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DELETED PRODUCTS WITH HOMOTOPY
TYPES OF SPHERES(Y)
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1. Introduction and notation. The deleted product space X* of a space X is
X x X — A. The principal purpose of this paper is to describe, for each integer n= 3,
an infinite collection %, of finite, contractible, n-dimensional polyhedra whose
deleted products have the homotopy type of the n-sphere. It follows from previous
work of the author [3] that the triod is the only tree whose deleted product has the
homotopy type of the circle. In [5], the author computed the homology groups of
the deleted product of a polyhedron in a subcollection B of the finite, contractible,
2-dimensional polyhedra, and, in [6], the author described a subcollection € of B
such that the deleted product of each member of € has the homotopy type of the
2-sphere. Now € is an infinite collection, but there are two members, C and D, of
€ which have the property that any other member of € can be constructed by
starting with C or D and appending simplexes in a certain specified manner. In [7],
the author described, for each n=3, n+1 finite, contractible, n-dimensional
polyhedra whose deleted products have the homotopy type of the n-sphere, and n
of these polyhedra, C?, C%,..., C?, have the property that any member of %,
can be constructed by starting with some C" and appending simplexes in a certain
specified manner. The importance of spaces whose deleted products have the
homotopy type of a sphere was illustrated in [6].

If X and Y are spaces and f: X — Y is a continuous function, then X/* is the
inverse image of Y* in the map fxf: Xx X— Yx Y. In [1], Brahana asks the
question: What maps f are such that there is a homotopy equivalence between X}*
and X*? 1In §2, we give some partial answers to this question, and we use some of
these results in §3.

In §3, we examine the effect on X* of adding a simplex to X in a certain specified
manner. These results are used in §4 to describe the members of #,. §3 is also a
first step in determining which homology groups of deleted product spaces are
trivial. '

In a forthcoming paper, we continue the investigations begun in this paper.

If v is a vertex of a polyhedron A, we let St (v, A) denote the open star of v in A4,
and if v,, v,, . . ., v, are the vertices of a simplex o, we denote o by {(vy, v, ..., V).
We use the circumflex 7; to denote that v; has been omitted, and if wy, wy, ..., w,
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are points, jisaninteger (1S j<n),and k=1,2,..., j;weletw;, wy, ..., (W}, ..., w,
denote the subset of w;, w,, ..., w, obtained by omitting w;,, w,, ..., w;,. Thus
k=1 (Kwy, wo, ., {#3,}, .. ., wo) denotes the simplex whose vertices are wy, wy,
ooy Wy With wy, wy,, ..., w; omitted. We use the group of integers as the coefficient
group for the homology groups. If X is a finite polyhedron and 4 and B are sub-
polyhedra of X, let P(4 x B— A)=|_ {0 x 7o is a simplex of 4, = is a simplex of B,
and ¢ N 7= @ }. Hu [2] has shown that X* and P(X*) are homotopically equivalent.
If X and Y are finite polyhedra and f: X — Y is a simplicial map, let P(X})=
U {ox7|o and = are simplexes of X and f(¢) N f(r)= }. The author [4] has
observed that X* and P(X*) are homotopically equivalent.

2. The space X},

THEOREM 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex.
Suppose A N B=C, where C is a simplex of A and a proper face of B. Let v be a
vertex of C, and let vy, vy, . . ., U, denote the vertices of B which are not vertices of A.
If X=A YU Band f: X — A is the simplicial map defined by f(w)=w for each vertex
w of A and f(v,)=v for each j=1,2,...,p, then P(X}) is homotopically equivalent
to P(A*).

Proof. We will show that =,=fxf|P(X}): P(X})— P(4*) is a homotopy
equivalence. Let i: 4 — X be the inclusion map, and let ;=i xi|P(4*). Then
7 P(A*) — P(X}¥), and 7 is the identity.

Let (x;, x2) € P(Xf), and let o, and o, be the smallest closed simplexes of X
such that x; € o;. Since (x;, x;) € P(X¥),f(0,) N f(o5)= @. If, foreachj=1,2, ..., p,
v, is not a vertex of either o; or oy, then 7;,(xy, x2)=(if(x1), if(x2))=(x1, X2).
Suppose that, for some j=1,2,..., p, v; is a vertex of o,, and let vy, vy,, . . ., Uy,
denote the subcollection of vy, v, ..., v, consisting of those vertices which are
vertices of o;. Then, for each j=1,2,...,p, v; is not a vertex of o,, and hence
My (X1, X2)=(if(x1), x2). Now if(x;) is either in the face of o, obtained by omitting
Ukys Ukgs - - -5 Ui, OF the face of B we get from o, by replacing vy, vy,, . . ., v, by v.
Since, in this case, v is not a vertex of o,, the line segment joining (x,, x;) and
nms(X1, X2) is contained in P(X}*). If, for some j=1,2,...,p, v, is a vertex of o,
then a similar argument shows that the line segment joining (x,, x;) and n;9,(x;, x2)
is contained in P(Xf¥). Therefore we may define F: P(X}*) x I — P(X/¥) by

F(xy, X9, 1) = t(x1, X3)+ (1= 1)(if(x1), if(x2)).

