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A CLASS OF NONLINEAR EVOLUTION EQUATIONS

IN A BANACH SPACE

BY

J. R. DORROH

We treat the nonlinear evolution equation

(*) /'(') = Ait,fit))fit)

where the unknown function/is from a real number interval into a Banach space X.

For suitable real numbers t and vectors x in X, Ait, x) is the infinitesimal generator

of a holomorphic semigroup of linear contraction operators in X, and certain

regularity requirements are placed on the function (/, x) -> Ait, x).

After proving a local existence, uniqueness, and stability theorem for (*), we

consider the case Ait, x) = Hix) and obtain conditions under which there is a

strongly continuous semigroup of nonlinear nonexpansive transformations whose

infinitesimal generator is an extension of the transformation Qx = H(x)x.

We state our main results in §1 and prove them in §2. In §3, we prove some

theorems about linear semigroups in a function space which yield examples of our

main results and are of some interest in themselves.

1. The main results. Let Jbea complex Banach space. If 0<^^7r/2, then let

Sé = {z e C : z = 0 or |argz|^^}, where C denotes the complex plane. Following

[6], we denote by CH ((/>) the collection of all semigroups {Tiz) : z e S$} of linear

contraction operators in X which are holomorphic on int (Sy and strongly

continuous on S^. We denote by GH (<£) the collection of all infinitesimal generators

of semigroups in CH (</>).

Let [a, b] be a closed real number interval, 0<<¿¿77-/2, and 5 a closed set in X.

Let A be a function from [a, b] x S —> GH (</>) such that the following conditions

are satisfied:

(Q) The operators Ait, x) all have the same domain D0.

(C2) There is a locally bounded nonnegative function K on [a, b] x S such that

\\[I-Ait,y)][I-Ais,x)]-'-I\\ S Kis,x)i\s-t\ + \\x-y\\)

for aSs, t S b and x,yeS, where / denotes the identity transformation on X,

(C3) (exp [£Ait, x)])S<= S for £ g 0, a S t S b, and x e S, where

{exp [zAit, x)];ze Sé}

is the class CH i<f>) semigroup generated by Ait, x).
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In connection with the condition (C2), we mention that the invertibility of

I—Ais, x) follows from the fact that Ais, x) e GH (<£), see [6], or [2], which serves

also as a general reference for semigroups of operators. The fact that [I—Ait, y)]

•[/—Ais, x)]'1 is bounded follows from (Cj) and [3, Lemma 2, p. 212].

Theorem 1. Suppose x0 e D0 n S and aSt0<b. Then there is a number c in

(f0, b] such that there is a unique continuously differentiable function f from [t0, c]

into D0 n S satisfying fit0) = x0 and

(*) fV) = Ait,fit))fit)   for toStSc.

Also, ife>0, then there exists S>0 such that if xx e D0 n S, t0<cxSc, \\x0 — xx||

< S, and g is a continuously differentiable function from [t0, cx] into D0 n S such that

git0) = xxandg'it) = Ait,git))git)fort0StScx, then \\git)-fit)\\<efort0StScx.

Definition 1.1. A semi-inner product on X means a function [-, •] from Xx X

into C such that for each ye Y, [-, y] is a bounded liner functional of norm ||_y||,

and[y,v]=||v||2(see[5]).

Definition 1.2. If [-, •] is a semi-inner product on X, then a transformation W

with domain and range contained in X is said to be dissipative (with respect to

[-, ■]) ii Re [Wx- Wy, x-y]S0 for x, y e DiW), the domain of W.

Remark. Throughout this section, [-, •] will denote a fixed semi-inner product

on X, and all results will be independent of the particular semi-inner product used.

Theorem 2. Suppose H is a function from S into GH i<f>) which satisfies conditions

iCx), (C2), and (C3); more precisely, the function it, x) -»• Hix) satisfies these con-

ditions. Suppose D0 n S is dense in S and define Q on D0 n S by Qx=Hix)x.

Suppose Q is dissipative. Then there is a unique strongly continuous semigroup

{Tit); f^O} of nonexpansive nonlinear transformations from S into S such that for

each x in D0 n S, Ti)x is a continuously differentiable function from [0, oo) into

D0 n S, andidjdt)Tit)x= QJit)xfor t^O.

