DELETED PRODUCTS WITH HOMOTOPY TYPES OF SPHERES(¹)

BY
C. W. PATTY

1. Introduction and notation. The deleted product space X^{*} of a space X is $X \times X-\Delta$. The principal purpose of this paper is to describe, for each integer $n \geqq 3$, an infinite collection \mathscr{B}_{n} of finite, contractible, n-dimensional polyhedra whose deleted products have the homotopy type of the n-sphere. It follows from previous work of the author [3] that the triod is the only tree whose deleted product has the homotopy type of the circle. In [5], the author computed the homology groups of the deleted product of a polyhedron in a subcollection \mathfrak{B} of the finite, contractible, 2-dimensional polyhedra, and, in [6], the author described a subcollection \mathfrak{C} of \mathfrak{B} such that the deleted product of each member of \mathfrak{C} has the homotopy type of the 2 -sphere. Now \mathbb{C} is an infinite collection, but there are two members, C and D, of \mathfrak{C} which have the property that any other member of \mathfrak{C} can be constructed by starting with C or D and appending simplexes in a certain specified manner. In [7], the author described, for each $n \geqq 3, n+1$ finite, contractible, n-dimensional polyhedra whose deleted products have the homotopy type of the n-sphere, and n of these polyhedra, $C_{1}^{n}, C_{2}^{n}, \ldots, C_{n}^{n}$, have the property that any member of \mathscr{B}_{n} can be constructed by starting with some C_{i}^{n} and appending simplexes in a certain specified manner. The importance of spaces whose deleted products have the homotopy type of a sphere was illustrated in [6].

If X and Y are spaces and $f: X \rightarrow Y$ is a continuous function, then X_{f}^{*} is the inverse image of Y^{*} in the map $f \times f: X \times X \rightarrow Y \times Y$. In [1], Brahana asks the question: What maps f are such that there is a homotopy equivalence between X_{f}^{*} and X^{*} ? In $\S 2$, we give some partial answers to this question, and we use some of these results in $\S 3$.

In $\S 3$, we examine the effect on X^{*} of adding a simplex to X in a certain specified manner. These results are used in $\S 4$ to describe the members of \mathscr{B}_{n}. $\S 3$ is also a first step in determining which homology groups of deleted product spaces are trivial.

In a forthcoming paper, we continue the investigations begun in this paper.
If v is a vertex of a polyhedron A, we let $\operatorname{St}(v, A)$ denote the open star of v in A, and if $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of a simplex σ, we denote σ by $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$. We use the circumflex \hat{v}_{i} to denote that v_{i} has been omitted, and if $w_{1}, w_{2}, \ldots, w_{n}$
are points, j is an integer $(1 \leqq j \leqq n)$, and $k=1,2, \ldots, j$; we let $w_{1}, w_{2}, \ldots,\left\{\hat{w}_{i_{k}}\right\}, \ldots, w_{n}$ denote the subset of $w_{1}, w_{2}, \ldots, w_{n}$ obtained by omitting $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{j}}$. Thus $\bigcup_{k=1}^{j}\left(\left\langle w_{1}, w_{2}, \ldots,\left\{\hat{w}_{i_{k}}\right\}, \ldots, w_{n}\right\rangle\right)$ denotes the simplex whose vertices are w_{1}, w_{2}, \ldots, w_{n} with $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{j}}$ omitted. We use the group of integers as the coefficient group for the homology groups. If X is a finite polyhedron and A and B are subpolyhedra of X, let $P(A \times B-\Delta)=\bigcup\{\sigma \times \tau \mid \sigma$ is a simplex of A, τ is a simplex of B, and $\sigma \cap \tau=\varnothing\}$. Hu [2] has shown that X^{*} and $P\left(X^{*}\right)$ are homotopically equivalent. If X and Y are finite polyhedra and $f: X \rightarrow Y$ is a simplicial map, let $P\left(X_{f}^{*}\right)=$ $\bigcup\{\sigma \times \tau \mid \sigma$ and τ are simplexes of X and $f(\sigma) \cap f(\tau)=\varnothing\}$. The author [4] has observed that X_{f}^{*} and $P\left(X_{f}^{*}\right)$ are homotopically equivalent.

2. The space X_{f}^{*}.

Theorem 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex. Suppose $A \cap B=C$, where C is a simplex of A and a proper face of B. Let v be a vertex of C, and let $v_{1}, v_{2}, \ldots, v_{p}$ denote the vertices of B which are not vertices of A. If $X=A \cup B$ and $f: X \rightarrow A$ is the simplicial map defined by $f(w)=w$ for each vertex w of A and $f\left(v_{j}\right)=v$ for each $j=1,2, \ldots, p$, then $P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$.

Proof. We will show that $\eta_{f}=f \times f \mid P\left(X_{f}^{*}\right): P\left(X_{f}^{*}\right) \rightarrow P\left(A^{*}\right)$ is a homotopy equivalence. Let $i: A \rightarrow X$ be the inclusion map, and let $\eta_{i}=i \times i \mid P\left(A^{*}\right)$. Then $\eta_{i}: P\left(A^{*}\right) \rightarrow P\left(X_{f}^{*}\right)$, and $\eta_{f} \eta_{i}$ is the identity.

Let $\left(x_{1}, x_{2}\right) \in P\left(X_{f}^{*}\right)$, and let σ_{1} and σ_{2} be the smallest closed simplexes of X such that $x_{i} \in \sigma_{i}$. Since $\left(x_{1}, x_{2}\right) \in P\left(X_{f}^{*}\right), f\left(\sigma_{1}\right) \cap f\left(\sigma_{2}\right)=\varnothing$. If, for each $j=1,2, \ldots, p$, v_{j} is not a vertex of either σ_{1} or σ_{2}, then $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)=\left(i f\left(x_{1}\right), i f\left(x_{2}\right)\right)=\left(x_{1}, x_{2}\right)$. Suppose that, for some $j=1,2, \ldots, p, v_{j}$ is a vertex of σ_{1}, and let $v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{q}}$ denote the subcollection of $v_{1}, v_{2}, \ldots, v_{p}$ consisting of those vertices which are vertices of σ_{1}. Then, for each $j=1,2, \ldots, p, v_{j}$ is not a vertex of σ_{2}, and hence $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)=\left(i f\left(x_{1}\right), x_{2}\right)$. Now if($\left.x_{i}\right)$ is either in the face of σ_{1} obtained by omitting $v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{q}}$ or the face of B we get from σ_{1} by replacing $v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{q}}$ by v. Since, in this case, v is not a vertex of σ_{2}, the line segment joining (x_{1}, x_{2}) and $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)$ is contained in $P\left(X_{f}^{*}\right)$. If, for some $j=1,2, \ldots, p, v_{j}$ is a vertex of σ_{2}, then a similar argument shows that the line segment joining $\left(x_{1}, x_{2}\right)$ and $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)$ is contained in $P\left(X_{f}^{*}\right)$. Therefore we may define $F: P\left(X_{f}^{*}\right) \times I \rightarrow P\left(X_{f}^{*}\right)$ by

$$
F\left(x_{1}, x_{2}, t\right)=t\left(x_{1}, x_{2}\right)+(1-t)\left(i f\left(x_{1}\right), i f\left(x_{2}\right)\right)
$$

It is clear that F is a homotopy between $\eta_{i} \eta_{f}$ and the identity.
The proof of the following combinatorial lemma is straightforward and hence it is omitted.