It is clear that F is a homotopy between nm, and the identity.
The proof of the following combinatorial lemma is straightforward and hence
it is omitted.

LEMMA 1. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex
with vertices vy, vy, . . ., Up. Suppose L Ep<mand A N B=\J?-, r,, where, for each i,
r; is the (m— 1)-simplex {vy, Uy, ..., 0, ..., Vny of A and B. Then there is exactly
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one (p—1)-face <vy, v, ..., v,» of B which is not in A, and if q<p—1, then every
g-face of B is also a simplex of A.

THEOREM 2. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex
with vertices v, vy, . . ., Uy. Suppose | Sp<mand A N B=\J?_, r,, where, for each i,
r; is the (m—1)-simplex {vqy, U1, ..., 0iy..., Uny 0f A and B. Let u be the barycenter
of vy, v, . .., Uy, and let X be the polyhedron consisting of A and

{{voy V15 ooy iy ooy O | i =1,2,..., P}

If f: X — A is the simplicial map defined by f(w)=w for each vertex w of A and
S(u)=v,, then P(X}) is homotopically equivalent to P(A*).

Proof. We will show that »,=fxf|P(X}*): P(X}*) - P(4*) is a homotopy
equivalence. Let i: 4 — X be the inclusion map, and let n,=ixi|P(4*). Then
7t P(A*) — P(X}), and 7,7, is the identity.

Let (x,, x3) € P(X[¥), and let o, and o, be the smallest closed simplexes of X
such that x; € o;. Since (x;, x3) € P(X}¥), f(o,) N f(o5)= . If u is not a vertex of
either o, or oy, then 7, (x;, x5) = (if(x1), if(x2)) =(x1, X2). Suppose u is a vertex of
a,. Then neither u nor v, is a vertex of oy, and 5, (x,, x5)=(if(x,), x3). Now if(x;)
is either in the face of o, obtained by omitting u or in the simplex obtained from o,
by replacing u by v,. Since v, is not a vertex of o,, the line segment joining (x;, x,)
and n,(x,, x;) is contained in P(X/¥). If u is a vertex of o, a similar argument
shows that the line segment joining (x;, x,) and nm,(x;, x5) is contained in P(XF).
Therefore we may define F: P(X*) x I — P(X[) by

F(xla X2, t) = ’(xla x2)+(l —t)(l..f(xl)’ if(x2))'
It is clear that F is a homotopy between 7;m, and the identity.

THEOREM 3. Let A be a finite, n-dimensional polyhedron, and let B be an m-simplex
with vertices vy, U, . . ., Uy. Suppose

ANB = {06, V1, Diy.oesUpy | i =0,1,...,m},

suppose there is a vertex v of A such that, for each i, {vy, Uy, ..., Diy ..., Up, Uy is a
simplex of A, and suppose there is a vertex w of A such that w v and wv; for any i.
Let u be the barycenter of B and let X be the polyhedron consisting of A and

{<Uo,v1,...,ﬁi,...,vm,u>|i=0,1,...,m}.

If f: X — A is the simplicial map defined by f(z)=z for each vertex z of A and
f(w)=v, then P(X}) is not homotopically equivalent to P(A*).

Proof. Since wsv and w+#v; for any i,

WX [{{vo, U1y« + s Bty oo oy Uy 0> | P =0, 1,..., m}
U005 U1+« o5 Diy oo e Uy i) | £ =0, 1,..., m}]
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is contained in P(X¥). It is clear that this set carries nontrivial m-dimensional
homology classes which are not in P(4*).

3. The addition of simplexes. Throughout this section, we let 4 denote a finite,
n-dimensional polyhedron, and we are concerned with methods of attaching a
simplex B to A so that either (4 U B)* is homotopically equivalent to 4* or
H,((4 v B)*) is isomorphic to H,(4*) for certain k.

THEOREM 4. If B={v,, v,y is a 1-simplex such that A N\ B={v,), where v, is a
vertex of A, and X=A U B, then H,(X*) is isomorphic to H.(A*) for all k>n.
If, in addition, d(St (vo, A)) is contractible, then P(X*) is homotopically equivalent
to P(A*).

Proof. Let f: X — A be the simplicial map defined by f(w)=w for each vertex
w of 4 and f(v,)=v,. Then, by Theorem 2, P(X*) is homotopically equivalent to
P(A*). Now

P(X*) = P(X}) L (CL (St (vo, 4)) x <01)) U (w1 x CL (St (0o, A))).

Since P(X*) N (C1 (St (vg, A)) x {vy))=0(St (vo, A)) x<v,> and dim [2(St (v,, 4))]
Sn—1, H(P(XF*) v (Cl (St (vy, A)) x {vy>)) is isomorphic to H(P(X)) for all
k>n. If &(St (vo, A)) is contractible, then P(X*) U (CI (St (vy, 4)) x <v;>) has the
homotopy type of P(X/). Now the desired result follows immediately since

[P(X/) U (C1(St (vo, A)) X (v1))] N ({01) x CL (St (vo, A4))) = {01 x ISt (vo, 4)).