2. Proof of the main theorems.    We will call a function B from a number interval

[0, R] into G H if) regular if the following conditions are satisfied:

(Ri) Bit) has domain D0 iorOStSR-

(R2) There is a positive constant L such that

\\[I-Bit)][I-Bis)]-i-I\\ SL\t-s\

iorOSs, tSR.

(R3) (exp [fBit)])S^ S for £% 0 and 0 S tS R-

We point out that a regular operator function B on [0, R] also satisfies:

(R4) ¡[I-BOW-Bis)]-1]] SX+LR for OSs, tSR, where L is as in (R2).

| [/- Bir)] [I- Bis)] -*-[/- Bit)][I- Bis)] " » ||

(R5) S ||[/-JB(r)][/-5(0]-1-/||-l|[/-Ä(0][/-^)]-1||

S |r-í|(l+ZJc)L.
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Lemma 2.1. Suppose B is a regular operator function on [0, R], and ß is a positive

nonincreasing function on [0, R] with Lipschitz constant L'. Define the operator

function A on [0, R] by Ait) = ßO)[Bit)-I].

Then A satisfies Tanabe's conditions Io and 2° of [8]. In particular, let 0<<f>x<^>

and define

2 = {AeC:A = 0or |arg A| á <j>x + ir¡2}.

Also define

M = [ßiR) sin (^-^1)]-1[(1 -sin tx)ßYm,

K = iLßiO) + L')iX+LR)lßiR),

where L is as in (R2). Then A satisfies the conditions:

(Tj) piAit))=>HforOStSR,and

\\[XI-Ait)]-i\\ S M/(|A| + 1)

for XezZ andOStSR. ilfTis an operator in X, then piT) denotes the resolvent set

ofT.)
(T2)  \\ Air)Ais)~'-Ait)Aisf'¡S K\r-t\ for 0 S r,s,t S R.

Proof. Let 0Ss,t,rSR. Define

A„, = {A e C : A = 0 or |arg A| g <¡> + ttJ2}.

Then ßit)Bit) e GH (¿), and ScC^, so Pißit)Bit))^H and ¡[AZ-flO^O]"!

â l/rf(A, A„) for A e 2, see [6]. Also A/-^(?)= [A+ 0(0]/-0(05(0, and A+ 0(0 eZ
if AeS, so ||[A/-^(0-1||¿l/í/(A + i8(?), AJ for AeS. Property (Tx) follows from

this and the fact that diX+ßit), A^)^(|À| +1)1 M for A e 2.

Let A( = AiO, Bs = Bi£), and 0ç = 0(f) for OStSR. Then

A.A^-AAs1 = ß,-1ßT[iI-BT)(I-B,)-1-(I-Bt)ir-B,)-1]

+ ßri(ßr-ßt)iI-Bt)iI-Bs)-1,

so that (T2) follows from (R4) and (R5).

Lemma 2.2. Let F be a function from [0, R] into [a, b] with Lipschitz constant Lx,

and </> a function from [0, R] into S with Lipschitz constant L2. Define the operator

function B on [0, R] by

Bio = Aim, mr
Then B is regular, where we can take the constant L o/(R2) as

L = iLx+L2)  sup  KiFit),m),
OStSR

see (C2).

Thus if ß is positive, nonincreasing, and Lipschitz continuous on [0, R], and we

define Ait) = ßit)[Bit)-I]for OStSR, then A satisfies ÇTX) and(T2).

If in addition, p\t)-ßis)S-it-s)ßiO)Lfor OSsStSR, then A also satisfies

(T8) || ,4(0,4(5)-i SX   forO S s S t S R.

Proof. Only the last statement needs proof, and it follows from the fact that

ßiOßisf'Se^-^»"3^, and |j(/-£(?))(/-¿(i))-11! Seut~s) forOSsStSR.
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Lemma 2.3. Let the operator function A: [0, R] -> GH if) be as in Lemma 2.1,

and let x0 e D0. Then there is a unique continuously differentiable function f from

[0, R] into D0 such thatfiO)=x0 and f it) = Ait)ft) for OStSR-

Proof. Tanabe establishes much more than this in [8].

Lemma 2.4. Let A, x0, andf be as in Lemma 2.3. If A = {t0,..., tn] is a partition

of[0, R], then let fA be defined on [0, R] byfi0) = xo, and

fit) = Tkit-tk.x)fitk_x)   for tk„x S t S tk,

where Tki£) = exp [$Aitk)]. Thenf converges uniformly to fon [0, R] as the norm of

A approaches zero.

