not excluded.)

Proof. From (2.1), applied to both 3 and 3*, it follows that k>k*. Let B be a

block of 3* and x a point of B not in 3*. Since A* = A, B is the only block of 3*

on x. Then there are X(v* — k*) + (X- l)k* blocks on both x and exactly one point

of 3*, so that this quantity is at most k— 1. By (2.1), equality implies that (k*-l)2

=n. Inequality holds only if some block of 3 contains no point of 3*, and dually.

Replacing x by a point of 3 on no block of 3* and proceeding as before, we find

that Xv* = k.
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Proposition 9.6. Let y be an automorphism of prime order p>X> 1 fixing more

than X points of a symmetric design 3.

(i) Either (a) every fixed block of y has n1,2+1 fixed points, or (b) k^X(X + 2).

(ii) If also p\n, then (a) does not occur and k^4X2.

Proof. Let 3* be the set of fixed points and blocks of y. Since p > A, if x and y

are in 3* then all A blocks on x and y are in 3*, and dually. As 3* contains more

than A points it is a symmetric subdesign of 3, possibly with v* = k* +1 (Majumdar

[23]; Dembowski [5, p. 269]). Since i>*SA+2, the preceding lemma implies (i).

If also p\n, then p\(k-k*) and p\(X-1) imply that p\(k*-1). Then «#(£*-1)2,

so that Xv*^k by Lemma 9.5. Since k*-X^p>X, (2.1) implies that A(p*-1)

= *:*(£*-1)>2A(2A-1), so that £ > Ai;* > 4A2.

An automorphism of order 3 fixing 3 points of a block of the design in (6.4)

provides an example of (ia).

Corollary 9.7. Aer 3 be a symmetric design for which X2 +1 = k > 4 and n has a

prime divisor p>X. If there is a block B and a point x on B such that each y e B — {x}

is fixed by an automorphism of 3 of order p which fixes x, then 3 is Jfn.

Proof. Let y be an automorphism of order p fixing x and y e B—{x}. Then y

fixes each block on x and y. If C is such a block ¿B, then B n C is a line. For

otherwise, there is a block D on x but not on y such that \B n C n D\ ^2. Since

y fixes B n C pointwise it fixes all blocks containing B n C n D. Then y fixes at

least A+l blocks, contradicting Proposition 9.6ii. The remainder of the proof is

the same as that of Theorem 9.4.

10. Diophantine conditions. Let T be a 2-transitive automorphism group of a

symmetric design 3 with (v- l)/k an integer s. Suppose that YB is 2-transitive on

the block B, and that 3 is not a projective space. In this section we list numerical

conditions satisfied by some numbers related to the action of Y on 3.

If all lines have h points, then by Lemmas 2.1, 3.2 and 4.3, and Proposition 3.3,

(10.1) (n-l)|(i,«),

(10.2) s ^ h ^ 2.

Let p and p' be distinct points of a line A. Let plt...,pt be the orbits of Ypp.

of points not on A. Set /{ = |p,|. |#A n p¡\ is independent of the block B on p and

p', and, by Lemma 4.2vi, \^B n p¡| =nx„ where x4 is an integer. x(>0, as otherwise

every block containing/? andp would contain pt, whereas p¡$A. Clearly,

(10.3) 2 'f = v~h   and   2 x' = s-
1 i

Let q e pt. Since Ypp. is transitive on the blocks on p and p', the number of such

blocks not on q is Xnxjli, so that

(10.4) nxi á /¡|Anxf   for all/.
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Fix B on p and p'. Counting in two ways the pairs (q, B') with B and B' distinct

blocks on p and p' but not on q, we obtain

(10.5) 2 * A = 1/A.

Lemmas 4.4 and 4.5 imply that

(10.6) If TB is 2-transitive on ^B, then t = h = 2.

Under the hypothesis of (10.6), the number cx of points of pt on a block X on

neither /? nor p' is independent of the choice of X. There are n — Xnxjlx such blocks

X on each point of p¡. Then by Lemma 2.1, (j— l)nci=(v—2k + X)ci=li(n — Xnxi/lt),

so that

(10.7) If TB is 2-transitive on ^B, then (s- l)|(/t —Ax,) for all ».

