SOME IMMERSION THEOREMS FOR PROJECTIVE SPACES

BY

A. DUANE RANDALL

1. Introduction. In this paper we obtain some results on the classical problem of immersing projective spaces into Euclidean space. Let $\alpha(n)$ denote the number of 1's appearing in the dyadic expansion of *n*. We prove the following

THEOREM 1.1. CP^n immerses in \mathbb{R}^{4n-5} for n odd and $\alpha(n) > 2$.

Applying Theorem 4 of [6] with Theorem 1.1 gives

COROLLARY 1.2. CP^n has a best possible immersion in R^{4n-5} for $n=2^r+2^s+1$ with r>s>0.

THEOREM 1.3. RPⁿ immerses in \mathbb{R}^{2n-7} for $n \equiv 4 \mod 8$ and $\alpha(n) > 2$.

We remark that the proof of (1.3) also shows RP^n does not immerse in R^{2n-7} for $n=2^r+4$ with r>3, a result of [7].

THEOREM 1.4. RP^n immerses in R^{2n-9} for $n \equiv 0 \mod 8$ and n not a power of 2.

COROLLARY 1.5. RPⁿ immerses in $R^{2n-4\alpha(n)-1}$ for $n=2^r+2^s$ with r>s>2.

It follows from [4] that RP^n does not immerse in R^{2n-11} for $n=2^r+8$ and r>3.

THEOREM 1.6. RP^n immerses in R^{2n-8} for $n \equiv 1 \mod 4$ and $\alpha(n) > 3$.

Adem and Gitler showed in [4] and [7] that RP^n has a best possible immersion in R^{2n-4} for $n \equiv 1 \mod 4$ and $\alpha(n) = 3$.

These results are interesting only for small values of $\alpha(n)$ due to Milgram's construction of linear immersions in [21]. The method of proof consists of expressing certain obstructions to the lifting of an appropriate map by Adams-Maunder operations and then evaluating these operations in projective space. The author wishes to express his gratitude to his advisor, Professor Emery Thomas, and to the Centro de Investigacion y de Estudios Avanzados del IPN, Mexico.

2. **Preliminaries.** The coefficient group for singular cohomology is understood to be Z_2 whenever omitted. We let $\alpha \in H^1(\mathbb{RP}^{\infty})$ and $\beta \in H^2(\mathbb{CP}^{\infty})$ denote generators for the cohomology rings. Let A_k denote the vector subspace of the mod 2 Steenrod algebra A consisting of homogeneous elements of degree k. If $\alpha(k+s) > \alpha(s)$,

Copyright © 1970, American Mathematical Society

Received by the editors March 24, 1969.

 $A_k(\alpha^s) = 0$. A standard fact in number theory states that the highest power of 2 dividing a binomial coefficient $\binom{r+s}{s}$ is $2^{\alpha(r)+\alpha(s)-\alpha(r+s)}$. Let ξ and η denote the Hopf line bundles over RP^{∞} and CP^{∞} . The Thom complex $T(m\xi)$ is homeomorphic to the stunted projective space RP^{m+s}/RP^m for $m\xi$ based on RP^s . $T(r\eta)$ is homeomorphic to CP^{r+s}/CP^r for $r\eta$ based on CP^s . The Hopf map $H: RP^{\infty} \to CP^{\infty}$ gives the real bundle equation $H^*\eta = 2\xi$.

$$W(m\xi) = \sum_{s} {\binom{m}{s}} \alpha^{s}.$$

We refer to [15] and [3] for these facts. In [4] Adem and Gitler prove for n > 8

PROPOSITION 2.1. RP^n immerses in R^{n+k} iff $(n+k+1)\xi$ has n+1 independent nonzero sections iff $(2^{\varphi(n)}-(n+1))\xi$ has $2^{\varphi(n)}-(n+k+1)$ independent nonzero sections.

3. Cohomology operations in projective space. In [3] Adem and Gitler formulate an algorithm for computing a family of stable secondary cohomology operations in complex projective space. Let $\rho(r, s)$ denote the following relation in A for any positive integers r and s:

(3.1)
$$(Sq^{2^{r}}Sq^{1})Sq^{2^{r_{s}}} + \sum_{t=0}^{r-1}Sq^{2^{r_{s+1}}+1-2^{t}}Sq^{2^{t}} + sSq^{1}Sq^{2^{r_{s+1}}} = 0.$$

A straightforward generalization of Theorem 8.2 in [4] is the following

PROPOSITION 3.2 Let $\Phi(r, s)$ denote any stable secondary operation associated to $\rho(r, s)$. Let $a = 2^t$ be such that $a \leq 2^r(s+1) < 2a$. Let c be any integer such that c < s and $\alpha(c+s+1) > \alpha(c)$. For $m = ha + 2^{r-1}c$ with h > 0, $\Phi(r, s)$ is defined on β^m and with zero indeterminacy

$$\Phi(r, s)(\beta^m) = h \binom{2^r c}{2^r (s+1) - a} \beta^{m+2^{r-1}(s+1)}.$$

The proof of (3.2) is essentially given in [3] and [4] and so is omitted.

In [10] Gitler, Mahowald, and Milgram show that many secondary operations defined on the Thom class of a complex vector bundle measure the divisibility by 2 of its Chern classes. Applications of their argument yield the following results.

PROPOSITION 3.3. Let ω denote a complex bundle over a complex X such that $c_{2t+1}(\omega) = 2x$ for x in $H^{4t+2}(X;Z)$ and $c_{2t+2}(\omega) = 2y$ for y in $H^{4t+4}(X;Z)$. A secondary operation φ associated to the relation

$$(Sq^2Sq^1)Sq^{4t+2} + Sq^1Sq^{4t+4} + Sq^{4t+4}Sq^1 = 0$$

can be chosen independently of ω so that

$$Sq^{2}(U_{\omega} \cdot x) + U_{\omega} \cdot y \in \varphi(U_{\omega}).$$

[January

PROPOSITION 3.4. Let ρ denote a complex bundle over a complex X such that $c_{4t+2}(\rho)=2x$, $c_{4t+3}(\rho)=2y$, $c_{4t+4}(\rho)=2z$ for classes x, y, and z in $H^*(X; Z)$. A secondary operation Γ associated to the relation

$$(Sq^{4}Sq^{1})Sq^{8t+4} + Sq^{1}Sq^{8t+8} + Sq^{1}(Sq^{8t+6}Sq^{2}) + Sq^{8t+8}Sq^{1} = 0$$

can be chosen independently of ρ so that

$$U_{\rho} \cdot (z + y \cdot w_2(\rho) + x \cdot w_2^2(\rho)) + Sq^4(U_{\rho} \cdot x) \in \Gamma(U_{\rho}).$$

PROPOSITION 3.5. Let ω denote a complex bundle over a complex X such that $c_1(\omega)=0$, $w_4(\omega)=0$, and $c_{8t}(\omega)=2x$ for x in $H^{16t}(X;Z)$. Let Φ denote a secondary operation associated to the defining relation

$$(Sq^{8}Sq^{1})Sq^{16t} + Sq^{16t+8}Sq^{1} + Sq^{16t+7}Sq^{2} + Sq^{1}(Sq^{16t+4}Sq^{4}) = 0 \quad for \ t > 0.$$

Then Φ can be chosen independently of ω so that $Sq^{8}(U_{\omega} \cdot x) \in \Phi(U_{\omega})$.

REMARK. mod 2 reduction of integral classes is understood whenever applicable in the above propositions. The proofs involve direct applications of the argument given in [10]. We give only the proof of (3.5).