Lemma 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex with vertices $v_{0}, v_{1}, \ldots, v_{m}$. Suppose $1 \leqq p \leqq m$ and $A \cap B=\bigcup_{i=1}^{p} r_{i}$, where, for each i, r_{i} is the $(m-1)$-simplex $\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ of A and B. Then there is exactly
one $(p-1)$-face $\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle$ of B which is not in A, and if $q<p-1$, then every q-face of B is also a simplex of A.

Theorem 2. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex with vertices $v_{0}, v_{1}, \ldots, v_{m}$. Suppose $1 \leqq p \leqq m$ and $A \cap B=\bigcup_{i=1}^{p} r_{i}$, where, for each i, r_{i} is the $(m-1)$-simplex $\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ of A and B. Let u be the barycenter of $\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle$, and let X be the polyhedron consisting of A and

$$
\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, u\right\rangle \mid i=1,2, \ldots, p\right\} .
$$

If $f: X \rightarrow A$ is the simplicial map defined by $f(w)=w$ for each vertex w of A and $f(u)=v_{0}$, then $P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$.

Proof. We will show that $\eta_{f}=f \times f \mid P\left(X_{f}^{*}\right): P\left(X_{f}^{*}\right) \rightarrow P\left(A^{*}\right)$ is a homotopy equivalence. Let $i: A \rightarrow X$ be the inclusion map, and let $\eta_{i}=i \times i \mid P\left(A^{*}\right)$. Then $\eta_{i}: P\left(A^{*}\right) \rightarrow P\left(X_{f}^{*}\right)$, and $\eta_{f} \eta_{i}$ is the identity.

Let $\left(x_{1}, x_{2}\right) \in P\left(X_{f}^{*}\right)$, and let σ_{1} and σ_{2} be the smallest closed simplexes of X such that $x_{i} \in \sigma_{i}$. Since $\left(x_{1}, x_{2}\right) \in P\left(X_{f}^{*}\right), f\left(\sigma_{1}\right) \cap f\left(\sigma_{2}\right)=\varnothing$. If u is not a vertex of either σ_{1} or σ_{2}, then $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)=\left(i f\left(x_{1}\right)\right.$, if $\left.\left(x_{2}\right)\right)=\left(x_{1}, x_{2}\right)$. Suppose u is a vertex of σ_{1}. Then neither u nor v_{0} is a vertex of σ_{2}, and $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)=\left(i f\left(x_{1}\right), x_{2}\right)$. Now if $\left(x_{1}\right)$ is either in the face of σ_{1} obtained by omitting u or in the simplex obtained from σ_{1} by replacing u by v_{0}. Since v_{0} is not a vertex of σ_{2}, the line segment joining $\left(x_{1}, x_{2}\right)$ and $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)$ is contained in $P\left(X_{f}^{*}\right)$. If u is a vertex of σ_{2}, a similar argument shows that the line segment joining $\left(x_{1}, x_{2}\right)$ and $\eta_{i} \eta_{f}\left(x_{1}, x_{2}\right)$ is contained in $P\left(X_{f}^{*}\right)$. Therefore we may define $F: P\left(X_{f}^{*}\right) \times I \rightarrow P\left(X_{f}^{*}\right)$ by

$$
F\left(x_{1}, x_{2}, t\right)=t\left(x_{1}, x_{2}\right)+(1-t)\left(i f\left(x_{1}\right), i f\left(x_{2}\right)\right)
$$

It is clear that F is a homotopy between $\eta_{i} \eta_{f}$ and the identity.
Theorem 3. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex with vertices $v_{0}, v_{1}, \ldots, v_{m}$. Suppose

$$
A \cap B=\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle \mid i=0,1, \ldots, m\right\}
$$

suppose there is a vertex v of A such that, for each $i,\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, v\right\rangle$ is a simplex of A, and suppose there is a vertex w of A such that $w \neq v$ and $w \neq v_{i}$ for any i. Let u be the barycenter of B and let X be the polyhedron consisting of A and

$$
\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, u\right\rangle \mid i=0,1, \ldots, m\right\} .
$$

If $f: X \rightarrow A$ is the simplicial map defined by $f(z)=z$ for each vertex z of A and $f(u)=v$, then $P\left(X_{f}^{*}\right)$ is not homotopically equivalent to $P\left(A^{*}\right)$.

Proof. Since $w \neq v$ and $w \neq v_{i}$ for any i,

$$
\begin{aligned}
& w \times\left[\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, v\right\rangle \mid i=0,1, \ldots, m\right\}\right. \\
& \left.\cup\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, u\right\rangle \mid i=0,1, \ldots, m\right\}\right]
\end{aligned}
$$

is contained in $P\left(X_{f}^{*}\right)$. It is clear that this set carries nontrivial m-dimensional homology classes which are not in $P\left(A^{*}\right)$.
3. The addition of simplexes. Throughout this section, we let A denote a finite, n-dimensional polyhedron, and we are concerned with methods of attaching a simplex B to A so that either $(A \cup B)^{*}$ is homotopically equivalent to A^{*} or $H_{k}\left((A \cup B)^{*}\right)$ is isomorphic to $H_{k}\left(A^{*}\right)$ for certain k.

Theorem 4. If $B=\left\langle v_{0}, v_{1}\right\rangle$ is a 1 -simplex such that $A \cap B=\left\langle v_{0}\right\rangle$, where v_{0} is a vertex of A, and $X=A \cup B$, then $H_{k}\left(X^{*}\right)$ is isomorphic to $H_{k}\left(A^{*}\right)$ for all $k>n$. If, in addition, $\partial\left(\mathrm{St}\left(v_{0}, A\right)\right)$ is contractible, then $P\left(X^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$.

Proof. Let $f: X \rightarrow A$ be the simplicial map defined by $f(w)=w$ for each vertex w of A and $f\left(v_{1}\right)=v_{0}$. Then, by Theorem 2, $P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. Now

$$
P\left(X^{*}\right)=P\left(X_{f}^{*}\right) \cup\left(\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle\right) \cup\left(\left\langle v_{1}\right\rangle \times \mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)\right) .
$$

Since $P\left(X_{f}^{*}\right) \cap\left(\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle\right)=\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle$ and $\operatorname{dim}\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right]$ $\leqq n-1, H_{k}\left(P\left(X_{f}^{*}\right) \cup\left(\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle\right)\right)$ is isomorphic to $H_{k}\left(P\left(X_{f}^{*}\right)\right)$ for all $k>n$. If $\partial\left(\mathrm{St}\left(v_{0}, A\right)\right)$ is contractible, then $P\left(X_{f}^{*}\right) \cup\left(\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle\right)$ has the homotopy type of $P\left(X_{f}^{*}\right)$. Now the desired result follows immediately since

$$
\left[P\left(X_{f}^{*}\right) \cup\left(\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle\right)\right] \cap\left(\left\langle v_{1}\right\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)=\left\langle v_{1}\right\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right) .
$$

