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1. Introduction. In this paper we obtain some results on the classical problem

of immersing projective spaces into Euclidean space. Let ain) denote the number

of l's appearing in the dyadic expansion of n. We prove the following

Theorem 1.1. CPn immerses in /?4n "5 for n odd and ain) > 2.

Applying Theorem 4 of [6] with Theorem 1.1 gives

Corollary 1.2. CPn has a best possible immersion in Rin~5 for n = 2r + 2s + 1

with r>s>0.

Theorem 1.3. RPn immerses in R2""7 for n = A mod 8 and ain) > 2.

We remark that the proof of (1.3) also shows RPn does not immerse in Z?2"-7 for

w = 2r + 4 with r>3, a result of [7].

Theorem 1.4. RPn immerses in R2n~9 for n = 0 mod 8 and n not a power of 2.

Corollary 1.5. RPn immerses in R2n'4a(n)"1 for n = 2T + 2s with r>s>2.

It follows from [4] that RPn does not immerse in R2"-11 for « = 2r + 8 and r> 3.

Theorem 1.6. RPn immerses in R2n'8for n= 1 mod 4 and ain) > 3.

Adem and Gitler showed in [4] and [7] that RPn has a best possible immersion

in R2n'i for n=X mod 4 and <*(«) = 3.

These results are interesting only for small values of a(«) due to Milgram's

construction of linear immersions in [21]. The method of proof consists of ex-

pressing certain obstructions to the lifting of an appropriate map by Adams-

Maunder operations and then evaluating these operations in projective space.

The author wishes to express his gratitude to his advisor, Professor Emery Thomas,

and to the Centro de Investigación y de Estudios Avanzados del IPN, Mexico.

2. Preliminaries. The coefficient group for singular cohomology is understood

to be Z2 whenever omitted. We let a e H\RP°°) and ß e H2iCPm) denote generators

for the cohomology rings. Let Ak denote the vector subspace of the mod 2 Steenrod

algebra A consisting of homogeneous elements of degree k. If aik + s)>ais),
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Akias) = 0. A standard fact in number theory states that the highest power of 2

dividing a binomial coefficient (rts) is 2a<r) + a(s)~a(r + s). Let £ and r¡ denote the

Hopf line bundles over RPm and CP°°. The Thorn complex TimÇ) is homeo-

morphic to the stunted projective space RPm + sjRPm for mi based on RPS. Tirrj)

is homeomorphic to CPr + sjCPr for rv based on CPS. The Hopf map H: RPW -> CP°°

gives the real bundle equation H*t¡ = 2^.

Wimt) = 2 (™)«s.

We refer to [15] and [3] for these facts. In [4] Adem and Gitler prove for n>8

Proposition 2.1. RPn immerses in Rn + k iff in + k-+ 1)£ has n+l independent

nonzero sections iff (2",<n) —(n+l))| has 2v(n) — in + k + 1 ) independent nonzero

sections.

3. Cohomology operations in projective space. In [3] Adem and Gitler formulate

an algorithm for computing a family of stable secondary cohomology operations

in complex projective space. Let p(r, s) denote the following relation in A for any

positive integers r and 5:

r- 1

(3.1) iSq^Sq^Sq2'3-^ 2 Sq2'(s + 1> + 1-2'Sq2'-r-sSq'Sq2'^*1) = 0.
i = 0

A straightforward generalization of Theorem 8.2 in [4] is the following

Proposition 3.2 Let d>(r, s) denote any stable secondary operation associated to

p(r, s). Let a = 2t be such that ag2r(i+ l)<2a. Let c be any integer such that c<s

and tt(c+J+ l)>a(c). For m = ha + 2r~1c with h>0, <!>(/, s) is defined on ß™ and

with zero indeterminacy

a>(r,5)(J8») = A(2r(j^)_ij)r+2'-1<'+»

The proof of (3.2) is essentially given in [3] and [4] and so is omitted.

In [10] Gitler, Mahowald, and Milgram show that many secondary operations

defined on the Thorn class of a complex vector bundle measure the divisibility by 2

of its Chern classes. Applications of their argument yield the following results.

Proposition 3.3. Let 01 denote a complex bundle over a complex X such that

c2t + 1iw) = 2x for x in Hit + 2iX;Z) and c2( + 2(a/) = 2v for y in Hit + \X;Z). A

secondary operation 95 associated to the relation

iSq2Sq1)Sqit + 2 + Sq1Sqit + i + Sqit + 1Sq1 = 0

can be chosen independently of ui so that

Sq2iUa-x)+Ua-ye<piUJ.



1970] IMMERSION THEOREMS FOR PROJECTIVE SPACES 137

Proposition 3.4. Let p denote a complex bundle over a complex X such that

Cu+2Íp) = 2x, cit + 3ip) = 2y, cit + iip) = 2z for classes x, y, and z in H*iX;Z). A

secondary operation Y associated to the relation

iSqiSq1)Sqet + i + Sq1SqBt + B + Sq1iSq8t + 6Sq2) + Sq8t + 8Sq1 = 0

can be chosen independently of p so that

U0-iz+yw2ip) + x-w22iP)) + Sq\U0-x)eYiU0).