Proof of 3.5. Consider the following diagram.

$$F \xrightarrow{j} E(2n)$$

$$g \qquad \downarrow p$$

$$\Sigma^{s}T(\omega) \xrightarrow{T(f)} MSU(n) \xrightarrow{U_{n}} K(Z, 2n)$$

Here p is the principal fibration induced from the universal example for the operation Φ on integral classes of dimension 2n for large n by the Thom class $U_n: MSU(n) \to K(Z, 2n)$. Now $p^*(U_n \cdot c_{8t}) = 2e_1$ for some e_1 in $H^*(E(2n); Z)$ since $Sq^{16t}U_n = U_n \cdot w_{16t}$. One notes that $j^*e_1 \mod 2 = Sq^{1}\iota_1 \otimes 1 \otimes 1 \otimes 1$ where

$$F = K(Z_2, 2n + 16t - 1) \times K(Z_2, 2n + 16t + 7) \times K(Z_2, 2n + 1) \times K(Z_2, 2n)$$

is the fiber of p. (See [10].) Similarly,

$$p^*[U_n \cdot (c_2 c_{8t+2} + c_3 c_{8t+1} + c_2^2 c_{8t})] = 2e_2$$

for some integral class e_2 and $j^*e_2 \mod 2 = 1 \otimes Sq^1\iota_2 \otimes 1 \otimes 1$. Let e_3 and e_4 be classes in $H^*(E(2n))$ such that $j^*e_3 = 1 \otimes 1 \otimes \iota_3 \otimes 1$ and $j^*e_4 = 1 \otimes 1 \otimes 1 \otimes \iota_4$. We now choose Φ so that Φ vanishes on classes of dimension $\leq 16t-2$. This is possible by [2] and [14]. It follows that

$$Sq^{8}e_{1} + e_{2} + Sq^{16t+7}e_{3} + Sq^{16t+8}e_{4}$$

is the representative for this choice of Φ in $H^*(E(2n))$. Let $f: X \to BSU(n)$

classify the bundle $\omega \oplus s$ where n-s is the fiber dimension of ω . T(f) is the natural map induced by f between the Thom complexes. Thus,

$$\Sigma^{s} \Phi(U_{\omega}) = \Phi(\Sigma^{s} U_{\omega})$$

= $\bigcup_{g} g^{*}(Sq^{8}e_{1} + e_{2} + Sq^{16t + 7}e_{3} + Sq^{16t + 8}e_{4})$
= $\bigcup_{g} g^{*}(Sq^{8}e_{1} + e_{2})$

where g ranges over all liftings of T(f). Since the Chern classes $c_2(\omega)$, $c_{8t}(\omega)$, $c_{8t+1}(\omega)$, and $c_{8t+2}(\omega)$ are divisible by 2, it follows that $Sq^8(U_{\omega} \cdot x) \in \Phi(U_{\omega})$.

The proof of Theorem 1.4 uses a tertiary cohomology operation which we define here and evaluate in real projective space. Consider the following relations and associated secondary operations for s > 3:

$$\begin{split} \Phi_1 &: (Sq^2Sq^1)Sq^{2^s} + Sq^{2^s+2}Sq^1 = 0, \\ \Phi_2 &: (Sq^4Sq^1)Sq^{2^s} + Sq^{2^s+4}Sq^1 + Sq^{2^s+3}Sq^2 = 0, \\ \Phi_3 &: Sq^2Sq^2 + Sq^3Sq^1 = 0, \\ \Phi_4 &: Sq^1Sq^1 = 0. \end{split}$$

Let Φ denote the 4-valued secondary operation (Φ_1 , Φ_2 , Φ_3 , Φ_4).

PROPOSITION 3.6. Φ_1 and Φ_2 can be chosen so (Φ_1, Φ_2) vanishes on classes having dimension $< 2^s$. For these choices the following relation holds stably and with zero indeterminacy among the component operations Φ_i of Φ .

$$(3.7) Sq^{6}\Phi_{1} + Sq^{4}\Phi_{2} + Sq^{2^{3}+5}\Phi_{3} + Sq^{2^{3}+7}\Phi_{4} + (\lambda Sq^{2^{3}+4})Sq^{4} = 0$$

where λ is in \mathbb{Z}_2 .

Proof. The functional cohomology operations associated with the defining relations for Φ_1 and Φ_2 vanish on classes having dimension $<2^s$ by [2, Teorema 6.6]. Now Φ_1 and Φ_2 can be chosen trivial on classes in the domain of Φ having dimension $<2^s$ by the Peterson-Stein formula [2, Teorema 5.2]. Consider the universal example for the operation Φ on classes of dimension *n* for large *n*.

The map p is the principal fibration with classifying map $Sq^{\iota} \times Sq^{2\iota} \times Sq^{2\iota}$ and C is a product of Eilenberg-MacLane spaces. Let k_i^n in $H^*(E(n))$ be the representative class for Φ_i for $1 \le i \le 4$. Let an arbitrary class x in $H^n(X)$ in the domain of Φ be

classified by a map $f: X \to K(Z_2, n)$. By definition $\Phi(x) = \bigcup_g g^*(k_1^n, k_2^n, k_3^n, k_4^n)$ where the union ranges over all liftings of f. The Serre exact sequence applied to the map p gives

$$Sq^{6}k_{1}^{n} + Sq^{4}k_{2}^{n} + Sq^{2^{s}+5}k_{3}^{n} + Sq^{2^{s}+7}k_{4}^{n} = \lambda\theta(p^{*}\iota) \qquad (\lambda \in Z_{2})$$

where θ is a sum of admissible monomials in A each having degree $2^s + 8$ and $\exp 2^s \ge 2^s$. The Adem relations applied to $Sq^8Sq^{2^s}$ show that $Sq^{2^s+8}(p^*\iota) = Sq^{2^s+4}Sq^4(p^*\iota)$ so $\theta = Sq^{2^s+4}Sq^4$.

Let ψ be any stable tertiary operation associated to the relation given by (3.7). The indeterminacy subgroup $\operatorname{Indet}^n(X; \psi)$ arises in the following manner. The operation ψ determines a secondary operation $\operatorname{In}(\psi)$ of three variables. (See [20] and [28].) $\operatorname{In}(\psi)$ is defined on those classes $x \in H^n(X)$, $y \in H^{n+1}(X)$, and $z \in H^{n+2^s-1}(X)$ for which

$$Sq^{1}x = 0, \qquad Sq^{2}y + Sq^{3}x = 0,$$

$$Sq^{4}Sq^{1}z + Sq^{2^{s+3}}y + Sq^{2^{s+4}}x = 0,$$

$$Sq^{2}Sq^{1}z + Sq^{2^{s+2}}x = 0.$$

Then Indet^{*n*}(X; ψ) = image In(ψ) + $\lambda Sq^{2^{s+4}}H^{n+3}(X)$ in $H^{n+2^{s+7}}(X)$.

PROPOSITION 3.8. ψ is defined on $\alpha^{2^{s+1}+8}$ in $H^*(RP^{\infty})$ and vanishes with zero indeterminacy.

Proof. Clearly $\Phi_3(\beta^{2^s+4})=0$ and $\Phi_4(\beta^{2^s+4})=0$ in $H^*(CP^{\infty})$. Let $g: CP^{\infty} \to QP^{\infty}$ be a map such that $g^*\gamma=\beta^2$ where γ generates $H^*(QP^{\infty})$. Now $\Phi_1(\gamma^{2^{s-1}+2})=0$ for dimensional reasons so $\Phi_1(\beta^{2^s+4})=0$ from naturality and zero indeterminacy. By Proposition 3.2

$$\Phi_2(\beta^{2^s+4}) = \Phi(2, 2^{s-2})(\beta^{2^s+4}) = \binom{8}{4}\beta^{2^s+2^{s-1}+6} = 0.$$

Thus ψ is defined on $\beta^{2^{s+4}}$ and so on $\alpha^{2^{s+1}+8}$. Clearly ψ vanishes on $\beta^{2^{s+4}}$ with zero indeterminacy so naturality under the Hopf map gives $0 \in \psi(\alpha^{2^{s+1}+8})$.

