SOME IMMERSION THEOREMS FOR PROJECTIVE SPACES

BY

A. DUANE RANDALL

1. Introduction. In this paper we obtain some results on the classical problem of immersing projective spaces into Euclidean space. Let $\alpha(n)$ denote the number of l's appearing in the dyadic expansion of n. We prove the following

THEOREM 1.1. $C P^{n}$ immerses in $R^{4 n-5}$ for n odd and $\alpha(n)>2$.
Applying Theorem 4 of [6] with Theorem 1.1 gives
Corollary 1.2. $C P^{n}$ has a best possible immersion in $R^{4 n-5}$ for $n=2^{r}+2^{s}+1$ with $r>s>0$.

TheOrem 1.3. $R P^{n}$ immerses in $R^{2 n-7}$ for $n \equiv 4 \bmod 8$ and $\alpha(n)>2$.
We remark that the proof of (1.3) also shows $R P^{n}$ does not immerse in $R^{2 n-7}$ for $n=2^{r}+4$ with $r>3$, a result of [7].

THEOREM 1.4. $R P^{n}$ immerses in $R^{2 n-9}$ for $n \equiv 0 \bmod 8$ and n not a power of 2.
COROLLARY 1.5. $R P^{n}$ immerses in $R^{2 n-4 \alpha(n)-1}$ for $n=2^{r}+2^{s}$ with $r>s>2$.
It follows from [4] that $R P^{n}$ does not immerse in $R^{2 n-11}$ for $n=2^{r}+8$ and $r>3$.
TheOrem 1.6. $R P^{n}$ immerses in $R^{2 n-8}$ for $n \equiv 1 \bmod 4$ and $\alpha(n)>3$.
Adem and Gitler showed in [4] and [7] that $R P^{n}$ has a best possible immersion in $R^{2 n-4}$ for $n \equiv 1 \bmod 4$ and $\alpha(n)=3$.

These results are interesting only for small values of $\alpha(n)$ due to Milgram's construction of linear immersions in [21]. The method of proof consists of expressing certain obstructions to the lifting of an appropriate map by AdamsMaunder operations and then evaluating these operations in projective space. The author wishes to express his gratitude to his advisor, Professor Emery Thomas, and to the Centro de Investigacion y de Estudios Avanzados del IPN, Mexico.
2. Preliminaries. The coefficient group for singular cohomology is understood to be Z_{2} whenever omitted. We let $\alpha \in H^{1}\left(R P^{\infty}\right)$ and $\beta \in H^{2}\left(C P^{\infty}\right)$ denote generators for the cohomology rings. Let A_{k} denote the vector subspace of the mod 2 Steenrod algebra A consisting of homogeneous elements of degree k. If $\alpha(k+s)>\alpha(s)$,
$A_{k}\left(\alpha^{s}\right)=0$. A standard fact in number theory states that the highest power of 2 dividing a binomial coefficient $\binom{r+s}{s}$ is $2^{\alpha(r)+\alpha(s)-\alpha(r+s)}$. Let ξ and η denote the Hopf line bundles over $R P^{\infty}$ and $C P^{\infty}$. The Thom complex $T(m \xi)$ is homeomorphic to the stunted projective space $R P^{m+s} / R P^{m}$ for $m \xi$ based on $R P^{s} . T(r \eta)$ is homeomorphic to $C P^{r+s} / C P^{r}$ for $r \eta$ based on $C P^{s}$. The Hopf map $H: R P^{\infty} \rightarrow C P^{\infty}$ gives the real bundle equation $H^{*} \eta=2 \xi$.

$$
W(m \xi)=\sum_{s}\binom{m}{s} \alpha^{s} .
$$

We refer to [15] and [3] for these facts. In [4] Adem and Gitler prove for $n>8$
Proposition 2.1. $R P^{n}$ immerses in R^{n+k} iff $(n+k+1) \xi$ has $n+1$ independent nonzero sections iff $\left(2^{\varphi(n)}-(n+1)\right) \xi$ has $2^{\varphi(n)}-(n+k+1)$ independent nonzero sections.
3. Cohomology operations in projective space. In [3] Adem and Gitler formulate an algorithm for computing a family of stable secondary cohomology operations in complex projective space. Let $\rho(r, s)$ denote the following relation in A for any positive integers r and s :

$$
\begin{equation*}
\left(S q^{2^{r}} S q^{1}\right) S q^{2^{r} s}+\sum_{t=0}^{r-1} S q^{2^{r}(s+1)+1-2^{t}} S q^{2^{t}}+s S q^{1} S q^{2^{r}(s+1)}=0 \tag{3.1}
\end{equation*}
$$

A straightforward generalization of Theorem 8.2 in [4] is the following
Proposition 3.2 Let $\Phi(r, s)$ denote any stable secondary operation associated to $\rho(r, s)$. Let $a=2^{t}$ be such that $a \leqq 2^{r}(s+1)<2 a$. Let c be any integer such that $c<s$ and $\alpha(c+s+1)>\alpha(c)$. For $m=h a+2^{r-1} c$ with $h>0, \Phi(r, s)$ is defined on β^{m} and with zero indeterminacy

$$
\Phi(r, s)\left(\beta^{m}\right)=h\binom{2^{r} c}{2^{r}(s+1)-a} \beta^{m+2^{r-1}(s+1)} .
$$

The proof of (3.2) is essentially given in [3] and [4] and so is omitted.
In [10] Gitler, Mahowald, and Milgram show that many secondary operations defined on the Thom class of a complex vector bundle measure the divisibility by 2 of its Chern classes. Applications of their argument yield the following results.

