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DYNAMICAL SYSTEMS WITH AN INVARIANT SPACE

OF VECTOR FIELDS

BY

ROBERT I. JEWETT AND SOL SCHWARTZMAN

I. In the theory of differentiable dynamical systems, the natural actions on

coset spaces are of particular interest, not least because the general situation is so

intractable. Let G be a Lie group and H a closed subgroup such that G/H is

compact. A natural action on GjH is a group of transformations of G/77 of the

form xH h> aaix)H, where a is an element of G and a is an automorphism of G

such that <*(//) = //. The space of right-invariant vector fields on G is carried by

the natural projection w, x M- xH, onto a space of vector fields on G/H, and this

space is invariant under each natural action. Suppose now that 77 is discrete. Then

G is unimodular. A Haar measure on G determines a finite Borel measure on G/77

invariant under each action. Analogously, a translation invariant n-form a> on G,

where n is the dimension of G, determines an «-form r¡ on G/77, and T*r) equals

± r¡ for each natural transformation T.

It is such a phenomenon that we examine in this paper: A dynamical system in

which a certain finite-dimensional linear space of vector fields and a certain

differential form are (essentially) invariant under the action.

In the next few paragraphs we define several expressions, and then state our

main result. The following section is devoted to a proof of this theorem. Additional

results are presented in the third section.

Let M be a differentiable manifold and let X be a finite-dimensional linear

space of vector fields on M. We say that X is spanning if, for each p in M, the

evaluation atp, X r-> Xp, maps X onto the tangent space of M at p. If the dimension

of X equals the dimension of A/, in which case these mappings are each one-to-one,

then X is said to be simply spanning. If X is simply spanning, an affine connection

V on M is determined by the condition :

VyX  =   0

for X in SC and Y any vector field on M. We call V the connection associated with X.

Let 2T be a group of diffeomorphisms of M. For each T in 9", let T* be the

associated mapping of vector fields, and let T* be the associated mapping of

differential forms. A linear space X of vector fields on M is said to be invariant

under &", if TJßT) = X for each Tin ST. In this case, the restriction of {r* : Te T\

to X is a group of linear transformations of X.
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Let IX be a group of homeomorphisms of a space S. An eigenfunction for X on

5 is a function / on 5, with values in the unit circle, such that, for each T in X~,

there exists a complex number AT satisfyingfT=XTf.

Theorem 1. Let M be a compact differentiable manifold of dimension n, co an

n-form on M, X a finite-dimensional linear space of vector fields on M, and X~ a

group of dijfeomorphisms of M. Suppose the following statements are true.

(I) w is not identically zero, and T*io = ±co for each T in X.

(II) X is spanning and invariant under ¡X.

(Ill) X~ is abelian and each differentiable eigenfunction for X~ on M is constant.

Then the following statements are also true.

(I) Except for multiplication by a scalar, co is the only n-form on M satisfying

assumption (I) above.

(II) X is simply spanning.

(III) IfW is a finite-dimensional linear space of vector fields on M invariant under

X~, then <&^X.

(IV) X is a Lie algebra.

(V) The system (A7, œ, X, X) is isomorphic to (G/r, i?, <W, Sf) where: G is a simply

connected Lie group whose Lie algebra is isomorphic to X; T is a discrete subgroup of

G ; i? corresponds to a translation-invariant n-form on G ; <& corresponds to the space

of right-invariant vector fields on G; and, each transformation, xT t-> SixT), in Sf

is of the form

xY h> aaix)V,

a being in G and a being an automorphism of G such that a(Y) = Y.

Corollary 1. Let M be a compact differentiable manifold, V an affine connection

on M associated with a simply spanning space of vector fields, andX~ an abelian group

of diffeomorphisms of M which preserve the affine structure. If each differentiable

eigenfunction for Xon M is constant, then IXpreserves no other such affine structure,

and iM, ¡X) is isomorphic to a natural action on a coset space G/Y with Y discrete.

II.

Lemma 1. Let S be a finite-dimensional real vector space, =S? an abelian group of

linear transformations of S, and C a compact subset of «? invariant under 3?. If C

has more than one point, then there exists a differentiable function f: S —> C such

that f is an eigenfunction for 3? on C.

Proof. Let J5" be the space of all complex-valued real-linear functionals on S;

6 is a complex vector space. For each L in SC define L* : !F -> J5" by L*f=fL.

Thus, ¿¡f*={L* :Le£f} is an abelian group of linear transformations of ^.