One checks that In ψ is defined with zero indeterminacy on

$$(3.9) H^{2^{s+1}+8}(RP^{\infty}) \oplus H^{2^{s+1}+9}(RP^{\infty}) \oplus H^{2^{s+1}+2^{s}+7}(RP^{\infty}).$$

Let

$$\begin{split} &\Gamma_1 \colon Sq^4 Sq^{2^s+4} + Sq^6 Sq^{2^s+2} + Sq^{2^s+5} Sq^3 + Sq^{2^s+7} Sq^1 = 0, \\ &\Gamma_2 \colon Sq^4 Sq^{2^s+3} + Sq^{2^s+5} Sq^2 = 0, \\ &\Gamma_3 \colon Sq^4 (Sq^4 Sq^1) + Sq^6 (Sq^2 Sq^1) = 0 \end{split}$$

denote any stable secondary operations associated to the above relations. Clearly

139

1970]

[January

 $\Gamma_1(\beta^{2^{s+4}})=0$ so it follows that $\Gamma_1(\alpha^{2^{s+1}+8})=0$ from naturality and zero indeterminacy. By [4, Theorem 5.1] there exists an S-map λ such that

$$\lambda^* \colon H^{2q}(\sum^{2d+1} RP^{2p+1}) \to H^{2q}(CP^{p+d+1}/CP^d)$$

is an isomorphism for all q where $p = 2^s + 2^{s-1} + 7$ and $d+1 = t2^{s+1}$ for some positive integer t. By dimensionality $\Gamma_2(\gamma^{t2^s+2^{s-1}+2})=0$ in $H^*(QP^{\infty})$ so naturality gives

$$\lambda^* \Gamma_2(\Sigma^{2d+1} \alpha^{2^{s+1}+9}) = \Gamma_2(\beta^{2^{s+d+5}}) = 0.$$

The stability of Γ_2 and zero indeterminacy imply that $\Gamma_2(\alpha^{2^{s+1}+9})=0$. Similarly,

$$\lambda^* \Gamma_3(\Sigma^{2d+1} \alpha^{2^{s+1}+2^s+7}) = \Gamma_3(\beta^{t2^{s+1}+2^s+2^{s-1}+3}) = \varphi \circ Sq^1(\beta^{t2^{s+1}+2^s+2^{s-1}+3}) = 0$$

where φ is a secondary operation associated to the relation

$$Sq^{6}Sq^{2} + Sq^{4}Sq^{4} + Sq^{7}Sq^{1} = 0.$$

Such a φ can be chosen so that $\Gamma_3 = \varphi \circ Sq^1$ modulo total indeterminacies by [1]. Thus $\Gamma_3(\alpha^{2^{s+1}+2^{s+7}})=0$ from stability and zero indeterminacy. We conclude that $\operatorname{In}(\psi)$ vanishes with zero indeterminacy on (3.9). Since $Sq^{2^s+4}\alpha^{2^{s+1}+11}=0$, Indet^{2^{s+1+8}}($RP^{\infty}; \psi$)=0 and the proof of 3.8 is complete.

4. Generating class theorems. Thomas formulates a "generating class theorem" for lifting a second-order k-invariant to the Thom complex and expressing it by means of a secondary operation applied to the Thom class in [Theorem 6.4, 29] and [Theorem 6.5, 30]. The proof of Theorem 1.4 in §5 uses the generating class theorem to express a third-order k-invariant by a tertiary operation so we state the following versions to cover that application. Let B_m and B denote BSO(m) and BSO, B Spin (m) and B Spin, or BO[8](m) and BO[8] where BSO, B Spin, and BO[8] are the 1, 3, and 7-connective coverings of BO. In the appendix Postnikov resolutions are constructed for the fiber map $\pi: B_m \to B$ through dimensions $\leq t$ where π^* is surjective and m < t < 2m. Let T and U denote the Thom complex and Thom class of the universal bundle ξ over B and regard B as B_s for large s. Following the notation of [28], [29], [30], we let T_Y and U_Y denote the Thom complex and Thom class of $g^*\xi$ where $g: Y \to B$ is any map. Consider the following commutative diagram.

(4.1.)

$$\Omega C \xrightarrow{j} E_{2}$$

$$q_{2} \downarrow p_{2}$$

$$K(Z_{2}, m) \xrightarrow{i} E_{1} \xrightarrow{k_{1} \times k_{2} \times \cdots \times k_{r}} C$$

$$q_{1} \downarrow p_{1}$$

$$B_{m} \xrightarrow{\pi} B_{s} \xrightarrow{w_{m+1}} K(Z_{2}, m+1)$$

The classes $k_j \in H^{t_j}(E_1)$ for $t_j \leq t$ and $1 \leq j \leq r$ are the second-order k-invariants in

140

the resolution for π . Now $i^*k_1 = \alpha_1 \iota$ and $i^*k_2 = \beta_1 \iota$ for elements α_1, β_1 in A. Suppose there are relations in A

(4.2)
$$\alpha_1 S q^{m+1} + \sum_{j=2}^n \alpha_j \theta_j = 0,$$
$$\beta_1 S q^{m+1} + \sum_{j=2}^n \beta_j \theta_j = 0$$

where $\theta_j U=0$ and degree $(\alpha_j)>0$, degree $(\beta_j)>0$ for $1 < j \le n$. Let Ω denote any secondary operation associated to the relations (4.2) and let C represent the coset in $H^{s+t_1}(T_B) \oplus H^{s+t_2}(T_B)$ of the indeterminacy subgroup of Ω such that $(T\pi)^*C$ $= \Sigma^{s-m}\Omega(U_{B_m})$. Define K to be the coset of the pair (k_1, k_2) in $H^{t_1}(E_1) \oplus H^{t_2}(E_1)$ with respect to the subgroup

(kernel $i^* \cap$ kernel $q_1^* \cap H^{t_1}(E_1)$) \oplus (kernel $i^* \cap$ kernel $q_1^* \cap H^{t_2}(E_1)$).

With these assumptions the generating class theorem states

PROPOSITION 4.3. There is a class $(\hat{k}_1, \hat{k}_2) \in K$ and a class $(c_1, c_2) \in H^{t_1}(B) \oplus H^{t_2}(B)$ such that $U \cdot (c_1, c_2) \in C$ and $U_{E_1} \cdot ((\hat{k}_1, \hat{k}_2) + p_1^*(c_1, c_2)) \in \Omega(U_{E_1})$.

The proof of (4.3) is essentially given in [27] and [29] and so is omitted. Let X be a complex of dimension $\leq t$ and $f: X \to B$ a map with $f^*w_{m+1} = 0$. Thus f classifies a bundle ρ over X and one defines $(k_1, k_2)(\rho) = \bigcup_g (g^*k_1, g^*k_2)$, the union being over all liftings $g: X \to E_1$ of f. Recall from [28] there are classes $\hat{\alpha}_1$ and $\hat{\beta}_1$ in A(B) such that $\mu(k_1) = \hat{\alpha}_1(\iota \otimes 1)$ in $H^{t_1}(K(Z_2, m) \times E_1, E_1), \ \mu(k_2) = \hat{\beta}_1(\iota \otimes 1)$ in $H^{t_2}(K(Z_2, m) \times E_1, E_1)$. Thus $(k_1, k_2)(\rho)$ is a coset of $\operatorname{Indet}^{t_1, t_2}(X; K) = (\hat{\alpha}_1, \hat{\beta}_1) \cdot H^*(X) \cap (H^{t_1}(X) \oplus H^{t_2}(X))$.

