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FIBERING 3-MANIFOLDS THAT ADMIT

FREE Zfc ACTIONS

BY

JEFFREY L. TOLLEFSONO

1. Introduction. In a recent paper [3], Kwun showed that closed orientable

3-manifolds which double-cover themselves fiber over the circle (some technical

restrictions are placed on the manifolds). In doing so he applied a criterion for

fibering due to Stallings [6]. In this paper we extend Kwun's approach to show that

certain 3-manifolds admitting a free Zk action fiber over the circle.

Recall that a free Zk action on a space M is an effective action on M by a cyclic

group of order k with only the identity having fixed points. A proper Zk action is

one with the property that a generator of the action is homotopic to the identity

homeomorphism. M* will be used to denote the orbit space M\Zk. We let/?: A/->

M* be the projection map throughout this paper. Singular homology and cohomo-

logy with integer coefficients will be used exclusively. All manifolds are connected.

Our goal is to establish the following

Theorem. Let M be a compact, connected, orientable, irreducible 3-manifold with

Bd M either empty or connected. If M admits a proper free Zk action, for some prime

k¡¿2, such that Hi(M*\ Z) has no element of order k then M can be fibered over

the circle.

Examples of 3-manifolds admitting proper free Zk actions are plentiful. One

ready source of nontrivial examples is the class of closed 3-manifolds admitting

effective 50(2) actions. In this class we find that the lens space L(ß, — a(mod ß))

admits proper free Zk actions for (k, «)=*= 1. Moreover this space does not fiber over

the circle and the first homology group of the orbit space always has elements of

order k. Other examples from this class indicate that we cannot drop from our

theorem the requirement that the Zk action be proper. For a classification of

50(2) actions on 3-manifolds the reader is referred to [4].

2. Partitioning M. In this section we present some lemmas leading to the main

result which we prove in §§3 and 4. The first lemma is a collection of well-known

facts.
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Lemma 1. Let M be a compact orientable irreducible 3-manifold such that Bd M

is either empty or connected. If either ttx(M) is infinite or the genus of Bd M is

positive then M is a K(tt, 1) space and tt = ttx(M) has no elements of finite order.

The triple (M, p, M*) will be considered as a principal Z^-bundle in the sequel.

For properties of bundles the reader is referred to [2] and [7].

Lemma 2. Let M be a compact 3-manifold admitting a free Zk action, where k^2

is prime. If HX(M*\ Z) has no k-torsion then there is a bundle map

g:(M,p,M*)^(S\p',Sl),

where p' is the standard k to 1 covering projection of S1.

Proof. There is a map f: M* ^- L^ such that the principal Z^.-bundle £ =

(M,p, A/*) is induced by the universal bundle r¡ = (S'x',px,L00). We take as r¡ the

bundle obtained by the following construction. Let (S',pt, L¡) he the standard k to

1 covering of the generalized lens space L¡=L(k ; 1,..., 1 ) by S ' [5, p. 88]. Consider

the diagram

Pi Ps Ps

where Si + 2 is regarded as the double suspension of S'. Define S°° and Lx to be

the unions IJ S' and (J Lj respectively, with the weak topology. Sx is contractible,

hence r¡ is a universal Z^-bundle [7, p. 101].

The set of homotopy classes [M*,LX] is in a one-to-one correspondence with

the homomorphisms from ttx(M*) into Zk since Lx is a K(Zk, 1) space [1, p. 198].

Thus there is a homomorphism <p: ttx(M*)^ Zk that completely determines the

homotopy class off. f is not the trivial bundle so <p is onto. Moreover Zk being

abelian implies that y must factor through HX(M*), the abelianization of ttx(M*).

Since HX(M*) is finitely generated and has no k torsion it follows that HX(M*)

has a free part mapping onto Zk through which <p can be factored. Let

ß        y
TTx(M*)—>Z^Zk

be such that <p = yß.

Because S1and7o0 are K(tt, 1) spaces there are maps c: S1^LX, andg: M* -> S1

corresponding to y and ß respectively. We may just as well suppose f= eg. The

induced Zfc-bundle c*(t¡) is equivalent to the standard k-sheeted covering of S1 by

itself. Since ^~f*(r¡)~g*(c*(r¡)) we have shown the existence of a commutative

diagram
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where p' is the standard k to 1 covering of S1 and g is the required bundle map.

