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DELETED PRODUCTS WITH HOMOTOPY

TYPES OF SPHERESO

BY

C W. PATTY

1. Introduction and notation. The deleted product space X* of a space X is

Xx X— A. The principal purpose of this paper is to describe, for each integer «S 3,

an infinite collection 3Sn of finite, contractible, «-dimensional polyhedra whose

deleted products have the homotopy type of the «-sphere. It follows from previous

work of the author [3] that the triod is the only tree whose deleted product has the

homotopy type of the circle. In [5], the author computed the homology groups of

the deleted product of a polyhedron in a subcollection S3 of the finite, contractible,

2-dimensional polyhedra, and, in [6], the author described a subcollection (£ of 93

such that the deleted product of each member of S has the homotopy type of the

2-sphere. Now © is an infinite collection, but there are two members, C and D, of

S which have the property that any other member of S can be constructed by

starting with C or D and appending simplexes in a certain specified manner. In [7],

the author described, for each «S3, «+1 finite, contractible, «-dimensional

polyhedra whose deleted products have the homotopy type of the «-sphere, and «

of these polyhedra, C", C2,..., C", have the property that any member of äSn

can be constructed by starting with some C? and appending simplexes in a certain

specified manner. The importance of spaces whose deleted products have the

homotopy type of a sphere was illustrated in [6].

If X and Y are spaces and /: X-+ Y is a continuous function, then X,* is the

inverse image of Y* in the map/x/: Xx X^> Yx Y. In [1], Brahana asks the

question: What maps f are such that there is a homotopy equivalence between X*

and X*l In §2, we give some partial answers to this question, and we use some of

these results in §3.

In §3, we examine the effect on X* of adding a simplex to Yin a certain specified

manner. These results are used in §4 to describe the members of âSn. §3 is also a

first step in determining which homology groups of deleted product spaces are

trivial.

In a forthcoming paper, we continue the investigations begun in this paper.

Iff is a vertex of a polyhedron A, we let St (v, A) denote the open star off in A,

and if f1; f 2, ...,»„ are the vertices of a simplex a, we denote a by <f l5 v2,..., f„>.

We use the circumflex i\ to denote that i\ has been omitted, and if wu w2,..., wn
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are points,/'is an integer (1 ^/g«),andk= 1,2,.. .,7;weletw1,w2,.. .,{wilc},.. .,wn

denote the subset of w1, wa,..., wn obtained by omitting wh, wi2,..., w\.. Thus

Ui = i (iwu w2, ■ ■ ■ > iwik}> ■ ■ •> WV» denotes the simplex whose vertices are wlt w2,

..., wn with H'jj, wi2,..., w¡. omitted. We use the group of integers as the coefficient

group for the homology groups. If A' is a finite polyhedron and A and B are sub-

polyhedra of X, let P(A xB — A) = 1J {ax r\a is a simplex of A, r is a simplex of B,

and cr n t = 0}. Hu [2] has shown that X* and P(X*) are homotopically equivalent.

If X and Y are finite polyhedra and/: X-> Y is a simplicial map, let P(Xf) =

(J{ctxt|ct and t are simplexes of X and f(a) nf(r)= 0j. The author [4] has

observed that X* and P(Xf) are homotopically equivalent.

2. The space A'*.

Theorem 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex.

Suppose A n B=C, where C is a simplex of A and a proper face of B. Let v be a

vertex of C, and let i\, v2,..., vp denote the vertices of B which are not vertices of A.

If X= A U B and f: X -> A is the simplicial map defined by f(w) = w for each vertex

w of A andf(vO = vfor each j= 1,2,.. .,p, then P(X*) is homotopically equivalent

to P(A*).

Proof. We will show that r¡f=fxf\P(X?): P(X?)^P(A*) is a homotopy

equivalence. Let i: A -> X be the inclusion map, and let T)t = ixi\P(A*). Then

rn: P(A*) -+ P(Xf), and ^ is the identity.

Let (xl5 x2) e P(X*), and let a1 and a2 be the smallest closed simplexes of X

such that x¡ e a¡. Since (xu x2) e P(Xf*),f(a1) n/(a2)= 0. If, foreach7=l,2,.. .,p,

Vj is not a vertex of either a1 or a2, then 7?ít;/(x1, x2) = (¡/(x1), ;/(x2)) = (x1, x2).

Suppose that, for some/'= 1,2,.. .,p, v¡ is a vertex of au and let vkl, vk2,..., vkq

denote the subcollection of vlt v2,.. .,vp consisting of those vertices which are

vertices of <jx. Then, for each j= 1, 2,.. .,p, v¡ is not a vertex of a2, and hence

ViVr(xi> x2) = (if(xi), x2). Now í/(x¡) is either in the face of uj obtained by omitting

vkl, vk2,...,%, or the face of B we get from ax by replacing vkl, vk2, ...,vkqby v.

Since, in this case, v is not a vertex of a2, the line segment joining (x1; x2) and

ViVf(xi^ xi) is contained in P(X*). If, for some7= 1,2,...,/?, v} is a vertex of a2,

then a similar argument shows that the line segment joining (x1? x2) and T)(rif(xu x2)

is contained in P(X*). Therefore we may define F: P(X*) x 7-> P(X*) by

F(xi, x2, /) = t(xu x2)+(l-t)(if(x1), if(x2)).

It is clear that F is a homotopy between n{i)S and the identity.

The proof of the following combinatorial lemma is straightforward and hence

it is omitted.