Theorem 5. If $B=\left\langle v_{0}, v_{1}, v_{2}\right\rangle$ is a 2 -simplex such that $A \cap B=\left\langle v_{0}, v_{2}\right\rangle \cup\left\langle v_{0}, v_{1}\right\rangle$, where $\left\langle v_{0}, v_{2}\right\rangle$ and $\left\langle v_{0}, v_{1}\right\rangle$ are simplexes of A, u is the barycenter of $\left\langle v_{1}, v_{2}\right\rangle$, and X is the polyhedron consisting of $A,\left\langle v_{0}, v_{2}, u\right\rangle$, and $\left\langle v_{0}, v_{1}, u\right\rangle$; then $H_{r}\left(X^{*}\right)$ is isomorphic to $H_{r}\left(A^{*}\right)$ for all $r>n+1$. Furthermore if

$$
\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{2}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]
$$

and either $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)$ or $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)$ or $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)$ $-\bigcup_{\gamma=1}^{2} \mathrm{St}\left(v_{\gamma}, A\right)$ are contractible, then X^{*} is homotopically equivalent to A^{*}.
Proof. Let $f: X \rightarrow A$ be the simplicial map defined by $f(w)=w$ for each vertex w of A and $f(u)=v_{0}$. Then, by Theorem $2, P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. Now

$$
\begin{aligned}
P\left(X^{*}\right)= & P\left(X_{f}^{*}\right) \cup\left(\left\langle v_{2}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right) \\
& \cup\left(\left\langle v_{1}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right) \cup\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup\left(\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right] \times\left\langle v_{2}, u\right\rangle\right) \\
& \cup\left(\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right] \times\left\langle v_{1}, u\right\rangle\right) \cup\left(\operatorname{St}\left(v_{0}, A\right) \times\langle u\rangle\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
P\left(X_{f}^{*}\right) & \cap\left(\left\langle v_{2}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right) \\
& =\left(\left\langle v_{2}, u\right\rangle \times\left[\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right) \cup\left(\left\langle v_{2}\right\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right),
\end{aligned}
$$

$X_{1}=P\left(X_{f}^{*}\right) \cup\left(\left\langle v_{2}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right)$ has the homotopy type of $P\left(X_{f}^{*}\right)$. Now

$$
\begin{aligned}
X_{1} & \cap\left(\left\langle v_{1}, u\right\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right) \\
& =\left(\left\langle v_{1}, u\right\rangle \times\left[\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right) \cup\left(\left\langle v_{1}\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right) \\
& \cup\left(\langle u\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\left(\operatorname{St}\left(v_{1}, A\right) \cup \operatorname{St}\left(v_{2}, A\right)\right)\right]\right) .
\end{aligned}
$$

Since $\operatorname{dim}\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right] \leqq n-1$,

$$
H_{r}\left(X_{1} \cap\left(\left\langle v_{1}, u\right\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right)\right)=0
$$

for all $r>n$. Therefore, if

$$
X_{2}=X_{1} \cup\left(\left\langle v_{1}, u\right\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right),
$$

then $H_{r}\left(X_{2}\right)$ is isomorphic to $H_{r}\left(X_{1}\right)$ for all $r>n+1$. If either $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)$ or $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{2} \operatorname{St}\left(v_{\gamma}, A\right)$ is contractible, then

$$
X_{1} \cap\left(\left\langle v_{1}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right)
$$

is contractible, and hence X_{2} has the homotopy type of X_{1}. If neither $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)$ $-\operatorname{St}\left(v_{1}, A\right)$ nor $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{r=1}^{2} \operatorname{St}\left(v_{\gamma}, A\right)$ is contractible, but $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)$ $-\mathrm{St}\left(v_{2}, A\right)$ is contractible, then we add $\left(\left\langle v_{1}, u\right\rangle \times\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\mathrm{St}\left(v_{1}, A\right)\right]\right)$ to $P\left(X_{f}^{*}\right)$ before we add $\left(\left\langle v_{2}, u\right\rangle \times\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\mathrm{St}\left(v_{2}, A\right)\right]\right)$ and essentially repeat the above argument to show that X_{2} has the homotopy type of $P\left(X_{f}^{*}\right)$. Now

$$
\begin{aligned}
X_{2} \cap\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) & =\left(\langle u\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup\left(\langle u\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)\right]\right) \\
& \cup\left(\langle u\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)\right]\right) .
\end{aligned}
$$

Since $H_{r}\left(X_{2} \cap\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)\right)=0$ for all $r>n-1$, if

$$
X_{3}=X_{2} \cup\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right),
$$

then $H_{r}\left(X_{3}\right)$ is isomorphic to $H_{r}\left(X_{2}\right)$ for all $r>n$. Hence $H_{r}\left(X_{3}\right)$ is isomorphic to $H_{r}\left(A^{*}\right)$ for all $r>n+1$. If

$$
\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{2}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]
$$

is contractible, then X_{3} has the homotopy type of X_{2}. Therefore if $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)$ $\cup \bigcup_{\gamma=1}^{2}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]$ and either $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{1}, A\right)$ or

$$
\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{2}, A\right)
$$

or $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{2} \operatorname{St}\left(v_{\gamma}, A\right)$ are contractible, then X_{3} is homotopically equivalent to A^{*}. We essentially repeat the above argument in order to complete the proof of the theorem.
Now in the remainder of this section, we let B denote an m-simplex with vertices $v_{0}, v_{1}, \ldots, v_{m}$. In Theorems 6 and 7 , we assume that $2 \leqq m \leqq n$, and, in Theorems 8,9 , and 10 , we assume that $3 \leqq m \leqq n$.

Theorem 6. If $1 \leqq p<m, A \cap B=\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i} \ldots, v_{m}\right\rangle \mid i=1,2, \ldots, p\right\}$, where, for each $i,\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ is a simplex of A, u is the barycenter of

$$
\left\langle v_{1}, v_{2}, \ldots, v_{p}\right\rangle,
$$

X is the polyhedron consisting of A and $\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, u\right\rangle \mid i=1,2, \ldots, p\right\}$, St $\left(v_{1}, A\right)$ denotes the empty set when $v_{1} \notin A$, and

$$
\begin{aligned}
& {\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right)\right]} \\
& \\
& \quad \cup \bigcup_{\gamma=p+1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\left(\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right) \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right]
\end{aligned}
$$

and $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\mathrm{St}\left(v_{\gamma}, A\right)\right]$ are contractible; then X^{*} is homotopically equivalent to A^{*}.

