TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 147, January 1970

SOME IMMERSION THEOREMS FOR
PROJECTIVE SPACES

BY
A. DUANE RANDALL

1. Introduction. In this paper we obtain some results on the classical problem
of immersing projective spaces into Euclidean space. Let a(n) denote the number
of I’s appearing in the dyadic expansion of n. We prove the following

THEOREM 1.1. CP™ immerses in R*"~5 for n odd and «(n)>2.
Applying Theorem 4 of [6] with Theorem 1.1 gives

COROLLARY 1.2. CP™ has a best possible immersion in R*™~% for n=2"+25+1
with r>s>0.

THEOREM 1.3. RP™ immerses in R**~" for n=4 mod 8 and «(n)> 2.

We remark that the proof of (1.3) also shows RP™ does not immerse in R®"~7 for
n=2"+4 with r> 3, a result of [7].

THEOREM 1.4. RP™ immerses in R**~° for n=0 mod 8 and n not a power of 2.
COROLLARY 1.5. RP" immerses in R2"~4*™ =1 for n=2"42° with r>s>2.

It follows from [4] that RP™ does not immerse in R?"~!! for n=2"+8 and r> 3.
THEOREM 1.6. RP™ immerses in R*"~8 for n=1 mod 4 and «(n) > 3.

Adem and Gitler showed in [4] and [7] that RP" has a best possible immersion
in R#*~* for n=1 mod 4 and «(n)=3.

These results are interesting only for small values of «(n) due to Milgram’s
construction of linear immersions in [21]. The method of proof consists of ex-
pressing certain obstructions to the lifting of an appropriate map by Adams-
‘Maunder operations and then evaluating these operations in projective space.
The author wishes to express his gratitude to his advisor, Professor Emery Thomas,
and to the Centro de Investigacion y de Estudios Avanzados del IPN, Mexico.

2. Preliminaries. The coefficient group for singular cohomology is understood
to be Z, whenever omitted. We let « € HY(RP®) and 8 € H%(CP*) denote generators
for the cohomology rings. Let 4, denote the vector subspace of the mod 2 Steenrod
algebra A consisting of homogeneous elements of degree k. If oa(k+s)> «s),
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136 A. D. RANDALL [January

A(e®)=0. A standard fact in number theory states that the highest power of 2
dividing a binomial coefficient ("}%) is 26 *e®@-er+s) et ¢ and 7 denote the
Hopf line bundles over RP* and CP®. The Thom complex T(m¢) is homeo-
morphic to the stunted projective space RP™*$/RP™ for mé based on RPs. T(rn)
is homeomorphic to CP™*$/CP" for ry based on CP*. The Hopf map H: RP* — CP*
gives the real bundle equation H*n=2¢.

Wnt) = 3 (';’)a

We refer to [15] and [3] for these facts. In [4] Adem and Gitler prove for n>8

PROPOSITION 2.1. RP™ immerses in R*** iff (n+k+1)¢ has n+1 independent
nonzero sections iff (2°™—(n+1))¢ has 2°™—(n+k+1) independent nonzero
sections.

3. Cohomology operations in projective space. In [3] Adem and Gitler formulate
an algorithm for computing a family of stable secondary cohomology operations
in complex projective space. Let p(r, s) denote the following relation in A4 for any
positive integers r and s:

r-1
3.1 (Sq¥ Sq")Sq?"s + Z quf(s+1)+1—2'Sq2'+ssqlsq2'(s+1> = 0.
i=0

A straightforward generalization of Theorem 8.2 in [4] is the following

PROPOSITION 3.2 Let ®(r, s) denote any stable secondary operation associated to
o(r, s). Let a=2! be such that a<2'(s+1)<2a. Let c be any integer such that c<s
and o(c+s+1)>a(c). For m=ha+2""'c with h>0, O(r, s) is defined on B" and
with zero indeterminacy

2"¢c -
my — m + 27~ 1(s+1)
O, HE™) = h( 51 1)—a)? .
The proof of (3.2) is essentially given in [3] and [4] and so is omitted.
In [10] Gitler, Mahowald, and Milgram show that many secondary operations

defined on the Thom class of a complex vector bundle measure the divisibility by 2
of its Chern classes. Applications of their argument yield the following results.

PROPOSITION 3.3. Let w denote a complex bundle over a complex X such that
Cor(@)=2x for x in H¥*¥X;Z) and cg,o(w)=2y for y in H**4(X;Z). A
secondary operation ¢ associated to the relation

(Sq2Sq1)Sq4t+2+Sq1Sq4t+4+Sq4t+4Sq1 — 0
can be chosen independently of w so that

qu(Uw'x) + Uwy € (P(Uw)~
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PROPOSITION 3.4, Let p denote a complex bundle over a complex X such that
Carv 2(P)=2x, Car13(p)=2y, c4144(p)=2z for classes x, y, and z in H¥(X;Z). A
secondary operation I' associated to the relation

(Sq4Sql)Sq8t+4 _l_SqISth+8+Sql(Sq81+GSq2)+Sq8t+8Sql — 0
can be chosen independently of p so that
U, (z+y-wa(p) +x-wi(p)) + Sq*(U,- x) € T(U,).