Proposition 3.5. Let w denote a complex bundle over a complex X such that

C!(cu) = 0, w4(cu) = 0, and c8i(cu) = 2.v for x in Hle\X; Z). Let O denote a secondary

operation associated to the defining relation

iSq8Sq1)Sqlet + Sq16t + 8Sq1 + Sq18t + 7Sq2 + Sq1iSq16t + iSqi) = 0   for t > 0.

Then <I> can be chosen independently of to so that Sq8iU<0-x) e <P(t/M).

Remark, mod 2 reduction of integral classes is understood whenever applicable

in the above propositions. The proofs involve direct applications of the argument

given in [10]. We give only the proof of (3.5).

Proof of 3.5. Consider the following diagram.

Ssr(co) - '-* MSUin)     Un   > KiZ, 2»)

Here p is the principal fibration induced from the universal example for the

operation 0 on integral classes of dimension 2« for large n by the Thorn class

Un: MSUin) ^ KiZ, 2n).   Now p*iUn-cm) = 2e1   for  some  el   in   7/*(£(2k);Z)

since Sq16tUn= Un-w16t. One notes thatj*?! mod 2 = Sî71i1 ® 1 ® 1 ® 1 where

F = KiZ2, 2n+X6t- 1)x A(Z2, 2n+ 16/+ 7)x AYZ2, 2n+ 1)x K\Z2, In)

is the fiber oí p. (See [10].) Similarly,

P*[Cn-ic2CBt + 2 + c3cai+i + cicBt)] = 2e2

for some integral class e2 and j*e2 mod 2=1® 5'c71i2 ® 1 (g> 1. Let e3 and e4 be

classes in 7/*(£'(2n)) such that/*e3=l ® 1 (g) i3 (g> 1 andj*<?4=l ® 1 ® 1 ® i4.

We now choose O so that d> vanishes on classes of dimension g 16/ —2. This is

possible by [2] and [14]. It follows that

Sq8d + e2 + Sq16t + 7e3 + Sqlet + %

is the representative for this choice of (¡> in  /7*(£(2«)).   Let /: X ^ BSUiri)
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classify the bundle u>©s where n — s is the fiber dimension of cu. T(/) is the

natural map induced by/between the Thorn complexes. Thus,

v-cptt/J = *(£»£/„)

= U g*iSqse1 + e2 + Sq18t + 7e3 + Sql6t+ *et)
9

= {Jg*iSq8ei + e2)
9

where g ranges over all liftings of 7"(/). Since the Chern classes c2(cu), c8((cu),

c8(+1(oj), and c8[+2(o;) are divisible by 2, it follows that Sq8iUmx)e fl>(t/ra).

The proof of Theorem 1.4 uses a tertiary cohomology operation which we

define here and evaluate in real projective space. Consider the following relations

and associated secondary operations for i>3:

<bi:iSq2Sqx)Sq2'-+Sq2¡ + 2Sq1 = 0,

®a:iSkfSq1)Sq*t+Sqall+*Sq1+Sq!,*+*Sqa = 0,

1>3:Sq2Sq2 + Sq3Sq1 = 0,

Q^Sq^q1 = 0.

Let C> denote the 4-valued secondary operation (0X, 02, 03, 04).

Proposition 3.6. Q>i and 02 ct7« be chosen so (<£,, <I>2) vanishes on classes having

dimension < 2s. For these choices the following relation holds stably and with zero

indeterminacy among the component operations <í>¡ of O.

(3.7) Sq81>1 + Sqi^2 + Sq2S + 5<X>3 + Sq2S + ,'<i>i + i\Sq2S + i)Sqi = 0

where A is in Z2.

Proof. The functional cohomology operations associated with the defining

relations for fl^ and <D2 vanish on classes having dimension < 2s by [2, Teorema

6.6]. Now <S>i and <t>2 can be chosen trivial on classes in the domain of <S> having

dimension <2S by the Peterson-Stein formula [2, Teorema 5.2]. Consider the

universal example for the operation d> on classes of dimension n for large n.

Ein)

g/ P

/f                  ,   SqhxSq2ixSq2'i.      „
X —¿— 7C(Z2, n) -1-* C

The map p is the principal fibration with classifying map Sqxi x Sq2i x Sq2\ and C

is a product of Eilenberg-MacLane spaces. Let k? in //*(£(«)) be the representative

class for <J>¡ for 1 SiS^- Let an arbitrary class x in HniX) in the domain of <£ be
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classified  by a map /: X ̂ - KiZ2, n).  By  definition  <&(x)~U» 8*(*"> *3> *S, *Ö

where the union ranges over all liftings of/. The Serre exact sequence applied to the

map p gives

Sq*k\ + Sq*kn2 + Sq2"+ skn3 + 592! + 7*J = AÖ(p*i)        (A e Z2)

where 0 is a sum of admissible monomials in A each having degree 2s+ 8 and

excess à 2s. The Adem relations applied to Sq8Sq2' show that St72S + 8(/>*t)

= 5,tj2S + 45t74(/7*t) so 6 = Sq2S + iSqi.

Let î/i be any stable tertiary operation associated to the relation given by (3.7).

The indeterminacy subgroup IndefX-Y; t/<) arises in the following manner. The

operation </> determines a secondary operation In(i/r) of three variables. (See [20]

and [28].) In(</>) is defined on those classes xeH\X), yeHn + \X), and

zeHn + 2S-\X)ïor which

Sqlx = 0,       Sq2y+Sq3x = 0,

St?4S'671z + S'í72S + 3>' + Sí72S + 4;c = 0,

Sq^z + Sq^^x = 0.