Proposition 3.3. Let ω denote a complex bundle over a complex X such that $c_{2 t+1}(\omega)=2 x$ for x in $H^{4 t+2}(X ; Z)$ and $c_{2 t+2}(\omega)=2 y$ for y in $H^{4 t+4}(X ; Z)$. A secondary operation φ associated to the relation

$$
\left(S q^{2} S q^{1}\right) S q^{4 t+2}+S q^{1} S q^{4 t+4}+S q^{4 t+4} S q^{1}=0
$$

can be chosen independently of ω so that

$$
S q^{2}\left(U_{\omega} \cdot x\right)+U_{\omega} \cdot y \in \varphi\left(U_{\omega}\right)
$$

Proposition 3.4. Let ρ denote a complex bundle over a complex X such that $c_{4 t+2}(\rho)=2 x, c_{4 t+3}(\rho)=2 y, c_{4 t+4}(\rho)=2 z$ for classes x, y, and z in $H^{*}(X ; Z) . A$ secondary operation Γ associated to the relation

$$
\left(S q^{4} S q^{1}\right) S q^{8 t+4}+S q^{1} S q^{8 t+8}+S q^{1}\left(S q^{8 t+6} S q^{2}\right)+S q^{8 t+8} S q^{1}=0
$$

can be chosen independently of ρ so that

$$
U_{\rho} \cdot\left(z+y \cdot w_{2}(\rho)+x \cdot w_{2}^{2}(\rho)\right)+S q^{4}\left(U_{\rho} \cdot x\right) \in \Gamma\left(U_{\rho}\right) .
$$

Proposition 3.5. Let ω denote a complex bundle over a complex X such that $c_{1}(\omega)=0, w_{4}(\omega)=0$, and $c_{8 t}(\omega)=2 x$ for x in $H^{16 t}(X ; Z)$. Let Φ denote a secondary operation associated to the defining relation

$$
\left(S q^{8} S q^{1}\right) S q^{16 t}+S q^{16 t+8} S q^{1}+S q^{16 t+7} S q^{2}+S q^{1}\left(S q^{16 t+4} S q^{4}\right)=0 \quad \text { for } t>0 .
$$

Then Φ can be chosen independently of ω so that $S q^{8}\left(U_{\omega} \cdot x\right) \in \Phi\left(U_{\omega}\right)$.
Remark. mod 2 reduction of integral classes is understood whenever applicable in the above propositions. The proofs involve direct applications of the argument given in [10]. We give only the proof of (3.5).

Proof of 3.5. Consider the following diagram.

Here p is the principal fibration induced from the universal example for the operation Φ on integral classes of dimension $2 n$ for large n by the Thom class $U_{n}: \operatorname{MSU}(n) \rightarrow K(Z, 2 n)$. Now $p^{*}\left(U_{n} \cdot c_{8 t}\right)=2 e_{1}$ for some e_{1} in $H^{*}(E(2 n) ; Z)$ since $S q^{16 t} U_{n}=U_{n} \cdot w_{16 t}$. One notes that $j^{*} e_{1} \bmod 2=S q^{1} \iota_{1} \otimes 1 \otimes 1 \otimes 1$ where

$$
F=K\left(Z_{2}, 2 n+16 t-1\right) \times K\left(Z_{2}, 2 n+16 t+7\right) \times K\left(Z_{2}, 2 n+1\right) \times K\left(Z_{2}, 2 n\right)
$$

is the fiber of p. (See [10].) Similarly,

$$
p^{*}\left[U_{n} \cdot\left(c_{2} c_{8 t+2}+c_{3} c_{8 t+1}+c_{2}^{2} c_{8 t}\right)\right]=2 e_{2}
$$

for some integral class e_{2} and $j^{*} e_{2} \bmod 2=1 \otimes S q^{1} \iota_{2} \otimes 1 \otimes 1$. Let e_{3} and e_{4} be classes in $H^{*}(E(2 n))$ such that $j^{*} e_{3}=1 \otimes 1 \otimes \iota_{3} \otimes 1$ and $j^{*} e_{4}=1 \otimes 1 \otimes 1 \otimes \iota_{4}$. We now choose Φ so that Φ vanishes on classes of dimension $\leqq 16 t-2$. This is possible by [2] and [14]. It follows that

$$
S q^{8} e_{1}+e_{2}+S q^{16 t+7} e_{3}+S q^{16 t+8} e_{4}
$$

is the representative for this choice of Φ in $H^{*}(E(2 n))$. Let $f: X \rightarrow B S U(n)$
classify the bundle $\omega \oplus s$ where $n-s$ is the fiber dimension of $\omega . T(f)$ is the natural map induced by f between the Thom complexes. Thus,

$$
\begin{aligned}
\Sigma^{s} \Phi\left(U_{\omega}\right) & =\Phi\left(\Sigma^{s} U_{\omega}\right) \\
& =\bigcup_{g} g^{*}\left(S q^{8} e_{1}+e_{2}+S q^{16 t+7} e_{3}+S q^{16 t+8} e_{4}\right) \\
& =\bigcup_{g} g^{*}\left(S q^{8} e_{1}+e_{2}\right)
\end{aligned}
$$

where g ranges over all liftings of $T(f)$. Since the Chern classes $c_{2}(\omega), c_{8 t}(\omega)$, $c_{8 t+1}(\omega)$, and $c_{8 t+2}(\omega)$ are divisible by 2 , it follows that $S q^{8}\left(U_{\omega} \cdot x\right) \in \Phi\left(U_{\omega}\right)$.