Proof. Let $f: X \rightarrow A$ be the simplicial map defined by $f(w)=w$ for each vertex w of A and $f(u)=v_{0}$. Then, by Theorem $2, P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. Now $P\left(X^{*}\right)$ can be constructed by starting with $P\left(X_{f}^{*}\right)$ and adding cells. Below we express $P\left(X^{*}\right)$ as the union of $P\left(X_{f}^{*}\right)$ and these cells. After this expression we explain the order in which we are going to add cells to $P\left(X_{f}^{*}\right)$ in order to get $P\left(X^{*}\right)$. Now

$$
\begin{aligned}
& P\left(X^{*}\right)=P\left(X_{f}^{*}\right) \cup \bigcup_{j=1}^{m}{ }^{\min \left[p, \bigcup_{i}-j+1\right.} \bigcup_{k=2}^{j+1]} \bigcup_{i_{k}=i_{k}-1+1}^{m-j+k} \\
& \left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
& \left.\times\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) \\
& \cup \bigcup_{j=1}^{m} \min ^{\min p, m-j+1]} \bigcup_{i_{1}=1}^{j} \bigcup_{i_{k}=i_{k-1}+1}^{m-j+k} \\
& \left(\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right. \\
& \left.\times\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right) .
\end{aligned}
$$

In the above and throughout this proof, we assume that $\operatorname{St}\left(v_{1}, A\right)$ denotes the empty set when $v_{1} \notin A$. Note that this is the case if and only if $p=1$. In order to explain the order in which we add the cells in the first union, we introduce the following notation. With each cell

$$
\begin{aligned}
& \bigcup_{k=1}^{j}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right),
\end{aligned}
$$

associate an m-tuple ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$) as follows: $\alpha_{\rho}=1$ if v_{ρ} is omitted in the simplex $\bigcup_{k=1}^{j}\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle$ and $\alpha_{\rho}=0$ otherwise. If $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ and ($\beta_{1}, \beta_{2}, \ldots, \beta_{m}$) are distinct m-tuples obtained in this manner, we define

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)<\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)
$$

if and only if either
(1) $\sum_{\rho=1}^{m} \alpha_{\rho}<\sum_{\rho=1}^{m} \beta_{\rho}$ or
(2) $\sum_{\rho=1}^{m} \alpha_{\rho}=\sum_{\rho=1}^{m} \beta_{\rho}$ and, if $r=\min \left\{s \mid \alpha_{s} \neq \beta_{s}\right\}$, then $\alpha_{r}>\beta_{r}$.

Then, if $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)<\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$, we add the cell associated with $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ before we add the cell associated with $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$.

Now, if $\sigma_{1} \times \tau_{1}$ and $\sigma_{2} \times \tau_{2}$ are two cells in the second union, then $\tau_{1} \times \sigma_{1}$ and $\tau_{2} \times \sigma_{2}$ are cells in the first union, and we add $\sigma_{1} \times \tau_{1}$ before $\sigma_{2} \times \tau_{2}$ if and only if we added $\tau_{1} \times \sigma_{1}$ before $\tau_{2} \times \sigma_{2}$.

Now we are ready to see what happens when we add these cells. For each $\beta=1,2, \ldots, p$,

$$
\left[P (X _ { f } ^ { * }) \cup \bigcup _ { \gamma = 1 } ^ { \beta - 1 } \left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\gamma}, \ldots, v_{m}, u\right\rangle\right.\right.
$$

$$
\left.\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1: q \neq \gamma}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)\right]
$$

$$
\cap\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}, u\right\rangle\right.
$$

$$
\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

$$
\begin{align*}
& =\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}, u\right\rangle \times\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \tag{6.1}\\
& \cup\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup \bigcup_{\gamma=1}^{\beta-1}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\gamma}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}, u\right\rangle\right. \\
& \left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) .
\end{align*}
$$

Therefore

$$
P\left(X_{f}^{*}\right) \cup \bigcup_{i_{1}=1}^{p}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{1}}, \ldots, v_{m}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq i_{1}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

has the homotopy type of $P\left(X_{f}^{*}\right)$. Now suppose $2 \leqq \alpha \leqq m-1$ and $i_{2} \leqq p$. Let X_{1} be the union of $P\left(X_{f}^{*}\right)$ with all those cells which have been added before

$$
\begin{aligned}
& E_{1}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) .
\end{aligned}
$$

Then
$X_{1} \cap E_{1}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right.$

$$
\left.\times\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right)
$$

$$
\begin{align*}
& \cup \bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right. \tag{6.2}\\
& \times \\
& \left.\times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) \\
& \cup \bigcup_{\beta=1}^{\alpha}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right)\right. \\
& \\
& \left.\times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right]\right\} .
\end{align*}
$$

Therefore $X_{1} \cup E_{1}$ has the homotopy type of X_{1}. Now suppose $2 \leqq \alpha \leqq m-1$, $i_{2}>p$, and $i_{1}=1$. Let X_{2} be the union of $P\left(X_{f}^{*}\right)$ with all those cells which have been added before

$$
\begin{aligned}
& E_{2}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& X_{2} \cap E_{2}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) \\
& \cup \bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right. \\
& \times {\left.\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) } \\
& \cup \bigcup_{\beta=2}^{\alpha}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right)\right. \\
&\left.\times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right]\right\} .
\end{aligned}
$$

Therefore $X_{2} \cup E_{2}$ has the homotopy type of X_{2}. Now suppose $2 \leqq \alpha \leqq m-1$, $i_{2}>p$ and $i_{1}>1$. Let X_{3} be the union of $P\left(X_{f}^{*}\right)$ with all those cells which have been added before

$$
\begin{aligned}
& E_{3}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& X_{3} \cap E_{3}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{{\hat{v_{i} k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
& \times {\left.\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) } \\
& \cup \bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right. \\
& \times {\left.\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) } \\
& \cup \bigcup_{\beta=2}^{\alpha}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right)\right. \\
& \times {\left.\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right]\right\} } \\
& \cup \bigcup_{j=1}^{i_{1}-1}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{j}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right)\right. \\
&\left.\times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{1}}, A\right)\right]\right\} .
\end{aligned}
$$

Now if $i_{1}<p$ or $i_{1}=p$ and there exists $\beta^{\prime}(p<\beta \leqq m)$ such that $\beta \neq i_{k}$ for any k, then $X_{3} \cap E_{3}$ is contractible. However if $i_{k}=p+k-1$ for each $k=1,2, \ldots, \alpha$ and $i_{\alpha}=m$, then $X_{3} \cap E_{3}$ is contractible if and only if

$$
\begin{aligned}
& {\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right)\right]} \\
& \\
& \cup \bigcup_{\gamma=p+1}^{m}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\left(\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right) \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right]
\end{aligned}
$$

is contractible. Thus it follows that if

$$
\begin{aligned}
& {\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right)\right]} \\
& \cup \bigcup_{\gamma=p+1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\left(\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right) \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right]
\end{aligned}
$$

is contractible, then $X_{3} \cup E_{3}$ has the homotopy type of X_{3}. Now let X_{4} be the union of $P\left(X_{f}^{*}\right)$ with all those cells which have been added before $\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)$. If $p=1$,

$$
\begin{aligned}
X_{4} & \cap\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)=\left(\langle u\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup \bigcup_{y=2}^{m}\left(\langle u\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]\right),
\end{aligned}
$$

and if $p>1$,

$$
\begin{aligned}
X_{4} & \cap\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)=\left(\langle u\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup \bigcup_{\gamma=1}^{m}\left(\langle u\rangle \times\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{y}, A\right)\right]\right) .
\end{aligned}
$$

Therefore, if $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{y=1}^{m}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\mathrm{St}\left(v_{\gamma}, A\right)\right]$ is contractible, $X_{4} \cup\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)$ has the homotopy type of X_{4}.