Then Indet71^; 0) = image In(^) + ASt?2^4//^^) in Hn + 2S + \X).

Proposition 3.8. </> /s defined on a2* + 1 + 8 in H*iRP") and vanishes with zero

indeterminacy.

Proof. Clearly 3>3(jS2S + 4) = 0 and <D4(j92S + 4) = 0 in 7/*(C7>0°). Let g: CP°> -> QPm

be a map such that g*y = ß2 where y generates H*iQP™). Now O1(y2'~1 + 2) = 0 for

dimensional reasons so O1(j32S + 4) = 0 from naturality and zero indeterminacy. By

Proposition 3.2

<P2(j92S + 4) = 0(2, 2S-2)0S2S + 4) = /8\g2» + 2s-i + 6 = 0_

Thus \/i is defined on j82"+ 4 and soona2'*1*8. Clearly t/i vanishes on ß2'+ 4 with zero

indeterminacy so naturality under the Hopf map gives 0 e t/<(a2S + 1 + 8).

One checks that In </i is defined with zero indeterminacy on

(3.9) //2S + 1+8(7?Pœ)e7/2' + 1 + 9(/^7'œ)e7/2S + 1 + 2S + 7(/^/"x,).

Let

Y1:SqiSq2,+i + SqeSq2S + 2 + Sq2S + 5Sq3 + Sq2S + ,?Sq1 = 0,

Y2: Sq'Sq^^ + Sq^^Sq2 = 0,

T3: SqiiSqiSq1) + Sq6iSq2Sq1) = 0

denote any stable secondary operations associated to the above relations. Clearly
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r,(j82S + 4) = 0 so it follows that ri(a2S + 1+8) = 0 from naturality and zero inde-

terminacy. By [4, Theorem 5.1] there exists an S-map A such that

A*: H2qd2d + 1 RP2p + 1)^ H2qiCPp + d + 1ICPd)

is an isomorphism for all q where /7 = 2s + 2s_1 + 7 and d-+l=t2s + 1 for some

positive integer /. By dimensionality r2(yi2S + 2S_1 + 2) = 0 in H*iQPœ) so naturality

gives

A*r2(i;2d+1a2S+I+9) = r2(82S+d+5) = o.

The stability of Y2 and zero indeterminacy imply that r2(a2S + 1 + 9) = 0. Similarly,

^*pa(S2i+ia2>+i+2'+7) = r3(j8,2S + 1 + 2S + 2S~1 + 3) = <paSqW2' + 1 + 21 + 2"~1 + 3) = 0

where y is a secondary operation associated to the relation

Sq8Sq2 + SqiSqi + Sq7Sq1 = 0.

Such a <p can be chosen so that r3 = cp o Sq1 modulo total indeterminacies by [1].

Thus T3(
2s + 1 + 2*+ 7

) = 0 from stability and zero indeterminacy. We conclude that

In(i/>)   vanishes   with   zero   indeterminacy   on   (3.9).   Since   Sq2S + ia2S + 1 + ll = 0,

Indef2S + 1 + 8(7?/>œ;</>) = 0and the proof of 3.8 is complete.

4. Generating class theorems. Thomas formulates a "generating class theorem"

for lifting a second-order ^-invariant to the Thorn complex and expressing it by

means of a secondary operation applied to the Thorn class in [Theorem 6.4, 29]

and [Theorem 6.5, 30]. The proof of Theorem 1.4 in §5 uses the generating class

theorem to express a third-order /c-invariant by a tertiary operation so we state the

following versions to cover that application. Let Bm and B denote BSOim) and

BSO, B Spin im) and B Spin, or 50[8](m) and BO[&] where BSO, S Spin, and

50[8] are the 1, 3, and 7-connective coverings of BO. In the appendix Postnikov

resolutions are constructed for the fiber map tt: ßm-> B through dimensions St

where 7r* is surjective and m<t< 2m. Let T and U denote the Thorn complex and

Thorn class of the universal bundle £ over B and regard B as Bs for large s. Follow-

ing the notation of [28], [29], [30], we let TY and UY denote the Thorn complex and

Thorn class ofg*£ where g : Y ̂  B is any map. Consider the following commutative

diagram.

(4.1.)
--,       fC\ x k.2 x ■ • • X Kr

> Ä-(Z2,m + l)

The classes k¡ e //'/(^i) f°r USt and 1 SjSr are the second-order AV-invariants in



1970] IMMERSION THEOREMS FOR PROJECTIVE SPACES 141

the resolution for tt. Now i*k1 = a1i and i*k2 = ß1i for elements au ßx in A. Suppose

there are relations in A

n

aiSqm + 1+ 2aie> = °>

(4.2) ';■

&&,-*•+Tft8, = o
1 = 2

where 6,U=0 and degree (a<) > 0, degree (/3;) > 0 for 1 <jSn. Let Q denote any

secondary operation associated to the relations (4.2) and let C represent the coset

in Hs + tiiTB)®Hs + t2iTB) of the indeterminacy subgroup of Q such that (7V)*C

= I?-mQ(UBJ. Define K to be the coset of the pair (Arl5 k2) in Hh(Ei) © T/^/i,)

with respect to the subgroup

(kernel i* n kernel qrf n H'^Ei)) © (kernel ;* n kernel g? n H'^E^).