COROLLARY 4.4. Suppose the indeterminacy of $\Omega(U_{\rho}) = U_{\rho} \cdot \text{Indet}^{t_1, t_2}(X; K)$. Suppose also that $g^*(\hat{k}_1, \hat{k}_2) = g^*(k_1, k_2)$ for any (\hat{k}_1, \hat{k}_2) in K and any lifting $g: X \to E_1$ of f. Then

$$U_{\rho} \cdot ((k_1, k_2)(\rho) + f^*(c_1, c_2)) = \Omega(U_{\rho})$$

as cosets in $H^{s+t_1}(T_X) \oplus H^{s+t_2}(T_X)$.

In diagram (4.1) the map $p_2: E_2 \to E_1$ is a principal fibration classified by the cohomology vector (k_1, \ldots, k_r) where $C = \times_{i=1}^r K(Z_2, t_i)$. Assume now that K consists only of (k_1, k_2) and that Ω can be chosen so $U_{E_1} \cdot (k_1, k_2) \in \Omega(U_{E_1})$. Let ι_j denote the fundamental class of $\Omega K(Z_2, t_j)$ in ΩC for $1 \le j \le r$. Let $k \in H'(E_2)$ be a third-order k-invariant for π (so $r \le t$) such that $j * k = \gamma_1 \iota_1 + \gamma_2 \iota_2$ where γ_1 and γ_2 are in A. Suppose $\Omega' = (\Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5)$ is a 5-valued stable secondary operation where Ω_1 and Ω_2 are the component operations belonging to Ω and the

degree of $\Omega_i \leq$ the connectivity of *B* for $3 \leq i \leq 5$. Thus $(k_1, k_2, 0, 0, 0) \in \Omega'(U_{E_1})$. Assume also the following relation holds.

(4.5)
$$\gamma_1\Omega_1 + \gamma_2\Omega_2 + \gamma_3\Omega_3 + \gamma_4\Omega_4 + \gamma_5\Omega_5 = 0.$$

Let ψ be a tertiary operation associated to relation (4.5). Let D denote the coset of the indeterminacy subgroup of ψ in $H^*(T_B)$ such that $\sum^{s-m} \psi(U_{B_m}) = (T\pi)^* D$ and let K' be the coset of k with respect to the subgroup kernel $j^* \cap$ kernel $q_2^* \cap H^r(E_2)$. Under these assumptions the generating class theorem states

PROPOSITION 4.6. There is a class \hat{k} in K' and a class d in $H^r(B)$ such that $U \cdot d \in D$ and $U_{E_2} \cdot (\hat{k} + (p_1 \circ p_2)^* d) \in \psi(U_{E_2})$.

Proposition 4.6 is easily proved by applying the arguments of [27], [29], and [30]. See also [9]. An application of (4.6) is also given in [23].

5. Proofs of immersion theorems.

Proof of Theorem 1.1. Write 2n = 4t + 6 and refer to Postnikov resolution I in the appendix. Let $v: \mathbb{C}P^n \to B$ Spin classify the stable normal bundle v of $\mathbb{C}P^n$ Now

$$\overline{w}_{2j}(CP^n) = \binom{n+j}{j}\beta^j$$

so $w_{4t+2}(v)=0$ and $w_{4t+4}(v)=0$. The indeterminacy of $k_4(v)=Sq^2H^{4t+2}(CP^n)$ = $H^{2n-2}(CP^n)$ so v lifts to B Spin (4t+1) iff v lifts to E_2 iff $k_2(v)=0$. Let Ω denote a stable secondary operation associated to the relation

$$(Sq^2Sq^1)Sq^{4t+2} + Sq^1Sq^{4t+4} + Sq^{4t+4}Sq^1 = 0$$

and chosen so that it vanishes on classes of dimension $\langle 4t+2$ (see [2]). Applying the generating class theorem [30, Theorem 6.5] gives $U_v \cdot k_2(v) = \Omega(U_v)$ since the indeterminacy of $k_2(v) = 0$ = the indeterminacy of $\Omega(U_v)$. Here U_v is the Thom class of the Thom complex T(v).

The order of $J(\eta)$ in $J(CP^n)$ is the Atiyah-Todd number M_{n+1} by [31]. Set $s = M_{n+1} - (n+1)$. Since 2^n divides M_{n+1} , it follows that

$$\binom{s}{2^r} = 1$$
 iff $\binom{n}{2^r} = 0$ for $0 \le r < n$.

Write s = ha + c where c < n and a is the smallest power of 2 greater than n. Atiyah-James duality for projective spaces in [5] states that an S-dual for CP^n is the space $X = CP^m/CP^{s-1} = T(s\eta)$ for $s\eta$ based on CP^{m-s} where m = s + n - 1. Identify the generator of $H^{2s}(X)$ with β^s under the collapsing map $CP^m \to X$ and the standard embedding $CP^m \to CP^\infty$. Since $\alpha(c+n-1) > \alpha(c)$, Proposition 3.2 states that

$$\Omega(\beta^{s}) = \Phi(1, 2t+1)(\beta^{ha+c}) = {2c \choose 4t+4-a}\beta^{s+n-1}$$

But $\binom{2n-2}{a} = 1$ so $\binom{2c}{2n-2-a} = 0$ for $\alpha(n) > 2$. Thus $k_2(v) = 0$ and the result follows by Hirsch [12]. Note for $\alpha(n) = 2$ that

$$\binom{2c}{4t+4-a} = \binom{2}{0} = 1$$

which gives a nonimmersion result of [3].

Proof of Theorem 1.3. Refer to Postnikov resolution II in the appendix. Write n=8t+12 and let $\gamma: \mathbb{RP}^n \to BSO$ classify the bundle $\gamma=(16t+18)\xi$ over \mathbb{RP}^n . It suffices to show γ lifts to BSO(8t+5) by Proposition 2.1. Note that $w_{8t+6}(\gamma)=0$ and $w_{8t+8}(\gamma)=0$ from §2 so γ lifts to E_1 . The indeterminacy of $k_1^3(\gamma)=H^n(\mathbb{RP}^n)$ so γ lifts to BSO(8t+5) iff γ lifts to E_3 . $Sq^1k_2^1$ occurs in the defining relation for k_1^2 so $0 \in k_2^2(\gamma)$. Likewise, $Sq^1k_4^1$ occurs in the defining relation for k_2^2 so $0 \in k_2^2(\gamma)$. Thus any lifting of γ to E_2 can be altered through indeterminacies to produce a lifting of γ to E_3 .

We apply the technique of factoring a classifying map for an even multiple of the Hopf bundle over RP^n through complex projective space in order to determine the second-order k-invariants for γ . Set m=4t+6 and let $v: CP^m \rightarrow BSO$ classify the bundle $v = (8t+9)\eta$. We regard $\gamma = v \circ H: RP^n \rightarrow BSO$ where H is the Hopf map in §2. Trivially $k_1^1(v)=0$ and $k_3^1(v)=0$. Note that both $k_2^1(v)$ and $k_4^1(v)$ have zero indeterminacy. Choose a stable secondary operation φ associated to the relation

$$(Sq^2Sq^1)Sq^{8t+6} + Sq^1Sq^{8t+8} + Sq^{8t+8}Sq^1 = 0$$

so that φ vanishes on classes of dimension $\leq 8t+5$. The generating class theorem [29, Theorem 6.4] gives $\varphi(U_v) = U_v \cdot k_2^1(v)$. But $\varphi(U_v) = 2^{\alpha(t+1)-1}U_v \cdot \beta^{4t+4}$ by Proposition 3.3. Thus $k_2^1(v) \neq 0$ iff $\alpha(t+1)=1$ iff $n=2^r+4$ for $r \geq 4$. Let $g: CP^m \rightarrow E_1$ be any lifting for v and set $f=g \circ H$. Now $f^*(k_1^1, k_2^1, k_3^1)=(0, \alpha^{2^r}, 0)$ for $n=2^r+4$. The indeterminacy subgroup of $(k_1^1, k_2^1, k_3^1)(\gamma)$ is generated by $(\alpha^{2^r-1}, 0, \alpha^{2^r+1})$ and $(0, \alpha^{2^r}, \alpha^{2^r+1})$. So f cannot be altered to produce a lifting of γ to E_2 . That is, $RP^n \notin R^{2n-7}$ for $n=2^r+4$ and r>3.