PROPOSITION 3.5. Let w denote a complex bundle over a complex X such that
c1(w)=0, wy(w)=0, and cg(w)=2x for x in H*®(X; Z). Let ® denote a secondary
operation associated to the defining relation

(59°Sq)Sqiet + Sq ot +8Sq + Sq % +7Sq2 + Sq*(Sq****Sq*) = 0 for t > 0.
Then ® can be chosen independently of w so that Sq®(U,,-x) € ®(U,,).

REMARK. mod 2 reduction of integral classes is understood whenever applicable
in the above propositions. The proofs involve direct applications of the argument
given in [10]. We give only the proof of (3.5).

Proof of 3.5. Consider the following diagram.

F—L E@n)

b

2T(w) — ), msum 2

K(Z, 2n)

Here p is the principal fibration induced from the universal example for the
operation ® on integral classes of dimension 2n for large n by the Thom class
U,: MSU(n) - K(Z, 2n). Now p*(U,-cg)=2e, for some e, in H*(E(22n);Z)
since Sq*¢tU,= U, - w,q. One notes that j*e; mod 2=Sg%; ® 1 ® 1 ® 1 where

F = K(Z,,2n+16t—1)x K(Z,, 2n+ 16t +7) X K(Z5, 2n+ 1) x K(Z,, 2n)
is the fiber of p. (See [10].) Similarly,
P¥U,-(CoCars 2+ CaCar 1+ C3Ca)] = 26,

for some integral class e, and j*e, mod 2=1 ® Sq;, ® 1 ® 1. Let e3 and e, be
classes in H*(E(2n)) such that j*ez=1 ® 1 @ 13 ® 1 and j*e,=1 Q1 @ 1 @ 4.
We now choose ® so that ® vanishes on classes of dimension =<167—2. This is
possible by [2] and [14]. It follows that

Sdel+e2+Sq16t+7ea+Sq16t+8e4

is the representative for this choice of ® in H*(E(2n)). Let f: X — BSU(n)
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classify the bundle w @ s where n—s is the fiber dimension of w. T(f) is the
natural map induced by f between the Thom complexes. Thus,

Zd(U,) = O(Z:U,,)
= Lg) g%(Sqte, +ey+ Sq et Te; + Sq6t+ Be,)

= LgJ g*(Sq%e, +e3)

where g ranges over all liftings of T(f). Since the Chern classes cy(w), cglw),
Cgr+1(w), and cgy, o(w) are divisible by 2, it follows that Sg®(U,, - x) € ®(U,,).

The proof of Theorem 1.4 uses a tertiary cohomology operation which we
define here and evaluate in real projective space. Consider the following relations
and associated secondary operations for s> 3:

®,:(S¢>Sq")Sq* + Sq** *2Sq* = 0,
D,: (S¢*Sq*)Sq? + Sq*' *1Sq* + Sq* +3Sq% = 0,
®;: Sq°Sq®+ Sq¢°Sq* = 0,
D,: Sq'Sq* = 0.
Let ® denote the 4-valued secondary operation (®,, ®,, ®;, ©,).

PROPOSITION 3.6. @, and @, can be chosen so (®,, ®,) vanishes on classes having
dimension <2°. For these choices the following relation holds stably and with zero
indeterminacy among the component operations ®; of ®.

3.7 SqeD, + Sq* D, + Sq¥ +3D; + Sg¥ 7D, + (ASg*F +4)Sq* = 0
where X is in Z,.

Proof. The functional cohomology operations associated with the defining
relations for ®; and ®, vanish on classes having dimension <2° by [2, Teorema
6.6]. Now @, and ®, can be chosen trivial on classes in the domain of ® having
dimension <2° by the Peterson-Stein formula [2, Teorema 5.2]. Consider the
universal example for the operation ® on classes of dimension » for large n.

E(n)

e

1 2 2t
x f K(Za,n) Sqlex Sq% x Sq*'v C

The map p is the principal fibration with classifying map Sg*« x S¢* x S¢**« and C
is a product of Eilenberg-MacLane spaces. Let k in H*(E(n)) be the representative
class for @, for 1 £i<4. Let an arbitrary class x in H"(X) in the domain of ® be
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classified by a map f: X — K(Z,, n). By definition ®(x)=\J, g*(k}, k3, k3, k%)
where the union ranges over all liftings of f. The Serre exact sequence applied to the
map p gives

Sq°kt+ Sq*ki+Sq* *ok5+ Sq* Tk} = M(p*) (A€ Zy)

where 0 is a sum of admissible monomials in 4 each having degree 2°+8 and
excess=2°. The Adem relations applied to Sq%Sq? show that SgZ°*3(p*.)
=qus “Sq‘(p*e) SO 0=Sq2’ +4Sq4.