With these assumptions the generating class theorem states

Proposition 4.3. There is a class iku k2) e Kandaclassici, c2) e //^(ß)© H^iB)

such that U-ici, c2) e C and UEl-Hku k2)+pticx, c2)) e Q(i/El).

The proof of (4.3) is essentially given in [27] and [29] and so is omitted. Let A'be a

complex of dimension St and/: X —> B a map with/*wm+1=0. Thus/classifies a

bundle p over X and one defines ikx, k2)ip) = {Jgig*ku g*k2), the union being

over all liftings g: X —> E1 off. Recall from [28] there are classes &i and ßx in

AiB) such that /i(/t1) = â1(i ® 1) in H^iKiZ2,m)x Eu Ei), m(/c2) = /5i0 ® 1) in

H^iKiZ2, m)xEy, Ef). Thus (Jfclf ¿2)(¿>) is a coset of Indet'i'^X; /Q = (âls &) • H\X)

n (//^(A-) © W*iX)).

Corollary 4.4. Suppose the indeterminacy of ü.iUp)=U0Xndett^t^iX; K).

Suppose also that g*ik1, k2) = g*ik1, k2) for any (ril5 k2) in K and any lifting

g:X^E1 off. Then

UD-iiki,k2)ip)+f*ici,c2)) = £liUp)

as cosets in Hs+t^Tx) © Hs+t2<Tx).

In diagram (4.1) the map p2: E2^ Ex is a principal fibration classified by the

cohomology vector (jfci,..., kr) where C= X[=i AT(Z2,/¡). Assume now that K

consists only of (/c,, k2) and that Û can be chosen so UEi-ik1, k2) e Q(C/£l). Let i¡

denote the fundamental class of íí/C(Z2, t,) in Q.C for 1 SjSr. Let k e HriE2) be a

third-order rc-invariant for 77 (so rSt) such that y * rc = y1i1 + y2i2 where y, and y2

are in A. Suppose £2' = (£2ls D2, Q.3, Í24, Q5) is a 5-valued stable secondary opera-

tion where Q, and D2 are the component operations belonging to Ü and the
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degree of n¡¿the connectivity of ß for 3SÍS5. Thus (ku k2, 0, 0, 0) e Q'iUEl).

Assume also the following relation holds.

(4.5) y1D1 + y2íí2-(-y3ü3-|-y4í24-|-y5Í25 = 0.

Let i/i be a tertiary operation associated to relation (4.5). Let D denote the coset of

the indeterminacy subgroup of </r in H*iTB) such that £s"mi/i(£/Sm) = (7V)*£> and let

K' be the coset of A: with respect to the subgroup kernel j* (~) kernel q2 C\ H'iE2).

Under these assumptions the generating class theorem states

Proposition 4.6. There is a class k in K' and a class d in H\B) such that

U-deDand UEz-ik + ip1°p2)*d)etiUE2).

Proposition 4.6 is easily proved by applying the arguments of [27], [29], and

[30]. See also [9]. An application of (4.6) is also given in [23].

5. Proofs of immersion theorems.

Proof of Theorem 1.1. Write 2n = 4t+6 and refer to Postnikov resolution I in

the appendix. Let v. CPn ^ B Spin classify the stable normal bundle v of CPn

Now

w2iiCP") = ("+7)/3>

so w4i+2(f) = 0 and w4i+4(u) = 0. The indeterminacy of kiiv) = Sq2Hit + 2iCPn)

= H2n-\CPn) so v lifts to ß Spin (4/+1) iff v lifts to E2 iff/c2(t') = 0. Let O denote

a stable secondary operation associated to the relation

iSq2Sq1)Sqit + 2 + Sq1Sqit + i + Sqit + iSq1 = 0

and chosen so that it vanishes on classes of dimension <4/ + 2 (see [2]). Applying

the generating class theorem [30, Theorem 6.5] gives C/„-rC2(r) = Q(i/„) since the

indeterminacy of k2iv) = 0 = the indeterminacy of íí(í/„). Here Uv is the Thorn

class of the Thorn complex Tiv).

The order of Jiv) in JiCPn) is the Atiyah-Todd number Mn+1 by [31]. Set

s = Mn + 1 — («+ 1). Since 2" divides Mn+1, it follows that

(J) = lnr(j)=0   forO^ro,

Write s = ha + c where c<n and a is the smallest power of 2 greater than n. Atiyah-

James duality for projective spaces in [5] states that an 5-dual for CPn is the space

X=CPm¡CPs~1 = Tisr¡) for sr, based on CPm~s where m = s+-n-l. Identify the

generator of H2\X) with ßs under the collapsing map CPm -> X and the standard

embedding CPm -> CPX. Since a(c + n- l)>a(c), Proposition 3.2 states that

QOS») = <D(1,2/+1)(^-) = L£_ V+-1.
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But (2V2)=1 so (2n22_a) = 0 for <*(«)> 2. Thus /í2(r) = b and the result follows

by Hirsch [12]. Note for cc(n) = 2 that

At + A-a)       \0)

which gives a nonimmersion result of [3].