Let $h: CP^{m+1} \to E_1$ be any lifting for the bundle v based on CP^{m+1} . The defining relation for k_3^2 gives $\beta^3 \cdot h^* k_2^1 + \beta \cdot h^* k_4^1 = 0$ in $H^{2m+2}(CP^{m+1})$. So $h^* k_2^1 = 0$ iff $h^* k_4^1 = 0$. It follows that $g^* k_2^1 = 0$ iff $g^* k_4^1 = 0$ for any lifting $g: CP^m \to E_1$ of v. Thus $f = g \circ H: RP^n \to E_1$ lifts to E_2 for $n \neq 2^r + 4$.

Proof of Theorem 1.4. We consider the case $n \equiv 8 \mod 16$. The proof for $n \equiv 0 \mod 16$ is similar and so is omitted. Write n = 16t + 8 and refer to Postnikov resolution III. Let $v: CP^m \to B$ Spin classify the bundle $v = (16t + 4)\eta$ for m = 8t + 4. Let $\gamma = v \circ H: RP^n \to B$ Spin classify the bundle $\gamma = (32t+8)\xi$ over RP^n . One checks easily that γ lifts to B Spin (16t - 1) if v lifts to E_2 . Now

$$w_{16t}(v) = \binom{16t+4}{8t}\beta^{8t} = 0$$

so v lifts to E_1 . The defining relation for k_1^2 gives $Sq^2k_1^1(v)=0$ so $k_1^1(v)=0$. The

defining relation for k_3^2 gives $Sq^4k_2^{1}(v)=0$. But $Sq^4\beta^{8t+6}=\beta^{8t+8}$ so that $k_2^{1}(v)=0$. It follows that v lifts to E_2 iff $k_4^{1}(v)=0$. We proceed to express by a secondary operation a class different from k_4^{1} but equal to k_4^{1} under pull-backs to CP^m . Consider the following commutative diagram.

Here $p: E \rightarrow B$ Spin is the principal fibration with classifying map

 $w_{16t} \times W$: B Spin $\rightarrow C = K(Z_2, 16t) \times K(Z_2, 16t+8)$

where W represents the class $w_4w_{16t+4} + w_6w_{16t+2} + w_4^2w_{16t}$ in $H^*(B \text{ Spin})$. Let ι_1 and ι_2 denote the fundamental classes of the components of ΩC . The following exact sequence holds for $j \leq 16t+15$ from [26].

$$0 \longrightarrow H^{j}(E) \xrightarrow{\nu^{*}} H^{j}(\Omega C \times B \operatorname{Spin}(16t-1)) \xrightarrow{\tau_{1}} H^{j+1}(B \operatorname{Spin}).$$

Regard k_4^1 as a class in $H^*(E)$ via r^* and recall that

$$\nu^* k_4^1 = Sq^8 Sq^1 \iota_1 \otimes 1 \otimes 1 + Sq^1 \iota_1 \otimes 1 \otimes w_8 + Sq^5 \iota_1 \otimes 1 \otimes w_4 + Sq^1 \iota_1 \otimes 1 \otimes w_4^2 + Sq^3 \iota_1 \otimes 1 \otimes w_6 + Sq^2 \iota_1 \otimes 1 \otimes w_7.$$

Now

$$\tau_1(1 \otimes Sq^1\iota_2 \otimes 1) = Sq^1W = \tau_1[Sq^1(Sq^4\iota_1 \otimes 1 \otimes w_4 + Sq^2\iota_1 \otimes 1 \otimes w_6)].$$

Let z be the unique class in $H^{16t+8}(E)$ for which

$$\nu^* z = Sq^8 Sq^1 \iota_1 \otimes 1 \otimes 1 + Sq^1 \iota_1 \otimes 1 \otimes w_8 + 1 \otimes Sq^1 \iota_2 \otimes 1 + Sq^1 \iota_1 \otimes 1 \otimes w_4^2.$$

Let y be the unique class in $H^{16t+7}(E)$ for which

$$\nu^* y = 1 \otimes \iota_2 \otimes 1 + Sq^2 \iota_1 \otimes 1 \otimes w_6 + Sq^4 \iota_1 \otimes 1 \otimes w_4.$$

Since $\nu^*(Sq^1y) = \nu^*(z+k_4^1)$, it follows that $k_4^1 = z + Sq^1y$. Choose a stable secondary operation Φ associated to the relation $(Sq^8Sq^1)Sq^{16t} + Sq^{16t+8}Sq^1 + Sq^{16t+7}Sq^2$ $+ Sq^1(Sq^{16t+4}Sq^4) = 0$ such that Φ vanishes on classes having dimension < 16t. Note that $Sq^{16t+4}Sq^4U = U \cdot W$ in $H^*(T_B_{\text{spin}})$. By [29, Theorem 6.4] $U_E \cdot (z+k') \in \Phi(U_E)$ for some class k' in $H^{16t+8}(E) \cap \text{kernel } j^* \cap \text{kernel } q^*$. It follows that $\Phi(U_v) = U_v \cdot z(v) = U_v \cdot k_4^1(v)$. Let δ denote the generator for $H^*(QP^{\infty})$ and ρ the Hopf line bundle over QP^{∞} . We regard δ^{8t+2} as the Thom class of the bundle $\zeta = (8t+2)\rho$ based on QP^{l} for large *l*. The highest power of 2 dividing the Chern class $c_{8t}(\zeta)$ is $2^{\alpha(t)}$ from §2. By Proposition 3.5

$$\Phi(U_{\zeta}) = 2^{\alpha(t)-1} Sq^{\mathsf{B}}(U_{\zeta} \cdot \delta^{4t}).$$

But $Sq^{8}\delta^{12t+2} = \delta^{12t+4}$ so $\Phi(\delta^{8t+2}) = 0$ iff $\alpha(t) > 1$ iff $n \neq 2^r + 8$. Naturality under the Hopf map $CP^{\infty} \to QP^{\infty}$ shows that $\Phi(\beta^{16t+4}) = 0$ iff $n \neq 2^r + 8$. Thus $k_4^1(v) = 0$ for $n \neq 2^r + 8$ from identifying U_v with β^{16t+4} . Since γ has a lifting $f \circ H$: $RP^n \to E_2$ where $f: CP^m \to E_2$ is a lifting for v, clearly $k_3^2(\gamma) = 0$ for $n \neq 2^r + 8$. One checks indeterminacies and defining relations to show that γ lifts to B Spin(16t-1) iff γ has a lifting to E_2 and $k_3^2(\gamma) = 0$. Thus γ lifts to B Spin(16t-1) and the result follows from (2.1) for $n \neq 2^r + 8$. For $n = 2^r + 8$ we express the obstruction $k_3^2(\gamma)$ by a tertiary operation.