The proof of Theorem 1.4 uses a tertiary cohomology operation which we define here and evaluate in real projective space. Consider the following relations and associated secondary operations for $s>3$:

$$
\begin{aligned}
& \Phi_{1}:\left(S q^{2} S q^{1}\right) S q^{2^{s}}+S q^{2 s+2} S q^{1}=0, \\
& \Phi_{2}:\left(S q^{4} S q^{1}\right) S q^{2^{s}}+S q^{2 s+4} S q^{1}+S q^{2^{s}+3} S q^{2}=0, \\
& \Phi_{3}: S q^{2} S q^{2}+S q^{3} S q^{1}=0, \\
& \Phi_{4}: S q^{1} S q^{1}=0 .
\end{aligned}
$$

Let Φ denote the 4 -valued secondary operation ($\Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{4}$).
Proposition 3.6. Φ_{1} and Φ_{2} can be chosen so $\left(\Phi_{1}, \Phi_{2}\right)$ vanishes on classes having dimension $<2^{s}$. For these choices the following relation holds stably and with zero indeterminacy among the component operations Φ_{i} of Φ.

$$
\begin{equation*}
S q^{6} \Phi_{1}+S q^{4} \Phi_{2}+S q^{2^{s}+5} \Phi_{3}+S q^{2^{s}+7} \Phi_{4}+\left(\lambda S q^{2^{s}+4}\right) S q^{4}=0 \tag{3.7}
\end{equation*}
$$

where λ is in Z_{2}.
Proof. The functional cohomology operations associated with the defining relations for Φ_{1} and Φ_{2} vanish on classes having dimension $<2^{s}$ by [2, Teorema 6.6]. Now Φ_{1} and Φ_{2} can be chosen trivial on classes in the domain of Φ having dimension $<2^{s}$ by the Peterson-Stein formula [2, Teorema 5.2]. Consider the universal example for the operation Φ on classes of dimension n for large n.

The map p is the principal fibration with classifying map $S q^{1} \iota \times S q^{2} \iota \times S q^{2 s} \iota$ and C is a product of Eilenberg-MacLane spaces. Let k_{i}^{n} in $H^{*}(E(n))$ be the representative class for Φ_{i} for $1 \leqq i \leqq 4$. Let an arbitrary class x in $H^{n}(X)$ in the domain of Φ be
classified by a map $f: X \rightarrow K\left(Z_{2}, n\right)$. By definition $\Phi(x)=\bigcup_{g} g^{*}\left(k_{1}^{n}, k_{2}^{n}, k_{3}^{n}, k_{4}^{n}\right)$ where the union ranges over all liftings of f. The Serre exact sequence applied to the map p gives

$$
S q^{6} k_{1}^{n}+S q^{4} k_{2}^{n}+S q^{2^{s}+5} k_{3}^{n}+S q^{2^{s}+7} k_{4}^{n}=\lambda \theta\left(p^{*} \iota\right) \quad\left(\lambda \in Z_{2}\right)
$$

where θ is a sum of admissible monomials in A each having degree $2^{s}+8$ and excess $\geqq 2^{\text {s }}$. The Adem relations applied to $S q^{8} S q^{2^{s}}$ show that $S q^{2^{s+8}}\left(p^{*} \iota\right)$ $=S q^{2 s+4} S q^{4}\left(p^{*} \iota\right)$ so $\theta=S q^{2 s+4} S q^{4}$.

Let ψ be any stable tertiary operation associated to the relation given by (3.7). The indeterminacy subgroup $\operatorname{Indet}^{n}(X ; \psi)$ arises in the following manner. The operation ψ determines a secondary operation $\operatorname{In}(\psi)$ of three variables. (See [20] and [28].) $\operatorname{In}(\psi)$ is defined on those classes $x \in H^{n}(X), y \in H^{n+1}(X)$, and $z \in H^{n+2^{s}-1}(X)$ for which

$$
\begin{aligned}
& S q^{1} x=0, \quad S q^{2} y+S q^{3} x=0 \\
& S q^{4} S q^{1} z+S q^{2^{s}+3} y+S q^{2^{s+4}} x=0 \\
& S q^{2} S q^{1} z+S q^{2^{s}+2} x=0
\end{aligned}
$$

Then $\operatorname{Indet}{ }^{n}(X ; \psi)=$ image $\operatorname{In}(\psi)+\lambda S q^{2^{s}+4} H^{n+3}(X)$ in $H^{n+2^{s}+7}(X)$.
Proposition 3.8. ψ is defined on $\alpha^{2^{s+1+8}}$ in $H^{*}\left(R P^{\infty}\right)$ and vanishes with zero indeterminacy.