Proof. Define AA on [0, R] by AAiO)=Aitx) and Aft) = Aitk) for tk.x<tStk.

Ihen fit) = A Ait) fit) for t e [0, R]\A.

Let /ía(0=/(0-/a(0 for OStSR- Then

lUt) = [Ait)-Aft)]fit) + A&it)hAit)

= [I-A&it)Ait) - l]f'{t)+A¿t)hdt).

By [4, Lemma 1.3, p. 510], ||/za(0||(<WI|äa(0II = Re [AA(0, AA(0] a.e. on [0, R].

Thus (<//i/0||AA(0|| SK\A\ A a.e. on [0, R], where K is as in (T2),

A=   sup   ||/'(/)||,
OStSR

and |A| denotes the norm of A. We have used the fact that AJj) is dissipative,

see [5].

Lemma 2.5. Let A, x0, andf be as in Lemma 2.3. Then

|/(0|| S ||/(0)|| exp [-£0

for OStSR.
If A satisfies (T8), then ||/'(/)|| S ||/'(0)|| exp [-f0 0] for OStSR

Proof. Let A,/A, and Tk be as in Lemma 2.4. Then Tkü) = e'iB{t")exp [ißitk)Bitk)],

so that \\TkiO\\Se-iKV. Therefore,

ll/A(0l! = 11/(0)11 exp -ßQk)it-tk-i)-2 ßifoiti-u-i)
1=1

for tk-xStStk, and the first conclusion follows.

Dehne Xk = Tkitk-tk_x), Ak = Aitk), and ßk = ßitk) for k = 0, l,...,n

If tk_x<t<tk, then

fit) = Akfit)

= AkTkit — tk-x)Xk-x- ■ ■ Xx

= Tkit — tk-x)AkAk_xAk_xXk_x- ■ ■ Xx

= Ikit — tk-X)AkAk^xXk-X---XxAxA0   A0x0,

and the second conclusion follows.
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Lemma 2.6. Let A, x0, and f be as in Lemma 2.3, but add the condition that

x0 e S. Then (exp [f0 0])/(O e S for 0 S t S R.

Proof. Let A and /A be as in Lemma 2.4. From (R3) and the construction of

A, we get

(exp   (f-tJÄf^l+^WCi-'i-.) )/a(0^

fortk.xStStk.

2.7. Proof of Theorem 1. Choose S>0 so that Kit,x) (see condition (C2)) is

bounded for \t —10\ S&, \\x — x0\\ S&. Let K0 be an upper bound for K(t, x) on this

set, with K0>1, (1/8). Let

j0 = Ait0, x0)x0, y = 2AT0(1 +2||x0|! + || Jo||),

c = min [b, r0 + (l/2y)],       R = -y"1 In (1 -y(c-r0)).

We will need the following two inequalities, which follow immediately from the

above definitions:

(2.7.1) /?(2||x0|| + bo||) = S,

(2.7.2) c-t0 S 8.

Define F from [0, R] onto [t0, c] by Fir) = t0 + y-1[l -e~n]. Define 0 on [0, R]

by0(T) = e>-n, and define G from [/0, c] onto [0, R] by G(t)= -y"1 In [1 -yit-t0)].

Then

(2.7.3) F(G(0) = t,       GiFir)) = r,

(2.7.4) G'(O0(G(O) = 1,

(2.7.5) f0 = F(r)-/o.
Jo

Define a on [0, R] by a(r) = exp (J0 0).

We intend to solve (*) by first solving

(**) g\r) = ßir)[AiFir), a(r)g(r)) -/]g(r),

and then making the substitution SX.t) = e*-togiGit)). (2.7.3), (2.7.4), and (2.7.5)

are the pertinent identities for showing that this yields a solution of (*).

We define inductively the sequence {gn} of functions on [0, R] as follows:

goir) = X0, gn+i(0) = X0, g'n + iir) = ^n(0^n + i(0.

where

Anir) = 0(t)H(F(t), Mt))-i],        Wt) = «(0^(0-

We see that this inductive definition is possible by Lemmas 2.2, 2.3, and 2.6.
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We will need the fact that each of the operator functions An has property (T3);

in fact this is the reason for our change of variable. Define 5„(t) = /1(F(t), </*„(-!-))

for OStSR, and n = 0, 1, 2, 3,. . .. Then each Bn is regular by Lemma 2.2. For

each n, let L(7l) denote the least constant L that will work in condition (R2) for Bn.