Lemma 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex

with vertices v0, vu ..., vm. Suppose 1 ̂ p^m and A n S=lvJf=i r¡, where, for each i,

r, is the (m— l)-simplex <r0, vu .. ,,v{,. .., vm} of A and B. Then there is exactly
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one (p- l)-face <f1; v2,..., rp> of B which is not in A, and if q<p- 1, then every

q-face of B is also a simplex of A.

Theorem 2. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex

with vertices v0, i\,..., vm. Suppose 1 g/? S «? and A n B= (Jf= s r¡, where, for each i,

r¡ is the (m— l)-simplex (v0, i\,..., v¡,. . ., vm) of A and B. Let u be the barycenter

of'<t'i, f2, ■ ■ -, fp>, and let X be the polyhedron consisting of A and

{<f0, fi,..., f¡,..., vm, »> | i = 1, 2,..., p}.

Iff: X ^* A is the simplicial map defined by f(w) = w for each vertex w of A and

f(u) = v0, then P(X*) is homotopically equivalent to P(A*).

Proof. We will show that r¡f=fxf\P(X,*): P(X?)-^ P(A*) is a homotopy

equivalence. Let /:/I —> Y be the inclusion map, and let rj¡ = ixi\P(A*). Then

nt: P(A*) ~>P(Xf*), and -qñi is the identity.

Let (xi, x2) e P(X*), and let a1 and a2 be the smallest closed simplexes of X

such that Xi e at. Since (xx, x2) e P(X*), /(aj n/(a2)= 0. If u is not a vertex of

either ax or <r2, then %t//(Xl, .v2) = (;/(x1), if(x2)) = (xu x2). Suppose u is a vertex of

<?!. Then neither u nor v0 is a vertex of ct2, and r,iqf(xi, x2) = (if(xi), x2). Now if(xx)

is either in the face of ctj obtained by omitting u or in the simplex obtained from ai

by replacing u by v0. Since r0 is not a vertex of o-2, the line segment joining (xx, x2)

and r¡ir¡f(xu x2) is contained in P(X*). If « is a vertex of o2, a similar argument

shows that the line segment joining (xu x2) and r}{qf(Xi, x2) is contained in P(X*).

Therefore we may define F: P(Xf*) x I -> P(X?) by

F(xi, x2, t) = t(xi, x2) + (l-t)(if(xi), if(x2)).

It is clear that F is a homotopy between t;¡% and the identity.

Theorem 3. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex

with vertices v0, vx,..., vm. Suppose

A n B = {<f0, ti,..., vu ..., fm> 11 = 0,1,..., m},

suppose there is a vertex v of A such that, for each i, <f0, f 1,.. ., f¡,.. ., vm, v) is a

simplex of A, and suppose there is a vertex w of A such that w=£v and w^v¡for any i.

Let u be the barycenter of B and let X be the polyhedron consisting of A and

{<f0, Vi,..., ßt,..., vm u> I i - 0,1,..., m}.

If f:X^r A is the simplicial map defined by f(z) = z for each vertex z of A and

f(u) = v, then P(Xf) is not homotopically equivalent to P(A*).

Proof. Since wj^v and w#f¡ for any i,

w x [{<f0, vu ..., v¡,..., vm, v} \ i = 0, I,..., m}

u {<f0, v 1,..., vx,..., vm, u) I i = 0, 1,..., m}]
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is contained in P(Xf). It is clear that this set carries nontrivial m-dimensional

homology classes which are not in P(A*).

3. The addition of simplexes. Throughout this section, we let A denote a finite,

«-dimensional polyhedron, and we are concerned with methods of attaching a

simplex B to A so that either (A u B)* is homotopically equivalent to A* or

Hk((A u B)*) is isomorphic to Hk(A*) for certain k.

Theorem 4. If B = (v0, t>i> is a l-simplex such that A n 2? = </0>, where u0 is a

vertex of A, and X=A U B, then Hk(X*) is isomorphic to Hk(A*) for all k>n.

If, in addition, 8(St (v0, A)) is contractible, then P(X*) is homotopically equivalent

to P(A*).

Proof. Let/: X^ A be the simplicial map defined by f(w) = w for each vertex

w of A and f(i\) = v0. Then, by Theorem 2, P(Xf*) is homotopically equivalent to

P(A*). Now

P(X*) = P(Xf) u (Cl (St (v0, A)) x <Pl» u «Bl> x Cl (St (t>0) A))).

Since P(Xf) n (Cl (St (v0, A)) x (v1}) = d(St (v0, A)) x <Pl> and dim [S(St (v0, A))]

áH-1, Hk(P(X?) u (Cl (St (t'0, /Í)) x (t'!») is isomorphic to Hk(P(Xf)) for all

A: >«. If r(St (r0, /I)) is contractible, then P(X?) u (CI (St (v0, A)) x (i^» has the

homotopy type of P(X*). Now the desired result follows immediately since

[P(Xn u (Cl (St (v0, A)) x <«!»] n «Pl> x Cl (St (v0, A))) = <Cl> x S(St (d0, /()).

Theorem 5. If B = (va, tlt t>2> is a2-simplex such that A n B = (v0, r2> u <i>0, i^X

where <y0, t72> awtf" <t'0, t%> are simplexes of A, u is the barycenter of \vx, v2), and X

is the polyhedron consisting of A, (v0, v2, u), and <i?0, fj, «>; /fte« Hr(X*) is iso-

morphic to Hr(A*) for all r>n+l. Furthermore if

d(St(v0,A))u  U   [Ct (St (ifciQ)-St(»„;*)]
y=l

ûW <?////?/• 0(St(üo, A))-St(vuA) or 8(St (v0, A))-St (v2, A) or 8(St(v0,A))

— Ur = i St (Vy, A) are contractible, then X* is homotopically equivalent to A*.