THEOREM 5. If B= vy, vy, Uy is a 2-simplex such that A N B={v,, vg)> U {0y, 1),
where {vy, vo> and {vy, v,> are simplexes of A, u is the barycenter of {v,, v3), and X
is the polyhedron consisting of A, {vy, Vs, Uy, and {vy, vy, u); then H,(X*) is iso-
morphic to H,(A*) for all r>n+ 1. Furthermore if

o(St (vy, A)) U LZ)l [CL (St (vy, A))—St (v,, A)]

and either 0(St (vy, A))—St (vy, A) or 0O(St (ve, A))— St (vy, A) or (St (vy, A))
— 2., St (v,, A) are contractible, then X* is homotopically equivalent to A*.

Proof. Let f: X — A be the simplicial map defined by f(w)=w for each vertex
w of 4 and f(u)=v,. Then, by Theorem 2, P(X}) is homotopically equivalent to
P(A*). Now

P(X*) = P(X) U (Cvg, u) x [CI (St (v, A))— St (v2, A)])
U (Ko, u) x [CL (St (vo, A))—St (v, 4)]) Y (Kup x Cl (St (vo, A)))
U ([CI (St (vo, A))— St (vg, A)] % {vg, u))
U ([CL (St (0o, 4)) =St (v1, A)] x vy, u) Y (St (vo, 4) x D).
Since

P(X7) O (Cvg, up x [CL (St (1o, A))— St (v2, A)])
= (s, u) x [8(St (vo, A)) =St (v3, A)]) U (Cvz> x [CL (St (vo, A))—St (va, 4)]),
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X1=P(X{) U (vg, u)> x [CI (St (vy, A))— St (vz, A)]) has the homotopy type of
P(X}). Now
X1 0 (Cvy, up < [CL(St (vo, A))—St (v1, A)])

= (Cvy, ) x [0(St (vg, 4)) — St (v1, 4)]) U (Cv1) x [CL (St (vo, A))—St (vy, 4)])

U (Cup x [C1 (St (vo, A))— (St (v1, A) U St (va, A)))).
Since dim [0(St (vo, A))]Sn—1,

H,(X1 0 (<o, up x [CL (St (vo, A))—St (v, A)])) = 0
for all r> n. Therefore, if
X2 = X, U (Cvy, 4y x [CL(St (vo, 4)) =St (01, 4)]),

then H,(X;) is isomorphic to H,(X;) for all > n+ 1. If either 8(St (vy, 4)) — St (vy, 4)
or (St (ve, 4))— 2, St (v,, A) is contractible, then

Xy 0 (Ko, ) x [CL(St (vo, A))— St (v3, A)])

is contractible, and hence X, has the homotopy type of X,. If neither (St (v, A))
—St (v1, A) nor (St (vy, 4))—\J2.; St (v,, A) is contractible, but (St (vy, 4))
— St (vg, A) is contractible, then we add ({v;, u> x [CI (St (vy, 4))— St (v, A)]) to
P(X}) before we add ({vg, u) x [Cl (St (vo, A))— St (v,, A)]) and essentially repeat
the above argument to show that X, has the homotopy type of P(X}*). Now

X N (u) x CL(St (vo, A))) = (Ku) x (St (v, 4)))
Y () x [CL (St (vo, A))— St (ve, A)])
U (Cup x [CL(St (2o, 4)) =St (v1, A))).

Since H,(X, N ((u) x Cl (St (vg, 4))))=0 for all r>n—1, if
Xs = Xz U (uy x CL (St (vo, 4))),

then H,(X3) is isomorphic to H,(X;) for all r>n. Hence H,(X3) is isomorphic to
H(A4*) for all r>n+1.1If

o(St (vo, A)) U L:}l [C1 (St (vg, A))—St (vy, A)]

is contractible, then X3 has the homotopy type of X,. Therefore if o(St (vo, A))
v U2, [C1(St (vo, A))— St (v,, 4)] and either o(St (v, A))— St (v, 4) or

8(St (v, A))— St (vg, A)

or 0(St (vy, A))—\J2., St (v,, A) are contractible, then X, is homotopically
equivalent to A*. We essentially repeat the above argument in order to complete
the proof of the theorem.

Now in the remainder of this section, we let B denote an m-simplex with vertices
Vo, U1, . - ., Up. In Theorems 6 and 7, we assume that 2<m<n, and, in Theorems
8,9, and 10, we assume that 3<m=n.
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THEOREM 6. If 1Sp<m, A N B={{0g, Uy, .. ., s .. ., Uy | i=1, 2, ..., p}, where,
for each i, {vy, Uy, ..., 0;, ..., Vny is a simplex of A, u is the barycenter of

<vl9 (2T vp>a

X is the polyhedron consisting of A and { vg, vy, ..., sy ..., Uy | i=1,2,...,p},
St (v,, A) denotes the empty set when v, ¢ A, and

[o(5t (0o, 4) - ) St @ 4)]

m p

v g [crst @, - () St 4 USt@, )]
y=p+1 q=1

and (St (ve, A)) U U7-1 [CL (St (vo, A))—St (v,, A)] are contractible; then X* is

homotopically equivalent to A*.