Proof of Theorem 1.3. Refer to Postnikov resolution II in the appendix. Write

77 = 8/+12 and let y: RPn -> BSO classify the bundle y = (16/+ 18)| over RPn. It

suffices to showy lifts to ßSO(8/ + 5) by Proposition 2.1. Note that w8( + 6(y) = 0 and

wBt+8Íy) = Q from §2 so y lifts to Ex. The indeterminacy of k\iy) = HniRPn) so y

lifts to BSOic\t + 5) iffy lifts to 7f3. Sq*k2 occurs in the defining relation for k\ so

0 e k\(y). Likewise, Sqlk\ occurs in the defining relation for k\ so 0 e k\iy). Thus

any lifting of y to E2 can be altered through indeterminacies to produce a lifting of

y to E3.

We apply the technique of factoring a classifying map for an even multiple of

the Hopf bundle over RPn through complex projective space in order to determine

the second-order ^-invariants for y. Set m = 4/+ 6 and let v: CPm -*■ BSO classify

the bundle i' = (8/ + 9)t?. We regard y = v ° H: RPn -» BSO where 7/ is the Hopf

map in §2. Trivially k\iv) = 0 and /cj(r) = 0. Note that both k2iv) and k\iv) have

zero indeterminacy. Choose a stable secondary operation <p associated to the

relation
iSq2Sq1)Sq8t + 8 + Sq1Sqat + 8+-Sq8t + 8Sq1 = 0

so that <p vanishes on classes of dimension ^8/+ 5. The generating class theorem

[29, Theorem 6.4] gives <piUv)= Uv-k\iv). But ç>([/„) = 2a<1 + 1)-Wv-ßit + 4 by Prop-

osition 3.3. Thus k2iv)^0 iff a(/+l)=l iff « = 2r + 4 for r£4. Let g :CPm^Ex

be any lifting for v and set f=g ° H. Now/*(*i, kl, fc8)=(0, a2', 0) for « = 2r + 4.

The indeterminacy subgroup of ik\, k\, k^)iy) is generated by (a2'-1, 0, a2'+1) and

(0, a2', a2' + 1). So / cannot be altered to produce a lifting of y to E2. That is,

RPn£R2n-i for n = 2'+.4 and r>3.

Let h: CPm + 1 -*■ Ex be any lifting for the bundle v based on CPm + 1. The defining

relation for k2 gives ß3-h*k\+ßh*k\ = 0 in 7/2m + 2(Cßm + 1). So h*k\ = 0 iff

h*k\ = 0. It follows that g*kl = 0 iff g*k\ = 0 for any lifting g: CPm -+ Ex of v.

Thus/=^ o H: RPn^ Ei lifts to E2 for n#2r + 4.

Proof of Theorem 1.4. We consider the case « = 8 mod 16. The proof for

n = 0 mod 16 is similar and so is omitted. Write n= 16/+ 8 and refer to Postnikov

resolution III. Let v: CPm -> B Spin classify the bundle v = il6t+-4)r¡ for w = 8/ + 4.

Let y = v° H: RPn^ B Spin classify the bundle y = (32/ + 8)£ over RPn. One

checks easily that y lifts to ß Spin (16/— 1) if v lifts to E2. Now

so D lifts to Ti,. The defining relation for k\ gives Sq2k\iv) = 0 so /cj(t') = 0. The

(
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defining relation for k% gives Sqik1aiv) = 0. But SqißBt + 6=ß8t + 8 so that A-2(r) = 0.

It follows that v lifts to E2 iff /V4(r) = 0. We proceed to express by a secondary

operation a class different from k\ but equal to k\ under pull-backs to CPm.

Consider the following commutative diagram.

ßSpin(16/-l)

<L/       \?i

QC      J    > £-► /i1!

jx      r\       /pi
CPm- B Spin

Here p: E -> B Spin is the principal fibration with classifying map

w16tx W: B Spin^C = KiZ2, 16/)xA(Z2, 16/+ 8)

where W represents the class w4w16í + 4 + w6h>16(+2 + w2iv161 in 7/*(ß Spin). Let

tj and i2 denote the fundamental classes of the components of U.C. The following

exact sequence holds for ¡S 16/+ 15 from [26],

0 —> H\E) -^-> H'iCiCxB Spin(16/-1)) -X Hi+1iB Spin).

Regard k\ as a class in //*(£) via r* and recall that

v*k\ = Sq8Sqhx ® 1 ® 1 + Sq\ ® 1 ® w8 + Sq5ix ® 1 ® iv4

+ Sqhx ® 1 ® w\ + Sq3ii ® 1 ® w6 + Sq2ir ® 1 ® w7.

Now

t$ ® Sqh2 ® 1) = SqlW = r1[Sq1iSqS1 ® 1 ® w^Sq2^ ® 1 ® we)].

Let z be the unique class in Hiet + 8iE) for which

v*z = Sq8Sqhi ® 1 ® l+Sqhi ® 1 ® wB+X ® Sqh2 ® 1 +St71t1 ® 1 ® w\.

Let y be the unique class in 7/16f + 7(£) for which

v*y = 1 ® '2 ® 1 +5'c72i1 ® 1 ® M'6 + 5,£74t1 ® 1 ® h-4.