Proof. Let/: X^ A be the simplicial map defined by/(uO = w for each vertex

w of A and f(u) = v0. Then, by Theorem 2, P(Xf) is homotopically equivalent to

P(A*). Now

P(X*) = P(X?) u «P2, «> x [Cl (St (v0, A))-St (v2, A)])

u «i'!, U> x [Cl (St (v0, A))-St (vlt A)}) u «u> x Cl (St (v0, A)))

U ([Cl (St (v0, A))-St (v2, A)] x (v2, u»

U ([Cl (St («o, A))-St (vx, A)] x <Pl, «» U (St (t>0) A) x <«».

Since

/>(*,*) n (<»a, «> x [Cl (St (v0, A))-St (v2, A)])

= «v2, «> x [3(St (»o, ¿))-St (r>3, y<)]) u «i>2> x [Cl (St (d0, A))-St (v2, A)]),
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Xi = P(X?) u «f2, w> x [Cl (St (f0, A))-St(v2, A)]) has the homotopy type of

P(Xf). Now

Xi n «f1; «> x [Cl (St (f0, A))-St (vu A)])

= «fl5 w> x [3(St (f0, ¿))-St (Vu A)]) u «f!> x [Cl (St (f0, A))-St (flt A)])

u «m> x [Cl (St (f0, /i))-(St (»lf >4) u St (f2, A))]).

Since dim [3(St (v0, A))]¿,n- 1,

Hr(Xx n «f1; M> x [Cl (St (f0, >1))-St (f1; A)])) = 0

for all r>«. Therefore, if

Z2 = Xi U «f1( M> x [Cl (St (f0, /l))-St (fl5 A)]),

then íT-ÍA'a) is isomorphic to Hr(Xi) for all r > « + 1. If either S(St (v0, A)) - St (t>lt A)

or S(St (f0, .4)) — Uy = i St (fy, /4) is contractible, then

Xi n «f1( M> x [Cl (St (f0, A))-St (vi, A)])

is contractible, and hence Y2 has the homotopy type of A\. If neither #(St (f0, /!))

-St(fj,^) nor e(St(f0,/1))-U2=i St0'y, ^) ¡s contractible, but d(St(v0,A))

-St (c2, /I) is contractible, then we add «fl5 «> x [Cl (St (f0, /f))-St (»i, ^4)]) to

7J(Y/*) before we add «f2, w> x [Cl (St (v0, A)) — St (r2, A)]) and essentially repeat

the above argument to show that Y2 has the homotopy type oï P(X*). Now

X2 n «w> x Cl (St (f0, A))) = «w> x a(st (f0, A)))

u «w> x [Cl (St (f o, /I)) - St (f a, /I)])

U «w> x [CI (St (f 0, ¿)) - St (f i, A)]).

Since 77,(^2 n (<«> x Cl (St (f0, /!)))) = 0 for all r>«- 1, if

X3 = X2U «w> x Cl (St (f0, A))),

then Hr(X3) is isomorphic to Hr(X2) for all r > «. Hence /7r( Y3) is isomorphic to

77rL4*)forallr>K+l. If

3(St (f0, A)) u (J [Cl (St (»0, /I))-St (vy, A)]
r-i

is contractible, then X3 has the homotopy type of X2. Therefore if d(St (f0, A))

u Uy = i [Cl (St (f0, ^))-St (vy, A)] and either é¡(St (f0, A))-St (pu A) or

d(St(v0,A))-St(va,A)

or S(St (f0, A)) — Uy = i St (fy, A) are contractible, then X3 is homotopically

equivalent to A*. We essentially repeat the above argument in order to complete

the proof of the theorem.

Now in the remainder of this section, we let B denote an «¡-simplex with vertices

f0, Vi,..., vm. In Theorems 6 and 7, we assume that 2^«i^«, and, in Theorems

8, 9, and 10, we assume that 3^m^n.
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Theorem 6. Ifl^p<m,Ar\ B = {(v0, vu ..., v¡...., vm) \ i—1,2,...,/?}, where,

for each i, </0, vit..., v¡,..., t'm> is a simplex of A, u is the barycenter of

(vuv2,.. .,vpy,

X is the polyhedron consisting of A and {<r0, vu . . ., vu .. ., vm, u) \ i= 1, 2,. . ., p),

St (t>!, A) denotes the empty set when t>i i A, and

[8(St(v0,A))-(j^St(vq,A)]

U    Û    [Cl (St (v0, A))-(\J St (vq, A) u St (vr, A))]
y = p+ 1   L \q=l ' -1

and S(St (v0, A)) u U?=1 [Cl (St (v0, ̂ ))-St (vr, A)] are contractible; then X* is

homotopically equivalent to A*.

Proof. Let/: X ^ Abe the simplicial map defined by f(w) = w for each vertex w

of A and f(u) = v0. Then, by Theorem 2, P(X*) is homotopically equivalent to

P(A*). Now P(X*) can be constructed by starting with P(X*) and adding cells.

Below we express P(X*) as the union of P(X*) and these cells. After this expression

we explain the order in which we are going to add cells to P(X*) in order to get

P(X*). Now

m    min[p,m- j+ 1]    j m-j + k

P(x*) = P(xr) u (J       U       U     U
J=l ¡i=l fc = 2 i|£ = ifc-i + l

(<i>i, »a. • • •, {<y> ■ • •, »m, «>

x [Cl (St (c0, ¿))- U {St (»„ /() I q + ik for any A:}])

m    mintP.m-i+1]      í        m-j + k

uU     u     u    u
J = l ¡1 = 1 fc = 2    ïfc =i!c- 1 + 1

([Cl (St (»0, A))-01 {St dv ¿) | ? * h for any A:}]

x<vuv2, ...,{v,k}, ...,vm, ay}.