Suppose M admits a free Zk action generated by the homeomorphism «. We

call (U, T) an h-partition of M if T is the disjoint union of connected two-sided

2-manifolds regularly embedded in M (i.e. Bd T=Tn Bd M) such that the follow-

ing conditions are satisfied:

(1) M=\jk-^(H(U)Kjh\T)),

(2) U is open in M,

(3) Fr U=TKJh(T\

(4) hi(U)r\hi(V)=0 \fmj(modk),

(5) ,V(F) n «'(7")= 0 if i^j (mod k).

Lemma 3. Let M be a compact orientable 3-manifold admitting a free Zk action

and such that if Bd M=£ 0 then Bd M is connected. If there is a bundle map from

(M,p, M*) to (S1,/>', S1), where p' is the standard k to 1 covering of S1, then there

is a compact, connected, orientable, polyhedral 2-manifold T such that T determines

an h-partition ( U, T) of M with the properties that U is connected, and if Bd M ^ 0

then Bd T is connected and does not separate Bd M.

Proof. Consider the diagram below, the existence of which is given (for clarity

we denote the base space of the standard S1 covering by So):

We may suppose there is a point a e Si such that g_1(a) is the disjoint union of

polyhedral compact orientable 2-manifolds regularly embedded in A/*. Let

p'~1(a) = {ai}f=1<^S1. By a suitable choice of labeling we may let A be the arc in

S1 with endpointstfj and a2 such that no other ai lies on A. Let U = g~1(A — {au a2})

and r=g-1(fli).

There is a homeomorphism « generating the Zk action such that (U, T) forms an

«-partition. The difficulty arises in that this «-partition does not necessarily satisfy

the connectedness conditions of the lemma. So where necessary we will alter the

partition (U, T). For convenience of notation we still let (U, T) denote the altered

or new partition.

First we adjust the frontiers of the components of U. Suppose a component U1
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of U has at least two components Tx and T2 of T on its frontier. Let C he a poly-

hedral arc in Cl Ui with one end on Ti and the other end on F2 but otherwise

lying in Int Ux. Let TV be a closed tubular neighborhood of C in Cl Ui such that

N O Ti and N n T2 are closed disks. We obtain a new «-partition by replacing U

with the set

(U- TV) u «[IntM TV U Intr ((Ti U ra) n TV)]

and change 7 by replacing Tx u 72 with

Cl [Tx U 72 U Bd /Y-Intr (TV n (Fx u F2))].

The number of components of T decreases and the number of components of U

does not increase. Repetition of this process and a similar one for h(T) yields an

«-partition (U, T) such that each component of U has at most one component of

T and at most one component of h(T) on its frontier.

Suppose now a component Ux of U is such that FrU=Tx^T, where Tx is a

component of T. Crossing Tx from Ux, one enters hk~1(U). Whenever this occurs

take as a new U the set (U- Ux) u «(Cl U). Note that F^CT^cCl £/. Obtain a

new 7 by dropping Tx from the old one. Repeating this process and a similar one

for h(T), i.e. replace U by (U— t/¡) u « X(C1 f/¡) where necessary, we obtain a new

(U, T) partition where each component of U has precisely one component of T

and one component of h(T) on its frontier.

Let Tx denote a component of T. Tx lies on the frontier of a unique component

Ux of U. Let T^^h(T) he the component of h(T) on F^CA). Then If lies on the

frontier of a unique component t/j1' of h(U). We continue the construction of this

chain of sets, letting T(x2) be the component of h2(T) on FrU{x\ As before, let

U[2) denote the unique component of h2(U) with T[2) on its frontier. Repetition

yields a sequence of components Tx, Ux, T?\ Ui1}, T(x2),..., Ff"1', up"» T2, U2,

n\ U£\ Ti\ ..., T?-°, Uf-»,..., W, ur, ...,Tnk~1\ C/*"» where T^T,
U{<=U, FP<=«J(F), U¡»^h<(U), FrU<fí = T¡nuT¡i + 1\ and T}m is identified with

Fi+1. This sequence must return to Tx, say at the «th stage, and we identify Tnk)

with Tx completing the cycle.

All of the components of h'(U), i=l,..., k, must have appeared as M is con-

nected. From the construction it is clear that hx(Tx) appears l/kth of the way

through the cycle and from there on the sequence is nothing more than the first

1/Ath part under repeated application of h. Let K he the union of everything

appearing in the first Ijkth part of the sequence. As a new U we take the set

K-(TX u h(Tx)) and as a new F just the set Tx.

This version of (U, T) is an «-partition with U and F connected. If Bd A/= 0

we are done.

On the other hand, if Bd M^ 0 we must adjust (U, T) so that Bd Fis connected.