It follows from the above proof that if

$$
\begin{aligned}
& {\left[\hat{c}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right)\right]} \\
& \\
& \cup \bigcup_{\gamma=p+1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\left(\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, A\right) \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right]
\end{aligned}
$$

and $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]$ are contractible, then

$$
\begin{aligned}
P\left(X_{f}^{*}\right) \cup \bigcup_{j=1}^{m} \bigcup_{i_{1}=1}^{m i n}[p, m-j+1] & \bigcup_{k=2}^{j}
\end{aligned} \bigcup_{i_{k}=i_{k-1}+1}^{m-j+k}, ~\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right)
$$

is homotopically equivalent to $P\left(X_{f}^{*}\right)$. We essentially repeat the above argument in order to complete the proof of the theorem.

Theorem 7. If $A \cap B=\left\langle v_{0}, v_{2}, v_{3}, \ldots, v_{m}\right\rangle$, where $\left\langle v_{0}, v_{2}, v_{3}, \ldots, v_{m}\right\rangle$ is a simplex of A, and $X=A \cup B$, then $H_{r}\left(X^{*}\right)$ is isomorphic to $H_{r}\left(A^{*}\right)$ for all $r>n$.

Proof. We use the proof of Theorem 6 with $p=1$ and observe that in this proof i_{1} is always 1 since $p=1$ and hence the only time the addition of a cell can change the homotopy type is when we add $\left\langle v_{1}\right\rangle \times \mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)$ and $\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle$. (Note that $u=v_{1}$ since $p=1$.) Using the same terminology as in the proof of Theorem 6, we observed that

$$
\begin{aligned}
X_{4} & \cap\left(\left\langle v_{1}\right\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)=\left(\left\langle v_{1}\right\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup \bigcup_{\gamma=1}^{m}\left(\left\langle v_{1}\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]\right) .
\end{aligned}
$$

Since $\operatorname{dim}\left[\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right] \leqq n-1, H_{r}\left(X_{4} \cup\left(\left\langle v_{1}\right\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)\right)$ is isomorphic to $H_{r}\left(X_{4}\right)$ for all $r>n$. Since the same thing happens when we add $\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right) \times\left\langle v_{1}\right\rangle$, $H_{r}\left(X^{*}\right)$ is isomorphic to $H_{r}\left(A^{*}\right)$ for all $r>n$.

Theorem 8. If $A \cap B=\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle \mid i=1,2, \ldots, m\right\}$, where, for each $i,\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ is a simplex of A, u is the barycenter of $\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, X is the polyhedron consisting of A and $\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}, u\right\rangle \mid i=1,2, \ldots, m\right\}$, and

$$
\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]
$$

and $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{m} \operatorname{St}\left(v_{\gamma}, A\right)$ are contractible; then X^{*} is homotopically equivalent to A^{*}.

Proof. The proof is similar to the proof of Theorem 6, and hence we omit some of the details by referring to that proof. Let $f: X \rightarrow A$ be the simplicial map defined
by $f(w)=w$ for each vertex w of A and $f(u)=v_{0}$. Then, by Theorem $2, P\left(X_{f}^{*}\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. If $i_{0}=0$, then

$$
\begin{aligned}
& P\left(X^{*}\right)=P\left(X_{f}^{*}\right) \cup \bigcup_{j=1}^{m} \bigcup_{k=1}^{j} \bigcup_{i_{k}=i_{k}-1+1}^{m-j+k}(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle \\
& \times {\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\right.} \\
&\left.\left.\left\{\mathrm{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) \\
& \cup \bigcup_{j=1}^{m} \bigcup_{k=1}^{j} \bigcup_{i_{k}=i_{k-1}+1}^{m-j+k}({\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\right.} \\
&\left.\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right] \\
&\left.\times\left\langle v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right) .
\end{aligned}
$$

We associate an m-tuple with each cell in the first union and define an ordering of m-tuples in exactly the same way that we did in the proof of Theorem 6 . Then we add cells according to this ordering the same way we did in this previous proof.

For each $\beta=1,2, \ldots, m$, we have expression (6.1) in the proof of Theorem 6. If $\beta<m$, then the intersection in this expression is contractible. Therefore

$$
P\left(X_{f}^{*}\right) \cup \bigcup_{i_{1}=1}^{m-1}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{1}}, \ldots, v_{m}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq i_{1}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

has the homotopy type of $P\left(X_{f}^{*}\right)$. If $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{m} \operatorname{St}\left(v_{\gamma}, A\right)$ is contractible, then

$$
\begin{gathered}
{\left[P\left(X_{f}^{*}\right) \cup \bigcup_{\gamma=1}^{m=1}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\gamma}, \ldots, v_{m}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq \gamma}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)\right]} \\
\cap\left(\left\langle v_{1}, v_{2}, \ldots, v_{m-1}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m-1} \operatorname{St}\left(v_{q}, A\right)\right]\right)
\end{gathered}
$$

is contractible, and hence

$$
P\left(X_{f}^{*}\right) \cup \bigcup_{i_{1}=1}^{m}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{1}}, \ldots, v_{m}, u\right\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1 ; q \neq i_{1}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

is homotopically equivalent to $P\left(X_{f}^{*}\right)$. Now suppose $2 \leqq \alpha \leqq m-1$ and let X_{1} be the union of $P\left(X_{f}^{*}\right)$ with all those cells which have been added before

$$
\begin{aligned}
& E_{1}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
&\left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St~}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) .
\end{aligned}
$$

Then we have expression (6.2) in the proof of Theorem 6. Therefore $X_{1} \cup E_{1}$ has the homotopy type of X_{1}, and hence if

$$
\begin{aligned}
X_{2}=P\left(X_{f}^{*}\right) \cup & \bigcup_{j=1}^{m-1} \bigcup_{k=1}^{j} \bigcup_{i_{k}=i_{k}-1}^{m-j+k} \\
& \left(\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}, u\right\rangle\right. \\
& \left.\times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{q=1}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right)
\end{aligned}
$$

and $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{m} \mathrm{St}\left(v_{\gamma}, A\right)$ is contractible, then X_{2} is homotopically equivalent to $P\left(X_{f}^{*}\right)$. Now

$$
\begin{aligned}
X_{2} \cap\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) & =\left(\langle u\rangle \times \partial\left(\operatorname{St}\left(v_{0}, A\right)\right)\right) \\
& \cup \bigcup_{\gamma=1}^{m}\left(\langle u\rangle \times\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]\right) .
\end{aligned}
$$

Therefore if $\partial\left(\mathrm{St}\left(v_{0}, A\right)\right) \cup \bigcup_{y=1}^{m}\left[\mathrm{Cl}\left(\mathrm{St}\left(v_{0}, A\right)\right)-\mathrm{St}\left(v_{\gamma}, A\right)\right]$ is contractible, then $X_{3}=X_{2} \cup\left(\langle u\rangle \times \mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)\right)$ has the homotopy type of X_{2}. It follows from the above proof that if $\partial\left(\operatorname{St}\left(v_{0}, A\right)\right)-\bigcup_{\gamma=1}^{m} \mathrm{St}\left(v_{\gamma}, A\right)$ and

$$
\partial\left(\operatorname{St}\left(v_{0}, A\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\mathrm{Cl}\left(\operatorname{St}\left(v_{0}, A\right)\right)-\operatorname{St}\left(v_{\gamma}, A\right)\right]
$$

are contractible, then X_{3} is homotopically equivalent to A^{*}. We essentially repeat the above in order to complete the proof of the theorem.