Proof. Let f: X — A be the simplicial map defined by f(w)=w for each vertex w
of 4 and f(u)=v,. Then, by Theorem 2, P(X/) is homotopically equivalent to
P(A4*). Now P(X*) can be constructed by starting with P(X}*) and adding cells.
Below we express P(X *) as the union of P(X/*) and these cells. After this expression
we explain the order in which we are going to add cells to P(X*) in order to get
P(X*). Now

minlp,m-j+ 1] +k

U

m—
e=ig-1+1

POXY) = POXH Y ) U

i1=1

(<Ula (2T {ﬁik}9 cees Umy u>

x [c1 (St (v, A)) — (:)1 {St (v, 4) | g # i for any K}])

min(p,m—j+ 1] m—j+k

m 7
U
1k=Jl kL=)2

i1=1

([c1 (St (vo, A))—qgjl {St (v, A) | g # iy for any k}]

X015 Vg v s {Bits o o5 Uy u>).

In the above and throughout this proof, we assume that St (v;, A) denotes the
empty set when v, ¢ 4. Note that this is the case if and only if p=1. In order to
explain the order in which we add the cells in the first union, we introduce the
following notation. With each cell

i
kL—Jl (<Dla VUgs -« o {vik}’ coes Umy u>

x [c1 (St (v, A))— L':)l (St (v, A) | q # i for any k}]),
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associate an m-tuple («;, ag, . . ., a,) as follows: «,=1if v, is omitted in the simplex
Ub=1<v1, 09, .. ., {Di}s - - . Umy ) and «,=0 otherwise. If (ey, ay, ..., @,) and
(B, B2, - - -, Bm) are distinct m-tuples obtained in this manner, we define

(ala gy« v vy Ot,,,) < (ﬁl’ B2a LR Bm)

if and only if either

(1) Sp_y e, <Spoi B, or

2) >y @,=2"_1 B, and, if r=min {s | «,# B}, then «, > B,.

Then, if («, @ ..., @) <(B1,Bas-..,Pm), we add the cell associated with
(ay, @g, - . ., ay) before we add the cell associated with (8, Bs, . . ., Bn).

Now, if o, x 7, and o, X 7, are two cells in the second union, then r; x o; and
79 X 04 are cells in the first union, and we add o, x 7, before o, x 7, if and only if
we added 7, x o, before 74 X 0.

Now we are ready to see what happens when we add these cells. For each

B=1,2,...,p,
8-1 .
[P(Xf*) U yL=J1 (<Ul, Ugy oo vy vys ey Upy u>

V)

x [c1 (St (vo, )=

1": St (v, 4)])]

q=

N (<vl7 v29"~aﬁﬂa"'9vm’ u>

m

x [c1 (St (o, A)— U St (v, A)])

q=19#8
6.1) = (<0rs 0 By, Oy 1 % [0S (00, 4)) - U St (v, 4)))
q=1;9+8
U((vl,vz,...,ﬁﬁ,...,v,,,>><[Cl(St(vo,A))— § St (o0, 4)])
a=1q9#8
B-1

V] yL-J1 ((vl, Ugy e v oy Dyyevvy Dy ooy Uy U

x [C1 (St (vo, 4)) - (:Jl St (v, 4)))-

Therefore
4 n m
PO (€Ot By 0y ) X [CLSE (0, D)= () St (04, 4)])

a=1;q#1;

has the homotopy type of P(X*). Now suppose 2<a<m—1 and i, <p. Let X, be
the union of P(X/¥) with all those cells which have been added before

o
E, = kul (<vla Vg, ..+ {ﬁik}, coes Uy U

x [c1 (St (v, A))— Ql {St (v, A) | g # i for any K})).
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Then

«
X,NE = kul (<vl’02a--‘a{ﬁik}a--'avm’u>

x [a(St (v, A)) — Q {St (v,, A) | q # iy for any k}])

62 U kU

1

(<vla Vgy o v oy {ﬁik}a RRRE Um>
x [c1 (St (o, 4))— (:)1 {St (v, 4) | g # iy for any k}])

v

«
B=1

{kgl (<01, 1)2, L {ﬁik}a sy vma u>)
x [C1(8t (o6, 4)— 01 {St (v, 4) | # i for any k} U St (v, 4)|
q=
Therefore X; U E, has the homotopy type of X;. Now suppose 2<a=m-—1,
i;>p, and i, =1. Let X, be the union of P(X}*) with all those cells which have been
added before
E, = kL=JI (<Uly Vgy - - s {ﬁik}’ ces Umy u>

x [C1t (0o, 40— Ol {St (v, ) | g # iy for any K}]).

Then
X2 N E2 = . ((vh 02, c ey {ﬁik}5 LR} vm’ u>
k=1
x [(St (0o, 4))~ ), {8t (00, 4) |  # i for any K}])
% : (<Ula Ugy .. .y {6ik}a BRI ] vm>
k=1
x [C1(8t (vo, A))—qL:Jl {St (v, 4) | g # i for any &}))
v BC—‘JQ {kLZJI (<vh VUgy o v vy {f)ik}’ L] vma u>)

x [c1 (St (0o, 4))— L"Jl {St (v, A) | q # iy for any k} U St (v, A)]}.
q=
Therefore X, U E, has the homotopy type of X,. Now suppose 2<a«=<m-—1,
i;>p and i, > 1. Let X3 be the union of P(X¥) with all those cells which have been
added before
Ey = | (<O ooy By s o)

x [c1 (St (2o, A))-—qL:Jl {St (v, 4) | g # iy for any k}]).
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Then
XN Eg = (Cn ooy oo ome )
x [6(St (0o, A))—qQ)l {St (v, 4) | ¢ # iy for any k}])
RCTETN % R
x[C18t (v, A))—qL:)l {St (v, 4) | g # i for any k}))