We assume now that $n=2^r+8$ for r>3. The natural map $BO[8] \rightarrow B$ Spin induces a Postnikov resolution for the fiber map $\pi': BO[8](2^r-1) \rightarrow BO[8]$ from Postnikov resolution III for the map π . We denote the k-invariants for π' also by k_j^i and the spaces in the resolution by E_i . Thus k_2^1 in $H^*(E_1)$ has the defining relation $Sq^4Sq^1w_{2^r}=0$ in $H^*(BO[8])$ and k_3^2 has the defining relation $Sq^6k_1^1+Sq^4k_2^1$ =0 in $H^*(E_1)$. Since $Sq^2k_1^1=0$ and BO[8] is 7-connected, the coset K of (k_1^1, k_2^1) defined in §4 contains only (k_1^1, k_2^1) . Let $\Phi = (\Phi_1, \Phi_2)$ be the double secondary operation with component operations Φ_i chosen in (3.6). By Proposition 4.3

$$U_{E_1} \cdot (k_1^1, k_2^1) \in \Phi(U_{E_1}).$$

Let ψ be any tertiary operation associated to the relation (3.7).

By Proposition 4.6

$$U_{E_2} \cdot (\hat{k}_3^2 + (p_1 \circ p_2)^* P) \in \psi(U_{E_2}).$$

Here \hat{k}_3^2 belongs to the coset K' in (4.6) determined by k_3^2 , and P is a class in $H^{2^r+7}(BO[8])$ such that $U' \cdot P \in \psi(U')$ where U' denotes the Thom class of the universal bundle over $BO[8](2^r-1)$.

Let $h: RP^n \to E_2$ be any lifting for the map $\gamma: RP^n \to BO[8]$ classifying the bundle $\gamma = (2^{r+1}+8)\xi$. Now $h^*\hat{k}_3^2 = h^*k_3^2$ since $k_1^2(\gamma) = 0$ and $Sq^2Sq^1h^*k_2^2 = Sq^3h^*k_2^2$ =0. Clearly $P(\gamma) = 0$ so we conclude $U_{\gamma} \cdot k_3^2(\gamma) \in \psi(U_{\gamma})$.

Identify U_{γ} with $\alpha^{2^{r+1}+8}$ in $H^*(RP^{\infty})$ and apply Proposition 3.8 to give $k_3^2(\gamma) = 0$. Thus γ lifts to $BO[8](2^r-1)$ and the result follows by (2.1).

Proof of Theorem 1.6. Let $\gamma: \mathbb{R}P^n \to BSO$ classify the bundle $\gamma = 2p\xi = (2^{\phi(n)} - (n+1))\xi$. The argument that γ lifts to BSO(n-8) for $n \equiv 5 \mod 8$ and $\alpha(n) > 3$ is similar to the proof of Theorem 1.3 and so is omitted. We consider the case $n \equiv 1 \mod 8$ and $\alpha(n) > 3$. Write n = 8t + 9 and refer to Postnikov resolution IV. By (2.1) it suffices to show γ lifts to BSO(8t+1). Let $v: \mathbb{C}P^m \to BSO$ classify the bundle $v = p\eta$ where m = 4t + 4. One checks easily that γ lifts to BSO(8t+1) iff $k_4^2(\gamma) = 0$. Clearly $k_4^2(\gamma) = 0$ if v lifts to E_2 . Note that v and hence γ lift to E_1 by §2.

Let $h: CP^{m+1} \to E_1$ be a lifting for the bundle v based on CP^{m+1} . The defining relation for k_4^2 gives $\beta \cdot Sq^4(h^*k_2^1) = 0$ in $H^{2m+2}(CP^{m+1})$. But $Sq^4\beta^{4t+2} = \beta^{4t+4}$ so $h^*k_2^1 = 0$. Thus $k_2^1(v) = 0$ and v lifts to E_2 iff $k_5^1(v) = 0$. Consider the following commutative diagram.

Here $p: E \rightarrow BSO$ is the principal fibration with classifying map

$$w_{8t+2} \times w_{8t+4} \times w_{8t+8} \times W: BSO \rightarrow C$$

where W represents the class $w_2 w_{8t+6} + w_3 w_{8t+5} + w_2^2 w_{8t+4}$ in $H^*(BSO)$. The following exact sequence from [26] holds for $j \leq 8t+15$

$$0 \longrightarrow H^{j}(E) \xrightarrow{\nu^{*}} H^{j}(\Omega C \times BSO(8t+1)) \xrightarrow{\tau_{1}} H^{j+1}(BSO).$$

Let ι_i for $1 \leq j \leq 4$ denote the fundamental classes of the components of ΩC . Now

 $v^*k_5^1 = 1 \otimes 1 \otimes Sq^1\iota_3 \otimes 1 \otimes 1$ +1 \otimes Sq^4Sq^1\iota_2 \otimes 1 \otimes 1 + 1 \otimes Sq^1\iota_2 \otimes 1 \otimes 1 \otimes w_4 +1 \otimes Sq^2Sq^1\iota_2 \otimes 1 \otimes 1 \otimes w_2 + Sq^1(1 \otimes Sq^2\iota_2 \otimes 1 \otimes 1 \otimes w_2).

Let y be the unique class in $H^{8t+7}(E)$ such that

$$\nu^* y = 1 \otimes 1 \otimes 1 \otimes \iota_4 \otimes 1 + 1 \otimes Sq^2 \iota_2 \otimes 1 \otimes 1 \otimes w_2 + 1 \otimes Sq^1 \iota_2 \otimes 1 \otimes 1 \otimes w_3.$$

Define z in $H^*(E)$ so that

 $\nu^* z = 1 \otimes 1 \otimes Sq^1 \iota_3 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes 1 \otimes Sq^1 \iota_4 \otimes 1$ $+ 1 \otimes Sq^4 Sq^1 \iota_2 \otimes 1 \otimes 1 \otimes 1 + 1 \otimes Sq^1 \iota_2 \otimes 1 \otimes 1 \otimes w_4$ $+ 1 \otimes Sq^2 Sq^1 \iota_2 \otimes 1 \otimes 1 \otimes w_2.$

Thus $k_5^1 = z + Sq^1y$ since $\nu^*(Sq^1y) = \nu^*(z+k_5^1)$.

By [2] we can select a secondary operation Γ associated to the relation

$$(Sq^{4}Sq^{1})Sq^{8t+4} + Sq^{1}Sq^{8t+8} + Sq^{1}(Sq^{8t+6}Sq^{2}) + Sq^{8t+8}Sq^{1} = 0$$

so that $\lambda Sq^2x \cdot Sq^3x \in \Gamma(x)$ for any class x of dimension 8t+3 in the domain of Γ

and such that $\lambda \in Z_2$ is independent of x. Note that $Sq^{8t+6}Sq^2U = U \cdot W$ in $H^*(T_{BSO})$. The generating class theorem [30, Theorem 6.5] gives the result

$$U_E \cdot (z+k') \in \Gamma(U_E)$$

for some class k' in $H^{8t+8}(E) \cap \text{kernel } j^* \cap \text{kernel } q^*$. It follows that $\Gamma(U_v) = U_v \cdot z(v) = U_v \cdot k_5^1(v)$. One checks from §2 that the highest power of 2 dividing $c_1(v)$ is 2, dividing $c_{4t+2}(v)$ is $2^{\alpha(n)-2}$, and dividing $c_{4t+4}(v)$ is $2^{\alpha(n)-1}$. By Proposition 3.4

$$\Gamma(U_v) = 2^{\alpha(n)-3}U_v \cdot \beta^{4t+4}$$

Thus $k_5^1(v) = 0$ for $\alpha(n) > 3$ so v lifts to E_2 and the proof is complete.

6. Appendix. These Postnikov resolutions for the fiber map $\pi: B_m \to B$ are constructed by the techniques of [26]. We refer the reader also to [17] and [8] for the theory and construction of modified Postnikov resolutions. The homotopy groups of the fibers for π appear in [13] and [22]. The tower of spaces is displayed only for resolution I. The k-invariant k_j^i represents a class in $H^*(E_i)$ whose defining relation is a relation in $H^*(E_{i-1})$ where $E_0 = B$.