Theorem 9. If $A \cap B=\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle \cup\left\langle v_{0}, v_{1}\right\rangle$, where $\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$ and $\left\langle v_{0}, v_{1}\right\rangle$ are simplexes of $A, X=A \cup B$, and, for each nonempty subset F of $\{2,3, \ldots, m\}$,

$$
\bigcup_{\gamma=1: i p \notin F}^{m}\left\{A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \bigcup\left\{\operatorname{St}\left(v_{p}, A\right) \mid p \in F\right\} \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right\}
$$

is a deformation retract of $A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \bigcup\left\{\operatorname{St}\left(v_{p}, A\right) \mid p \in F\right\}\right)$; then X^{*} is homotopically equivalent to A^{*}.

Proof. If $i_{0}=0$, then

$$
\begin{aligned}
& P\left(X^{*}\right)= P\left(A^{*}\right) \cup\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup \bigcup_{j=1}^{m-2} \bigcup_{k=1}^{j} \bigcup_{i_{k}=i_{k-1}+1}^{m-j+k}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{i}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right. \\
&\left.\times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right) \\
& \cup \bigcup_{p=2}^{m}\left(\left\langle v_{0}, v_{p}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{p}, A\right)\right)\right]\right) \\
& \cup\left(\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right] \times B\right) \\
& \cup \bigcup_{j=1}^{m-2} \bigcup_{k=1}^{j} \underbrace{m-j+k}_{i_{k}=i_{k-1}+1}\left(\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right. \\
&\left.\times\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right) \\
& \cup \bigcup_{p=2}^{m}\left(\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{p}, A\right)\right)\right] \times\left\langle v_{0}, v_{p}\right\rangle\right) .
\end{aligned}
$$

We add the above unions to $P\left(A^{*}\right)$ in the order in which we have listed them. In order to explain the order in which we add the cells in the second union, we associate with each cell in this union an m-tuple and define an ordering of m-tuples in exactly the same way that we did in the proof of Theorem 6. Then we add cells
in the second and fifth union according to this ordering in the same way we did in this previous proof. Now

$$
\begin{aligned}
P\left(A^{*}\right) \cap\left(B \times\left[A-\bigcup_{q=0}^{m}\right.\right. & \left.\left.\operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& =\left[\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle \cup\left\langle v_{0}, v_{1}\right\rangle\right] \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]
\end{aligned}
$$

and therefore $P\left(A^{*}\right) \cup\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. Now suppose $1 \leqq \alpha \leqq m-2$ and $i_{1}=1$. Let X_{1} be the union of $P\left(A^{*}\right)$ with all those cells which have been added before

$$
E_{1}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right)
$$

Then

$$
\begin{aligned}
X_{1} \cap E_{1}= & {\left[\left\langle v_{0}\right\rangle \cup \bigcup_{k=1}^{\alpha}\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right] } \\
& \times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right] \\
\cup & \bigcup_{\beta=1}^{\alpha}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right)\right. \\
& \left.\times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right]\right\}
\end{aligned}
$$

Therefore if

$$
\bigcup_{\beta=1}^{\alpha}\left[A-\left(\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right)\right]
$$

is a deformation retract of $A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k}\right.$ for any $\left.k\right\}$, then $X_{1} \cup E_{1}$ is homotopically equivalent to X_{1}. Now suppose $1 \leqq \alpha \leqq m-2$ and $i_{1}>1$. Let X_{2} be the union of $P\left(A^{*}\right)$ with all those cells which have been added before

$$
E_{2}=\bigcup_{k=1}^{\alpha}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right)
$$

Then

$$
\begin{aligned}
X_{2} \cap E_{2}= & {\left[\left\langle v_{0}, v_{1}\right\rangle \cup \bigcup_{k=1}^{\alpha}\left\langle v_{1}, v_{2}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right] } \\
& \times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right] \\
\cup & \bigcup_{\beta=1}^{\alpha}\left\{\bigcup_{k=1}^{\alpha}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right)\right. \\
& \left.\times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\} \cup \operatorname{St}\left(v_{i_{\beta}}, A\right)\right]\right\}
\end{aligned}
$$

Hence $X_{2} \cup E_{2}$ is homotopically equivalent to X_{2}. Let

$$
\begin{aligned}
& X_{3}=P\left(A^{*}\right) \cup\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup \bigcup_{j=1}^{m-2} \bigcup_{k=1}^{j} \bigcup_{i_{k}=i_{k-1}+1}^{m-j+k}\left(\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{i_{k}}\right\}, \ldots, v_{m}\right\rangle\right. \\
&\left.\times\left[A-\bigcup_{q=0}^{m}\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \neq i_{k} \text { for any } k\right\}\right]\right)
\end{aligned}
$$

Then, for each $\beta=2,3, \ldots, m$,

$$
\begin{aligned}
{\left[X_{3} \cup \bigcup_{\delta=2}^{\beta-1}\right.} & \left.\left(\left\langle v_{0}, v_{\delta}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\delta}, A\right)\right)\right]\right)\right] \\
& \cap\left(\left\langle v_{0}, v_{\beta}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\beta}, A\right)\right)\right]\right) \\
& =\left[\left\langle v_{0}\right\rangle \cup\left\langle v_{\beta}\right\rangle\right] \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\beta}, A\right)\right)\right] \\
& \cup \bigcup_{\varepsilon=1 ; \varepsilon \neq \beta}^{m}\left(\left\langle v_{0}, v_{\beta}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\beta}, A\right) \cup \operatorname{St}\left(v_{\varepsilon}, A\right)\right)\right]\right) .
\end{aligned}
$$

If, for each $\beta=2,3, \ldots, m$,

$$
\bigcup_{\varepsilon=1 ; \varepsilon \neq \beta}^{m}\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\beta}, A\right) \cup \operatorname{St}\left(v_{\varepsilon}, A\right)\right)\right]
$$

is a deformation retract of $A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{\beta}, A\right)\right)$, then

$$
X_{3} \cup \bigcup_{p=2}^{m}\left(\left\langle v_{0}, v_{p}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \operatorname{St}\left(v_{p}, A\right)\right)\right]\right)
$$

is homotopically equivalent to X_{3}. Now, in order to complete the proof of the theorem, we essentially repeat the above argument.