In the above and throughout this proof, we assume that St (yl5 A) denotes the

empty set when vx $ A. Note that this is the case if and only if p = l. In order to

explain the order in which we add the cells in the first union, we introduce the

following notation. With each cell

U (<^i>v2,...,{vik},...,vm,uy
k=l    \

x [ci (st (v0, ̂ »-p <St to» A}\i* '*for any *>])'
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associate an w-tuple (a1, a2,..., am) as follows: ap= 1 if vp is omitted in the simplex

\Jic = i<Vi,v2, ...,{fjj, ...,fm, u) and ap = 0 otherwise. If (au a2,..., am) and

(ßi, ß2,..., ßm) are distinct m-tuples obtained in this manner, we define

(«!, a2, . . ., am) < (ßu ß2,..., ßm)

if and only if either

(1) I?=i«,<2?=ift,or
(2) 2ß = i«p = 2p = i A and' if r = min{í | as#ft}, then <xr>fr.

Then, if (aua2,...,am)<(ßi,ß2,...,ßm), we add the cell associated with

((*!, a2,..., am) before we add the cell associated with (ßu ß2,..., ßm).

Now, if Oí x Tj and a2 x t2 are two cells in the second union, then tj x o± and

t2 x ct2 are cells in the first union, and we add ar x rx before a2 x r2 if and only if

we added rx x o-j before t2 x a2.

Now we are ready to see what happens when we add these cells. For each

ß=l,2,...,p,

\P(X?) u 0  (<f 1; f2,..., ¿5y,..., vm, U)

x[ci(St(fo,^i))-    U     St(»„^)])l

n i<»x, oa,. ..,Vg,...,Vm,u}

x\ci(St(v0,A))-    0     St(%^)l)
L q = l;q*ß i'

(6.1) = (<.vi,va,...,e„...,vm,uyx\d(ßt(v0,A))-   Û   st(f„^i)l)

u (<f l5 f 2,..., f„ ..., fm> x [ci (St (v0,A))-    U     St (f„ ,4)1 )

6-1 i

U   U     <»!> °2, • • m $y> • • -, Of, • • -, »m, «>
y=l    \

xfaostfrc^-C^stip,,^)]).

Therefore

P{Xf*)v Û  (<»i, »>,..., «d,.--.»»«>x fa (St(»o,^))-    Û     St(r„y4)l)

has the homotopy type of P(X*). Now suppose 2¿a¿w— 1 and i2^p. Let A\ be

the union of P(X*) with all those cells which have been added before

a      i

£i =  U    On v2,. ..,{vtk},..., fm, w>
ic= 1   \

x [Cl (St (f0, A))-Ûx {St (vq, A)\q + ik for any A:}]).
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Then

a      i

X1nE1=  (J Uvi, v2, ...,{vik},. ..,vm,u)
fc= 1   \

x [e(St (v0, A)) - Ux {St (vQ, A)\q* ik for any fe}])

(6.2)       u IJ Uih,v2, ...,{vik}, ...,»„>
fe = 1   \

x [Cl (St (v0, A)) - \J {St (va, A)\q± ik for any A:}] )

a     ra

U   U      U  «yl7 V2,..., {Vik}, ...,Vm, M»
0 = 1  Ik = 1

x [Cl (St (»o, >i)) - Ù {St (vq, A)\q* ik for any A:} u St (viß, A)]].

Therefore X1\jE1 has the homotopy type of A/ Now suppose 2-¿a-¿m—l,

i¡¡ >p, and i'i = 1. Let A"2 be the union of P(Xf) with all those cells which have been

added before

a       I

E2 =  (J Kvi, v2,. ..,{vik}, ...,»„,«>
k = 1    \

x [Cl (St (v0, A))- U {St (t>„ A)\q* ik for any A:}]).

Then

X2r\E2= \J   <t>i, v2,. ..,{vik},..., vm, «>
fe = 1    \

x [s(St (p0, ><))- y {St to, ^4) I ? / 4 for any A:}])

u U \<vi,v2,...,{vik},...,vmy
fc«i \

x [Cl (St (»o, ¿))- Q, {St (p„ A)\q* ik for any A:}])

U Û {Û «»i. »a, • • -, K), -.,»», «»
i-a lie-i

x [Cl (St (»0, ¿))- Ui {St (i>„ ¿) | q ¥> it for any A:} u St («,,, A)]}.

Therefore X2 u E2 has the homotopy type of X2. Now suppose 2 ̂  a ;£ m — 1,

i2 >p and /'i > 1. Let X3 be the union of P(X?) with all those cells which have been

added before

a     l

E3  =    (J   (<!>!, t>2, • • •> {/.J, • • -, Pm, ">
fe=  1       \

x [Cl (St (ti0, A))-0 {St (»„ >i) | ? * f* for any Ac}]).
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Then

X3 n E3 = \J (<f i, v2,..., {f ¡J, ...,vm,uy

x [g(St (f0) ¿))- Q, {St (t>„ ¿) | q / ifc for any *}])

u U (<vi, y2, • • •,{j5(J, • ■ ->0
/c= 1 \

x [Cl (St (f0, A))-0i {St (f3, A)\q* ik for any *}])

U   U      Ü   (Ol> V2, ■ ■ ■, í/ij, •■;Vm W»
0=2   lfc=l

x [Cl (St (f o, A)) - Ui {St (f„ A)\q+ ik for any k) U St (t>,,, ¿)]