6.1. Postnikov resolution I for the fibration π : B Spin $(4t+1) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 4t+6$ for t>1. K(n) denotes $K(\mathbb{Z}_2, n)$.

$$B \operatorname{Spin}(4t+1)$$

$$\downarrow q_{3}$$

$$E_{3}$$

$$\downarrow p_{3}$$

$$\downarrow p_{2}$$

$$K(4t+4)$$

$$\downarrow p_{2}$$

$$E_{1} \xrightarrow{k_{1} \times k_{2} \times k_{3}} K(4t+3) \times K(4t+4) \times K(4t+5)$$

$$\downarrow p_{1}$$

$$B \operatorname{Spin} \xrightarrow{w_{4t+2} \times w_{4t+4}} K(4t+2) \times (K(4t+4).$$

Defining relations for k-invariants:

$$k_1: Sq^2 w_{4t+2} = 0,$$

$$k_2: (Sq^2Sq^1) w_{4t+2} + Sq^1 w_{4t+4} = 0,$$

$$k_3: (Sq^4 + w_4) w_{4t+2} + tSq^2 w_{4t+4} = 0,$$

$$k_4: Sq^2 k_1 + Sq^1 k_2 = 0.$$

6.2. Postnikov resolution II for the fibration $\pi: BSO(8t+5) \rightarrow BSO$ for stable

orientable bundles over complexes of dimension $\leq 8t+13$ for t>0. Defining relations for k-invariants:

$$\begin{aligned} &k_1^0 = w_{8t+6}, \\ &k_2^0 = w_{8t+8}, \\ &k_1^{1:} (Sq^2 + \cdot w_2) w_{8t+6} = 0, \\ &k_1^{1:} (Sq^2 + \cdot w_2) Sq^1 w_{8t+6} + Sq^1 w_{8t+8} = 0, \\ &k_1^{3:} (Sq^4 + \cdot w_4) w_{8t+6} + Sq^2 w_{8t+8} = 0, \\ &k_1^{3:} (Sq^4 + \cdot w_4 + \cdot w_2^2) Sq^1 w_{8t+8} + Sq^1 (w_2 \cdot Sq^2) w_{8t+8} = 0, \\ &t \text{ even } k_1^{5:} (Sq^8 + \cdot w_8) w_{8t+6} + w_6 \cdot w_{8t+8} = 0, \\ &t \text{ odd } k_1^{5:} (Sq^8 + \cdot w_8) w_{8t+6} + (Sq^6 + w_4 \cdot Sq^2 + w_2 \cdot Sq^4) w_{6t+8} = 0, \\ &k_1^{2:} (Sq^2 + \cdot w_2) k_1^1 + Sq^1 k_2^1 = 0, \\ &k_2^{2:} Sq^1 k_4^1 + (Sq^2 Sq^3 + \cdot w_5) k_2^1 + Sq^2 (w_2 \cdot Sq^1 k_2^1) = 0, \\ &k_3^{2:} (Sq^2 + \cdot w_2) k_4^1 + (Sq^2 Sq^3 + w_2 \cdot Sq^2 Sq^1 + \cdot w_5) k_3^1 \\ &+ Sq^1 (w_2 \cdot Sq^2 k_3^1) + Sq^4 (k_1^1 \cdot w_3) \\ &+ (Sq^7 + Sq^4 Sq^2 Sq^1 + w_4 \cdot Sq^2 Sq^1 + w_6 \cdot Sq^1 + w_2^2 \cdot Sq^2 Sq^1 + \cdot w_3 w_2^2) k_1^1 \\ &+ k_1^1 \cdot Sq^3 w_4 + (Sq^4 + Sq^3 Sq^1) (k_2^1 \cdot w_2) \\ &+ (Sq^6 + w_4 \cdot Sq^2 + w_3 \cdot Sq^2 Sq^1 + \cdot w_6 + \cdot w_3^2 + \cdot w_3^2) k_2^1 \\ &+ Sq^1 (k_2^1 \cdot w_2 w_3) = 0, \\ &k_3^{3:} Sq^1 k_2^2 + Sq^3 (k_1^2 \cdot w_2) + (Sq^2 Sq^3 + w_2 \cdot Sq^2 Sq^1 + w_2^2 \cdot Sq^1 + \cdot w_5) k_1^2 = 0. \end{aligned}$$

6.3. Postnikov resolution III for the fibration $\pi: B \operatorname{Spin}(16t-1) \to B \operatorname{Spin}$ for stable spin bundles over complexes of dimension $\leq 16t+8$ for t>0.

Defining relations for k-invariants:

$$\begin{split} k_1^0 &= w_{16t}, \\ k_1^1 \colon Sq^2 Sq^1 w_{16t} = 0, \\ k_2^1 \colon (Sq^4 + \cdot w_4) Sq^1 w_{16t} = 0, \\ k_3^1 \colon (Sq^4 + \cdot w_4) Sq^2 w_{16t} = 0, \\ k_4^1 \colon (Sq^8 + \cdot w_8) Sq^1 w_{16t} + Sq^1 (w_4 \cdot Sq^4 + w_6 \cdot Sq^2 + \cdot w_4^2) w_{16t} = 0, \\ k_1^2 \colon Sq^2 k_1^1 = 0, \\ k_2^2 \colon Sq^2 Sq^1 k_1^1 + Sq^1 k_1^2 = 0, \\ k_3^2 \colon (Sq^6 + \cdot w_6) k_1^1 + (Sq^4 + \cdot w_4) k_2^1 = 0, \\ k_4^2 \colon (Sq^4 + Sq^3 Sq^1 + \cdot w_4) k_3^1 + (Sq^6 + \cdot w_6) Sq^1 k_1^1 + (w_4 \cdot Sq^1) k_2^1 = 0, \\ k_5^2 \colon Sq^1 k_4^1 + (Sq^7 + Sq^4 Sq^2 Sq^1) k_1^1 = 0, \\ k_3^3 \colon Sq^2 k_1^2 + Sq^1 k_2^2 = 0, \\ k_3^3 \colon Sq^1 k_5^2 + Sq^4 Sq^1 k_2^2 = 0, \\ k_4^3 \colon Sq^1 k_5^2 + Sq^4 Sq^1 k_2^2 = 0, \\ k_4^3 \colon Sq^1 k_5^2 + Sq^4 Sq^3 k_3^1 = 0. \end{split}$$

6.4. Postnikov resolution IV for the fibration π : $BSO(8t+1) \rightarrow BSO$ for stable orientable bundles over complexes of dimension $\leq 8t+9$ for t>1.

Defining relations for k-invariants:

1970]