If 3 is jfxi then t=h = 2, /j = 6, /2 = 3 and Xx=x2 = l. In the proof of Theorem

11.3 we will encounter a second set of solutions of the conditions (10.1)—(10.7),

corresponding to which there is, however, no symmetric design of the desired type :

t=h=2, i;=506, k= 101, n = 81, A = 20, s = 5, ̂  = 180, /2 = 324, xx-2, and x2=3.

11. Applications of the Diophantine conditions.

Theorem 11.1. Let 3 be a symmetric design having the same parameters as a

finite projective space. If 3 admits a 2-transitive automorphism group Y such that

YB is 2-transitive on the block B, then 3 is a projective space.

Proof. By Lemma 2.1, the assumption concerning parameters is equivalent to :

k\(v— 1) and v—k=sn is a power of a prime p. If 3 is not a projective space then

the results of the preceding section apply. If s\l¡ for some i, then nxi^li\Xsp~1xi by

(10.4), whereas Xsp~1 = (X+n— l)p~1<n by Lemma 2.1, a contradiction. Thus,

2/¡ = v-h = s2X+s+l-h,

so that s\(h-l), contradicting (10.2).

Theorem 11.2. Let 3 be a symmetric design for which (v—l)/k is an integer s

and (n, 2s—1) = 1. If 3 admits a 2-transitive automorphism group Y such that, for

each block B, YB is 2-transitive on B and on <€B, then 3 is a projective space.

Proof. If 3 is not a projective space then t=h = 2 by (10.6). By (10.3) and

Lemma 2.1,

(A, h, 4)|(A, s*X+s+1 -2) = (A, s-1),

(n, lx,l2)\(n,(s*n-\)(s-1)"1-2) =1

and

(xx, x2, h, l2)\(s, s2X+s+1 -2) = 1.
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Since (ly, l2)\Xn(xy, x2) by (10.4), it follows that (ly, l2)\(X, s-l). By (10.5),

A(x?/2+x|/1)=/1/2, so that ly\Xxf(ly, l2) and thus /i|A(A, j-l)xf. Comparison with

ly\Xnxy shows that ly\Xxy(n, (A, s- l)xx). (n, A)= 1, (10.3) and (10.4) then imply that

nXy   ¿  ly\XXy(n, Xy)   S   AXi(í—1)  =  («—l)Xl,

a contradiction.

Theorem 11.3. Let 3 be a symmetric design for which k\(v — 1), n is a prime

power and X>2.If3 admits a 2-transitive automorphism group Y such that, for each

block B, YB is 2-transitive on B and on ^B, then 3 is a projective space.

Proof. Suppose that 3 is not a projective space. Then t—h=2 by (10.6). We may

assume that (ly,l2,n) = (ly,n). As in the proof of the preceding theorem, this

divides (n, A, s— l)(n, 2s— l) = (n, 2s— 1). Lemma 2.1 and (10.4) imply that

{l + A(i-l)}x! = nxy < ly\X(n,2s-l)xy á A(2s-l)Xi.

It follows that ly =eX(2s- l)xu e= 1 or 1/2, and (2s- l)/(/lt n)^2. Then (ly, 12, n)

=2s-1. Substituting in (10.5),

(11.1) x2«A(2s -1) = ¡2{e(2s -l)-s+x2}.

Case 1. e = l. By (10.3), (10.4) and Lemma 2.1,

{l + A(s-l)}x2 â l2 = (s2X+s+l)-2-X(2s-l)(s-x2),

or (Ai-l)xa>(Aj-l)(s-l). Then by (10.3), x2=i-l, Xt-l and l2=(s-l)n. By

(11.1), A(2s—l)=2n, so that A|2, a contradiction.

Case 2. e=l/2 and (x2, n) = l. By (11.1), x2 = l and thus /2 = A(2s-l). Since

¡y = X(2s- l)(s-1)/2 this contradicts (10.3).

Case 3. e=l/2 and (x2, n)#l. Let p be the prime dividing n. By (11.1),

/2=x|A(2j- l)/(2x2-1), so that x2|n by (10.4). By (10.3) and Lemma 2.1,

(11.2) Axx/2+Axl/(2x2-l) = {j2«(2j- l)"1- 1}/(j- 1).