Proof. Clearly $\Phi_{3}\left(\beta^{2 s+4}\right)=0$ and $\Phi_{4}\left(\beta^{2^{s}+4}\right)=0$ in $H^{*}\left(C P^{\infty}\right)$. Let $g: C P^{\infty} \rightarrow Q P^{\infty}$ be a map such that $g^{*} \gamma=\beta^{2}$ where γ generates $H^{*}\left(Q P^{\infty}\right)$. Now $\Phi_{1}\left(\gamma^{2^{s-1}+2}\right)=0$ for dimensional reasons so $\Phi_{1}\left(\beta^{2^{s}+4}\right)=0$ from naturality and zero indeterminacy. By Proposition 3.2

$$
\Phi_{2}\left(\beta^{2^{s}+4}\right)=\Phi\left(2,2^{s-2}\right)\left(\beta^{2^{s}+4}\right)=\binom{8}{4} \beta^{2^{s}+2^{s-1}+6}=0
$$

Thus ψ is defined on $\beta^{2^{s}+4}$ and so on ${\alpha^{2}}^{2^{+1}+8}$. Clearly ψ vanishes on $\beta^{2^{s+4}}$ with zero indeterminacy so naturality under the Hopf map gives $0 \in \psi\left(\alpha^{2^{s+1}+8}\right)$.

One checks that $\operatorname{In} \psi$ is defined with zero indeterminacy on

$$
\begin{equation*}
H^{2^{s+1}+8}\left(R P^{\infty}\right) \oplus H^{2^{s+1+9}}\left(R P^{\infty}\right) \oplus H^{2^{s+1}+2^{s}+7}\left(R P^{\infty}\right) \tag{3.9}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \Gamma_{1}: S q^{4} S q^{2^{+4}}+S q^{6} S q^{2^{s}+2}+S q^{2^{s}+5} S q^{3}+S q^{2^{s}+7} S q^{1}=0, \\
& \Gamma_{2}: S q^{4} S q^{2^{s+3}+S q^{2^{s}+5} S q^{2}=0,} \\
& \Gamma_{3}: S q^{4}\left(S q^{4} S q^{1}\right)+S q^{6}\left(S q^{2} S q^{1}\right)=0
\end{aligned}
$$

denote any stable secondary operations associated to the above relations. Clearly
$\Gamma_{1}\left(\beta^{2^{s+4}}\right)=0$ so it follows that $\Gamma_{1}\left(\alpha^{2^{s+1}+8}\right)=0$ from naturality and zero indeterminacy. By [4, Theorem 5.1] there exists an S-map λ such that

$$
\lambda^{*}: H^{2 q}\left(\sum^{2 d+1} R P^{2 p+1}\right) \rightarrow H^{2 q}\left(C P^{p+d+1} / C P^{d}\right)
$$

is an isomorphism for all q where $p=2^{s}+2^{s-1}+7$ and $d+1=t 2^{s+1}$ for some positive integer t. By dimensionality $\Gamma_{2}\left(\gamma^{t 2^{s}+2^{s-1}+2}\right)=0$ in $H^{*}\left(Q P^{\infty}\right)$ so naturality gives

$$
\lambda^{*} \Gamma_{2}\left(\Sigma^{2 d+1}{\alpha^{s}}^{s+1+9}\right)=\Gamma_{2}\left(\beta^{2^{s}+d+5}\right)=0 .
$$

The stability of Γ_{2} and zero indeterminacy imply that $\Gamma_{2}\left(\alpha^{2^{s+1}+9}\right)=0$. Similarly,

$$
\lambda^{*} \Gamma_{3}\left(\Sigma^{2 d+1} \alpha^{s+1+2^{s}+7}\right)=\Gamma_{3}\left(\beta^{t 2^{s+1}+2^{s}+2^{s-1}+3}\right)=\varphi \circ S q^{1}\left(\beta^{t 2^{s+1}+2^{s}+2^{s-1}+3}\right)=0
$$

where φ is a secondary operation associated to the relation

$$
S q^{6} S q^{2}+S q^{4} S q^{4}+S q^{7} S q^{1}=0
$$

Such a φ can be chosen so that $\Gamma_{3}=\varphi \circ S q^{1}$ modulo total indeterminacies by [1]. Thus $\Gamma_{3}\left(\alpha^{2^{s+1}+2^{s}+7}\right)=0$ from stability and zero indeterminacy. We conclude that $\operatorname{In}(\psi)$ vanishes with zero indeterminacy on (3.9). Since $S q^{2 s+4} \alpha^{2^{s+1}+11}=0$, Indet ${ }^{2 s+1+8}\left(R P^{\infty} ; \psi\right)=0$ and the proof of 3.8 is complete.
4. Generating class theorems. Thomas formulates a "generating class theorem" for lifting a second-order k-invariant to the Thom complex and expressing it by means of a secondary operation applied to the Thom class in [Theorem 6.4, 29] and [Theorem 6.5, 30]. The proof of Theorem 1.4 in $\S 5$ uses the generating class theorem to express a third-order k-invariant by a tertiary operation so we state the following versions to cover that application. Let B_{m} and B denote $B S O(m)$ and $B S O, B \operatorname{Spin}(m)$ and B Spin, or $B O[8](m)$ and $B O[8]$ where $B S O, B$ Spin, and $B O[8]$ are the 1,3 , and 7 -connective coverings of $B O$. In the appendix Postnikov resolutions are constructed for the fiber map $\pi: B_{m} \rightarrow B$ through dimensions $\leqq t$ where π^{*} is surjective and $m<t<2 m$. Let T and U denote the Thom complex and Thom class of the universal bundle ξ over B and regard B as B_{s} for large s. Following the notation of [28], [29], [30], we let T_{Y} and U_{Y} denote the Thom complex and Thom class of $g^{*} \xi$ where $g: Y \rightarrow B$ is any map. Consider the following commutative diagram.