Let 4 be any stable tertiary operation associated to the relation given by (3.7).
The indeterminacy subgroup Indet®(X; ) arises in the following manner. The
operation i determines a secondary operation In(y) of three variables. (See [20]
and [28].) In(y) is defined on those classes xe H*(X), ye H**'(X), and
z€ H"*#-1(X) for which

Sq*x = 0, Sq%y+Sq°x = 0,
Sq*Sq'z+Sq% 3y + Sqg¥ tix = 0,
Sq2Sq*z+Sq**2x = 0.

Then Indet"(X; y)=image In(y) + ASgZ° **H**3(X) in H**Z*7(X).

PROPOSITION 3.8. ¢ is defined on «***'*® in H*(RP*) and vanishes with zero
indeterminacy.

Proof. Clearly ®;(8%**)=0 and ®,(8***)=0 in H*(CP®). Let g: CP* — QP~
be a map such that g*y=p2 where y generates H*(QP>). Now ®,(y**~**2)=0 for
dimensional reasons so ®,(8%2°**)=0 from naturality and zero indeterminacy. By
Proposition 3.2

(I)2(B2’+4) = (D(z, 23-2)(ﬁ2’+4) — (3)323+2"1+6 = 0.

Thus ¢ is defined on f2°** and so on o "' *8, Clearly ¢ vanishes on *** with zero
indeterminacy so naturality under the Hopf map gives 0 € (o "' *8).
One checks that In ¢ is defined with zero indeterminacy on

(3.9) H28+1+8(RPao) @ H28+1+9(RPoo) @ H2’H+23+7(RP°°).
Let
I‘\1: Sq4Sq2’+4+Sq6Sq23+2+Sq2=+ssq3+Sq23+7Sq1 — 0,
T'y: SqSq™ *+°+Sq%*+55g° = 0,
[3: S¢*(Sq*Sq") +S9°(Sq*Sq*) = 0

denote any stable secondary operations associated to the above relations. Clearly
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I (B*4)=0 so it follows that I';(«2*"'*8)=0 from naturality and zero inde-
terminacy. By [4, Theorem 5.1] there exists an S-map A such that

A*: H2q(z2d+1 RP2p+1)__) H2q(CPp+d+1/CPd)

is an isomorphism for all ¢ where p=25+2°"147 and d+1=¢2°*! for some
positive integer . By dimensionality ['y(»*2°*2* "' *2)=0 in H*(QP*) so naturality
gives

)\*F2(22d"1a28“+9) — F2(B23+d+5) = 0.

The stability of ', and zero indeterminacy imply that I'y(«2****°)=0. Similarly,
A*F3(22d+1a28+1+23+7) — l“a(ﬁtzs+l+2s+2s—l+3) =@o Sql(B¢25+1+2s+2s—1+3) — 0
where ¢ is a secondary operation associated to the relation
S4°Sq*+ Sq*Sq* + Sq"Sq* = 0.

Such a ¢ can be chosen so that I'y=¢ o S¢g* modulo total indeterminacies by [1].
Thus T'z(«2****2°+7)=0 from stability and zero indeterminacy. We conclude that
In($) vanishes with zero indeterminacy on (3.9). Since Sg*'*+4a®*'*11=0,
Indet® "' +*8(RP®; 4)=0 and the proof of 3.8 is complete.

4. Generating class theorems. Thomas formulates a ‘“ generating class theorem”
for lifting a second-order k-invariant to the Thom complex and expressing it by
means of a secondary operation applied to the Thom class in [Theorem 6.4, 29]
and [Theorem 6.5, 30]. The proof of Theorem 1.4 in §5 uses the generating class
theorem to express a third-order k-invariant by a tertiary operation so we state the
following versions to cover that application. Let B,, and B denote BSO(m) and
BSO, B Spin (m) and B Spin, or BO[8](m) and BO[8] where BSO, B Spin, and
BOI[8] are the 1, 3, and 7-connective coverings of BO. In the appendix Postnikov
resolutions are constructed for the fiber map =: B,, — B through dimensions <t
where #* is surjective and m<t<2m. Let T and U denote the Thom complex and
Thom class of the universal bundle ¢ over B and regard B as B for large s. Follow-
ing the notation of [28], [29], [30], we let Ty and Uy denote the Thom complex and
Thom class of g*¢ where g: Y — Bis any map. Consider the following commutative
diagram.

oc L E,

/11’2
q2
.1 K(Zaym) L B, Jaxkax 3k,
s
m wm+17 K(Zg,m+1)

B, — B;

The classes k; € H4(E,) for t;<t and 1 <j<r are the second-order k-invariants in
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the resolution for 7. Now i*k; = «;t and i*k, =8, for elements «,, 8; in A. Suppose
there are relations in 4

aISqm+l+ z ajoj = 0,

4.2) ’:"‘
BiSq™ 1+ > B,6, =0

ji=2

where 0,U=0 and degree («;) >0, degree (8;)>0 for 1 <j=<n. Let Q denote any
secondary operation associated to the relations (4.2) and let C represent the coset
in H*4(Tp) @ H***2(Ty) of the indeterminacy subgroup of Q such that (Tm=)*C
=Es""Q(UBm). Define K to be the coset of the pair (ky, k,) in H4(E,) @ H'x(E;)
with respect to the subgroup

(kernel i* N kernel g¥ N H(E,)) @ (kernel i* N kernel g¥ N H'2(E),)).
With these assumptions the generating class theorem states

PROPOSITION 4.3. There isa class (k., k) € K and a class (c,, ¢;) € H1(B)® H'2(B)
such that U-(c,, c;) € C and UEI-((I?I, ki) +p¥(cy, c3)) € Q(Ug,).