These transformations can be put simultaneously in triangular form. That is, there

exists a basis {/,,/2,.. .,/„} of J*7 such that for each k, the linear span of{/i,.. .,fk}
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is invariant under SC*. Let m be the smallest integer k such that/fc is not constant

on C. Set g=fm. Hence, for each L in SC, there exists aL in C such that L*g — aLg

is constant on C; let the constant be ßL; on C then, gL = aLg + ßL.

Let B=giC). Define AL: C-^C by v4Iiz = a£,z-T-r5t. Since AfB) = B, \ocL\ = X. Let

7C be the convex hull of C; then /4L(K) = Ä'. Thus there exists a point y in K left

fixed by each AL :

y = <*iy+ßi.

for Lin ¿f. Define «: S -> <f by /t(x)=g(x)-y. For x in C,

A(Lx) = ccLgix) + ßL-y = «¿ft(x).

Thus hL = aLh on C for each L.

If* |A| is constant on C, let the constant be c (which cannot equal 0) and define/

by/=A/c.
If |A| is not constant on C, there exists an s>0 such that

f= eielh\

is not constant on C, and this/is an eigenfunction for SC on C, each eigenvalue

being 1 in this case.

Lemma 2. Given the assumptions of Theorem X, conditions (I) and (II) are valid.

Proof. Let S be the space of all multilinear alternating mappings r¡: X"-^-R;

here X is regarded as a real vector space. Thus S is a finite-dimensional real vector

space. For each 2" in X~, define T' : S —> ê by

iT'r¡)iXi,..., Xn) = T)iT*Xi,..., T*Xn).

Each J" is linear. For each T, let eT in {1, —1} be such that T*co = etu>. Thus

o>iT*Xi,..., 'T*A'n) = eTo>iX1,..., A'jr.

For each p in M, define tup : Xn —>- Ä by

o>p(.Yi, ..., JT„) = icoiXi,..., Xn))ip).

Clearly wp is in S and

T'wp = eTwTp.

Define LT = eTT'. Thus SC = {LT : TeX~} is an abelian group of linear trans-

formations of S leaving the set

C = {cup : p e M)

invariant. The mapping p t-> wp oî M into S is differentiable. By Lemma 1 and

assumption (III), C has but one point and it is not 0.
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Conclusion (I) is valid because we have proved that co is everywhere nonzero.

To verify (II), suppose that X is in X, p is in M, and Xp = 0. Then

coPiX, X2,..., Xn) = 0

for X2,..., Xn in X. Thus, for each q in M,

coqiX, X2,..., Xn) =0

for X2,...,Xn in X; Xq = 0 for each q; X=0.

Lemma 3. Let X be simply spanning on the compact differentiable manifold M of

dimension n, and invariant under the group X. Then M is orientable and there exists

an everywhere nonzero n-form to on M with the following property: For each T in X~,

T*w = ±co and the determinant of T* on X equals ± 1, according as if or both) T

preserves or reverses the orientation of M.

Proof. Let {A^, X2,..., Xn} be a basis for X. Let {tu,, a>2,..., con) be a dual

system of 1-forms on M. That is, coiiXJ) = Sij. Set co = w1 Ato2A • • • Awn. For each

T in X~, T*co = dTco where dT is the determinant of T* on X. The finite nonnegative

Borel measure on M corresponding to co is invariant under X. Hence \dT\ = 1.

Lemma 4. Let X be simply spanning on the differentiable manifold M. Then there

exists a unique affine connection V on M such that VYX=0for X in X and Y any

vector field on M. Moreover, a diffeomorphism T of M is affine with respect to V if

andonlyifT*iX) = X.

Proof. The connection V is given by

Vy(J A**)  =   J   iYfk)Xk,
\k=l / fc = l

where {Xu X2,..., Xn} is a basis for X. Uniqueness is clear.

Let T be an affine transformation of M. Thus T carries geodesies to geodesies,

and the geodesies are just the integral curves for members of X. Hence T*iX) = X.

Let T be a diffeomorphism such that T*iX)=--X. Let V be the connection on M

induced by T. That is,

V't,yT*X = JV(VyA').

Clearly, YYX=0 for Zin X. Hence V' = V.

Lemma 5. Let X be a finite-dimensional linear space of vector fields on the compact

differentiable manifold M. Let V be a fixed vector field on M and let X = {f : t e R]

be the flow on M corresponding to V. For each vector field X on M, let LX=[V, X].