{ko (<l)1, v2’ ce ey {ﬁik}9 ce ey Um, u>)

=1

«
v
Y

1

v Y

B

[ -]

x [c1 (St (vo, A)) — (:)1 {St (vs> 4) | g # iy for any k} U St (u,, A)]}

i1 -

a
v U {k_1(<vl,v2,' . ”ﬁj’ .. ‘a{ﬁik}9' . '3vmau>)

i=1

x[C1(st (oo, 4))— L:Jl {St (v 4) | g # i for any k} U St (v, 4)|

Now if i; <p or i; =p and there exists B (p <B=m) such that B#i, for any k, then
X3 N E; is contractible. However if iy=p+k—1 for each k=1,2,...,« and
i,=m, then X3 N Ej; is contractible if and only if

[o65t (o, 49— ) St (00, 4)]
u U 1 [c1 (st (v, 4)- (qL:)l St (v, 4) U St (v, 4))]

y=p+

is contractible. Thus it follows that if

[ast (o, 9~ ) St (00 4)]
u U 1 [c1 6t @, A))—(qu St (v, ) U St (v, 4))]

Y=p+

is contractible, then X3 U E3; has the homotopy type of X;. Now let X, be the
union of P(X/*) with all those cells which have been added before {u> x C1(St (v,, 4)).
If p=1,

X, 0 Ky x CL(St (vo, 4))) = (Ku) x (St (vo, 4)))

U ([ (<) x [CH(St (vo, 4) =St (v, A,
and if p>1,
X 0 (G x CLSE (v, A) = (<) % (St (0, A)))

U 01 (> x [C1 (St (v, A))— St (v,, A)]).

Therefore, if 9(St (vo, 4)) U U7 [Cl (St (vo, 4))—St (v,, A)] is contractible,
X, U (Cu) x C1 (St (vo, A))) has the homotopy type of X,.
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It follows from the above proof that if
~ V4
[e6st (o )= ), St (0, 4)]
m 14
v U [a6t@ - (U St 4 St@, 1)
y=p+1 q=1

and &(St (vy, A)) U \UJm-; [CI (St (vo, A))— St (v,, A)] are contractible, then

P(X* Lmelm[p,m—.H»l] i m-j+k
v
f) i=1 ip=1 kL=J2 ik=i;¢L_)1+1
(<v1, Vgy .« - {ﬁik}’ v Uy u>

x [C1(St (vo, 4) - Q {St (v, 4) | g # iy for any k}])

is homotopically equivalent to P(X*). We essentially repeat the above argument in
order to complete the proof of the theorem.

THEOREM 7. If A N B={ vy, vy, Vs, . . ., Uy, Where {vq, Vg, Vs, . . ., Uy IS a simplex
of A, and X=A U B, then H.(X*) is isomorphic to H.(A*) for all r > n.

Proof. We use the proof of Theorem 6 with p=1 and observe that in this proof
i; is always 1 since p=1 and hence the only time the addition of a cell can change
the homotopy type is when we add <{v;) x Cl (St (v,, 4)) and CI (St (vy, A)) x {v1).
(Note that u=wv, since p=1.) Using the same terminology as in the proof of
Theorem 6, we observed that

Xy 03 (01 X 1St (to, D) =(C0r> X &St (15, 4)
U U (00> x [CL(St (0, 4)) =St (0, D).

Since dim [0(St (v, A))]=n—1, H(X, U (v,> x C1 (St (vy, A)))) is isomorphic to
H,(X,)for all r > n. Since the same thing happens when we add Cl (St (v,, 4)) X {v,),
H,(X*) is isomorphic to H,(4*) for all r>n.

THEOREM 8. If A N B={vy, Uy, ..., iy ..., 0> | i=1, 2, ..., m}, where, for each
i, {Vgs U1y« v vy Diy ..., Uy is a simplex of A, u is the barycenter of vy, va, . .., Up,
X is the polyhedron consisting of A and {{vo, V1, ..., Dsy ..., Up ) | i=1,2,..., m},
and

(St (vo, A)) U C)l [C1 (St (vo, A))— St (v,, A)]
y=
and (St (vo, A))—\Jr-, St (v, A) are contractible; then X* is homotopically
equivalent to A*.

Proof. The proof is similar to the proof of Theorem 6, and hence we omit some
of the details by referring to that proof. Let f: X — A4 be the simplicial map defined
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by f(w)=w for each vertex w of 4 and f(u)=v,. Then, by Theorem 2, P(X}¥) is
homotopically equivalent to P(4*). If i, =0, then

POX) = PRV Y U

1 k=11dg=ix-1+

m—j+k .
1 (<vls VUgy o v vy {vik}: ceey Upy u>

x [c1 (St (vo, A))—qLZJl
{St (v, 4) | g # i for any k}])
m j m-—j+k m
UjL=Jl kL=J1 ik=191+1 ([Cl (St (o, A))_qLEJl
{St (vgs 4) | q # iy for any k}]
X<y {0y - - o Ums u>).