The proof of (4.3) is essentially given in [27] and [29] and so is omitted. Let X be a
complex of dimension <7 and f: X — B a map with f*w,,,, =0. Thus f classifies a
bundle p over X and one defines (k;, k2)(p)=, (g*k;, g*k,), the union being
over all liftings g: X — £, of f. Recall from [28] there are classes & and B, in
A(B) such that u(k)=é&( ® 1) in H'(K(Zy, m)x Ey, Ey), u(ky)=B(c ® 1) in
H'(K(Z,, m) x E,, E;). Thus (k,, k2)(p) is a coset of Indet'rt2(X; K) = (&, B,)- H*(X)
N (H4(X) ® H'(X)).

COROLLARY 4.4. Suppose the indeterminacy of Q(U,)=U, Indetri2(X; K).
Suppose also that g*(k,, k;)=g*(ky, ko) for any (ki, k) in K and any lifting
g: X—E, of f. Then

U, ((ks, k2)(p) +f*(c1, €3)) = QU,)
as cosets in Hs+41(Ty) @ Hs*e(Ty).

In diagram (4.1) the map p,: E, — E; is a principal fibration classified by the
cohomology vector (ky,..., k,) where C= X]_; K(Z,, t;). Assume now that K
consists only of (k;, k;) and that Q can be chosen so Ug, - (k;, k3) € Q(Ug,). Let ¢,
denote the fundamental class of QK(Z,, t,) in QC for 1£j<r. Let k € H'(E;) be a
third-order k-invariant for = (so r <t} such that j * k=y,i; +y,t, Where y; and y,
are in A. Suppose Q' =(Q,, Q,, Qj, Q4, Q;) is a 5-valued stable secondary opera-
tion where Q; and Q, are the component operations belonging to Q and the
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degree of Q; <the connectivity of B for 3<i<5. Thus (ky, k5, 0, 0, 0) € Q'(Ug,).
Assume also the following relation holds.

4.5) Y1Q1+72Q0 +y3 Q3+ 7, Qs +y5Q25 = 0.

Let ¢ be a tertiary operation associated to relation (4.5). Let D denote the coset of
the indeterminacy subgroup of 4 in H*(T) such that Zs~™y(Up, )=(T7)*D and let
K’ be the coset of k with respect to the subgroup kernel j* (M kernel g¥ (" H'(Ey).
Under these assumptions the generating class theorem states

PROPOSITION 4.6. There is a class k in K' and a class d in H'(B) such that
U-de D and Ug, - (k+(p; o p2)*d) € (Ug,).

Proposition 4.6 is easily proved by applying the arguments of [27], [29], and
[30]. See also [9]. An application of (4.6) is also given in [23].

5. Proofs of immersion theorems.

Proof of Theorem 1.1. Write 2n=4¢+6 and refer to Postnikov resolution I in
the appendix. Let v: CP® — B Spin classify the stable normal bundle v of CP"
Now

mcP) = ("1)e
SO Wi 2(t)=0 and wy, 4(v)=0. The indeterminacy of k,(v)=Sq2H**2(CP")
= H?"~2(CP™) so v lifts to B Spin (4¢+1) iff v lifts to E; iff ko(v)=0. Let Q denote
a stable secondary operation associated to the relation

(Sq2Sq1)Sq4t+2+SqISq4t+4+Sq4t+4Sq1 —_ O

and chosen so that it vanishes on classes of dimension <4+ 2 (see [2]). Applying
the generating class theorem [30, Theorem 6.5] gives U,-k.(v)=Q(U,) since the
indeterminacy of ky(v)=0=the indeterminacy of Q(U,). Here U, is the Thom
class of the Thom complex T(v).

The order of J(y) in J(CP") is the Atiyah-Todd number M, ,; by [31]. Set
s=M,,,—(n+1). Since 2" divides M, , , it follows that

(;,)=liﬁ'(;,)=0 forO=r<n

Write s=ha+ c where ¢ <n and a is the smallest power of 2 greater than n. Atiyah-
James duality for projective spaces in [5] states that an S-dual for CP™ is the space
X=CP™/CPs~1=T(sn) for sy based on CP™~* where m=s+n— 1. Identify the
generator of H?(X) with B under the collapsing map CP™ — X and the standard
embedding CP™ — CP™. Since a(c+n—1)> a(c), Proposition 3.2 states that

Q(ﬁs) — (D(l’ 2t+1)(ﬂha+c) — (4t+2:_a)ﬁs+n-1.
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But (3";2)=1 50 (3,25_,)=0 for «(n)>2. Thus kz(v)=b and the result follows
by Hirsch [12]. Note for «(n)=2 that

(arva-a) = (o) =

which gives a nonimmersion result of [3].