Since i'*(5,t71>') = i'*(z + /("4), it follows that k\ = z+-Sq1y. Choose a stable secondary

operation <D associated to the relation iSq8Sq1)Sq16t + Sq16t + 8Sq1 + Sq16t + 1Sq2

-+Sq1iSq16t + 'lSq'i) = 0 such that fl> vanishes on classes having dimension < 16/.

Note that Sq16t + iSqiU=U-W in //*(7BSpin). By [29, Theorem 6.4] UE-iz + k')

e <X>iUE) for some class k' in 7/16i + 8(/f) n kernely* n kernel £7*. It follows that

a>iUv)=U,-ziv)=-Uv-kliv). Let S denote the generator for H*iQPœ) and P the

Hopf line bundle over QP™. We regard S8i + 2 as the Thorn class of the bundle
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£ = (8/ + 2)p based on QPl for large /. The highest power of 2 dividing the Chern

class cBtiO is 2aU) from §2. By Proposition 3.5

0(í/c) = 2am^1Sq8iUroit).

But S<78S12Í + 2 = S12Í + 4 so <P(â8t + 2) = 0iff a(/)>l iff «^2r + 8. Naturality under the

Hopf map CPX -> QP<° shows that <D(J816i + 4) = 0 iff «^2r + 8. Thus k\iv) = 0 for

«#2r + 8 from identifying Uv with ß16i + 4. Since y has a lifting /o 77: RP" -> E2

where /: Cßm -> £2 is a lifting for u, clearly rV|(y) = 0 for «^2r + 8. One checks

indeterminacies and defining relations to show that y lifts to BSpin(16/—1) iff

y has a lifting to E2 and /c2(y) = 0. Thus y lifts to ßSpin(16/-l) and the result

follows from (2.1) for n/2r + 8. For « = 2r + 8 we express the obstruction k2iy) by a

tertiary operation.

We assume now that « = 2r + 8 for r>3. The natural map ßO[8] -*■ ß Spin

induces a Postnikov resolution for the fiber map #'■: ßO[8](2r— l)-> ßO[8] from

Postnikov resolution III for the map w. We denote the /(-invariants for ri also by

fcj and the spaces in the resolution by E¡. Thus k\ in H*iEx) has the defining

relation SqiSq1w2' = 0 in 7/*(ßO[8]) and k2 has the defining relation SqBkl + Sqiki

= 0 in H*iEi). Since 5c72/c} = 0 and ßO[8] is 7-connected, the coset K of (¿J, k\)

defined in §4 contains only ik\, k2). Let $ = ($!, 02) be the double secondary

operation with component operations <Pj chosen in (3.6). By Proposition 4.3

UEl-ikl,kl)eHUEl).

Let 0 be any tertiary operation associated to the relation (3.7).

By Proposition 4.6

UE2-ik23 + ip1op2)*P)e^iUE2).

Here k2 belongs to the coset K' in (4.6) determined by k3, and P is a class in

7/2' + 7(ßO[8]) such that U'-PeW) where U' denotes the Thorn class of the

universal bundle over ßO[8](2r- 1).

Let h: RPn-> E2 be any lifting for the map y. RPn -> ßO[8] classifying the

bundle y = (2r + 1 + 8)f. Now h*k23 = h*k\ since k\\y) = 0 and Sq2Sq^h*k22 = Sq3h*k\

= 0. Clearly P(y) = 0 so we conclude Uy-k23(y) e 0(i/y).

Identify Uy with «2r+1 + 8 in 77*(ßßco) and apply Proposition 3.8 to give Jfc§(y)=0.

Thus y lifts to ßO[8](2r- 1) and the result follows by (2.1).

Proof of Theorem 1.6. Let y.RPn->BSO classify the bundle y = 2/>f

=(2«»>-(«+l))f The argument that y lifts to 5SO(w-8) for «=5mod8 and

a(«)>3 is similar to the proof of Theorem 1.3 and so is omitted. We consider the

case n=X mod 8 and a(«)>3. Write « = 8/ + 9 and refer to Postnikov resolution

IV. By (2.1) it suffices to show y lifts to ßS0(8/+ 1). Let v. CPm -*■ BSO classify

the bundle v=pr¡ where m = 4t+4. One checks easily that y lifts to ß5'0(8/+ 1) iff

rc2(y) = 0. Clearly k%iy) = 0 if v lifts to E2. Note that v and hence y lift to Ex by §2.
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Let h: CPm + 1 -> £, be a lifting for the bundle v based on CPm + \ The defining

relation for k\ gives ßSq\h*k\) = 0 in 7/2m + 2(CPm + 1). But Sqißit + 2 = ßit + i so

h*k\ = 0. Thus ^2(f) = 0 and v lifts to E2 iff rCs(f) = 0. Consider the following com-

mutative diagram.

ßSO(8/+l)

Ç1C     J    , E---y Ex

y x a
CPm-» BSO

Here p: E^ BSO is the principal fibration with classifying map

Wet + zXWat+i* wBt + sx W: BSO -> C

where W represents the class h'2w8í+6 + h'3h>8í + 5 + vv2h>8¡ + 4 in H*iBSO). The

following exact sequence from [26] holds fory'^8/+ 15

0 —> H'iE) ^ H'iLXCxBSOiSt+X))-^U H' + \BSO).

