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A CLASS OF NONLINEAR EVOLUTION EQUATIONS
IN A BANACH SPACE

BY
J. R. DORROH

We treat the nonlinear evolution equation
*) f(0) = AQ@, f()f(1)

where the unknown function fis from a real number interval into a Banach space X.
For suitable real numbers 7 and vectors x in X, A(7, x) is the infinitesimal generator
of a holomorphic semigroup of linear contraction operators in X, and certain
regularity requirements are placed on the function (¢, x) — A(t, x).

After proving a local existence, uniqueness, and stability theorem for (*), we
consider the case A(t, x)=H(x) and obtain conditions under which there is a
strongly continuous semigroup of nonlinear nonexpansive transformations whose
infinitesimal generator is an extension of the transformation Qx= H(x)x.

We state our main results in §l and prove them in §2. In §3, we prove some
theorems about linear semigroups in a function space which yield examples of our
main results and are of some interest in themselves.

1. The main results. Let X be a complex Banach space. If 0 <¢ <=/2, then let
Ss={ze C: z=0 or |arg z| £ ¢}, where C denotes the complex plane. Following
[6], we denote by CH (¢) the collection of all semigroups {T(z) : z € S,} of linear
contraction operators in X which are holomorphic on int(S,) and strongly
continuous on S,. We denote by GH (¢) the collection of all infinitesimal generators
of semigroups in CH (¢).

Let [a, b] be a closed real number interval, 0 <¢ <7/2, and S a closed set in X.
Let 4 be a function from [a, b] x S — GH (¢) such that the following conditions
are satisfied:

(C,) The operators A(t, x) all have the same domain D,.

(C,) There is a locally bounded nonnegative function K on [a, b] x S such that

=A@, VI —A(s, )] =1 = K(s, x)(|s— 1]+ [ x—y])

for a<s, t<b and x, y € S, where I denotes the identity transformation on X,
(Cy) (exp [£4(t, x)))S<S for £20, a<t=<bh, and x € S, where

{exp [zA(1, x)]; z € So}
is the class CH (¢) semigroup generated by A(z, x).
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In connection with the condition (C,), we mention that the invertibility of
I— A(s, x) follows from the fact that A(s, x) € GH (¢), see [6], or [2], which serves
also as a general reference for semigroups of operators. The fact that [I— A(z, y)]
-[I—A(s, x)] ! is bounded follows from (C,) and [3, Lemma 2, p. 212].

THEOREM 1. Suppose xo€ Dy NS and a<ty<b. Then there is a number c in
(to, b) such that there is a unique continuously differentiable function f from [t,, c]
into Dy N S satisfying f(t,)=x, and

™ [@) = A, fO)f(@) forto =t = e

Also, if >0, then there exists 8> 0 such that if x, € Do N S, to<c; = ¢, ||Xo— x4 ||
< 8, and g is a continuously differentiable function from [t,, ¢,] into Dy N S such that
g(to)=x, and g'(t)=A(t, g(t))g(t) for to<t=c,, then | g(t)—f(t)| <e for to<t=<c,.

DEFINITION 1.1. A semi-inner product on X means a function [-, -] from Xx X
into C such that for each y € ¥, [-, y] is a bounded liner functional of norm | y|,
and [y, y]=|y|? (see [5)).

DEerINITION 1.2, If [-, -]is a semi-inner product on X, then a transformation W
with domain and range contained in X is said to be dissipative (with respect to
[-, -Dif Re [Wx— Wy, x—y]<0 for x, y € D(W), the domain of W.

REMARK. Throughout this section, [-, -] will denote a fixed semi-inner product
on X, and all results will be independent of the particular semi-inner product used.

THEOREM 2. Suppose H is a function from S into GH (¢) which satisfies conditions
(C)), (Cy), and (Cg); more precisely, the function (t, x) — H(x) satisfies these con-
ditions. Suppose Dy N S is dense in S and define Q on Dy NS by Qx= H(x)x.
Suppose Q is dissipative. Then there is a unique strongly continuous semigroup
{T(t); t=20} of nonexpansive nonlinear transformations from S into S such that for
each x in Do N S, T(-)x is a continuously differentiable function from [0, o) into
Dy N S, and (d|dt)T(t)x= QT(t)x for t=0.