We associate an m-tuple with each cell in the first union and define an ordering of
m-tuples in exactly the same way that we did in the proof of Theorem 6. Then we
add cells according to this ordering the same way we did in this previous proof.

For each =1, 2,..., m, we have expression (6.1) in the proof of Theorem 6.
If B<m, then the intersection in this expression is contractible. Therefore

m-1 m
* ] A - N
P(Xf) Y 21 (<U15 Vg, .- oy vlp coes Umy u> X [Cl (St (00’ A)) a=1Ta%is St (l’qa A)])

has the homotopy type of P(X}¥). If o(St (vo, 4))—\Jr-, St (v,, A) is contractible,
then

[P 0 T (@ m ot v x [CLSE @ )= () S 4)])]

A (s 03 oy 1 x [ CUSE (0, )= T, St (00 4)])

is contractible, and hence

PO . (1 0y By e % [CL St o, )= St 4)])

q=1;q#i;
is homotopically equivalent to P(X}*). Now suppose 2<a<m—1 and let X, be
the union of P(Xf) with all those cells which have been added before

E, = kLZJI ((vl, Vo oo o5 Biphs + o s Oy )
x [CL(St (26, 4)) - (")1 {St (v, 4) | g # i, for any K})).

Then we have expression (6.2) in the proof of Theorem 6. Therefore X; U E; has
the homotopy type of X, and hence if

% m-1 j m=j+k
X, = P(X) v U U
J=1 k=1ig=ip-1+1

(<Ula 2T {ﬁik}> cees Uy u>

x [C1(St (v, 4)) - Ql {8t (vp, A) | ¢ # iy for any &}
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and 9(St (vo, 4))—Ur-, St (v,, A) is contractible, then X, is homotopically
equivalent to P(Xf*). Now

Xy (3 (G x CL (St (v, ) = (<> x (St (06, 4))
U U (@) x [CL(St (oo, 4)—St (23, ).

Therefore if o(St (v, 4)) U U™~ [C1 (St (vy, A))—St (v,, A)] is contractible, then
X=X, U (Ku) x Cl (St (vy, 4))) has the homotopy type of X,. It follows from the
above proof that if o(St (ve, 4))—\J7-, St (v,, 4) and

(St (vo, 4)) U (J [CI (St (vo, 4) =St (0, A)]

are contractible, then X; is homotopically equivalent to 4*. We essentially repeat
the above in order to complete the proof of the theorem.

THEOREM 9. If A N B={vy, v, ..., Up> U {0y, V1), Where vy, Vs, ..., U,> and
{vo, V> are simplexes of A, X=A VU B, and, for each nonempty subset F of
{2,3,...,m},

g} {4—(St (vo, 4) U U {St (v, 4) | p€ F} U St (v, 4))}

Y=1;v¢F
is a deformation retract of A—(St(vy, A) U {St (vy, A) | p € F}); then X* is
homotopically equivalent to A*.

Proof. If i;=0, then

P(X*) = P L (Bx [4- ) St (v, )
=0

m-2

oY

k=1ix=ig-1+

m-j+k .
1 (<vo, Uyyevey {Dik}s R ] Um>

«[4-0) (5t @0 )14 # i for any KY])

U UJ ((to, 25 X [A— (St (00, A) U St (1, A))])

)

U

[4- 0 st 0] xB)

q=0
j

3 — =

U : V) ‘k'::gl'il ([A—q@o {St (v 4) |  # i for any k)]
X {00y U1y« + o5 {Dihs -+ o» v,,,))
U U ([A—=(St (v, A) U St (15, A)] X <00, 0,).

p=2

We add the above unions to P(4*) in the order in which we have listed them. In
order to explain the order in which we add the cells in the second union, we
associate with each cell in this union an m-tuple and define an ordering of m-tuples
in exactly the same way that we did in the proof of Theorem 6. Then we add cells
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in the second and fifth union according to this ordering in the same way we did in
this previous proof. Now

P(4*) 0 (Bx [A —qL:JO St (v, A)])
= [Kvy, gy . . ., Uy U {0y, U10] X [A —qL:jo St (v,, A)],

and therefore P(4*) U (Bx[4—|J7-, St (v, 4)]) is homotopically equivalent to
P(A4*). Now suppose 1 <a<m—2 and i;=1. Let X; be the union of P(4*) with
all those cells which have been added before

E, = kL=Jl ((vo, Uty e B3}y oo oy Uy X [A—qLJO {St (vy, A) | q # i, for any k}]).
Then
X0 E = [ U U s aye s By o))

X [A—qL:J

) {St (v, 4) |4 # i for any k}]
v U1

a

1 (<vOa V1. v vy {ﬁik}a st Um>)

x [A— Cjo {St (vy, 4) | g # i, for any k} U St (v, A)]}.
Therefore if -

BLZJI [A - (qL:JO {St (v,, 4) | g # iy for any k} U St (v,,, A))]

is a deformation retract of 4—{J™_, {St (v,, 4) | g#1i, for any k}, then X; U E, is
homotopically equivalent to X;. Now suppose 1 Se<m—2 and i; > 1. Let X, be
the union of P(4*) with all those cells which have been added before