Let i, for 1 SJS4 denote the fundamental classes of the components of DC. Now

v*kl = 1 ® 1 ® Sqh3 ® 1 ® 1

+1 ® Sq*Sq\2 ® 1 ® 1 ® 1 +1 ® Sq\ ® 1 ® 1 ® w4

+1 ® Sq2Sq\ ® 1 ® 1 ® w2 + Sq1iX ® Sq2t2 ® 1 ® 1 ® w2).

Let y be the unique class in Het + 1iE) such that

v*y = 1 ® 1 ® 1 ® t4 ® 1 +1 ® 5t72i2 ® 1 ® 1 ® w2

+1 ® Sqh2 ® 1 ® 1 ® w3.

Define z in //*(£) so that

v*z = 1 ® 1 ® Sqh3 ® 1 ® 1 +1 ® 1 ® 1 ® Sqht ® 1

+1 ® Sq^q1^ ® 1 ® 1 ® 1 +1 ® Sqh2 ® 1 ® 1 ® w4

+1 ® Sq2Sqh2 ® 1 ® 1 ® w2.

Thus k\ = z + Sq1y since v*iSq1y) = v*iz + k\).

By [2] we can select a secondary operation Y associated to the relation

iSqiSq1)Sqat + á + Sq1Sq8t + B + Sq\Sq8t + eSq2) + Sq8t + 8Sq1 = 0

so that XSq2xSq3x e T(x) for any class x of dimension 8/+ 3 in the domain of Y
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and such that A 6 Z2 is independent of x. Note that Sqat + eSq2U= U- Win H*{TBS0).

The generating class theorem [30, Theorem 6.5] gives the result

UE-iz + k')eYiUE)

for some class k' in 778í + 8(7í) n kernel./* n kernel q*. It follows that r([/„)

= Uv-ziv)= Uv-k\iv). One checks from §2 that the highest power of 2 dividing

Ciiv) is 2, dividing c4i+2(i>) is 2a(n)~2, and dividing c4i+4(f) is 2aM~1. By Proposition

3.4

r(t/„) = 2a(T,)-3C/u-/34i + 4.

Thus rCg(f) = 0 for ct(«)>3 so i> lifts to E2 and the proof is complete.

6. Appendix. These Postnikov resolutions for the fiber map tt: Bm^> B are

constructed by the techniques of [26]. We refer the reader also to [17] and [8] for

the theory and construction of modified Postnikov resolutions. The homotopy

groups of the fibers for w appear in [13] and [22]. The tower of spaces is displayed

only for resolution I. The rV-invariant k' represents a class in 77*(£'i) whose defining

relation is a relation in 7/*(£'¡_1) where E0 = B.

6.1. Postnikov resolution I for the fibration 7r: ß Spin(4/+1)—^ßSpin for

stable spin bundles over complexes of dimension S4t + 6 for t> 1. Kin) denotes

A-(Z2, «).

ßSpin(4/+l)

t
E3

Pz

"      ki
E2-*A-(4/ + 4)

Pi

Âr  x Âr  x it"
Ei-^ KiAt + 3) x A-(4/ + 4) x A:(4/ + 5)

Pi

w4i + 2xw4i + 4
B Spin-!->. A-(4/ + 2) x (7<:(4/ + 4).

Defining relations for Ac-invariants :

ki:Sq2wit+2 = 0,

/c2:(^2^>4(+2 + 5'Ç1w4i+4 = 0,

k3: iSqi+-wi)wu+2 + tSq2wit+l = 0,

ki-.Sq^i + Sq1^ = 0.

6.2. Postnikov resolution II for the fibration n: ßSO(8/ + 5) BSO for stable
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orientable bundles over complexes of dimension S 8/+ 13 for />0. Defining rela-

tions for /c-invariants:

ki = w8i+6,

k2 = wat+a,

k{:iSq2+-w2)wat+6 = 0,

k\:iSq2+ ■w2)Sq1wBt+B + Sq1wBt+B = 0,

k\: iSq* + ■wi)wBt+B + Sq2wBt+B = 0,

k\: iSq*+ -w4+ ■w2)Sq1wet+B-+Sqliw2-Sq2)wBt+B = 0,

t even kl: iSq8 + • wB)wBt +6 + w6-wBt+8 = 0,

t odd  kl : iSq8 + • wB)wBt + e + iSqe + >v4• Sq2 + w2■ Sqi)wBt+B = 0,

k2:iSq2+-w2)k\ + Sq1k2 = 0,

k2: Sq1k\ + iSq2Sq3+-w5)kl + Sq2iw2-Sq1k12) = 0,

k2 : iSq2 + • w2)k\ + iSq2Sq3 + w2 ■ Sq^q1 + • WB)kla

+ Sq1iw2Sq2k¡) + Sqiiklw3)

+ iSq7 + SífSífSq1 + wt ■ Sq2Sqx + w6 • Sq1 + w\ ■ Sq2Sql + ■ w3w2)k\

+ k\ ■ Sq3w, + iSq* + Sq3Sq1)ikl ■ w2)

+ iSq8 + u>4 • Sq2 + w3 ■ Sq2Sq1 + ■ w6 + • w32 + ■ w2)kl

+ Sq\k\-w2w3) = 0,

k\ : Sqxk% + Sq3ik2 ■ w2) + iSq2Sq3 + w2 ■ Sq2Sq' + w\ ■ Sq1 + ■ w5)/c2 = 0.