The classes $k_{j} \in H^{t_{j}}\left(E_{1}\right)$ for $t_{j} \leqq t$ and $1 \leqq j \leqq r$ are the second-order k-invariants in
the resolution for π. Now $i^{*} k_{1}=\alpha_{1} \iota$ and $i^{*} k_{2}=\beta_{1} \iota$ for elements α_{1}, β_{1} in A. Suppose there are relations in A

$$
\begin{align*}
& \alpha_{1} S q^{m+1}+\sum_{j=2}^{n} \alpha_{j} \theta_{j}=0, \\
& \beta_{1} S q^{m+1}+\sum_{j=2}^{n} \beta_{j} \theta_{j}=0 \tag{4.2}
\end{align*}
$$

where $\theta_{j} U=0$ and degree $\left(\alpha_{j}\right)>0$, degree $\left(\beta_{j}\right)>0$ for $1<j \leqq n$. Let Ω denote any secondary operation associated to the relations (4.2) and let C represent the coset in $H^{s+t_{1}}\left(T_{B}\right) \oplus H^{s+t_{2}}\left(T_{B}\right)$ of the indeterminacy subgroup of Ω such that $(T \pi)^{*} C$ $=\Sigma^{s-m} \Omega\left(U_{B_{m}}\right)$. Define K to be the coset of the pair $\left(k_{1}, k_{2}\right)$ in $H^{t_{1}}\left(E_{1}\right) \oplus H^{t_{2}}\left(E_{1}\right)$ with respect to the subgroup

$$
\left(\text { kernel } i^{*} \cap \text { kernel } q_{1}^{*} \cap H^{t_{1}}\left(E_{1}\right)\right) \oplus\left(\text { kernel } i^{*} \cap \text { kernel } q_{1}^{*} \cap H^{t_{2}}\left(E_{1}\right)\right) .
$$

With these assumptions the generating class theorem states
Proposition 4.3. There is a class $\left(\hat{k}_{1}, \hat{k}_{2}\right) \in K$ and a class $\left(c_{1}, c_{2}\right) \in H^{t_{1}}(B) \oplus H^{t_{2}}(B)$ such that $U \cdot\left(c_{1}, c_{2}\right) \in C$ and $U_{E_{1}} \cdot\left(\left(\hat{k}_{1}, \hat{k}_{2}\right)+p_{1}^{*}\left(c_{1}, c_{2}\right)\right) \in \Omega\left(U_{E_{1}}\right)$.

The proof of (4.3) is essentially given in [27] and [29] and so is omitted. Let X be a complex of dimension $\leqq t$ and $f: X \rightarrow B$ a map with $f^{*} w_{m+1}=0$. Thus f classifies a bundle ρ over X and one defines $\left(k_{1}, k_{2}\right)(\rho)=\bigcup_{g}\left(g^{*} k_{1}, g^{*} k_{2}\right)$, the union being over all liftings $g: X \rightarrow E_{1}$ of f. Recall from [28] there are classes $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$ in $A(B)$ such that $\mu\left(k_{1}\right)=\hat{\alpha}_{1}(\iota \otimes 1)$ in $H^{t_{1}}\left(K\left(Z_{2}, m\right) \times E_{1}, E_{1}\right), \mu\left(k_{2}\right)=\hat{\beta}_{1}(\iota \otimes 1)$ in $H^{t_{2}}\left(K\left(Z_{2}, m\right) \times E_{1}, E_{1}\right)$. Thus $\left(k_{1}, k_{2}\right)(\rho)$ is a coset of $\operatorname{Indet}^{t_{1}, t_{2}}(X ; K)=\left(\hat{\alpha}_{1}, \hat{\beta}_{1}\right) \cdot H^{*}(X)$ $\cap\left(H^{t_{1}}(X) \oplus H^{t_{2}}(X)\right)$.

Corollary 4.4. Suppose the indeterminacy of $\Omega\left(U_{\rho}\right)=U_{\rho} \cdot \operatorname{Indet}^{t_{1} \cdot t_{2}}(X ; K)$. Suppose also that $g^{*}\left(\hat{k}_{1}, \hat{k}_{2}\right)=g^{*}\left(k_{1}, k_{2}\right)$ for any $\left(\hat{k}_{1}, \hat{k}_{2}\right)$ in K and any lifting $g: X \rightarrow E_{1}$ of f. Then

$$
U_{\rho} \cdot\left(\left(k_{1}, k_{2}\right)(\rho)+f^{*}\left(c_{1}, c_{2}\right)\right)=\Omega\left(U_{\rho}\right)
$$