•l - 1  r   a

U   U       U   «Vl,V2, . . .,f;, . . .,{f¡J, . . .,fm,W»
/« 1   Uc = 1

x [Cl (St (f o, A)) - U {St (»„ A)\q + ik for any fc} U St (vh, A)]
L Q=l J

Now if ii <p or /'i =/? and there exists ß (p<ß^m) such that /J^ik for any k, then

A"3 n £3 is contractible. However if ik=p + k—l for each k=l,2,.. .,a and

ia = m, then Y3 n £3 is contractible if and only if

[d(St(v0,A))-OiSt(vipA)\

U    Ü    [Cl (St (f o, A)) - ( Û St (f„ A) U St (f y, A))]
y=p+l  L \q = i i i

p

{
y = p+l   L \<j

is contractible. Thus it follows that if

[atsUfn^-Clstif^)]

u    (J    [Cl (St (fo, A))-( (J St (vq, A) U St (f y, A))]

is contractible, then Y3 u 7i3 has the homotopy type of X3. Now let X^ be the

union of P(Xf*) with all those cells which have been added before <«> x Cl (St (v0, A)).

lîp=l,

Xt n «w> x Cl (St (f0, A))) = «i/> x 8(St (fo, A)))

m

U ij «U>X[Cl(St(f0,^))-St(fy,^)]),
y = 2

and ifp> 1,

X4 n ««> x Cl (St (f o, A))) = ««> x 0(St (f o, A)))

m

U       ij       «M>X[Cl(St(f0,^))-St(fy,^)]).
y = i

Therefore, if 3(St (f0, A)) u (Jf., [Cl (St (f0, ^))- St (»„ A)] is contractible,

^4 u ««> x Cl (St (vo, A))) has the homotopy type of XA.
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It follows from the above proof that if

[ciStd^AO-lJ^St^A)]

U    U    \ci(St(v0,A))-(\J St(vQ,A)uSt(vy,A))]
y = p+lL \<J=1 /J

and 8 (St (v0, A)) u (J?=i [Cl (St (v0, A))-St (vy, A)] are contractible, then

m  min[p.m-j + l]    ;' m-j + k

P(x?) u U      U      U      U
; = 1 ¡1 = 1 fe-=2   ¡t = it-i + l

<»!, V2, . ..,{vik},.. ., Pm, H>

x [Cl (St (r0, A))-0 {St (p8, /() | q # ik for any A-}])

is homotopically equivalent to P(X*). We essentially repeat the above argument in

order to complete the proof of the theorem.

Theorem 7. If A n B = <t'0, r2, r3,..., rm>, where (v0, v2, v3,..., ¡>m> is a simplex

of A, and X=A U B, then Hr(X*) is isomorphic to Hr(A*)for all r>n.

Proof. We use the proof of Theorem 6 with p= 1 and observe that in this proof

¡i is always 1 since p= 1 and hence the only time the addition of a cell can change

the homotopy type is when we add (i\} x Cl (St (v0, A)) and Cl (St (v0, A)) x (vxy.

(Note that u = i\ since p=\.) Using the same terminology as in the proof of

Theorem 6, we observed that

X, n «ri> x Cl (St (v0, A)))=«v{y x 8(St (v0, A)))

m

u U (<»i>x[CI(St(Po,¿))-St(iv,¿)D.
y = l

Since dim [8(St (v0, A))]£n-l, H^X^ u «px> x Cl (St (v0, A)))) is isomorphic to

Hr(Xi) for all r>n. Since the same thing happens when we add Cl (St (p0, A)) x (vf),

Hr(X*) is isomorphic to Hr(A*) for all r>n.

Theorem 8. If A n B = {(v0, vlt..., vt,..., t>m> | z'= 1, 2,..., m}, where, for each

i, (v0, i'i,.. ., v¡, ■ ■ ■, t'm> is a simplex of A, u is the barycenter of (vu v2,.. ., vmy,

X is the polyhedron consisting of A and «p0, vu .. ., v¡,..., vm, úy \ (=1,2,..., m),

and
m

8(St(v0,A))Kj y [Cl(St(p0,/í))-St(py,¿)]
y = l

and 8(St(v0, A)) — (Jy=1St(vY, A) are contractible; then X* is homotopically

equivalent to A*.

Proof. The proof is similar to the proof of Theorem 6, and hence we omit some

of the details by referring to that proof. Let/: X-> A be the simplicial map defined

(
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by f(w) = w for each vertex w of A and f(u) = v0. Then, by Theorem 2, P(X*) is

homotopically equivalent to P(A*). If/0-=0, then

m ;' m- i + k      /

p(x*) = P(x?)u u U     U    (<»i,v2,...,{ej,...,rm,M>

[m

ci(st(f0,^))-lj
3=1

{St (fg, ̂ ) I ? # 4 for any k}Yj

uU    U       U      (\ci(St(v0,A))-U
j = 1   k = 1 it = it - i + 1 \ I- « = 1

{St (vQ, A)\q == ifc for any /:}]

x<i'i. • ■ -ÁK}> ■ ■ •> ym> ">)•

We associate an «i-tuple with each cell in the first union and define an ordering of

«/-tuples in exactly the same way that we did in the proof of Theorem 6. Then we

add cells according to this ordering the same way we did in this previous proof.

For each ß=l,2,..., m, we have expression (6.1) in the proof of Theorem 6.