2. Proof of the main theorems. We will call a function B from a number interval
[0, R] into GH () regular if the following conditions are satisfied:

(R;) B(t) has domain D, for 0=¢<R.

(R,) There is a positive constant L such that

|— BO) U~ Bs)) 1| < Lit—s]
for 0<s, t<R.
(R3) (exp [¢B(t)])S<S for £z0and 0=¢=<R.
We point out that a regular operator function B on [0, R] also satisfies:
(Ry) |[I—B@)I—B(s)] | £1+LR for 0<s, t<R, where L is as in (R,).

/= B(r)]I—B(s)]~* = U= B()]I— B(s)]*|
(Rs) < |U-BMI-BO] 1| - |- BOII-B(s)] ™|
< |r—t|(1+LR)L.
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LEMMA 2.1. Suppose B is a regular operator function on [0, R], and B is a positive
nonincreasing function on [0, R] with Lipschitz constant L'. Define the operator
Sfunction A on [0, R] by A(t)=PB(t)[B(t)—1].

Then A satisfies Tanabe’s conditions 1° and 2° of [8]. In particular, let 0 <, < ¢
and define

Z={leC:x=0o0r|argA| £ ¢,+7/2}.
Also define
M = [B(R) sin (¢ —¢:)]~*[(1 —sin ¢,)/2] 712,
K = (LB(0)+L')(1+LR)/B(R),
where L is as in (R;). Then A satisfies the conditions:
(Ty) p(A(1))>Z for 0OSt<R, and
IAT= A1 = M[(|A[+1)
for xeZ and 0<t=R. (If T is an operator in X, then p(T) denotes the resolvent set
of T)
(Ty) |A()A(s) 1 —A()A(s) | =K|r—t| for 0Zr,s, t<R.
Proof. Let 0=<s, t, r < R. Define
Ay ={XeC:Ax=0o0r|arg A = ¢+7/2}.
Then B(t)B(t) € GH (¢), and Z<C\A,, so p(B(t)B(t))> % and ||[AM—B(t)B(¢)]™?|
<1/d(A, A,) for A e Z, see [6]. Also AT— A(t)=[A+B(t)][—B(t)B(t), and A+ B(t) e Z
if AeZ, so ||[[M—A(t)~ | £ 1/d(A+B(1), A,) for A e Z. Property (T,) follows from
this and the fact that d(A+B(t), Ay,) = (|A| +1)/M for A€ Z.
Let A,=A(¢), B,=B(£), and B;=p(¢) for 0= £ < R. Then

A AT = A AT = BB B)I—By)" ' —(I-B)I—-B) "]
+B5 (B —B)I—B)I—B) 1,
so that (T,) follows from (R,) and (R5).

LEMMA 2.2. Let F be a function from [0, R] into {a, b] with Lipschitz constant L,,
and  a function from [0, R) into S with Lipschitz constant L,. Define the operator
Sfunction B on [0, R] by

B(t) = A(F(t), $(1)).
Then B is regular, where we can take the constant L of (R,) as
L =(L,+Ly) oiltlgn K(F(1), (1)),
see (C,).

Thus if B is positive, nonincreasing, and Lipschitz continuous on [0, R], and we
define A(t)=P(t)[B(t)—1I] for 0=t =R, then A satisfies (T,) and (T5).

If in addition, B(t)—B(s) S —(t—s)BO)L for 0Ss=<t=< R, then A also satisfies
(Ts) [A@®)A()" | £ 1 forO=sZt=Z R

Proof. Only the last statement needs proof, and it follows from the fact that
B(t),B(s)'l < e[B(t)—ﬁ(s)]lB(s)’ and "(I_ B(t))(]— B(S))'lﬂ <el-9 for 0<s<t=ZR.
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LEMMA 2.3. Let the operator function A: [0, Rl — GH (¢) be as in Lemma 2.1,
and let x, € Do. Then there is a unique continuously differentiable function f from
[0, R) into D, such that f(0)=x, and f'(t)=A(t)f(t) for 0St=R.

Proof. Tanabe establishes much more than this in [8].