Bd F consists of disjoint simple closed curves {C¡}¡n=1 lying on Bd M. If «2:2 a

polygonal arc A in Bd M can be found with endpoints a and b lying on different
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curves C¡ and C, such that A—{a, b) lies entirely in either U or h~\U). Suppose

A —{a, b}<= t/ (if it lies in h~\U) a similar argument is applied). Let N be a closed

tubular neighborhood lying in Cl U, containing A in its boundary, and meeting T

in two closed disks A, D¡ such that A n Bd M, D¡ n Bd M are arcs in C¡, C,

respectively. Furthermore N is chosen so there is a homeomorphism / mapping

A x [0, 1] onto 7Y n Bd M mthf(A x 1/2) =/I. For a new [/ take the set

(U-N)vh[lntNuf(Ax(0, 1)) U Int (A U D,)].

Replace T by the set

r U Bd TV- [/L4 x (0, 1)) U Int (A U D,)].

This operation decreases the number of components of Bd T by one but does not

disturb the connectedness of U and T. Eventually this gives rise to an «-partition

(U, T) with Bd T, U, and Tall connected. Note that Bd A/-Bd Tis connected in

this final form of our /¡-partition.

We are now ready to proceed to the proof of the main result. We will consider

only manifolds without boundary in the next section, deferring the consideration

of manifolds with boundary until §4.

3. M closed.

Theorem 4. If M is an irreducible closed orientable 3-manifold such that for some

prime k^2M admits a proper free Zk action and H±(M*;Z) has no element of

order k, then M can be fibered over the circle.

Proof. Lemmas 2 and 3 imply the existence of an «-partition (U, T) of M with

{/connected and Ta connected, orientable, closed, polyhedral 2-manifold. Let A

be an arc with one endpoint x0e T and the other endpoint h(x0) e h(T) but other-

wise lying in U.

We can find a retraction r0 of Cl t/onto A with r0~1(x0) = T and r0~1(h(x0)) = h(T).

Define the retraction r¡ of «'(Cl U) onto h\A) by ri = h'r0h~i for /'= 1,..., k- 1.

The r¡'s define a retraction r: M-* F, where F=\Jk=1hi(A), such that rh = hr.

Hence r induces a retraction r': M* ->p(F). Let f be r' followed by a homeo-

morphism of p(F) onto S1. There is a bundle map/such that the following diagram

commutes, where/?' is the standard k to 1 covering of S1:

Now using the hypothesis that the Zk action is proper we have that h~lM.

Restricting the homotopy yields a map

Go:rx[0, l]-»-M
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such that G0(x, 0) = x and G0(x, l) = «(x). Define maps G¡: Tx [i, i+ 1] -» M by

Gi(x, t) = hiG0(x, t-i)fori=l,. . ., k - 1. Then Gt(x, i+l) = Gi + x(x, i+l) = hi + 1(x).

From the G¡'s we obtain a map

C: Tx S1 -*■ M,    where S1 is considered as [0, k]/{0, k}.

Let deg G = d^0. We show that c/#0. Let /': F^» M he the inclusion map and

consider the homology sequence for the pair (M, T). It follows from the freeness

of H2(M,T) that the sequence 0-> H2(T)2^ H2(M) is split exact. Using the

universal coefficient theorem for cohomology we see that 772(M)il> 772(F)->0

is exact.

Let ae773(FxS1) and ß e H3(M) be generators such that G*a = dß. Using

Poincaré duality we get the commutative diagram

H2(Txy0) —> 772(F)

7F2(Fx S1) <— H2(M)

af\ dßn

h
Hx(Tx S1) —> HX(M) —-> HX(SX)

where V: Txy0 -> Tx S1 is the inclusion.

Using the Künneth formulas we write

H2(TxS1)= P®Q,       H^TxS1) = R@S,

where P^H2(T) (g> H^S1), Q^H\T) ® H\SX), R^H0(T) <g> TF^S1) and

S^HX(T) ® 770(S1). Since /'* is an epimorphism, for each w e F there is a «' e g

such that H+w'elm G7*. Under the Poincaré duality isomorphism P maps onto Ä.

Since/*(7*(S) = 0 we have/*(?*(/<) =/*(¿7F1(A7)).