Since X¿2, n^2s-l and so/?|/i(2s-l)-1. If n(2s-l)'1=x2=0 (mod p2), then

(11.2) implies that Axx/2= - l/(s- 1) (modp2), so that, by (10.3), s=Xy = -2/(n-1)

= 2 (mod/?2); since 2s- 1 is a power of p this is impossible. Thus, either (i) n =

p(2s-l) or (ii) x2—p. The same argument also shows that s=2 (modp), so that

/>-3.
(i) n = 3(2s-l) implies that A=2(3í-2)/(í-1) (by Lemma 2.1). Then (s-l)\2,

contradicting the fact that s>x2=p=3.

(ii) x2 = 3, (10.3), (11.2) and Lemma 2.1 imply that x1=j-3 and

A(2s-1)(í-3)/2 + 32A(2s-1)/(2-3-1) = í2A+í-1.

Then A= 10(i—l)/(j—3). Since 2s—1 is a power of 3 it follows that i=5 and

A = 20. Then k= 101 is prime, contradicting Theorem 7.1. This proves the theorem.

Theorem 11.4. Let 3 be a symmetric design with k\(v— 1) and A>2 admitting a

2-transitive automorphism group Y. If, for each block B, YB is 2-transitive on ^B
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and transitive on the ordered triples of noncollinear points of B, then 3 is a projective

space.

Proof. If 3 is not a projective space then r = A=2 by (10.6). In particular, YB

is 3-transitive on B. However, r = 2 means that Y has precisely 2 orbits of ordered

triples of points. Thus, Y is transitive on those triples contained in some block and

on those triples contained in no block. In the preceding section we may thus

assume that X = Xnx2/l2- A straightforward calculation using (10.3) and (10.5)

yields

(lx-Xxx)/(s-l) = A2(Â:-2)/(A2-2A + n).

Since («, A)= 1, (10.7) implies that {(A- 1 )(A — 2) +■ (A:—2)}|(A: — 2), which contradicts

A>2.

Theorem 11.5. Let Y be a 2-transitive automorphism group of a Hadamard

design 3. If YB is 2-transitive on the block B, then 3 is either a projective space or

Proof. Suppose that 3 is not a projective space. Since t> 1 by Proposition 3.3,

(10.3) implies that r = 2 and Xx=x2 = \ (compare Lemma 4.2iv). h = 2 by (10.2).

Then (10.3) and (10.5) imply that hl2 = (n-l)(4w-3), so that ¡x-(-lx) = 0

(mod 4n — 3). Then by (10.4), w = 3, as claimed.

Note that Theorem 11.6 can be used in place of Theorem 7.1 in the proof of

Theorem 8.1.

12. « a prime power. The conditions given in §10 may be generalized somewhat.

The resulting numerical conditions do not, however, seem useful unless « is a prime

power (compare Theorems 11.1 and 11.3). In this case we can prove the following

simple characterization of projective spaces over prime fields.

Theorem 12.1. Let 3 be a 2-transitive symmetric design with (v—\)/k an integer

s. If n is a prime power relatively prime to every number of the form as + s — a with

\—a<s and a\(n, s), then 3 is a projective space.

Proof. Assume that 3 is not a projective space. By Lemma 3.2 and Proposition

3.3, all lines have the same number h¿ s of points. Let plt ■ ■., Pt be the orbits of

Ypp. of points not on the line joining the points p and p'. Set /( = \pt\. By Lemma

4.2ii, Tpp. is transitive on the blocks C on p but not on />'. Then yt=\pxn C\ is

independent of C. By Lemma 2.1,

2 h = v-h = {s2n-l-h(s-l)/(s-l)}.
i

Since (h— l)\(n, s) by Lemmas 2.1 and 4.3, our hypothesis implies that (n, v-h)= 1.

Then (n, lt)= 1 for some /'. As in §10, there are nyjl, blocks C on each point of px.

Since h~èyi it follows that /¿=j¡. Then each of the n blocks on p but not on p'

contains p¡ u {/>}. Since n > X this is impossible.
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Corollary 12.2. A 2-transitive symmetric design is a projective space if(v— l)/k

is a prime s, n is a prime power and («, 2s — 1 ) = 1.

This corollary applies to Hadamard designs in which « is a power of a prime #3,

and to designs with the same parameters as AG(d, p) with p prime.
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