Proof of Theorem 1.3. Refer to Postnikov resolution 1l in the appendix. Write
n=28t+12 and let y: RP" — BSO classify the bundle y=(16+ 18)¢ over RP". It
suffices to show y lifts to BSO(8¢+ 5) by Proposition 2.1. Note that wg,, ¢(y)=0 and
Wwes 1+ 8(y)=0 from §2 so y lifts to E;. The indeterminacy of k3(y)= H*(RP™") so v
lifts to BSO(8¢+ 5) iff y lifts to E;. Sq*ki occurs in the defining relation for k2 so
0 € k3(y). Likewise, Sq*k} occurs in the defining relation for k2 so 0 € k(y). Thus
any lifting of y to E, can be altered through indeterminacies to produce a lifting of
v to Es.

We apply the technique of factoring a classifying map for an even multiple of
the Hopf bundle over RP™ through complex projective space in order to determine
the second-order k-invariants for y. Set m=4r+6 and let v: CP™ — BSO classify
the bundle v=(8¢+9)y. We regard y=vo H: RP" — BSO where H is the Hopf
map in §2. Trivially k}(v)=0 and ki(v)=0. Note that both ki(v) and ki(v) have
zero indeterminacy. Choose a stable secondary operation ¢ associated to the
relation

(qusql)Sq8t+6+Sqlsqet+8+Sq8t+3Sq1 =0

so that ¢ vanishes on classes of dimension <8¢+ 5. The generating class theorem
[29, Theorem 6.4] gives @(U,)=U,-ki(v). But p(U,)=2%¢+1 -1y .B%+% by Prop-
osition 3.3. Thus k3(v)#0 iff «(r+1)=1 iff n=2"+4 for r=4. Let g: CP™— E,
be any lifting for v and set f=g o H. Now f*(ki, k%, k})=(0, «¥, 0) for n=2"+4.
The indeterminacy subgroup of (ki, k%, k3)(y) is generated by («? ~1, 0, «®'*1) and
0, «¥, «®'*1), So f cannot be altered to produce a lifting of y to E,. That is,
RP"¢ R*~7 for n=2"+4 and r> 3.

Let h: CP™*! — E| be any lifting for the bundle v based on CP™*!. The defining
relation for k% gives B3-h*ki+pB-h*ki=0 in H?*2(CP™*'). So h*ki=0 iff
h*k;=0. It follows that g*k3=0 iff g*ki=0 for any lifting g: CP™ — E, of v.
Thus f=g o H: RP"— E, lifts to E, for n#2"+4.

Proof of Theorem 1.4. We consider the case n=8 mod 16. The proof for
n=0mod 16 is similar and so is omitted. Write n=16¢+8 and refer to Postnikov
resolution III. Let v: CP™ — B Spin classify the bundle v=(16¢+4)y for m=8t+4.
Let y=vo H: RP"— B Spin classify the bundle y=(32t+8)¢ over RP". One
checks easily that y lifts to B Spin (16¢—1) if v lifts to E,. Now

161+ 4
Wie(v) = ( 8t )Bm =0

so v lifts to E;,. The defining relation for k2 gives Sq%k1(v)=0 so k}(v)=0. The
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defining relation for k32 gives Sq*k3(v)=0. But Sg*B8+6=pB8+8 5o that k3(v)=0.
It follows that v lifts to E, iff ki(v)=0. We proceed to express by a secondary
operation a class different from k} but equal to ki under pull-backs to CP™.
Consider the following commutative diagram.

B Spin(16t—1)

v e

oc > E E,
V K /1
v

cpm

B Spin

Here p: E— B Spin is the principal fibration with classifying map
wiee X W2 B Spin — C = K(Z,, 16t) x K(Z,, 16t+8)

where W represents the class wyw,g 4+ WeWigrs o+ Wiwig in H*(B Spin). Let
¢; and ¢, denote the fundamental classes of the components of QC. The following
exact sequence holds for j<16¢+ 15 from [26].

*

0—> H/(E) Z, H(QC x B Spin(16¢—1)) LN H’*1(B Spin).
Regard ki as a class in H*(E) via r* and recall that

vikl = 5¢%Sq';, @ 1 Q1 + Sqre, @ 1 @ wg + S¢° @ 1 Q@ wy

+ 857" Q1R wE + S¢%; @ 1Q we + S¢%; @ 1 R wy.
Now
(1 @ §g'; @ 1) = Sg*W = 11[S¢'(S¢*; @ 1 @ wa+ 54" @ 1 @ we)].
Let z be the unique class in H'%*8(F) for which
vz = S¢%Sqt;, @ 1 @ 1+8¢% @ 1 @ we+1 ® Sqle, ® 1+Sg%; ® 1 @ wi.
Let y be the unique class in H%*7(E) for which
Yy =1 R, ®1+5¢% @1 @ we+Sq% @1 ® w,.