Theorem 10. If $\lambda_{0}=0$,

$$
A \cap B=\bigcup_{k=1}^{2} \bigcup_{\lambda_{k}=\lambda_{k-1}+1}^{m-2+k}\left\{\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{\lambda_{k}}\right\}, \ldots, v_{m}\right\rangle\right\},
$$

where each $\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{\lambda_{k}}\right\}, \ldots, v_{m}\right\rangle$ is a simplex of $A, X=A \cup B$, and, for each subset F of $\{1,2, \ldots, m\}$ consisting of at least $m-1$ elements,

$$
\bigcup_{\gamma=0 ; \gamma \notin F}^{m}\left\{A-\left(\bigcup\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \in F\right\} \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right\}
$$

is a deformation retract of $A-\bigcup\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \in F\right\}$; then X^{*} is homotopically equivalent to A^{*}.

Proof. First observe that

$$
\begin{aligned}
P\left(X^{*}\right) & =P\left(A^{*}\right) \cup\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup \bigcup_{i_{1}=0}^{m}\left(\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i_{1}}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0 ; q \neq i_{1}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup \bigcup_{i_{2}=1}^{m}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{2}}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1 ; q \neq i_{2}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup\left(\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right] \times B\right) \\
& \cup \bigcup_{i_{1}=0}^{m}\left(\left[A-\bigcup_{q=0 ; q \neq i_{1}}^{m} \operatorname{St}\left(v_{q}, A\right)\right] \times\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i_{1}}, \ldots, v_{m}\right\rangle\right) \\
& \cup \bigcup_{i_{2}=1}^{m}\left(\left[A-\underset{q=1 ; q \neq i_{2}}{m} \operatorname{St}\left(v_{q ;}, A\right)\right] \times\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{2}}, \ldots, v_{m}\right\rangle\right) .
\end{aligned}
$$

Now

$$
P\left(A^{*}\right) \cap\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)=(A \cap B) \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right],
$$

and hence $X_{1}=P\left(A^{*}\right) \cup\left(B \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)$ is homotopically equivalent to $P\left(A^{*}\right)$. Also, for each $\alpha=0,1, \ldots, m$,

$$
\begin{aligned}
{\left[X _ { 1 } \cup \bigcup _ { \beta = 0 } ^ { \alpha - 1 } \left(\left\langlev_{0},\right.\right.\right.} & \left.\left.\left.v_{1}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)\right] \\
& \cap\left(\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0 ; q \neq \alpha}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& =\left[A \cap\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle\right] \times\left[A-\underset{q=0 ; q \neq \alpha}{m} \operatorname{St}\left(v_{q}, A\right)\right] \\
& \cup\left(\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) .
\end{aligned}
$$

If $\alpha \neq 0$,

$$
X_{1} \cup \bigcup_{\beta=0}^{\alpha}\left(\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

is homotopically equivalent to

$$
X_{1} \cup \bigcup_{\beta=0}^{\alpha-1}\left(\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=0 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) .
$$

If $A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)$ is a deformation retract of $A-\bigcup_{q=1}^{m} \operatorname{St}\left(v_{q}, A\right)$, then

$$
X_{1} \cup\left(\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

is homotopically equivalent to X_{1}. Therefore if $A-\bigcup_{q=0}^{m} \operatorname{St}\left(v_{q}, A\right)$ is a deformation retract of $A-\bigcup_{q=1}^{m} \operatorname{St}\left(v_{q}, A\right)$, then

$$
X_{2}=X_{1} \cup \bigcup_{i_{1}=0}^{m}\left(\left\langle v_{0}, v_{1}, \ldots, \hat{i}_{i_{1}}, \ldots, v_{m}\right\rangle \times\left[A-\underset{q=0 ; q \neq i_{1}}{\bigcup_{i}} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

is homotopically equivalent to A^{*}. Now, for each $\alpha=1,2, \ldots, m$,

$$
\begin{aligned}
& {\left[X_{2} \cup \bigcup_{\beta=1}^{\alpha-1}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\beta}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1 ; q \neq \beta}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)\right] } \\
& \cap\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1 ; q \neq \alpha}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
&=\left[A \cap\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle\right] \times\left(A-\bigcup_{q=1 ; q \neq \alpha}^{m} \operatorname{St}\left(v_{q}, A\right)\right) \\
& \cup\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right) \\
& \cup\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{\alpha}, \ldots, v_{m}\right\rangle \times\left[A-\left(\operatorname{St}\left(v_{0}, A\right) \cup \bigcup_{q=1 ; q \neq \alpha}^{m} \operatorname{St}\left(v_{q}, A\right)\right)\right]\right)
\end{aligned}
$$

Hence, if for each subset F of $\{1,2, \ldots, m\}$ consisting of at least $m-1$ elements,

$$
\bigcup_{\gamma=0 ; \gamma \notin F}^{m}\left\{A-\left(\bigcup\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \in F\right\} \cup \operatorname{St}\left(v_{\gamma}, A\right)\right)\right\}
$$

is a deformation retract of $A-\bigcup\left\{\operatorname{St}\left(v_{q}, A\right) \mid q \in F\right\}$, then

$$
X_{2} \cup \bigcup_{i_{2}=1}^{m}\left(\left\langle v_{1}, v_{2}, \ldots, \hat{v}_{i_{2}}, \ldots, v_{m}\right\rangle \times\left[A-\bigcup_{q=1 ; q \neq i_{2}}^{m} \operatorname{St}\left(v_{q}, A\right)\right]\right)
$$

is homotopically equivalent to A^{*}. In order to complete the proof of the theorem, we essentially repeat the above argument.
4. Isotopy types of spheres. For each integer $n \geqq 3$, let $B^{n}=\left\{x \in E^{n}| | x \mid \leqq 1\right\}$, and, for each integer $m(1 \leqq m \leqq n)$, let A_{m} be an m-simplex. Suppose that for each m and $n, A_{m} \cap B^{n}$ is an $(m-1)$-face of A_{m} and $A_{m} \cap B^{n} \subset\left(B^{n}\right)^{\circ}$. Let $C_{m}^{n}=B^{n} \cup A_{m}$. Also let C_{n}^{n} be the polyhedron consisting of three n-simplexes with a common ($n-1$)-face.

For each integer $n \geqq 3$, let $\mathscr{A}_{n}=\left\{C_{1}^{n}, C_{2}^{n}, \ldots, C_{n}^{n}\right\}$, and let \mathscr{B}_{n} be the collection consisting of the members of \mathscr{A}_{n} and all finite, contractible, n-dimensional polyhedra X with the property that there is a member C_{i}^{n} of \mathscr{A}_{n} such that a homeomorph of X can be constructed out of C_{i}^{n} by appending m-simplexes $(1 \leqq m \leqq n)$ in such a way that if the construction is factored $C_{i}^{n}=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{e}=X$, then X_{j} is obtained from X_{j-1} by
(1) adding a $1-\operatorname{simplex} \tau=\left\langle v_{0}, v_{1}\right\rangle$ such that $X_{j-1} \cap \tau=\left\langle v_{0}\right\rangle$, where v_{0} is a vertex of X_{j-1} and $\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)$ is contractible,
(2) adding an m-simplex $\tau=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle, 2 \leqq m \leqq n$, such that $X_{j-1} \cap \tau$ $=\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle \mid i=1,2, \ldots, p\right\}$, where $1 \leqq p<m,\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ is a simplex of X_{j-1} for each i, and, if $\operatorname{St}\left(v_{1}, X_{j-1}\right)$ denotes the empty set when $v_{1} \notin X_{j-1}$, then