Notice that

[0(r)-0(a)]/0(O)  <   -yBiR)ir-o) í   -(y/2)(r-a)

for 0gag t^ R- Thus by Lemma 2.2, An satisfies (T3) if L(n)Siyj2). In order to

show this we will need

(2.7.6)

(2.7.7)

(2.7.8)

i no i =

|«'(r)|  = exp

â 1,

-yr +
j:

S 1,

\Fir)-t0\ S 8.

Thus, we have L0SK0il + \\x0\\)<yj2 since   U0ir)-x0\\ <R\\x0\\ ¿S,   ||#,(t)|[

S ||*o||, so that A0 has property (T3).

Suppose An has property (T3). Then

fn + ii-r) = aÍT)gnÍT) + a'ÍT)gnÍT),

Wi + ltol   S   k;(0)|| + ||xo||   S  21| X0 || + 11 J01|

by Lemma 2.5, and (2.7.7). Therefore,

(2.7.9) I*.+i(r)-Xö| S S

by (2.7.1). ThusL(n + 1,aA-0(l+2||x0|| + ||j0||) = y/2 by (2.7.6), (2.7.8), and Lemma

2.2. Thus An + X also has property (T3).

Thus, we have

(2.7.10) ]*;(t)||   ^(||jo|| + ||*o[|)/«(0

for 0<t^R, and n=0,1, 2,... by Lemma 2.5.

For each n= 1, 2, 3,..., define hn on [0, R] by An(T)=gn + 1(T)-gn(r). Then

A»(t)   =   AnÍT)gn + xÍT)-An-XÍT)gnÍT)

=  [¿„(t) - ^n _ !(r)]^„ + fr) + An_ xir)hnir)

=  [I-An^xir)Anir)-']g'n + xir) + An.xir)hnir).

By [4, Lemma 1.3, p. 510], we have

||/,n(T)||(^T)||/)n(r)|| « Re %ir), A,(r)]

a.e. on [0, /?], so that (4f*)|A.(r)| ^A^(|xb| + l^oH)HA»-xCr>l a.e. on [0,/?]. We

have used the fact that An^xir) is dissipative (see [5]), property (C2), (2.7.8), (2.7.9),

and (2.7.10).

Therefore, {gn} converges uniformly to a function g on [0, R]. Also

\\gir)-gia)\\  ^(1|x0|| + ||jo||)|r-a|
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for 0 S o-, t S R- Let 0(0 = «(t)^(t), 0 S t S R- Then

||0(O-0(<O|I   ̂ (2||x0|| + ||j0||)|r-a|,

and ||0(t) — x0|| ¿8 for OS^SR- Define the operator function A on [0, R] by

Air) = 0(t)[/1(F(t), 0(t))-/]. Then .4 has properties ÇTX), (T2), and (T3) (we will

not need (T3)). Define u on [0, R] by ui0) = xo, w'(0 = ^(0M(0-

We wish to show that u=g. Let un = u—gn. An argument similar to the one used

to show that {hn} converges to 0 will show that {«„} converges to 0. Therefore g

satisfies (**), and the function/defined on [t0, c] by/(r) = ei_1og(G(0) satisfies (*).

Note also that ft) = 0(G(O), \\fif-x0\\ S 8 ior y0St S c.

Suppose xxe D0 n S, t0<cxSc, and v is a continuously differentiable function

from [/0, cx] into D0 n S such that vit0) = xx and v'(t) = Ait, r(0MO f°r 'o^'^Ci-

Define w on [?0, cx] by wit) = fit) —vit). Then

w'(0 = [Ait,fit))-Ait, vit))]fit) + Ait, vit))wit)

= i[I-Ait, vit))][I-Ait,fit))r'-I)ifit)-fit)) + Ait, vit))wit),

(0-/^)11^(011 S K0\\wit)\\i\\fit)\\ + \\fit)\\)

a.e. on [tQ, cx]. The stability claim, and hence the uniqueness claim, follow from this

differential inequality.

2.8. Proof of Theorem 2. First we mention that if we prove that for each

x e D0 n S, there exists a continuously differentiable function / from [0, 00) into

D0n S such that/(0) = x and/'(0= ß/(0 f°r ? = °, then the rest of the theorem

follows in routine manner. We define T0(/)x=/(/) for x e D0 n S and /äO. The

fact that T0 is nonexpansive on D0 n S follows from the fact that ß is dissipative.