Since v*(Sq'y)=v*(z + k1), it follows that k1=2z+ Sq'y. Choose a stable secondary
operation @ associated to the relation (Sg®Sq')Sq% + Sq'6 +8Sq'+ Sq*® +7Sq>
+Sq*(Sq*®t+%Sq*)=0 such that ® vanishes on classes having dimension < 16¢.
Note that Sg¢*4Sq*U=U-W in H*(Tggpin)- By [29, Theorem 6.4] Ug-(z+k’)
€ ®(Ug) for some class k' in H*®*8(E) N kernel j* N kernel g*. It follows that
d(U,)="U,-z(v)=U, - ki(v). Let 8 denote the generator for H*(QP*) and p the
Hopf line bundle over QP®. We regard 8%+2 as the Thom class of the bundle
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{=(8t+2)p based on QP! for large /. The highest power of 2 dividing the Chern
class cg,(8) is 2*® from §2. By Proposition 3.5

D(U,) = 290-18¢%(U,- 8%).

But Sg8812t+2=§12t+4 g0 P(8%*+2)=0 iff «(t) > 1 iff n#2"+ 8. Naturality under the
Hopf map CP* — QP shows that ®(B'%+*)=0 iff n#2"+8. Thus ki(v)=0 for
n#2"+8 from identifying U, with B'¢*+% Since y has a lifting fo H: RP"— E,
where f: CP™ — E, is a lifting for v, clearly k2(y)=0 for n#2"+8. One checks
indeterminacies and defining relations to show that y lifts to B Spin(167—1) iff
y has a lifting to E, and k%(y)=0. Thus vy lifts to B Spin(16/—1) and the result
follows from (2.1) for n#27+ 8. For n=2"+8 we express the obstruction kZ(y) by a
tertiary operation.

We assume now that n=2"+8 for r>3. The natural map BO[8] — B Spin
induces a Postnikov resolution for the fiber map »': BO[8](2"—1) — BOI[8] from
Postnikov resolution III for the map =. We denote the k-invariants for = also by
ki and the spaces in the resolution by E;. Thus k3 in H*(E,) has the defining
relation Sg*Sq*wyr =0 in H*(BO[8]) and k2 has the defining relation Sq°k}+ Sq*k}
=0 in H*(E,). Since Sq%k1=0 and BO[8] is 7-connected, the coset K of (ki, k%)
defined in §4 contains only (ki, k3). Let ®=(®,, ®,) be the double secondary
operation with component operations ®; chosen in (3.6). By Proposition 4.3

Us, - (ki, k3) € ©(Ug,).

Let ¢ be any tertiary operation associated to the relation (3.7).
By Proposition 4.6

Us, (k3 +(p1 © p2)*P) € Y(Us,).

Here k2 belongs to the coset K’ in (4.6) determined by k2, and P is a class in
HZ+"(BO[8]) such that U’-Pe(U’) where U’ denotes the Thom class of the
universal bundle over BO[8](2"—1).

Let h: RP"— E, be any lifting for the map y: RP*— BO[8] classifying the
bundle y=(2"*1+8)¢. Now h*k3=h*k2 since k%(y)=0 and Sq2Sq'h*k%=Sq*h*k32
=0. Clearly P(y)=0 so we conclude U,-kZ(y) € $(U,).

Identify U, with «®***8 in H*(RP®) and apply Proposition 3.8 to give k(y)=0.
Thus v lifts to BO[8](2"—1) and the result follows by (2.1).

Proof of Theorem 1.6. Let y: RP®— BSO classify the bundle y=2p¢
=(2°™—(n+1))é. The argument that v lifts to BSO(n—8) for n=5mod 8 and
a(n)> 3 is similar to the proof of Theorem 1.3 and so is omitted. We consider the
case n=1mod 8 and oa(n)>3. Write n=38¢+9 and refer to Postnikov resolution
IV. By (2.1) it suffices to show y lifts to BSO(8¢+1). Let v: CP™ — BSO classify
the bundle v=pn where m=4r+4. One checks easily that v lifts to BSO(8¢+ 1) iff
k3(y)=0. Clearly k3(y)=0 if v lifts to E,. Note that v and hence y lift to E, by §2.
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Let h: CP™*! — E, be a lifting for the bundle v based on CP™*!. The defining
relation for k% gives B-Sq*(h*ki)=0 in H2™+*2(CP™*'). But Sg*B**2=p%+** so
h*k%=0. Thus k3(v)=0 and v lifts to E, iff ki(v)=0. Consider the following com-
mutative diagram.