LEMMA 2.4. Let A, x,, and f be as in Lemma 2.3. If A={t,, ..., t,} is a partition
of [0, R], then let f, be defined on [0, R] by f,(0)=x,, and
Sa®) = Ti(t=ti_)fa(t—1) fortu_y St Sy,
where T,(€)=exp [£A(t,)). Then f, converges uniformly to f on [0, R] as the norm of
A approaches zero.
Proof. Define A, on [0, R] by A,(0)=A(t,) and A,(t)=A(t,) for t,_,<t=t,.
Then fA(t)= A(t)fA(t) for 1 € [0, R]\A.
Let h,(t)=f(t)—f4(t) for 0=t =< R. Then
ha(r) = [A(t) = ANO1f(1) + An()ha(t)
= [I—Ax(t)A(t) 11 (t) + Aa(t)ha(t).
By [4, Lemma 1.3, p. 510, |AA(2)|[(d/dt)||ha(t)] =Re [ha(2), ha(?)] a.e. on [0, R].
Thus (d/dt)|hs(2)]| < K|A|A a.e. on [0, R], where K is as in (Ty),

A= sup £,

=<t=R
and |A| denotes the norm of A. We have used the fact that 4,(¢) is dissipative,
see [5].

LEMMA 2.5. Let A, x,, and f be as in Lemma 2.3. Then

17Ol s 1Ol e [- [ 8]
for 0St=R.
If A satisfies (), then | ') £’ O)] exp [~ Bl for 0S¢5 R.

Proof. Let A, f,, and T, be as in Lemma 2.4. Then T,(§) = e~ *%% exp [£B8(t,) B(%)],
so that | T,(é)| £ e~ %%. Therefore,

14O < 1£O)] exp [—ﬁ(tk)(t—rk-l)— > ﬁ(r,)(t,—rf-l)]

for t,_, <t=t,, and the first conclusion follows.
Define X, =T, (t,—t,_1), A,=A(t,), and B, =B(z,) for k=0, 1, ..., n.
If t,_,<t<tg, then
Sa(t) = A fu(t)
= AT (t—t_D)Xio1 - X
= Tt =ty )AkA; 1 A1 X1 - - X
= T(t—te- D) AxAi 1 Xic_1- - - X141 A5 P A oo,

and the second conclusion follows.
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LEMMA 2.6. Let A, x,, and f be as in Lemma 2.3, but add the condition that
xo € S. Then (exp [[, B])f(1) € S for 0Xt<R.

Proof. Let A and f, be as in Lemma 2.4. From (R3) and the construction of
fA9 we get

(exp [(r— b Bt )+j2 Bt tj-l)})fA(t) es

fort,_ <t=t,.

2.7. Proof of Theorem 1. Choose >0 so that K(t, x) (see condition (Cy)) is
bounded for [1—1,| £ 8, |x—x,| £ 3. Let K, be an upper bound for K(t, x) on this
set, with K,> 1, (1/8). Let

Yo = A(to, Xo)Xo, y = 2Ko(1+2]xo + | yol)),
c=min [b, t,+(1/2y)], R = —y 'In(l—-y(c—1)).

We will need the following two inequalities, which follow immediately from the
above definitions:

@.1.1) RQ|xoll+ 7o) = 8,
2.12) c—1y £ 8.

Define F from [0, R] onto [t,, ¢] by F(7)=t,+y [l —e~"*]. Define 8 on (0, R]
by B(7)=e~ ", and define G from [t,, ¢] onto [0, R] by G(¢)= —y~* In [1 —y(t—1,)].
Then

@2.1.3) FG@) =1, G(F(r) =,
2.7.4) G(OBGQ)) = 1,
2.1.5) fo B = F(r)—1o.

Define « on [0, R] by a(r)=exp (5 B).
We intend to solve (*) by first solving
** g'(r) = B(")[A(F(7), e(r)g(r)) —11g(7),

and then making the substitution f(z)=e’ "tog(G(¢)). (2.7.3), (2.7.4), and (2.7.5)
are the pertinent identities for showing that this yields a solution of (*).
We define inductively the sequence {g,} of functions on [0, R] as follows:

8o(7) = Xo, &n+1(0) = Xxo, &n+1(7) = An(7)gn 1 1(7),
where

A7) = BOAFE), gu()—1), (1) = a(7)ga(7).