Thus each T0(0 has a unique extension to a nonexpansive transformation Tit)

from S into S. {Tit); t^O} is the desired semigroup.

Now we return to the first question. Let x0e D0 n S. Then by Theorem 2, there

is a number c>0 such that there is a unique continuously differentiable function/

from [0, c] into D0 n S such that/(0) = x0 and f\t)= Qft) for OStSc. Let £

denote the supremum of the set of all such numbers c, and suppose that £<oo.

Let / denote the unique continuously differentiable function from [0, £) into

D0nS such that/(0) = xo and/'(0= ß/(0 for 0St<l

If 0<Ä<£, then define/, on [0, Ç-h] by fit) =fit + h) -fit). Then /'(0 =
Qfit + h)-Qfit), and idjdt)\\fhit)\\ g0 a.e. on [0, £-//) since ß is dissipative, so

that \\iljh)[fit + h)-fit)]\\S\\i\lh)ifih)-fiO))\\ ior0St<t-h. Therefore ||/'(0ll
S |/'(0) || for 0 S t S i, and thus xx = lim^c ft) exists. Therefore/([0, 0) is relatively

compact and Kit, fit)) (see (C2)) is bounded on [0, £). Using this and the fact that

/(/) and/'(0 are also bounded on [0, £), we see by examining the argument for

Theorem 1 that there is a positive constant r¡ such that for each / in [0, {), there is a

unique continuously differentiable function g from [/, t + r¡] into D0 n S such that

git)=ft) and g'is)=Qgis) for tSsSt + v- Simply take l-r¡<t<l, and use the

corresponding function g to extend/beyond I.
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3. Semigroups in a function space. Let E he a set, -S(£) the Banach space of

bounded complex valued functions on E with supremum norm, and Y a closed

real or complex subspace of BiE). We denote by ß the collection of all positive

bounded functions/? on £ which are bounded away from zero and have the property

that p F<= Y.

If Y is complex, we take CH (0) and GH (0) as defined in §1, with X= Y. If Y

is a real Banach lattice, then CP denotes the collection of all strongly continuous

semigroups of linear positive contraction operators in Y, and GP denotes the

collection of infinitesimal generators of such semigroups. In either case, G denotes

the collection of all infinitesimal generators of strongly continuous semigroups of

linear contraction operators in Y.

If j e Y, then yiy) denotes a multiplicative linear functional on BiE) such that

|<j, y(j)>| = || j||. We define the semi-inner product [-, •] on Yx Y by [x,y]

= <\X,yiy)y<[y,yiy)}*, where * denotes complex conjugation. All reference to a

semi-inner product in this section will be to this one just defined. One special

property of [-, ■] which is useful to us is that [px, j] = </>, yiy))[x, y] for x, y e Y,

p e BiE), px e Y. Also, if F is a real Banach lattice, then [-, •] has the special

properties required in [7]. That is, [-, j] is a positive linear functional if j 3:0, and

[x, x + ]= \\x+\\2 for each x in Y, where x+ denotes the positive part of x.

By Definition 1.2, a linear operator A in F is dissipative if Re [Ay, y]S0 for

j e DiA). Following [6], in case Fis complex, we say that a linear operator A in Y

is ^-sectorial if eieA is dissipative for |0|^0. Following [7], in case F is a real

lattice, we say that a linear operator A in F is dispersive if [Ax, x + ]S0 for all

x e DiA).

Lemma 3.1. A linear operator A in Y is in (G, GP, GH (0)) if and only if DiA)

is dense in Y, the range of I— A is all of Y, and A is idissipative, dispersive, f sectorial).

Proof. The proof of this lemma is contained in [5], [7], and [6], respectively. We

merely state the lemma here for reference in proving the next theorem, which is a

generalization of the author's earlier theorem in [1].

Theorem 3.1. Suppose A e G, and A=AX+ ■ ■ ■ +An, where each A¡ has domain

DiA), and each A¡ has a closed extension. If each A¡ is idissipative, dispersive,

0-sectorial), andpx,. . .,pne Ü., then pxAx+ ■ ■ ■ +pnAn e (G, GP, GH (0)).

Proof. pxAx+ ■ ■ ■ +pnAn is easily seen to be (dissipative, dispersive, 0-sectorial).