If ß<m, then the intersection in this expression is contractible. Therefore

m-l    i r m i\

W)u  U   (<»i,Pa.f(l,...,fm,M>x  Cl(St(f0,^))-     U      St(f„^)

has the homotopy type of P(Xf). If Ö(St (f0, A))-\Jrn=1 St (vr, A) is contractible,

then

\P(X?) U 1j Uvi, v2, ...,vr,...,vm,u}x [Cl (St (f0, A))-    Û     St (f„ A)])]
L y = l\ L q = l;q±y J/J

n (<f1; v,,..., vm_u «> x [Cl (St (f0, ^))- p| St (»„ ¿)])

is contractible, and hence

P(Xr) U U   (<»i, Pa, • • -, ft* ■ ■ -, P., "> x [Cl (St (f0, ¿))-    U     St (»„ ,4)1)
¡i = l   \ L <i = l;ï*fi J'

is homotopically equivalent to P(X*). Now suppose 2^afim—l and let Yx be

the union of P(Xf) with all those cells which have been added before

a       i

Ei =  (J    <fi, f2, • . ., {f¡J, • • ., vm, u)
k = l   \

x [Cl (St (f0, A))-0 {St (vq, A)\q*ik for any k}]).

Then we have expression (6.2) in the proof of Theorem 6. Therefore X± u Ex has

the homotopy type of Xit and hence if

m-l     j m~ j+ k

x2 = p(xn u u u   u
; = 1 k « 1 ijc = ifc - i + 1

(Oí, v2,..., {vik}, . . ., fm, w>

x [Cl (St (»o, A))- Ui {St (»„ /I) | ? * 4 for any jfc}])
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and S(St (v0, A)) — (J™=i St (vy, A) is contractible, then X2 is homotopically

equivalent to P(X^). Now

X2 O ««> x Cl (St (p0, A))) = «w> x 8(St (P0) A)))

m

U U ««> x [Cl (St (p0, A)) - St (vy, A)]).
y = i

Therefore if 8(St (v0, A)) u IJy = i [Cl (St (p0) A))-St (vy, A)] is contractible, then

X3 = X2\J «w> x Cl (St (v0, A))) has the homotopy type of X2. It follows from the

above proof that if d(St (v0, A)) - (J"= i St (p„ A) and

m

0(St (p0> A)) u U [Cl (St (v0, A))-St (vy, A)]
v = l

are contractible, then X3 is homotopically equivalent to A*. We essentially repeat

the above in order to complete the proof of the theorem.

Theorem 9. If A n B = (vu v2,..., vmy u <[v0, v¡y, where <Pj, i>2,..., t>m> and

<f0, t?!> are simplexes of A, X=A U 5, and, for each nonempty subset F of

{2, 3,..., m},

m

Q    {A- (St (p0> A)U\J {St (pP) A)\peF}vJ St (vy, A))}
y = l:yiF

is a deformation retract of A —(St (va, A) u (J {St (vp, A) | p e F}); then X* is

homotopically equivalent to A*.

Proof. If/'o = 0, then

P(X*) = P(A*) U (fix [/«- Uo St (vq, A)])

tn-2      j m - j + k     /

u U U     U    Kv0,vi,...,{cik},...,vmy
i = l  fc«l ¡t = ifc_i + l v

x [^- U {St (u,, ^) | o # ifc for any A:}])

m

u U (<»o, Vp> x M -(St (p0, A) u St (pp, yi))])
P = 2

u([^-ÖoSt(p„^)]xfi)

m-2;'m-i + fe/r m -i

U U   U       U        U - U {St (p„ ̂ ) | í / i* for any A:}
J = l   k = l lie =ifc - ! +1   \L « = 0 J

X<Po,Pi, ;..,{fi,J,...,Pm>)
m

u U (M-(St (Po, A) u St (p„ /Í))] x <p0, pp».
p = 2

We add the above unions to P(A*) in the order in which we have listed them. In

order to explain the order in which we add the cells in the second union, we

associate with each cell in this union an m-tuple and define an ordering of m-tuples

in exactly the same way that we did in the proof of Theorem 6. Then we add cells
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in the second and fifth union according to this ordering in the same way we did in

this previous proof. Now

P(A*)ni[Bx[A-{Jo^(vq,A)])

= [<pl5 v2,..., vmy u <p0, t>!>] x \a- (J St (vQ, A)],
L Q = 0 J

and therefore P(A*) U (Bx [A — {Jq = 0 St (vq, A)]) is homotopically equivalent to

P(A*). Now suppose l^a^m — 2 and ij, = 1. Let Xr be the union of P(A*) with

all those cells which have been added before

Jc =

Then

Ei =  Û (Oo, Vi,..., {¿3¡J,..., vmy x ¡A - Û {St (p„ y4) I a # ik for any A;}1).
Jc = l\ Lq = 0 J'

I

AfxnEt « [<p0> u Û (vu v2,.. .,{vik},..., vmy]

x ¡A- O {St (p„ yf) I q ? h for any k}]
t q = 0 J

u û {Û «»o,«i,.--,oy,• ••»»»»
0 = 1   ljc = l

x [/I- Qo {St (p„ /<) | q 9* i* for any At} U St (p,,, A)]}.