We see that this inductive definition is possible by Lemmas 2.2, 2.3, and 2.6.
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We will need the fact that each of the operator functions A4, has property (T;);
in fact this is the reason for our change of variable. Define B,(7)=A(F(7), ¥.(7))
for 0S7=<R, and n=0, 1,2, 3,.... Then each B, is regular by Lemma 2.2. For
each n, let L™ denote the least constant L that will work in condition (R,) for B,.
Notice that

[B(r)—B(@))/BO) = —yB(R)(r—0) = —(y/2)(7—0)

for 0So=<7=<R. Thus by Lemma 2.2, 4, satisfies (T3) if L™ =<(y/2). In order to
show this we will need

(2.7.6) |[F'(r)] = le " =1,
2.7.7) l«'(7)] = |exp [—'y1'+J: B] [ <1,
(2.7.8) |F(r)—1to] < 8.

Thus, we have L,= Ko(l1+ [xo])<y/2 since [o(r)—xXo| < R|Xo]| =8, [ho(7)]
= | %o, so that A, has property (Tj).
Suppose A4, has property (T;3). Then
Pria(r) = a(r)gu(r)+a'(Dga(r),
¥ 1 (D] = [820)] + [ xoll = 2xo]l + || yoll
by Lemma 2.5, and (2.7.7). Therefore,

(2.7.9) [ 1 (1) = x| < 8

by (2.7.1). Thus L™*V < Ko(142|x0] + || ¥o|)=7/2 by (2.7.6), (2.7.8), and Lemma
2.2. Thus A4, ,, also has property (Tj).
Thus, we have

(2.7.10) I g2l = (ol + I xol)/e(7)
for 0O<7=<R,and n=0,1,2,... by Lemma 2.5.
For each n=1, 2, 3,..., define A, on [0, R] by h,(7)=g, +1(7) — g.(7). Then

h:l(‘r) = An(T)gn + 1(7) —A,_ l(T)gn(T)
= [An('r) —A,- 1(7)]gn + 1(7') + A 1(Th(7)
= [[=A,_1(1)Ax(7) 7 1gn+1(7) + An—1(T)ha(7).
By [4, Lemma 1.3, p. 510], we have
A7) ]|(@/dD)|An(7)| = Re [Ar(7), hn(7)]

ae. on [0, R], so that (d/dr)|h(r)]| < Ko(l %ol + | Yol [ha-1(7)]| a.e. on [0, R]. We
have used the fact that 4, _,(=) is dissipative (see [5]), property (C,), (2.7.8), (2.7.9),
and (2.7.10).

Therefore, {g,} converges uniformly to a function g on [0, R]. Also

lg(m)—g@| = (Ixoll + | ¥ol)7—ol

IA
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for 0<o, 7<R. Let y(7)=o(7)g(7), 0= 7= R. Then

[$(n) =@ = Qlxoll + ] yol)I7—0l,

and |[(7)—x,[| =8 for 0=7= R. Define the operator function 4 on [0, R] by
A(7)=PB(*)[A(F(7), Y(v))—1I). Then A has properties (T,), (T,), and (T;) (we will
not need (T3)). Define u on [0, R] by u(0)=x,, u'(7)=A(7)u().

We wish to show that u=g. Let u,=u—g,. An argument similar to the one used
to show that {h,} converges to 0 will show that {u,} converges to 0. Therefore g
satisfies (**), and the function f defined on [¢,, c] by f(t) =e* ~tog(G(2)) satisfies (*).
Note also that f(¢) =y(G(t)), | f(1)—x,| =8 for yo=t=c.

Suppose x; € Dy N S, ty<c;<c, and v is a continuously differentiable function
from [t,, ¢,] into Dy N S such that v(t,) =x; and v'(t) = A(¢, v(t))v(t) for t,St<c,.
Define w on [t,, ¢;] by w(¢)=f(t)—v(z). Then

w'(t) = [A(, f(2)) = A(t, ()] f(0) + A(t, v(2))w(1)
= (U= A(t, o)A, [N =D(f(t) =1 () + A2, v(t))w(2),
(dld)|w)|| = Kollw®[ (A + 1O
a.e. on [t,, c;]. The stability claim, and hence the uniqueness claim, follow from this
differential inequality.