Then X is invariant under X if and only ifLiX)çX. If X is so invariant, then

Tt. = e-tL

onX.
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Proof. It is known [3, p. 15] that

-L = limjiTt.-I)
t-o t

pointwise, on the space of vector fields, and that L commutes with each Tt..

If X is invariant under X, the conclusion is clear.

Suppose now that LiX)^X. Each space Tt-iX) is invariant under L. Let & be

the linear span of the union of these spaces. Each point in & is contained in a

finite-dimensional subspace of <& invariant under L. Define operators Kt on <&

by K, = Tt.etL. It is readily shown that the derivative of the mapping /1-> Kt is 0

on R. Thus Kt is constant in t and equals the identity transformation on <W.

Proof of Theorem 1. Conclusions (I) and (II) have been verified.

(III) Let & be as given. Let S be the space of linear mappings/: "X —>X. For

each T in X, define LT: S -> S by

iLTf) = 7V/IT*)-1 = 7VT_*.

Clearly, each LT is linear, and SC = {LT : TeX] is an abelian group of linear

transformations of #. For each p in M, define/,: °1/ -> X by requiring that/„( Y)

be that element of X which agrees with Y at p. That is, ifPY)p = Yp. The mapping

p m*/, is differentiable. Since Ti!{Xp) = iTJfX)Tp, we have

KA/p)yirP = T*[ifpT^Y)p] = r*[(r_*y)p]

=  r Tp = (/j-p / )Tp.

Thus, LTfp=fTp. The set {/, : p e M} is invariant under SC and, by Lemma 1, it

must consist of but one point. Therefore, W^X.

(IV) The set {[X, Y] : X, YeX} is invariant under X. Its linear span is finite-

dimensional and invariant under ¡X. By (III), the set is contained in X.

(V) Let G be a simply connected Lie group with Lie algebra isomorphic to X.

It is well known that there exists a transitive action, (x, p) v^-x-p, of G on M which

leaves X invariant. Since G has dimension n, there exists a discrete uniform sub-

group T of G and a diffeomorphism U: GjY -> M such that

UixyY) = x-UiyY).

Let <W be the image under tt* of the space of right-invariant vector fields on G.

Since 1H generates the action of G on GjY and X generates the action of G on M,

UjfiX) = <W. By Lemma 3, co is invariant under the action of G on A7. Hence,

T] = iU~1)*oj is invariant under the action of G on G/Y, and r¡ must correspond to a

translation-invariant «-form on G.

That the diffeomorphisms U'^TU on G/Y are of the stated form follows from

Theorem 2 of the next section.

Proof of Corollary 1. By Lemma 3, there exists an appropriate n-form on A7 and

Theorem 1 applies. The transformations are affine by Lemma 4, and the structure

is unique by (III) of Theorem 1.
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III.

Corollary 2. Let M be a compact differentiable manifold of dimension », a> an

n-form on M, X a finite-dimensional linear space of vector fields on M. Let there be

given a differentiable action of Rm on M. Suppose that:

(I) co is not identically zero, and is invariant under Rm ;

(II) X is spanning and invariant under Rm;

(III) Either (i) M is simply connected, or (ii) the action has a fixed point in M.

Then there exists a nonconstant differentiable function on M which is invariant.

Proof. Let !X be the group of diffeomorphisms. Let/be a differentiable eigen-

function for ¡X on M. Choose aT in R such that

fT = éarf.

If there exists a fixed point, fT=f for all T, and /is invariant. If M is simply con-

nected, there exists a differentiable function g: M -> R such that/=ei3; then

and gT—g is constant, hence zero;/is invariant.

Suppose now that there does not exist a nonconstant differentiable invariant

function on M. Then Theorem 1 applies. Let 'X be the space of vector fields on M

corresponding to the action of Rm. Since <& is invariant under X, °]/^X. Thus the

system (A/, X) is isomorphic to (G/r, X) where X consists of translations,

xY i-> axY. If X has a fixed point, this is surely a contradiction. If M is simply

connected, then Y = {e}, since Y is the fundamental group of G/Y. In this case

(A/, X~) is isomorphic to (G, A) where G is a compact simply connected group and

A is a connected abelian subgroup of G. Let A be the closure of A. This is a torus

(or just {e}) and hence not equal to G. But any differentiable function on G/A

would determine an invariant function on G. This is a contradiction.