Therefore if

Û \a - ( Ü {St (vq, A)\q+ ik for any k} U St (p„, /1))1
,3 = 1   L \g = 0 'J

is a deformation retract of A — \Jq = 0 {St (vq, A) \ q¥=ik for any A;}, then Xx u 2?j is

homotopically equivalent to A/ Now suppose l^ßim-2 and fx> 1. Let X2 be

the union of P(A*) with all those cells which have been added before

E2 =  U  (Oo, Pi» • • -, {í¡J, • • •, Pm> x \A - U {St (vq, A)\q jt ik for any A;}] ).
fc=i  V L        5=0 J/

Then

X2 n £2 = |<p0, vxy u (J <p1; v2,.. .,{vlk),. ..,vmy]
L k = 1 -I

\a-\J {St (p„ A)\qjt 4 for any A;}1
L        5 = 0 J

x|

a      r   a

U   U      U   «Po»»l»---»{^J,.--,Pm»

x [a-(Jo {St (vq, A)\q* ik for any k} u St (p,„ yi)]j

Hence A^2 u £2 is homotopically equivalent to X2. Let

A-3 = P(A*) u (fix [/Í-Uo St (p„ yi)])

m — 2     j       m-j + k      i

u U U     U    (<,v0,vi,...,{vik},...,vmy
;' = 1  k = 1  it =i/i - i + 1   \

x [A- U {St (P,, A) | 9 =- i* for any A:}]).
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Then, for each ß = 2, 3,..., m,

\X3 u U «t'o, v0} x [A -(St (f0, A) u St (v{, A))])]
l 6 = 2 J

n «f0, f,> x [A -(St (f0, /l) u St (vg, A))])

= [<fo> U <»,>] x M-(St (fo, ¿) u St (f„ ¿))]

m

u    U    «i'o, Pí> x M - (St (po, ¿) u St (f fl, A) u St (»„ ¿))]).

If, for each ß = 2,3,..., m,

m

U     M - (St (f o, ¿) u St (f„ ¿) u St (v„ A))]
e = l;e + ß

is a deformation retract of A —(St (f0, ,4) u St (vB, A)), then

^uU «fo, PP> x M -(St (f0, A) u St (fp, /())])
p = 2

is homotopically equivalent to Y3. Now, in order to complete the proof of the

theorem, we essentially repeat the above argument.

Theorem 10. //A0 = 0,

2 m-2+fc

AnB= {J       U      {<v0,Vi,...,{vAk},...,vm>},
k=l Afc=Ák_i+l

wAere eacA <r0, i>i, • • •, {#aJ> ■ • • > i?m> is a simplex of A, X= A\J B, and, for each

subset Fof{\y2,...,m} consisting of at least m—\ elements,

m

U    {A-(U {St (»„ ii) I q e F} u St (f y, A))}
y = 0,-yiF

is a deformation retract of A — [J {St (vq, A) | q e F}; then X* is homotopically

equivalent to A*.

Proof. First observe that

P(X*) = P(A*)u(bx[a-\J St(t>„y!)])

U U Uv0,Vi,...,ûil,...,vm>x\A-      Ù     St(»„¿)l)
¡1 = 0   \ L q = 0;q±i1 il

V  0   Uvi,v2,...,vi2,...,vm>x\A-     Û      St(0„y4)|)
¡2 = 1   \ L a = V.q*Í2 il

vj[[a-0 St (vq, A)] xß)

u Ü (\a-   Û   st(fQ,^)1 x<fo,vi,...,vh,...,vmy)
¡1 = 0   \L <¡ = 0;9#¡i J /

u   Ü   (¡A-      Ü       St(f9,;^4)lx<f1, f2, ...,fi2, ...,fm>).
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Now

P(A*) n (Bx [a-Q St(p„ A)]) m (A n fi)x [/l-Qo St(p„ ¿)],

and hence Ar1 = 25(/4*) u (fix L4-lj!?=o St (p„ A)]) is homotopically equivalent to

P(A*). Also, for each o; = 0, 1.m,

\Xi u Ü (<p0, Pi.^..„^xf/l-    U     St (v„, A)\)\
L 0 = 0   \ L q = 0lQ*ß J/J

n(<ti0,i)i.i„...,Pm)X|/l-      Q       St(pQ,y4)|)

= [y4 n <u0, pls ...,4,..., t>m>]xU-    U     St (p„ ^4)1
L d = 0;i)5t<2 J

u (<i'o, Pi,..., va,..., vmy x \A- (J St (vq, A)Jj.

If a^O,

Xi u (J (<Po, Pi, -..,%,..., Pm> x [¿-     Ü     St (vq, A)])
0 = 0   \ L <) = 0:5*0 J'

is homotopically equivalent to

A'i u Ü (<t'o, Pi, ■ ■ -, ve, ...,vmyx\A-    Q     St(p„, A)\).
0 = 0  \ L a = 0;g ?t/3 J'

If /4 - (J?= o St (p5, /f) is a deformation retract of A - IJJL j St (p?, yf), then

^i U (<Pi, p2, ..., pm> x [/I - [J St (p„ /I)])

is homotopically equivalent to A/ Therefore if A - U?=o St (p„ ,4) is a deformation

retract of A - UJ>= x St (p„ /t), then

X2 = yYiU Û  (<p0j Pi, ...,P,1S ...,pm>x[/l-    0     St(p„/i)l)
¡1 = 0   \ L <¡ = 0;5ít¡1 J/

is homotopically equivalent to A*. Now, for each «=1, 2,..., m,

f^a U "U  (<Pi» Pa» • • •» Pi.Pm> x\A-     U      St (p„ /4)|)1
L 0 = 1   \ L g = l;«#0 J/J

nKP!, p2,...,pa,...,pra>xU-    Q    St(p„/4)1)

= [y4 n<Pj, P2, .. .,Pa, .. .,l7m>]x(yf-       0        St(p„, y4))
\ g = l;<¡*a /

u (<Pi, pa,..., 6a,..., pm>x Li- \J St (p„, A)])

u (<Pi, pa,..., e„..., vmy x [A-(st (p0, A) u _u   st (p„ /i))])-
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Hence, if for each subset F of {1,2,..., m} consisting of at least m — 1 elements,

m

U     {A-(U {St (f„ /() I q e F} u St (fy, ¿))}
y = 0;y*F

is a deformation retract of /Í - (J {St (r,, /<) I <7 G F}, then

^u  U  (<fi,f2, ...,fi2, ...,fm>x[^-     U     St(f„,^)l)
¡2 = 1  \ L « = 1;«?M2 J/

is homotopically equivalent to A*. In order to complete the proof of the theorem,

we essentially repeat the above argument.