Thus by Lemma 3.1, we need only show that the range of /— ipxAx+ ■ ■ ■ +pnAn)

is all of Y.

We will first prove that the range of /— ipxAx+A2+ ■ ■ ■ +An) is all of Y. By

[3, Lemma 2, p. 212], the operator Ux=A1iI—A)~1 is bounded. Since Fipx)Y<= Y

for every polynomial F, then pxllm e ß for every positive integer m by the classical

Weierstrass theorem. Choose m so that ||1 -/J(i1,m)|| < || E^H-1, and let r=p\lm.

Then

I-irAx+A2+---+An) = I-A + il-r)Ax = iI+il-r)Ux)iI-A).
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Thus the range of I~irAx + A2+ ■ ■ ■ +An) is all of Y. Replacing Ax by rAx, r2Ax,

etc., we see that the range of I—ipxAx+A2 + ■ ■ ■ +An) is all of Y.

Now we consider the operator A' =A2+pxAx + A3+ ■ ■ ■ +A„ and repeat the

previous argument to prove that the range of /— ipxAx+p2A2 + A3 + ■ ■ ■ +An) is

all of Y. Repeating this process proves the theorem.

Example. Let E denote real Euclidean «-space, and let Y denote any of the

subspaces of BiE) in which the Laplacian operator generates a strongly continuous

semigroup. The semigroup will then consist of contraction operators and will be

in CH (0) if Y is complex, in CP if F is a real lattice. Let A denote the Laplacian

operator in Y, and for each j=X,..., n, let A¡ denote the restriction of ic2j'ds2)

to the domain of A.

Lemma 3.2. Let A be in G with A=AX+ ■ ■ ■ +An, where each A¡ has domain

DiA), each A¡ has a closed extension, and each A¡ is dissipative. Define the function

Pfrom ii(n) into G by Pip)=pxAx-\-\-pnA„.

Then there is a locally bounded nonnegative function K on Q.m such that

\\¡-pmii-*w-í-n s (2 hi-Pi\\ )k(p)
for p,qe 0-<n).

Proof. Xfp,qeQ!-n\ then

[I-Piq)][\-PÍP)Y1~I=[PÍP)-Piq)][l-Pip)]-1 =J,iPi-q)Ai[I-Pip)]-\

There we can take A"(/j) = max¡ \\Ai[I—Pip)]\\ ~1.

To see that Kip) is locally bounded, notice that

Afl-Pir))-! = AiiI-Pip))-^I+^ipi-rl)AiiI-Pip))-'y\

so that Kir)SKip)Hl -Kip) 2 ¡Pi-rS for

Kip)2\\Pi-n\\ < l.

Theorem 3.3. Let B be in G H (0) with B = BX+ ■ ■ ■ +Bn, where each B¡ has a

closed extension, each B¡ has domain DiA) = D0, and each B¡ is 0-sectorial. Let S be

a closed set in Y, [a, b] a closed interval, and p a Lipschitz continuous function from

[a, b]xS into Q.in\ Define the operator function A from [a, b]xS into G H (0) by

Ait, x) = 2Pi(?, x)A¡. Then A satisfies conditions (Q) and (C2).

Proof. This follows from Lemma 3.2.

There are a variety of ways in which the set S in Theorem 3.2 could be chosen in

order that the operator function A will satisfy (C3), and it seems inappropriate to

state any theorems about this. It is not quite so easy to choose H and S so that Q

will be dissipative as in Theorem 2, but we will indicate one way in which it can be

done.

Let F be complex, let Y0 denote the space of real functions in Y, and suppose Y0

is a lattice. Let^ eGH (0),^ = ^H-1-^„ as in Theorem 3.2. Let D00 = D0 n Y0,
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A° = A\Doo, AJ = Aj\Doo, and suppose that A0, A'j satisfy the portion of Theorem 3.1

dealing with positive semigroups. Let Y00 denote the nonpositive functions in F0,

let S0 = f) iA°j)"x Y00, and let 5denote the closure of S0. Letpx,..., p„ be Lipschitz

continuous accretive (—pt dissipative) functions from S into £1 Define H from 5

onto GH (0) by Hix) = '£ptix)Al. Then the hypothesis of Theorem 2 is satisfied.

This can all be done taking Y, A, Aj as in the example after Theorem 3.1 which

dealt with the Laplacian operator.
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