$$
\begin{aligned}
& {\left[\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, X_{j-1}\right)\right]} \\
& \cup \bigcup_{\gamma=p+1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\left(\bigcup_{q=1}^{p} \operatorname{St}\left(v_{q}, X_{j-1}\right) \cup \operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right)\right]
\end{aligned}
$$

and

$$
\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right]
$$

are contractible,
(3) adding a 2-simplex $\tau=\left\langle v_{0}, v_{1}, v_{2}\right\rangle$ such that $X_{j-1} \cap \tau=\left\langle v_{0}, v_{2}\right\rangle \cup\left\langle v_{0}, v_{1}\right\rangle$, where $\left\langle v_{0}, v_{2}\right\rangle$ and $\left\langle v_{0}, v_{1}\right\rangle$ are simplexes of X_{j-1} and

$$
\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right) \cup \bigcup_{\gamma=1}^{2}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right]
$$

and either $\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\operatorname{St}\left(v_{1}, X_{j-1}\right)$ or $\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\operatorname{St}\left(v_{2}, X_{j-1}\right)$ or $\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\bigcup_{\gamma=1}^{2} \operatorname{St}\left(v_{\gamma}, X_{j-1}\right)$ are contractible,
(4) adding an m-simplex $\tau=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle, 3 \leqq m \leqq n$, such that $X_{j-1} \cap \tau$ $=\left\{\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle \mid i=1,2, \ldots, m\right\}$, where $\left\langle v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{m}\right\rangle$ is a simplex of X_{j-1} for each i and

$$
\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right) \cup \bigcup_{\gamma=1}^{m}\left[\operatorname{Cl}\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right]
$$

and $\partial\left(\operatorname{St}\left(v_{0}, X_{j-1}\right)\right)-\bigcup_{\gamma=1}^{m} \operatorname{St}\left(v_{\gamma}, X_{j-1}\right)$ are contractible,
(5) adding an m-simplex $\tau=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle, 3 \leqq m \leqq n$, such that $X_{j-1} \cap \tau$ $=\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle \cup\left\langle v_{0}, v_{1}\right\rangle$, where $\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$ and $\left\langle v_{0}, v_{1}\right\rangle$ are simplexes of X_{j-1}, and, for each nonempty subset F of $\{2,3, \ldots, m\}$,

$$
\bigcup_{\gamma=1 ; \gamma \notin F}^{m}\left\{X_{j-1}-\left(\operatorname{St}\left(v_{0}, X_{j-1}\right) \cup \bigcup\left\{\operatorname{St}\left(v_{p}, X_{j-1}\right) \mid p \in F\right\} \cup \operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right)\right\}
$$

is a deformation retract of $X_{j-1}-\left(\operatorname{St}\left(v_{0}, X_{j-1}\right) \cup \bigcup\left\{\operatorname{St}\left(v_{p}, X_{j-1}\right) \mid p \in F\right\}\right)$, or
(6) adding an m-simplex $\tau=\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle, 3 \leqq m \leqq n$, such that

$$
X_{j-1} \cap \tau=\bigcup_{k=1}^{2} \bigcup_{\lambda_{k}=\lambda_{k-1}+1}^{m-2+k}\left\{\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{\lambda}_{\lambda_{k}}\right\}, \ldots, v_{m}\right\rangle\right\},
$$

where $\lambda_{0}=0$, each $\left\langle v_{0}, v_{1}, \ldots,\left\{\hat{v}_{\lambda_{k}}\right\}, \ldots, v_{m}\right\rangle$ is a simplex of X_{j-1}, and, for each subset F of $\{1,2, \ldots, m\}$ consisting of at least $m-1$ elements,

$$
\bigcup_{\gamma=0, \gamma \notin F}^{m}\left\{X_{j-1}-\left(\bigcup\left\{\operatorname{St}\left(v_{q}, X_{j-1}\right) \mid q \in F\right\} \cup \operatorname{St}\left(v_{\gamma}, X_{j-1}\right)\right)\right\}
$$

is a deformation retract of $X_{j-1}-\bigcup\left\{\operatorname{St}\left(v_{q}, X_{j-1}\right) \mid q \in F\right\}$.
Theorem 11. If $X \in \mathscr{B}_{n}$, then X^{*} has the homotopy type of S^{n}.
Proof. By Theorem 3 of [7], $\left(C_{n}^{n}\right)^{*}$ has the homotopy type of S^{n}. Also by Theorem 4 of [7], for each $m=1,2, \ldots, n-1,\left(C_{m}^{n}\right)^{*}$ has the homotopy type of S^{n}. Therefore $\left(X_{1}\right)^{*}$ has the homotopy type of S^{n}. Now suppose $1<j \leqq e$ and $\left(X_{j-1}\right)^{*}$ has the homotopy type of S^{n}. If X_{j} is obtained from X_{j-1} by (1), then, by Theorem $4,\left(X_{j}\right)^{*}$ has the homotopy type of S^{n}. If X_{j} is obtained from X_{j-1} by (2), then, by Theorem 6, $\left(X_{j}\right)^{*}$ has the homotopy type of S^{n}. If X_{j} is obtained from X_{j-1} by (3), then, by Theorem 5, ($\left.X_{j}\right)^{*}$ has the homotopy type of S^{n}. If X_{j} is obtained from X_{j-1} by (4), then, by Theorem $8,\left(X_{j}\right)^{*}$ has the homotopy type of S^{n}. If X_{j} is obtained from X_{j-1} by (5), then, by Theorem $9,\left(X_{j}\right)^{*}$ has the homotopy type of S^{n}. Finally if X_{j} is obtained from X_{j-1} by (6), then, by Theorem $10,\left(X_{j}\right)^{*}$ has the homotopy type of S^{n}. Therefore X^{*} has the homotopy type of S^{n}.

References

1. T. R. Brahana, "On a class of isotopy invariants" in Topology of 3-manifolds and related topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 235-237. MR 25 \#5514.
2. S. T. Hu, Isotopy invariants of topological spaces, Proc. Roy. Soc. London Ser. A. 255 (1960), 331-366. MR 22 \#4064.
3. C. W. Patty, The fundamental group of certain deleted product spaces, Trans. Amer. Math. Soc. 105 (1962), 314-321. MR 26 \#771.
4. -_, Isotopy invariants of trees, Duke Math. J. 31 (1964), 183-197. MR 28 \#2548.
5. -, Homology of deleted products of contractible 2-dimensional polyhedra, I, Canad. J. Math. 20 (1968), 416-441. MR 37 \#5865a.
6. - Homology of deleted products of contractible 2-dimensional polyhedra. II, Canad. J. Math. 20 (1968), 842-854. MR 37 \#5865b.
7. --, Polyhedra whose deleted products have the homotopy type of the n-sphere, Duke Math. J. 36 (1969), 233-236.

Virginia Polytechnic Institute, Blacksburg, Virginia