BSO(8t+1)

A
N

BSO

C

Here p: E— BSO is the principal fibration with classifying map
Wes2 X Wer1a X Woy 48 X Wi BSO — C

where W represents the class wowg,, ¢+ WaWg s+ Wiwg,, 4 in H*(BSO). The
following exact sequence from [26] holds for j<8¢+ 15

%

0 —> H/(E) —> H/(QC x BSO(8t+ 1)) —-> H/*(BSO).
Let «; for 1 £j<4 denote the fundamental classes of the components of QC. Now

hi=1Q01 Q@S¢ ®1 ®1
+1 0857 QI RIRI+1 RS R1 Q1 Q@ w,
+1 ®85¢%25¢*; @1 @1 @ wa+Sq (1 ® Sg%; @1 ® 1 @ wy).

Let y be the unique class in H%*7(E) such that

V*y=l®1®1®c4®1+l®Sq2t2®1®1®w2
+1 QR8¢ Q1 Q1 Q ws.

Define z in H*(E) so that

z=1Q015¢%:R1Q1+1 11 S¢*, ®1
+1R5¢*S¢ . R1I Q1 @1+1 RS, 1 ®1 & wy
+1 ®qusq1£2®l®l ®W2.

Thus ki=z+ Sq'y since v*(Sqly)=v*(z +ki).
By [2] we can select a secondary operation I associated to the relation

(Sq4sql)sq8t +4 + Sqlsqﬂt +8 + Sql(Sqat +6Sq2) + Sq8t + 8Sq1 — 0

so that ASq2x-Sq®x € I'(x) for any class x of dimension 8¢+ 3 in the domain of I’
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and such that X € Z, is independent of x. Note that Sq®*6Sq2U=U- W in H*(Tgs0).
The generating class theorem [30, Theorem 6.5] gives the result

Ug-(z+k") e T'(Ug)

for some class k' in H®+*8(E) N kernel j* N kernel g*. It follows that I'(U,)
=U,-z(v)= U, ki(v). One checks from §2 that the highest power of 2 dividing
¢, (v) is 2, dividing ¢4, 2(v) 18 2°™ -2, and dividing ¢4, 4(v) is 2V -1, By Proposition
34

P(Uv) = 2a(n)—8Uv,B4t+4.

Thus ki(v)=0 for «(n)>3 so v lifts to E, and the proof is complete.

6. Appendix. These Postnikov resolutions for the fiber map =: B,, — B are
constructed by the techniques of [26]. We refer the reader also to [17] and [8] for
the theory and construction of modified Postnikov resolutions. The homotopy
groups of the fibers for 7 appear in [13] and [22]. The tower of spaces is displayed
only for resolution I. The k-invariant k! represents a class in H*(E;) whose defining
relation is a relation in H*(E;_,) where E,=B.

6.1. Postnikov resolution I for the fibration =: B Spin(4t+1) — B Spin for
stable spin bundles over complexes of dimension <4¢+6 for ¢>1. K(n) denotes
K(Z,, n).

B Spin(4t+1)

143

E,

lpa

ks
E,——— K(41+4)

lpz
ki xkyxkg
E, —— > K(4t+3) x K(4t +4) x K(4t+5)

lpl
B Spin — 22X Mas s 2) x (K (4t +4).
Defining relations for k-invariants:
ki:SqPwy,o =0,
ka: (Sq2Sq" )Wap s 2+ Sq* Way sy = O,

k3: (Sq*+ - woWy, 2o+ 18q*wyy 44 = 0,
k4: Sq2k1 +Sq1k2 = 0.

6.2. Postnikov resolution II for the fibration =: BSO(8¢+5) — BSO for stable
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orientable bundles over complexes of dimension <8¢+ 13 for #>0. Defining rela-
tions for k-invariants:

k3
k3

ki:
ki:
k3:
ki:
t even ki:
todd ki:
k2:
k2:
k2:

k3.

= Wsti6s
= Wsti 8
(Sq*+ -wa)wg 6 = 0,
(Sq%+ -w2)Sq' Wy 6 +Sq' Wer 5 = O,
(Sq*+ - wo)Wer 6+ Sq*Wer 8 = 0,
(Sq*+ -ws+ -wd)Sq' Wy, 6+ Sq' (W2 Sq*)Wer 48 = O,
(Sq°+ -we)we 6+ WeWer15 = 0,
(Sq%+ -we)Wer s 6+(Sq°+wy-Sq°+ Wy Sq*)Wer s = 0,
(Sq>+ -wo)ki+ Sq*k} = 0,
Sq*ki+(Sq*Sq°+ - we)k + Sq*(we- Sq'k3) = 0,
(Sq*+ -wo)ki+(Sq*Sq® +ws- Sq°Sq* + - wo)ks
+Sq' (w2 - Sq?k3) + Sq*(ki-ws)
+(Sq" +Sq*Sq*Sq* +wy- Sq°Sq* + we- Sq* + w3 SqSq’ + - wawdk}
+ki-Sq°w,+(Sq* + Sq°Sq*) (k- we)
+(Sq°+w,-Sq%+ws-Sq2Sq* + - we+ - Wi+ - w3k
+5q*(k3-waws) = 0,
Sq k2 + Sq3(k2-wy) +(Sq2Sq® +wo- Sq2Sq* + w3 Sq* + -ws)ki = 0.