Ey = U (<00, 01 (B} s Om> X [A— UJ {St (v, 4) | g # i, for any k}]).
k=1 q=0
Then
XoNE;, = [(l’o, vy Y kLJl {vy, v, . . ., {5tk}, sy Um>]

% [A - L_"Jo {St (vg, A) | ¢ # iy for any k}]
v BL:Jl {,Ql (oo, 01, - o, {Bi}s - - -5 Om))

X [A — Lmjo {St (vg, A) | g # iy for any k} U St (v, A)]}.
=
Hence X, U E, is homotopically equivalent to X,. Let

X, = P(4*) U (Bx [A'-q@o St (v, 4)))
vy U U +1((vo,vl,...,{qu},...,v,,)

x [A —qL:)O {St (v, A) | q # iy, for any k}]).
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Then, for each 8=2,3,...,m,

[0 1 oo v x 14— (5t w0, 4) U St @ 4DD)]

N (<UOs Uﬁ> X [A _(St (UO’ A) (% St (UB’ A))])
= [{vo) U {vp>] x [4— (St (vo, A) U St (v, 4))]

U [ (o 05y x 4= (St (v0, 4) U St (85, 4) U St (0, ).
If, for each B=2,3,..., m,

) [A—(St (g, 4) U St (v, A) U St (v, A))]

e=Lle#8

is a deformation retract of 4 —(St (vo, A) U St (v, A)), then
Xz v pL=)2 (Kvo, vp) x [A~ (St (vo, A) U St (v,, A))])

is homotopically equivalent to X;. Now, in order to complete the proof of the
theorem, we essentially repeat the above argument.
THEOREM 10. If A,=0,

2 m-2+k

AnB:k 1{<Uo,U1,...,{ﬁ)\k},...,vm>},

=1 Ag=Ag-1+

where each {vo, vy, ..., {Dr}> - - -, Umy is a simplex of A, X=A U B, and, for each
subset F of {1, 2, ..., m} consisting of at least m— 1 elements,

U {4—(U {8t (v, 4) | g € F} U St (v, A))}

m
¥=0;v¢F

is a deformation retract of A—\_) {St (v, A) | q€ F}; then X* is homotopically
equivalent to A*.

Proof. First observe that

P(X*) = P(4*) U (Bx [A —qL;")o St (v, A)])

Uth ((vo, Viyeooy Digyov oy Uy X [A— q=0L:)ﬂl St (v,, A)])
V] iL:Jl ((vl, Uy o ooy Digy oo oy U X [A—qﬂQ;“2 St (v, A)])

v ([4- :'0 St (v, 4)] x B)

q

y " a

v 1120 ([A_q=oL;J#1 St (v, A)] X {Vgy U1y v« s [N v,,,))
§ " ‘ A

U iﬁL=)1 ([A_4=L;J¢42 St (Uq,'_'A)] X Vg Vgy v oy Digy v - s v,,,}),
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Now
(%) (Bx[4 ‘qQo St (v, 4)]) = (4 B)x [A—qL:Jo St (o0, 4)].

and hence X; =P(4*) U (Bx [4—{J™., St (v, A)]) is homotopically equivalent to
P(A4*). Also, for each «=0, 1, ..., m,

[x 0 ﬂQ: (<0 01 B s v x [ Q=Q“ St v, 4)])]
O (<00 01y s By B X A—Q=QM St (v,, A)])
= AN 001, By o] X [ A= U St (o5, 4)|
q=0g#a

U ((vo, ViyeonyDgyonny Upy X [A—qL:)O St (v, A)]).

If «#0,
X,V ﬁL-—'Jl) ((vo, VisevnsDpynney Uy X [A— q=‘5%¢3 St (v,, A)])
is homotopically equivalent to
-1 . m
X, U BL=)0 ((vo, Uy ovvyDgyeneyUpp X [A— q=<k>zg¢g St (v,, A)]).

If A—\J7-0 St (v, A) is a deformation retract of 4—Jm_, St (v,, 4), then
X, U (<u1, Vg - - .y Und X [A—qL=)1 St (v,, A)])

is homotopically equivalent to X;. Therefore if A —|J™_, St (v, A) is a deformation
retract of 4—\Jr_, St (v,, 4), then

X = %0 U (@i b vwx[A= ) Sty 4)])

i1= a=0;g#1;

is homotopically equivalent to 4*. Now, for each =1, 2, ..., m,

%, uﬂg (<O B2 s 85y 0> x [ (,:Q“ St (0, 4)])]
ﬁ((vl, Voy ooy DgyevoyUpp X |A— Lmj St(vq,A)])
q=1;q#a

= (AN oy, Oy By oy oD% (A= L) St (o5, 4))

a=19#a

V) ((vl, vz,...,z‘)a,...,vm>x[A—0 St (vg, A)])

q=1
m

u(<vl,02,...,ﬁa,...,vm>x[A—(St(vo,A)u UJ St(vq,A))])-

q=1;9#a
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Hence, if for each subset F of {1, 2, ..., m} consisting of at least m— 1 elements,

m

U {4—(U{St (v, A) g€ F} U St (v, A))}

¥ =0;v¢F

is a deformation retract of 4—|J {St (v,, A) | g € F}, then

q=1;q#i2

qu‘2Lm=)1(<vl,172,...,ﬁ,2,...,vm>><[A— ¥ St (v, 4)))

is homotopically equivalent to A*. In order to complete the proof of the theorem,
we essentially repeat the above argument.