as cosets in $H^{s+t_{1}}\left(T_{X}\right) \oplus H^{s+t_{2}}\left(T_{X}\right)$.
In diagram (4.1) the map $p_{2}: E_{2} \rightarrow E_{1}$ is a principal fibration classified by the cohomology vector (k_{1}, \ldots, k_{r}) where $C=\times_{i=1}^{r} K\left(Z_{2}, t_{i}\right)$. Assume now that K consists only of $\left(k_{1}, k_{2}\right)$ and that Ω can be chosen so $U_{E_{1}} \cdot\left(k_{1}, k_{2}\right) \in \Omega\left(U_{E_{1}}\right)$. Let ι_{j} denote the fundamental class of $\Omega K\left(Z_{2}, t_{j}\right)$ in ΩC for $1 \leqq j \leqq r$. Let $k \in H^{r}\left(E_{2}\right)$ be a third-order k-invariant for π (so $r \leqq t$) such that $j^{*} k=\gamma_{1} \iota_{1}+\gamma_{2} \iota_{2}$ where γ_{1} and γ_{2} are in A. Suppose $\Omega^{\prime}=\left(\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}\right)$ is a 5 -valued stable secondary operation where Ω_{1} and Ω_{2} are the component operations belonging to Ω and the
degree of $\Omega_{i} \leqq$ the connectivity of B for $3 \leqq i \leqq 5$. Thus $\left(k_{1}, k_{2}, 0,0,0\right) \in \Omega^{\prime}\left(U_{E_{1}}\right)$. Assume also the following relation holds.

$$
\begin{equation*}
\gamma_{1} \Omega_{1}+\gamma_{2} \Omega_{2}+\gamma_{3} \Omega_{3}+\gamma_{4} \Omega_{4}+\gamma_{5} \Omega_{5}=0 \tag{4.5}
\end{equation*}
$$

Let ψ be a tertiary operation associated to relation (4.5). Let D denote the coset of the indeterminacy subgroup of ψ in $H^{*}\left(T_{B}\right)$ such that $\Sigma^{s-m} \psi\left(U_{B_{m}}\right)=(T \pi)^{*} D$ and let K^{\prime} be the coset of k with respect to the subgroup kernel $j^{*} \cap \operatorname{kernel} q_{2}^{*} \bigcap H^{r}\left(E_{2}\right)$. Under these assumptions the generating class theorem states

Proposition 4.6. There is a class \hat{k} in K^{\prime} and a class d in $H^{r}(B)$ such that $U \cdot d \in D$ and $U_{E_{2}} \cdot\left(\hat{k}+\left(p_{1} \circ p_{2}\right)^{*} d\right) \in \psi\left(U_{E_{2}}\right)$.

Proposition 4.6 is easily proved by applying the arguments of [27], [29], and [30]. See also [9]. An application of (4.6) is also given in [23].

5. Proofs of immersion theorems.

Proof of Theorem 1.1. Write $2 n=4 t+6$ and refer to Postnikov resolution I in the appendix. Let $v: C P^{n} \rightarrow B$ Spin classify the stable normal bundle v of $C P^{n}$ Now

$$
\bar{w}_{2 j}\left(C P^{n}\right)=\binom{n+j}{j} \beta^{j}
$$

so $w_{4 t+2}(v)=0$ and $w_{4 t+4}(v)=0$. The indeterminacy of $k_{4}(v)=S q^{2} H^{4 t+2}\left(C P^{n}\right)$ $=H^{2 n-2}\left(C P^{n}\right)$ so v lifts to $B \operatorname{Spin}(4 t+1)$ iff v lifts to E_{2} iff $k_{2}(v)=0$. Let Ω denote a stable secondary operation associated to the relation

$$
\left(S q^{2} S q^{1}\right) S q^{4 t+2}+S q^{1} S q^{4 t+4}+S q^{4 t+4} S q^{1}=0
$$

and chosen so that it vanishes on classes of dimension $<4 t+2$ (see [2]). Applying the generating class theorem [30, Theorem 6.5] gives $U_{v} \cdot k_{2}(v)=\Omega\left(U_{v}\right)$ since the indeterminacy of $k_{2}(v)=0=$ the indeterminacy of $\Omega\left(U_{v}\right)$. Here U_{v} is the Thom class of the Thom complex $T(v)$.

The order of $J(\eta)$ in $J\left(C P^{n}\right)$ is the Atiyah-Todd number M_{n+1} by [31]. Set $s=M_{n+1}-(n+1)$. Since 2^{n} divides M_{n+1}, it follows that

$$
\binom{s}{2^{r}}=1 \text { iff }\binom{n}{2^{r}}=0 \quad \text { for } 0 \leqq r<n .
$$

Write $s=h a+c$ where $c<n$ and a is the smallest power of 2 greater than n. AtiyahJames duality for projective spaces in [5] states that an S-dual for $C P^{n}$ is the space $X=C P^{m} / C P^{s-1}=T(s \eta)$ for $s \eta$ based on $C P^{m-s}$ where $m=s+n-1$. Identify the generator of $H^{2 s}(X)$ with β^{s} under the collapsing map $C P^{m} \rightarrow X$ and the standard embedding $C P^{m} \rightarrow C P^{\infty}$. Since $\alpha(c+n-1)>\alpha(c)$, Proposition 3.2 states that

$$
\Omega\left(\beta^{s}\right)=\Phi(1,2 t+1)\left(\beta^{h a+c}\right)=\binom{2 c}{4 t+4-a} \beta^{s+n-1} .
$$