 $k_1^0 = w_{8t+2} k_2^0 = w_{8t+4} k_3^0 = w_{8t+8}$ $k_1^1: (Sq^2 + \cdot w_2)w_{8t+2} = 0,$ $k_2^1: (Sq^2 + \cdot w_2)Sq^1w_{8t+2} + Sq^1w_{8t+4} = 0,$ $k_3^1: (Sq^4 + \cdot w_4)w_{8t+2} + w_2 \cdot w_{8t+4} = 0,$ $k_{4}^{1}: (Sq^{4} + \cdot w_{4})w_{8t+4} = 0,$ $k_5^1: Sq^1w_{8t+8} + (Sq^4 + \cdot w_4)Sq^1w_{8t+4} + (w_2 \cdot Sq^2Sq^1)w_{8t+4}$ $+ Sq^{1}(w_{2} \cdot Sq^{2})w_{8t+4} = 0,$ t even $k_6^1: (Sq^8 + w_8)w_{8t+2} + w_2 \cdot w_{8t+8} + (w_4 \cdot Sq^2 + w_6 + w_2w_4)w_{8t+4} = 0$, $t \text{ odd } k_{8}^{1}: (Sq^{8} + \cdot w_{8})w_{8t+2} + Sq^{2}w_{8t+8} + (w_{4} \cdot Sq^{2} + \cdot w_{6} + \cdot w_{2}w_{4})w_{8t+4} = 0,$ $k_7^1: (Sq^4 + \cdot w_4)(Sq^2 + \cdot w_2)w_{8t+4} + Sq^2w_{8t+8} = 0,$ $k_1^2: (Sq^2 + \cdot w_2)k_1^1 + Sq^1k_2^1 = 0.$ $k_{2}^{2}: Sa^{1}k_{5}^{1} + Sa^{1}(w_{2} \cdot Sa^{2})k_{2}^{1} + (Sa^{2}Sa^{3} + w_{2} \cdot Sa^{2}Sa^{1} + \cdot w_{5})k_{2}^{1} = 0,$ k_{3}^{2} ; $k_{4}^{1} \cdot w_{2} + (Sq^{6} + w_{6})k_{1}^{1} + (Sq^{4} + Sq^{3}Sq^{1} + w_{2} \cdot Sq^{2} + w_{3} \cdot Sq^{1} + w_{4} + w_{2}^{2})k_{3}^{1}$ $+Sa^{2}(k_{2}^{1} \cdot w_{3}) + (w_{2} \cdot Sa^{3} + w_{2} \cdot Sa^{2}Sa^{1} + w_{4} \cdot Sa^{1} + w_{2}^{2} \cdot Sa^{1})k_{2}^{1} = 0,$ $k_4^2: (Sq^2 + \cdot w_2)Sq^1k_4^1 + Sq^2Sq^1(k_3^1 \cdot w_2)$ $+(Sq^2Sq^3+w_2\cdot Sq^3+w_2^2\cdot Sq^1+\cdot w_2w_3)k_3^1$ $+(Sq^{6}+w_{2}\cdot Sq^{4}+w_{4}\cdot Sq^{2}+\cdot w_{6}+\cdot w_{3}^{2})k_{2}^{1}+Sq^{3}(k_{2}^{1}\cdot w_{3})$ $+ Sq^4(k_1^1 \cdot w_3) + (w_2^2 \cdot Sq^1)(k_1^1 \cdot w_2)$ $+(w_2 \cdot Sq^2Sq^3 + Sq^7 + Sq^4Sq^2Sq^1 + w_4 \cdot Sq^2Sq^1$ $+ w_6 \cdot Sq^1 + \cdot w_7 + \cdot w_3 w_4 k_1^1 = 0,$ $k_1^3: Sq^1k_2^2 + Sq^1(w_2 \cdot Sq^2)k_1^2 + (Sq^2Sq^3 + w_2 \cdot Sq^2Sq^1 + \cdot w_5)k_1^2 = 0.$

6.5. Postnikov resolution V for the fibration $\pi: B$ Spin $(16t+7) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leq 16t+16$ for t>0.

Defining relations for k-invariants:

$$\begin{aligned} k_1^0 &= w_{16t+8}, \qquad k_2^0 &= w_{16t+16}, \\ k_1^1 : Sq^2 Sq^1 w_{16t+8} &= 0, \\ k_2^1 : (Sq^4 + \cdot w_4) Sq^1 w_{16t+8} &= 0, \\ k_3^1 : (Sq^8 + \cdot w_8) w_{16t+8} &= 0, \\ k_4^1 : (Sq^4 + \cdot w_4) Sq^2 w_{16t+8} &= 0, \\ k_5^1 : (Sq^8 + \cdot w_8) Sq^1 w_{16t+8} + Sq^1 w_{16t+16} \\ &\quad + Sq^1 (w_4 \cdot Sq^4 + w_6 \cdot Sq^2 + \cdot w_4^2) w_{16t+8} &= 0, \\ k_1^u : Sq^2 k_1^1 &= 0, \\ k_2^u : Sq^2 Sq^1 k_1^1 + Sq^1 k_2^1 &= 0, \\ k_3^2 : (Sq^6 + \cdot w_6) k_1^1 + (Sq^4 + \cdot w_4) k_2^1 &= 0, \\ k_4^2 : (Sq^4 + Sq^3 Sq^1 + \cdot w_4) k_4^1 + Sq^5 k_2^1 + (Sq^7 + Sq^6 Sq^1 + \cdot w_7) k_1^1 &= 0, \\ k_5^2 : Sq^1 k_5^1 + Sq^4 Sq^1 k_2^1 + Sq^7 k_1^1 &= 0, \\ k_1^3 : Sq^2 k_1^2 + Sq^2 Sq^3 k_2^2 &= 0, \\ k_1^3 : Sq^1 k_2^2 + Sq^2 Sq^3 k_1^3 &= 0. \end{aligned}$$

References

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530.

2. J. Adem, Sobre operaciones cohomologicas secundarias, Bol. Soc. Mat. Mexicana (2) 7 (1962), 95-110. MR 29 #5243.

3. J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53-78. MR 29 #5255.

4. ——, Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana (2) 9 (1964), 37-50. MR 32 #461.

5. M. Atiyah, *Thom complexes*, Proc. London Math. Soc. (3) **11** (1961), 291-310. MR **24** #A1727.

6. S. Feder, Non-immersion theorems for complex and quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 62–67. MR 38 #721.

7. S. Gitler, The projective Stiefel manifolds. II: Applications, Topology 7 (1968), 47-53. MR 36 #3373b.

8. S. Gitler and M. Mahowald, *Geometric dimension of real stable vector bundles*, Bol. Soc. Mat. Mexicana (2) **11** (1966), 85–107. MR **37** #6922.

9. ——, The immersion of manifolds, Bull. Amer. Math. Soc. 73 (1967), 696-700. MR 35 #4940.

10. S. Gitler, M. Mahowald and R. J. Milgram, Secondary cohomology operations and complex vector bundles, Proc. Amer. Math. Soc. 22 (1969), 223-229.

11. — , The nonimmersion problem for RP^n and higher-order cohomology operations, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 432–437. MR 37 #3581.

12. M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980.

13. C. S. Hoo and M. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661-667. MR 31 #1675.

14. A. Hughes and E. Thomas, A note on certain secondary cohomology operations, Bol. Soc. Mat. Mexicana (1) 13 (1968), 1-17.

15. D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821.

16. I. M. James, On the immersion problem for real projective spaces, Bull. Amer. Math. Soc. 69 (1963), 231-238. MR 26 #1900.

17. M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349. MR 28 #620.

18. — , Some Whitehead products in Sⁿ, Topology 4 (1965), 17-26. MR 31 #2724.

19. M. Mahowald and F. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377. MR 28 #612.

20. C. R. F. Maunder, Cohomology operations of the Nth kind, Proc. London Math. Soc. (31) 13 (1963), 125-154. MR 35 #2279.

21. R. J. Milgram, *Immersing projective spaces*, Ann. of Math. (2) **85** (1967), 473-482. MR **35** #2293.

22. G. Paechter, The groups $\pi_r(V^{n,m})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249–268. MR 24 #A1725.

23. A. D. Randall, Some immersions of manifolds (to appear)

24. B. Sanderson, *Immersions and embeddings of projective spaces*, Proc. London Math. Soc. (3) 14 (1964), 137-153. MR 29 #2814.

25. J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232. MR 15, 643.

26. E. Thomas, Seminar on fiber spaces, Lecture Notes in Math., no. 13, Springer-Verlag, Berlin, 1966. MR 34 #3582.

27. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184-217. MR 35 #1029.

28. ——, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183–1205. MR 35 #1030.

29. ——, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86-110. MR 35 #6158.

30. ——, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225-244. MR 38 #2804.

31. G. Walker and J. F. Adams, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103. MR 30 #1516.

University of Notre Dame, Notre Dame, Indiana