4. Isotopy types of spheres. For each integer «ä3, let Bn = {xe En \ \x\-¿l},

and, for each integer m (l^m^n), let Am be an w-simplex. Suppose that for each

m and «, Am n Bn is an (w-l)-face of Am and Am n Bn<=-(Bn)°. Let Cl = Bn u Am.

Also let C" be the polyhedron consisting of three «-simplexes with a common

(« -1 )-face.

For each integer «S3, let sén = {C\, Cl,..., Ci}, and let @n be the collection

consisting of the members of jrfn and all finite, contractible, «-dimensional poly-

hedra X with the property that there is a member Cf of s/n such that a homeomorph

of A'can be constructed out of C? by appending «j-simplexes (1 ¿«i¿«) in such a

way that if the construction is factored C" = A\ -> A2 -> • • • -» Xe = X, then X¡ is

obtained from X¡-\ by

(1) adding a 1-simplex r = <f0, fx> such that Xf_x n r = <f0>, where f0 is a vertex

of Xj-i and S(St (f0, .30 _i)) is contractible,

(2) adding an «j-simplex r = <f0, vlt ..., fm>, 2^w¿«, such that X¡-1r¡T

= {<f0, fi,.. .,f¡,. . .,fm> | /'=1, 2, ...,/?}, where l^p<m, <f0, f1;.. .,f¡,. . .,fm>

is a simplex of Xf~i for each i, and, if St (vlt Xj-i) denotes the empty set when

Vii Xj-i, then

[8(St(f0, I^^-ÚSttí-,,!,,!)]

u    (J    [Cl (St (f0, X,-ù)-( Û St (»„ Y,.,) u St (tv, !>_!))]
y=P+l  L \8=1 /J

and

e(st (f0, x,-i)) u u [ci (st (f0, jr,.!))-» (fy, ̂ .j]
y = i

are contractible,

(3) adding a 2-simplex r = <f0, fx, f2> such that Xf.i n r = <f0, f2> u <f0, pj>,

where <f0, f2> and <f0, fi> are simplexes of X¡-i and

0(St (f0, Xj-i)) u Ù [Cl (St (f0, X}-X))-Si if,, X}.i)\
y = l

and   either   0(St(»o, X,-à)-$\(vu X,-i)   or   0(St (f0, Xj.Ji-St (f2, Y,^)   or

S(St (f0) ^;-i))-Uy = i St (fy, Xj-i) are contractible,
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(4) adding an w-simplex t = <p0, pls ..., pm>, l^m^n, such that Xt-% O t

= {<p0, Pi, •• .,p¡,..., pm> | i=l, 2, ...,m}, where <p0, »lt..., iu .. .,Pm> is a

simplex of /Yy_j for each i and

m

0(St (p0, ̂ _i)) u u [Cl (St (p0, A^))-St (vy, X,_i)]
y = l

and S(St (p0, A'J_i))-lJr1=i St (vy, X,-i) are contractible,

(5) adding an w-simplex t = <p0, Pj,..., pm>, 3¿w^n, such that A,_i n t

= <Pi, p2, • • -, pm> u (Po7 Pi>> where <Pj, p2,..., pm> and <p0, vf} are simplexes of

Xj-i, and, for each nonempty subset F of {2,3,..., m),

m

U    {Xj-i - (St (p0, X,. i) U (J {St (pp, I.-Jlpefju St (py, A", _ i))}
y = l;yii'

is a deformation retract of XJ-1 — (St (p0, yV,_i) u (J {St (pp, A^-i) | p e F}), or

(6) adding an «i-simplex t = <p0, plt..., pm>, 3^mSn, such that

2        m-2+k

Xj-1r>T=(J       \J      {<p0, Pi,.. .,{paJ, .. .,pm>},
fc=l   Ajc = Aic_i + l

where Ao = 0, each <u0, vu..., {£AJ, ..., ym> is a simplex of l^-i, and, for each

subset Fof {1, 2,..., /w} consisting of at least m- 1 elements,

m

U    {*,-!- (U {St (Pa, Xj.1)\qeF}uSt (Py, *, _ i))}
y = 0;yi.F

is a deformation retract of X,■ _ ± — (J {St (p„, A,■ _ x) \ q 6 F}.

Theorem 11. If Xe3Sn, then X* has the homotopy type of Sn.

Proof. By Theorem 3 of [7], (C£)* has the homotopy type of Sn. Also by

Theorem 4 of [7], for each w=l, 2,..., n— 1, (C£)* has the homotopy type of A".

Therefore (Xif has the homotopy type of Sn. Now suppose 1 <j^e and (A^_i)*

has the homotopy type of S". If A^ is obtained from A^j by (1), then, by Theorem

4, (A,)* has the homotopy type of Sn. If A} is obtained from Jf/_x DV (2), then,

by Theorem 6, (A,)* has the homotopy type of Sn. If A", is obtained from A"3_i

by (3), then, by Theorem 5, (XO* has the homotopy type of Sn. If X¡ is obtained

from Xj-i by (4), then, by Theorem 8, (A',)* has the homotopy type of Sn. If X¡

is obtained from Xj_1 by (5), then, by Theorem 9, (A',)* has the homotopy type

of Sn. Finally if X¡ is obtained from A,^ by (6), then, by Theorem 10, (XO* has

the homotopy type of Sn. Therefore X* has the homotopy type of Sn.
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