But $\left({ }^{2 n-2}\right)=1$ so $\left(\begin{array}{c}2 n-2-a\end{array}\right)=0$ for $\alpha(n)>2$. Thus $k_{2}(v)=0$ and the result follows by Hirsch [12]. Note for $\alpha(n)=2$ that

$$
\binom{2 c}{4 t+4-a}=\binom{2}{0}=1
$$

which gives a nonimmersion result of [3].
Proof of Theorem 1.3. Refer to Postnikov resolution II in the appendix. Write $n=8 t+12$ and let $\gamma: R P^{n} \rightarrow B S O$ classify the bundle $\gamma=(16 t+18) \xi$ over $R P^{n}$. It suffices to show γ lifts to $B S O(8 t+5)$ by Proposition 2.1. Note that $w_{8 t+6}(\gamma)=0$ and $w_{8 t+8}(\gamma)=0$ from §2 so γ lifts to E_{1}. The indeterminacy of $k_{1}^{3}(\gamma)=H^{n}\left(R P^{n}\right)$ so γ lifts to $B S O(8 t+5)$ iff γ lifts to $E_{3} . S q^{1} k_{2}^{1}$ occurs in the defining relation for k_{1}^{2} so $0 \in k_{1}^{2}(\gamma)$. Likewise, $S q^{1} k_{4}^{1}$ occurs in the defining relation for k_{2}^{2} so $0 \in k_{2}^{2}(\gamma)$. Thus any lifting of γ to E_{2} can be altered through indeterminacies to produce a lifting of γ to E_{3}.

We apply the technique of factoring a classifying map for an even multiple of the Hopf bundle over $R P^{n}$ through complex projective space in order to determine the second-order k-invariants for γ. Set $m=4 t+6$ and let $v: C P^{m} \rightarrow B S O$ classify the bundle $v=(8 t+9) \eta$. We regard $\gamma=v \circ H: R P^{n} \rightarrow B S O$ where H is the Hopf map in $\S 2$. Trivially $k_{1}^{1}(v)=0$ and $k_{3}^{1}(v)=0$. Note that both $k_{2}^{1}(v)$ and $k_{4}^{1}(v)$ have zero indeterminacy. Choose a stable secondary operation φ associated to the relation

$$
\left(S q^{2} S q^{1}\right) S q^{8 t+6}+S q^{1} S q^{8 t+8}+S q^{8 t+8} S q^{1}=0
$$

so that φ vanishes on classes of dimension $\leqq 8 t+5$. The generating class theorem [29, Theorem 6.4] gives $\varphi\left(U_{v}\right)=U_{v} \cdot k_{2}^{1}(v)$. But $\varphi\left(U_{v}\right)=2^{\alpha(t+1)-1} U_{v} \cdot \beta^{4 t+4}$ by Proposition 3.3. Thus $k_{2}^{1}(v) \neq 0$ iff $\alpha(t+1)=1$ iff $n=2^{r}+4$ for $r \geqq 4$. Let $g: C P^{m} \rightarrow E_{1}$ be any lifting for v and set $f=g \circ H$. Now $f^{*}\left(k_{1}^{1}, k_{2}^{1}, k_{3}^{1}\right)=\left(0, \alpha^{2 r}, 0\right)$ for $n=2^{r}+4$. The indeterminacy subgroup of ($k_{1}^{1}, k_{2}^{1}, k_{3}^{1}$) γ) is generated by $\left(\alpha^{2^{r-1}}, 0, \alpha^{2^{r}+1}\right.$) and $\left(0, \alpha^{2 r}, \alpha^{2^{r}+1}\right)$. So f cannot be altered to produce a lifting of γ to E_{2}. That is, $R P^{n} \nsubseteq R^{2 n-7}$ for $n=2^{r}+4$ and $r>3$.

Let $h: C P^{m+1} \rightarrow E_{1}$ be any lifting for the bundle v based on $C P^{m+1}$. The defining relation for k_{3}^{2} gives $\beta^{3} \cdot h^{*} k_{2}^{1}+\beta \cdot h^{*} k_{4}^{1}=0$ in $H^{2 m+2}\left(C P^{m+1}\right)$. So $h^{*} k_{2}^{1}=0$ iff $h^{*} k_{4}^{1}=0$. It follows that $g^{*} k_{2}^{1}=0$ iff $g^{*} k_{4}^{1}=0$ for any lifting $g: C P^{m} \rightarrow E_{1}$ of v. Thus $f=g \circ H: R P^{n} \rightarrow E_{1}$ lifts to E_{2} for $n \neq 2^{r}+4$.

Proof of Theorem 1.4. We consider the case $n \equiv 8 \bmod 16$. The proof for $n \equiv 0 \bmod 16$ is similar and so is omitted. Write $n=16 t+8$ and refer to Postnikov resolution III. Let $v: C P^{m} \rightarrow B$ Spin classify the bundle $v=(16 t+4) \eta$ for $m=8 t+4$. Let $\gamma=v \circ H: R P^{n} \rightarrow B$ Spin classify the bundle $\gamma=(32 t+8) \xi$ over $R P^{n}$. One checks easily that γ lifts to $B \operatorname{Spin}(16 t-1)$ if v lifts to E_{2}. Now

$$
w_{16 t}(v)=\binom{16 t+4}{8 t} \beta^{8 t}=0
$$

so v lifts to E_{1}. The defining relation for k_{1}^{2} gives $S q^{2} k_{1}^{1}(v)=0$ so $k_{1}^{1}(v)=0$. The
defining relation for k_{3}^{2} gives $S q^{4} k_{2}^{1}(v)=0$. But $S q^{4} \beta^{8 t+6}=\beta^{8 t+8}$ so that $k_{2}^{1}(v)=0$. It follows that v lifts to E_{2} iff $k_{4}^{1}(v)=0$. We proceed to express by a secondary operation a class different from k_{4}^{1} but equal to k_{4}^{1} under pull-backs to $C P^{m}$. Consider the following commutative diagram.