2.8. Proof of Theorem 2. First we mention that if we prove that for each
x € Dy N S, there exists a continuously differentiable function f from [0, c0) into
Dy N S such that f(0)=x and f'(¢)= Qf(t) for t=0, then the rest of the theorem
follows in routine manner. We define To(t)x=f(t) for xe Dy N S and 1=0. The
fact that T, is nonexpansive on D, N S follows from the fact that Q is dissipative.
Thus each Ty(7) has a unique extension to a nonexpansive transformation 7(t)
from S into S. {T(¢); t= 0} is the desired semigroup.

Now we return to the first question. Let x, € Do N S. Then by Theorem 2, there
is a number ¢ >0 such that there is a unique continuously differentiable function f
from [0, ¢] into D, N S such that f(0)=x, and f'(t)=Qf(¢) for 0<t=c. Let {
denote the supremum of the set of all such numbers ¢, and suppose that {<oco.
Let f denote the unique continuously differentiable function from [0, {) into
Dy N S such that f(0)=x, and f'(z)=Qf(t) for 0=t<{.

If 0<h<{, then define f, on [0, {—A] by f.(t)=f(t+h)—f(t). Then f,(t)=
Qf(t+h)— Qf(t), and (d/dt)| f.(t)]| =0 a.e. on [0, {—h) since Q is dissipative, so
that [|(1/m)[f(r+h)—f(O]] = [|(1/A(f(h)—f(0))| for 0=r<{—h. Therefore |f'(r)]
<|f(0)] for 0=r=<¢, and thus x, =lim,_, f(¢) exists. Therefore f([0, {)) is relatively
compact and K(z, f(t)) (see (C,)) is bounded on [0, {). Using this and the fact that
f(t) and f'(¢) are also bounded on [0, {), we see by examining the argument for
Theorem 1 that there is a positive constant » such that for each ¢ in [0, {), there is a
unique continuously differentiable function g from [¢, 1+7] into D, N S such that
g(t)=f(t) and g'(s)=Qg(s) for t<s=t+. Simply take {—n <<, and use the
corresponding function g to extend f beyond {.
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3. Semigroups in a function space. Let E be a set, B(E) the Banach space of
bounded complex valued functions on E with supremum norm, and Y a closed
real or complex subspace of B(E). We denote by Q the collection of all positive
bounded functions p on E which are bounded away from zero and have the property
that pY< Y.

If Y is complex, we take CH (¢) and GH (¢) as defined in §1, with X=Y. If Y
is a real Banach lattice, then CP denotes the collection of all strongly continuous
semigroups of linear positive contraction operators in Y, and GP denotes the
collection of infinitesimal generators of such semigroups. In either case, G denotes
the collection of all infinitesimal generators of strongly continuous semigroups of
linear contraction operators in Y.

If y € Y, then y(y) denotes a multiplicative linear functional on B(E) such that
[<y, y(y)>|=]r|- We define the semi-inner product [-, -] on Yx Y by [x, y]
=<{x, v(¥))> <y, (¥)>*, where * denotes complex conjugation. All reference to a
semi-inner product in this section will be to this one just defined. One special
property of [-, -] which is useful to us is that [px, y]=<{p, y(y)>[x, y]lforx,y e ¥,
pe B(E), pxe Y. Also, if Y is a real Banach lattice, then [-, -] has the special
properties required in [7]. That is, [, y] is a positive linear functional if y =0, and
[x, x*]=]/x*|? for each x in ¥, where x* denotes the positive part of x.

By Definition 1.2, a linear operator 4 in Y is dissipative if Re [4y, y]=0 for
y € D(A). Following [6], in case Y is complex, we say that a linear operator 4 in Y
is ¢-sectorial if €A is dissipative for |0| <¢. Following [7], in case Y is a real
lattice, we say that a linear operator 4 in Y is dispersive if [Ax, x*]=0 for all
x € D(A).

LeMMA 3.1. A linear operator A in Y is in (G, GP, GH (¢)) if and only if D(A)
isdensein Y, the range of [I— A isall of Y, and A is (dissipative, dispersive, ¢-sectorial).

Proof. The proof of this lemma is contained in [5], [7], and [6], respectively. We
merely state the lemma here for reference in proving the next theorem, which is a
generalization of the author’s earlier theorem in [1].

THEOREM 3.1. Suppose A€ G, and A=A, + - - -+ A,, where each A; has domain
D(A), and each A; has a closed extension. If each A; is (dissipative, dispersive,
¢-sectorial), and py, . . ., p, € Q, then pyA;+ - - - +p.A, € (G, GP, GH (¢)).