6.3. Postnikov resolution III for the fibration =: B Spin(16¢—1) — B Spin for
stable spin bundles over complexes of dimension =167+ 8 for 1>0.
Defining relations for k-invariants:

kS = Wiee

ki: S¢*Sq'wie: = 0,

k3: (Sq*+ -wy)Sq'wie = O,

k3: (Sq*+ -wy)Sq°wye = O,

ki: (Sq®+ -we)Sq'wig+ Sq'(we- Sq* + we- Sq+ - wiwie = 0,
k3%: Sq%kt = 0,

k%: Sq2Sq*k}+ Sq*k? = 0,

k2:
k3:
k2:

(Sq®+ -we)ki+(Sq*+ -wok; = 0,
(Sq* + Sg°Sq* + - wo)k3 +(Sq°+ - we)Sq ki +(ws- Sqh)k} = O,
Sq'k;+(Sq" + Sq*Sq*Sq)ki = 0,

k3: Sq%k?2+Sq*ki = 0,
k3: Sq*k2+Sq*Sq*k = 0,
k}: Sqtk3+ Sq2Sq®ks = 0.

6.4. Postnikov resolution IV for the fibration 7: BSO(8t+ 1) — BSO for stable
orientable bundles over complexes of dimension <8¢+9 for > 1.
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kS
ki
k3

ki:
ki:
ki:

t even ki:
todd ki:
ki:
k2:

k3

k2.

k3:

k3.
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relations for k-invariants:

= Wers2 kS = oy s kS = Warss,

1 (Sq%+ -wa)Wep o = 0,

1(Sq%+ - w3)Sq Wy 2+ 5S¢ Wer 44 = 0,
(Sq*+ - W)Wey 2+ Wo Wgyq = 0,
(Sq*+ -wyweyys = 0,

+8q'(wy- Sq*)wes = 0,

(Sq*+ - we)(Sq>+ - wa)Wer s s+ Sq*we 5 = 0,
(Sq®+ -wy)ki+Sq*ks = O,

(8¢ + -w2)Sq'ki+ Sq>Sq' (k3 - w.)
+(Sq%2Sq° +wy- Sq° +w2- Sq* + - wowg)k3

Sq'Wer 15+ (Sq*+ - Wa)Sq ' Wer s 4+ (Wa- SG2Sq )Wey 4 4

(Sq®+ - We)Wer s+ Wa Wayyg+(Wa- Sq2+ - We+ - Wowy)Wgy 44 = 0,
(Sq®+ -we)Wey o+ Sq*Wer s 5+ (Wa- SG°+ - We+ - WoW )Wy 4 s = 0,

: Sqk3+ Sq' (w2 Sq)ki +(Sq*Sq® +wy- Sq2Sq + -ws)ki = 0,
ki-wy+(Sq°+ - we)ki+(Sq* + Sq°Sq* +wy- Sq°+wa- Sq* + - wa+ - whk3
+8q%(k3 - wa) + (w2 - Sq° + wa- S¢°Sq +wy- Sq* +w§- Sq ki = O,

+(Sq8+wy- Sq* +wy-Sq2+ - we+ - w2k + Sqi(kl-wg)

+Sq*(ki-ws)+ (W3- Sq*y(ki-ws)
+(wq- Sq28q° + Sq" + Sq*Sq2Sq* +w,- Sq*Sq*

+W6'Sq1+ 'W7+ 'W3W4)ki = 0,

Sq*k3+ Sq*(wa- SqHk3 +(Sq2Sq° +w,- Sq*Sq* + - ws)ki = 0.
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6.5. Postnikov resolution V for the fibration =: B Spin (16¢+7) — B Spin for
stable spin bundles over complexes of dimension =<16¢+ 16 for >0.
Defining relations for k-invariants:

kS

ki:
ki:
ki:
ki:
ki:

ki:
k2:
k2.
k2.
k2:

k3

kt

= Wist+8 k3 = Wiets 16,
S$q°Sq'Wiet+s = O,

(Sq*+ - wy)Sq'wigess = 0,

(Sq%+ -wg)wier8 = O,

(Sq*+ -ws)Sq*wig8 = O,

(Sq°+ -wg)Sq' Wigi 8+ Sq W6+ 16

+8q' (ws- Sq* +we-Sq*+ - wPWier48 = O,
Sq°ki = 0,

Sq2Sq*k} + Sq*k} = 0,

(Sq°+ -weki+(Sq* + -wok; = 0,

Sqrki+ Sq*Sqtki+ Sq'kl = 0,

: Sq%k2+ Sq*ki = 0,
k3:

Sq*kZ+ Sq2Sq®k: = 0,

: Sq*k3+ Sq2Sqekd = 0.

(Sq* + Sq°Sq* + - wo)ki+ Sq°k3+(Sq" + Sq°Sq* +

‘W7)k% = 0,
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