4. Isotopy types of spheres. For each integer nx3, let B"={xec E" | |x| <1},
and, for each integer m (1 =m=<n), let A,, be an m-simplex. Suppose that for each
m and n, A, N B™is an (m— 1)-face of 4, and 4,, N B*<(B")°. Let C:=B" U A,,.
Also let Cp be the polyhedron consisting of three n-simplexes with a common
(n—1)-face.

For each integer n23, let &, ={C?, C%,..., C'}, and let &, be the collection
consisting of the members of %7, and all finite, contractible, n-dimensional poly-
hedra X with the property that there is a member C}* of %, such that a homeomorph
of X can be constructed out of C}* by appending m-simplexes (1 <m=<n) in such a
way that if the construction is factored C}'=X; - X, —---— X,=X, then X] is
obtained from X;_, by

(1) adding a 1-simplex 7=<{v,, v;) such that X,_, N 7={v,), where v, is a vertex
of X;_, and o(St (v,, X;_;)) is contractible,

(2) adding an m-simplex r=<vy, vy,...,Vp), 2Sm=n, such that X;_, N~
={V0s V1y++os Diy .. s Oy | i=1,2,..., p}, Wwhere 1 Sp<m, v, U1, ..., Dy ..., Up>
is a simplex of X;_, for each i, and, if St (v;, X;_,) denotes the empty set when
v; ¢ X;_,, then

[o(st (o, X, =) St @0 X;-)]

U U [erst@o X)) = (U St @ K- U St @, X,0)]

Yy=p+1
and

(St (vo, X;-1)) Q [CL(St (vo, X;-1))—St (v, X;-1)]

are contractible,
(3) adding a 2-simplex 7=<vy, V3, U5) such that X;_; N 7=<v,, V3> U {0y, V1),
where <v,, v, and {v,, v, are simplexes of X;_, and

A(St (2o, X,_1)) U Q [C (St (00, X;1))—St (1, X;_1)]

and either 9(St (v, X;_1))—St (v, X;_1) or 0(St (vo, X;-1))—St (vs, X;_;) or
o(St (vo, X;-1))—J2-, St (v,, X;_,) are contractible,
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(4) adding an m-simplex 7=<vy, Uy,...,Vn», 3<m=n, such that X, ;N7
={Voy V13- vy Dis ooy Uy | i=1,2,...,m}, where <vo, 01,...,0,...,0,> IS @
simplex of X;_, for each i and

(St (vo, X;-1)) Y QJI [CL(St (vo, X;-1))—St (v, X;-1)]

and 8(St (vo, X;_,))—\Ur-1 St (v,, X;_,) are contractible,

(5) adding an m-simplex 7=<vg, vy,...,0ny, 3<m=n, such that X;_; N~
={0y, Vg, . . ., Uy U {0y, 11>, Where vy, v, ..., v,> and {v,, v;> are simplexes of
X,_,, and, for each nonempty subset F of {2, 3, ..., m},

U X1 =St (vo, X;_1) U U {St (v, X;_1) | p € F} U St (v, X;_1))}

¥ =1;v¢F

is a deformation retract of X;_; —(St (v, X,;-1) Y U {St (vp, X;-1) | p € F}), or
(6) adding an m-simplex 7={vq, vy, ..., Uy, 3=m=n, such that

2 m-2+k .
Xi—lnT= U U {<Uo,U1,...,{U)\k},...,vm>},
k=1 Ag=Ag-1+1

where A,=0, each {vo, vy,...,{Ds}, ..., Umy is a simplex of X;_;, and, for each

subset F of {1, 2, ..., m} consisting of at least m—1 elements,
7=%4¢F {X;_1— (U {St (v, X;_1) | g€ F} U St (v,, X;_1))}

is a deformation retract of X,_, —|J {St (v, X;-1) | g € F}.
THEOREM 11. If X € &, then X* has the homotopy type of S™.

Proof. By Theorem 3 of [7], (CF)* has the homotopy type of S™. Also by
Theorem 4 of [7], for each m=1, 2, ..., n—1, (C%)* has the homotopy type of S™.
Therefore (X;)* has the homotopy type of S". Now suppose 1 <j=<e and (X,_,)*
has the homotopy type of S™. If X is obtained from X;_, by (1), then, by Theorem
4, (X;)* has the homotopy type of S™. If X; is obtained from X,_, by (2), then,
by Theorem 6, (X,)* has the homotopy type of S™ If X; is obtained from X;_,
by (3), then, by Theorem 5, (X,)* has the homotopy type of S™. If X; is obtained
from X,_, by (4), then, by Theorem 8, (X,)* has the homotopy type of S™. If X;
is obtained from X;_; by (5), then, by Theorem 9, (X;)* has the homotopy type
of S*. Finally if X; is obtained from X,_, by (6), then, by Theorem 10, (X;)* has
the homotopy type of S*. Therefore X* has the homotopy type of S™.
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