6.3. Postnikov resolution III for the fibration 7r: B Spin(16/- l)-> B Spin for

stable spin bundles over complexes of dimension S 16/+ 8 for />0.

Defining relations for /c-invariants:

k° = w16t,

k{: Sq2Sq1Wi6t = 0,

kl.iSq^+'W^Sq^iet = 0,

kh:iSqi+-wi)Sq2Wi6t = 0,

k\ : iSq8 + • w8).Sy w16i + Sq\w^ ■ Sqi + We -Sq2+- w2)w16t = 0,

k2:Sq2k\ = 0,

k22:Sq2Sq1k\ + Sq1k2i = 0,

k2: iSq6+ ■w6)k\ + iSqi + -wjkl = 0,

kl : iSqi + Sq3Sq1 + ■ Wl)k\ + iSq6 + • wJSq^l + (w4 ■ Sq1)^ = 0,

k2: Sq1k1i + iSq7+-SqiSq2Sq1)k1i = 0,

kl'.Sq^l + Sq^t = 0,

k%:Sqik\ + SqiSqikl = 0,

ki:Sq1k2 + Sq2Sq3k3i = 0.

6.4. Postnikov resolution IV for the fibration tt: ßS'0(8/+ 1) -> BSO for stable

orientable bundles over complexes of dimension ¿8/+ 9 for /> 1.
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Defining relations for /c-invariants:

ki = wBt+2k2 = wBt+ik3 = wBt+8,

kl:iSq2+-w2)wBt+2 = 0,

k\: iSq2+ ■w2)Sq1wBt + 2 + Sq1wBt+i = 0,

kl:iSqe+ ■w4)w8(+2 + w2-H'8(+4 = 0,

k\: (St74+ -wjwgt+i = 0,

kl: Sq1wBt+B + iSqi+-wi)Sq1wBt+i + iw2-Sq2Sq1)wBt+i

+ Sq1iw2-Sq2)wBt+i = 0,

t eyen k\:iSq8+ ■wB)wBt+2 + w2-wBt + B + iwi-Sq2+ -w6-X- -w^^w^+i = 0,

/odd  k6-:iSqs+-wB)wBt + 2 + Sq2wBt+B + iwi-Sq2+-we+ ■w.iwjwst+i = 0,

k\:iSqi+-wi)iSq2+-w2)wBt+i + Sq2wBl+B = 0,

k21:iSq2+-w2)k{ + Sq1k12 = 0,

k22: Sq1kl + Sq1iw2-Sq2)k12 + iSq2Sq3 + w2-Sq2Sq1+ -w5)kl = 0,

k2 : k\ ■ w2 + iSq6 + ■ ws)k\ + iSqi + Sq3Sqx + >v2 • Sq2 + w3 ■ Sq1 + ■ wi + • w22)k\

+ S<72(rc2 • w3) + iw2 ■ Sq3 + w2 ■ Sq2Sq1 + u>4 - Sq1 + ivf • Se?1)*, = 0,

k\ : iSq2 + ■ w2)Sqlk\ + Sq2Sq\k\ ■ w2)

+ iSq2Sq3 + w2 ■ Sq3 + w2-Sq1+- w2w3)k¡

+ iSq6 + R'2 • Sty4 + Wl-Sq2+-w6+- w2)rc2 + 5,?3(/c2 ■ w3)

-r-SqXkl-wJ + iwlSq^ikl-wJ
+ (w2 • Sq2Sq3 + Sq7 + Sq^q^q1 + w>4 ■ .V-V

+ w6 ■ Se?1 + • w1 + • w3w4)/cj = 0,

k\ : Sqxk\ + Sq\w2 ■ Sq2)k\ + (S?2^3 + w2 ■ Sq2Sqx + ■ w5)k\ = 0.

6.5. Postnikov resolution V for the fibration tt: B Spin (16/ + 7) -> B Spin for

stable spin bundles over complexes of dimension S 16/+ 16 for />0.

Defining relations for /c-invariants:

/Cj  =  W16i+8, */C2  =  Wjgj+jg,

k\: Sq2Sq1Wi6t+B = 0,

/c£: (St74+ ■wi)Sq1w16t+B = 0,

k¡:iSq8+-wB)wi6t+B = 0,

kl:iSqi+-wi)Sq2Wiet + B = 0,

/c£: iSq8+- -w^Sq^ie^s-r-Sq^iet+m

+ Sq\Wi- Sqi + we- Sq2 + -wl)wiBt+B = 0,

kr.Sq2k\ = 0,

k22:Sq2Sq1k\ + Sq1kl = 0,

ici: 0V + -w6)/c}+0V + -w4)Â:2 = 0,

kl : iSq* + Sq3Sq1 + • H>4)Är| + Sqbk\ + (Stf7 + Sq6Sq1 + ■ w7)k\ = 0,

kl:Sq1kl-+SqiSq1k\-+Sq7k\ = 0,

kl'.Sq^l + Sq^kl = 0,
k32:Sq1k25 + Sq2Sq3k22 = 0,

k\:Sq1k32 + Sq2Sq3k3 = 0.
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