Proof. p,A,+ - - - +p,A, is easily seen to be (dissipative, dispersive, ¢-sectorial).
Thus by Lemma 3.1, we need only show that the range of I—(p,A,+ - - - +p.4,)
is all of Y.

We will first prove that the range of I—(p, 4, +A;+ - +A4,) is all of Y. By
[3, Lemma 2, p. 212], the operator U, =A,(I—A4)~! is bounded. Since F(p,)Y< Y
for every polynomial F, then p{*'™ e Q for every positive integer m by the classical
Weierstrass theorem. Choose m so that |[1—p{/™| <||U,|~*, and let r=pi™.
Then

I—(rA,+ A+ +4) =1—-A+(1—r)4, = I+ —r)U,)I—A).
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Thus the range of I—(rA,+A,+ - - - +A,) is all of Y. Replacing A4, by rA4,, r?4,,
etc., we see that the range of I—(p, 4, + 4.+ ---+A4,) is all of Y.

Now we consider the operator A'=A,+p, A, +As+ -+ -+ A, and repeat the
previous argument to prove that the range of I—(p1A,+p.As+As+ - +4,) is
all of Y. Repeating this process proves the theorem.

ExaMPLE. Let E denote real Euclidean n-space, and let Y denote any of the
subspaces of B(E) in which the Laplacian operator generates a strongly continuous
semigroup. The semigroup will then consist of contraction operators and will be
in CH (¢) if Y is complex, in CP if Y is a real lattice. Let 4 denote the Laplacian
operator in Y, and for each j=1,..., n, let 4; denote the restriction of (¢%/ds?)
to the domain of 4.

LemMA 3.2. Let A be in G with A=A+ -- -+ A,, where each A; has domain
D(A), each A; has a closed extension, and each A; is dissipative. Define the function
P from Q™ into G by P(p)=p,A,+ - - - +ppA,.

Then there is a locally bounded nonnegative function K on Q™ such that

\U=P@II-P(p)]1*~I| = (O lg:—pill )K(p)
Jfor p, q € Q™.

Proof. If p, g € Q™, then
[I—P@Il1—P(p)]"*—1 = [P(p)— P@II-P(P)]"* = > (pi—q)AI—P(p)]™*.

There we can take K(p)=max; ||4;[/—P(p)]| 1.
To see that K(p) is locally bounded, notice that

A(I-P(r))~* = AI—P(p))"\(I+ Y (pi—r)AUI—P(p)) )%,
so that K(r) < K(p)/(1 = K(p) 2. | pi—ri]) for

K(P)Z lpi=rif < 1.

THEOREM 3.3. Let B be in GH (¢) with B=B,+ - - - + B,, where each B; has a
closed extension, each B; has domain D(A)= D,, and each B; is ¢-sectorial. Let S be
a closed set in Y, [a, b) a closed interval, and p a Lipschitz continuous function from
[a, b] x S into Q™. Define the operator function A from [a, bl x S into GH (¢) by
A(t, x)=2 p(t, x)A;. Then A satisfies conditions (C,) and (C,).

Proof. This follows from Lemma 3.2.

There are a variety of ways in which the set S in Theorem 3.2 could be chosen in
order that the operator function 4 will satisfy (C;), and it seems inappropriate to
state any theorems about this. It is not quite so easy to choose H and S so that Q
will be dissipative as in Theorem 2, but we will indicate one way in which it can be
done. -

Let Y be complex, let Y, denote the space of real functions in Y, and suppose Y,
is a lattice. Let A€ GH (), A=A, + - - - + A, as in Theorem 3.2. Let Dyg= D, N Y,,
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A°=A|p,,, A)=A,|p,,, and suppose that 4°, 47 satisfy the portion of Theorem 3.1
dealing with positive semigroups. Let Y,, denote the nonpositive functions in Y,
let So=(") (49)~! Y40, and let S denote the closure of S,. Let p,, . . ., p, be Lipschitz
continuous accretive (—p; dissipative) functions from S into Q. Define H from S
onto GH (¢) by H(x)=3 p(x)A4;. Then the hypothesis of Theorem 2 is satisfied.
This can all be done taking Y, A4, 4; as in the example after Theorem 3.1 which
dealt with the Laplacian operator.
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