Theorem 2. For k=l, 2: Let Gk be a simply connected Lie group, Yk a discrete

subgroup of Gk, and Xk the space of vector fields on Gk/Yk corresponding to the

right-invariant vector fields on Gk. Let T: Gx/Y1 -> G2/Y2 be a diffeomorphism and

suppose that TJX1) = X2. Then there exists a point a in G2 and an isomorphism

a: G^ G2 such that aid) = G2, a(ri) = F2, and

TixYJ = a«0r)r2

for x in Gi. Moreover, if a' and a' also have this property, then there exists y in Y2

such that a' = ay and a'(.v) = y-1a(x)y.

Proof. Let <Xk be the space of right invariant vector fields on Gk. Let Trk: Gk^>

Gk/Yk be the natural projection. Then Xk = Trk.i&k). Thus ^ and S$£¡ are isomorphic

as Lie algebras, and T* lifts to an isomorphism L: Vx -»■ °J/2 such that tt2.L = T*tti..

Since Gi and G2 are simply connected, there exists an isomorphism a of Gi onto
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G2 such that L = a*. Let ek be the identity element of Gk. Choose a in G2 such that

LieiY1) = aY2. The two mappings of G1 onto G2/F2 given by

x i-> TixYj),       x h> aaix)Y2,

are equal at ex and have equal differentials. Hence, these two mappings are equal.

It is clear that a(ri) = r2.

Now suppose that a' and a are such that

a'a\x)Y2 = aaix)Y2

for all x in d. Letting x = ei shows that aT2 = ar2. There exists y in T2 such that

a' = ay. Thus

a\x)Y2 = y-l«(*)ra = y-1aix)yY2.

The two isomorphisms, x h-> a\x) and x h> y~1aix)y, are equal on a neighborhood

of e, in Gj. Thus they are equal on Gi.

Example 1. Let C denote the unit circle. There exists a two-dimensional spanning

space of vector fields on C and a flow X~ = {Tt : t e R] on C such that:

(I) The only invariant Borel measures on Care concentrated on the set {1,-1};

(II) X is invariant under X';

(III) There exist no nonconstant continuous eigenfunctions for X on C.

To see this, let V denote the vector field d/dd on C, with respect to the para-

metrization 6 i-* eiB. Define the functions x, y, z on C by

xip) = Up+P),      yip) = (l/2/)0>-/D,      zip) = P-

Set Y=yV and letX~ = {Tt : t e R} be the flow corresponding to the vector field Y.

By considering at which points Y is positive, negative, or zero, one sees that:

711-1,       71(-1)=-1

for all t; and

lim Ttp = — 1, lim  Ttp = 1
¡-»00 t-* — OO

for p not in {1, — 1}. Conditions (I) and (III) are thus satisfied.

Define vector fields Xx and X2 on C by

Xi = iX+x)V,       X2 = iX-x)V.

It is readily seen that

Vx = —v, Vy = x

[Y, V] = -xV,       [Y,xV] = -V

[Y,Xi]=-X1, [Y,X2] = X2.

Let X be the linear span of {Xu X2). Certainly X is spanning and (by Lemma 5)

invariant under the flow. Thus (II) is satisfied.
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Note that Y is real-analytic on C. Thus each Tt is a fractional linear trans-
formation leaving 1 and - 1 fixed. Such transformations are of the form 

p ~ (p-a)/(l-ap) 

for a real and not equal to ± I. In our case, - 1 < a < 1. The system (e, ff) is thus 
isomorphic to a natural action on G/H, where G is the group of all fractional 
linear transformations, and H is not discrete. 

EXAMPLE 2. Let e denote the unit circle. There exists a simply spanning space 
of vector fields !l£ on the two-dimensional torus ex e which is invariant under all 
translations, but is not a Lie algebra. 

To see this, define functions u and v on ex e by 

u(p, q) = !(p+p), v(p, q) = (1/2i)(p-p). 

Define the vector fields U and Von ex e by U=%a and V=O/Of3, with respect 
to the parametrization 

(a, (3) ~ (et", etll ). 

Now define Xl and X 2 on ex e by 

Xl = uU+vV, 

One can readily see that 

[U, Xd = -X2' 
[V, Xl] = 0, 

X 2 = vU-uV. 

[U, X2 ] = Xl 
[V, X2 ] = 0 

Let!l£ be the linear span of {Xl' X 2 }. This is simply spanning. It is not a Lie algebra. 
Moreover, by Lemma 5, !l£ is invariant under flows corresponding to vector fields 
of the form aU + f3 V. But these are just the flows of translations. 
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