We may identify /? with ^(xq x S1) by taking x0 E F (for convenience we still

let {x0} = F n F). i? is generated by the element represented by a loop w going

around x0 x S1 exactly once. Gcu is a loop starting from x0 e T, passing through

h(x0) l/kth of the way around, and thereafter repeating itself /r — 1 times under the

action of h\ i= I,..., k—l. Thus fGw will start from some point s0 e S1, wrap

around some number of times, then reach s0 + ei(2!"'lk) when Gw is jlkth of the way

around, for y = 1, 2, ...,£. So underfG, the first 1/Arth part of co is wrapped around

S1m+l¡k times. Therefore co is wrapped around km+l times. Thus

f#G#([co])eTTX(S')

is an integer congruent to 1 modulo k (letting 7r1(S1) = Z). Since

f*G*(R) = MdHx(M)),
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after identifying H^S1) with ^(S1), it follows that km+ 1 is a multiple of d=deg G.

Therefore d=£0.

Let M-L>. M be a covering of M corresponding to the subgroup n' of ^(M),

where 7r'=Im (G#: Ti(Tx S1)-* ^(M)). If G' is a lifting of G we get the com-

mutative diagram

M

ß/ P

TxS1     G   >  M      *   i   S1

/? is a finite-to-one covering projection since deg G^O. G#: tt^Tx S1) -> tt^M) is

an epimorphism, so every loop in M will circle around S1 under the map fp some

« number of times, where « is a multiple of km + 1.

Let the circle C be the component ofp~1(F) that contains the basepoint (we may

assume basepoints have been chosen nicely). Let ¡x be a nonsingular loop on C.

degp divides d and p¡x circles around F at most deg/? times (in absolute value).

Thusfpp circles around S1 at most degp times. It follows that degpSd^n^degp,

hence deg p = d. So /? is a ¿/ to 1 covering projection and [^(M), 7t'] = í/.

Let y be an element of w1(M) represented by a loop circling around F exactly

once. Consider the cosets it', y-rr',..., yd^V. These cosets are distinct since

/#(yV)=i (mod d) and their disjoint union is all of n^M). Moreover it' is the

kernel of a homomorphism from -n-^M) onto Zd and so is a normal subgroup.

We have tt^TxS^^tt^xtt^S1) naturally split, thus 7r1(A?)sG#(7r1(r))

x G#(t71(S'1)). If we let A:=ker (/#: ^(A/) -» ^(S1)), it is clear that K^tt'. Since

/># is a monomorphism, we have K=p#(ker ((jp)#: ^i(M) -> tti(5'1))). Considering

the effect of (fp)# and G# we see that K^p^G'^-n^T)). Hence K is finitely generated.

Moreover, ■n-1(M)IK^Z and by Lemma 1 ^(M) has no elements of finite order.

Application of Stalling's theorem [6] completes the proof that M can be fibered

over the circle.

4. M with boundary.

Theorem 5. If M is an irreducible compact orientable 3-manifold with connected

boundary such that for some prime k ^ 2 M admits a proper free Zk action and

HX(M*\Z) has no elements of order k, then M can be fibered over the circle and

Bd MxS'xS'.

Proof. The proof of this theorem follows that of Theorem 4 very closely so the

obvious overlap will be omitted. There exists an «-partition (U, T) of M with U

connected, T a connected, orientable, compact, polyhedral 2-manifold such that

Bd T= T n Bd M is connected and does not separate Bd M.
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We proceed as before to define a map G: TxS1 -> M. However we require a

different diagram for the argument that degG = d is not zero. First note that

7/2(Bd M, Bd T)^Z and consider the following commutative diagram:

H\BdM) -> H\Bd T)-> H2(Bd M, Bd F) —► 772(Bd M) —> 0

H2(M, Bd M)-► H2(T, Bd F)

0

where / and y are inclusion maps. It follows from the fact thaty* is an epimorphism

that i* is an epimorphism.

Let a e H3(Tx S\ Bd TxS1) and ß e H3(M, Bd M) be generators such that

G*a = dß. Consider the following diagram:

H2(Txy0, Bd Txy0)-> H2(T, Bd F)

772(Fx S1, Bd Tx S1) <-7F2(A7, Bd A7)

an

V

771(FxS1)-

dßn

(M) ^ H^S1)

where V: (Txy0, Bd Txy0)^(TxS\ Bd TxS1). Write H2(TxS1,BdTxS1) =

P@Q, where P^H2(T, Bd F) <g> T^^S1) and Q^H\T, Bd F) <g> TF^S1). As in

the previous proof write 77^7 x S^i? © S. It follows thatÄG^T^/^TF^M)).

The remainder of the argument to show that M fibers over the circle is the same as

that for Theorem 4.
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