Here $p: E \rightarrow B$ Spin is the principal fibration with classifying map

$$
w_{16 t} \times W: B \operatorname{Spin} \rightarrow C=K\left(Z_{2}, 16 t\right) \times K\left(Z_{2}, 16 t+8\right)
$$

where W represents the class $w_{4} w_{16 t+4}+w_{6} w_{16 t+2}+w_{4}^{2} w_{16 t}$ in $H^{*}(B \mathrm{Spin})$. Let ι_{1} and ι_{2} denote the fundamental classes of the components of ΩC. The following exact sequence holds for $j \leqq 16 t+15$ from [26].

$$
0 \longrightarrow H^{j}(E) \xrightarrow{\nu^{*}} H^{j}(\Omega C \times B \operatorname{Spin}(16 t-1)) \xrightarrow{\tau_{1}} H^{j+1}(B \text { Spin }) .
$$

Regard k_{4}^{1} as a class in $H^{*}(E)$ via r^{*} and recall that

$$
\begin{aligned}
\nu^{*} k_{4}^{1}= & S q^{8} S q^{1} \iota_{1} \otimes 1 \otimes 1+S q^{1} \iota_{1} \otimes 1 \otimes w_{8}+S q^{5} \iota_{1} \otimes 1 \otimes w_{4} \\
& +S q^{1} \iota_{1} \otimes 1 \otimes w_{4}^{2}+S q^{3} \iota_{1} \otimes 1 \otimes w_{6}+S q^{2} \iota_{1} \otimes 1 \otimes w_{7} .
\end{aligned}
$$

Now

$$
\tau_{1}\left(1 \otimes S q^{1} \iota_{2} \otimes 1\right)=S q^{1} W=\tau_{1}\left[S q^{1}\left(S q^{4} \iota_{1} \otimes 1 \otimes w_{4}+S q^{2} \iota_{1} \otimes 1 \otimes w_{6}\right)\right]
$$

Let z be the unique class in $H^{16 t+8}(E)$ for which

$$
\nu^{*} z=S q^{8} S q^{1} \iota_{1} \otimes 1 \otimes 1+S q^{1} \iota_{1} \otimes 1 \otimes w_{8}+1 \otimes S q^{1} \iota_{2} \otimes 1+S q^{1} \iota_{1} \otimes 1 \otimes w_{4}^{2} .
$$

Let y be the unique class in $H^{16 t+7}(E)$ for which

$$
\nu^{*} y=1 \otimes \iota_{2} \otimes 1+S q^{2} \iota_{1} \otimes 1 \otimes w_{6}+S q^{4} \iota_{1} \otimes 1 \otimes w_{4}
$$

Since $\nu^{*}\left(S q^{1} y\right)=\nu^{*}\left(z+k_{4}^{1}\right)$, it follows that $k_{4}^{1}=z+S q^{1} y$. Choose a stable secondary operation Φ associated to the relation $\left(S q^{8} S q^{1}\right) S q^{16 t}+S q^{16 t+8} S q^{1}+S q^{16 t+7} S q^{2}$ $+S q^{1}\left(S q^{16 t+4} S q^{4}\right)=0$ such that Φ vanishes on classes having dimension $<16 t$. Note that $S q^{16 t+4} S q^{4} U=U \cdot W$ in $H^{*}\left(T_{B \text { Spin }}\right)$. By [29, Theorem 6.4] $U_{E} \cdot\left(z+k^{\prime}\right)$ $\in \Phi\left(U_{E}\right)$ for some class k^{\prime} in $H^{16 t+8}(E) \cap$ kernel $j^{*} \cap \operatorname{kernel} q^{*}$. It follows that $\Phi\left(U_{v}\right)=U_{v} \cdot z(v)=U_{v} \cdot k_{4}^{1}(v)$. Let δ denote the generator for $H^{*}\left(Q P^{\infty}\right)$ and ρ the Hopf line bundle over $Q P^{\infty}$. We regard $\delta^{8 t+2}$ as the Thom class of the bundle
$\zeta=(8 t+2) \rho$ based on $Q P^{l}$ for large l. The highest power of 2 dividing the Chern class $c_{8 t}(\zeta)$ is $2^{\alpha(t)}$ from §2. By Proposition 3.5

$$
\Phi\left(U_{\zeta}\right)=2^{\alpha(t)-1} S q^{8}\left(U_{\zeta} \cdot \delta^{4 t}\right)
$$

But $S q^{8} \delta^{12 t+2}=\delta^{12 t+4}$ so $\Phi\left(\delta^{8 t+2}\right)=0$ iff $\alpha(t)>1$ iff $n \neq 2^{r}+8$. Naturality under the Hopf map $C P^{\infty} \rightarrow Q P^{\infty}$ shows that $\Phi\left(\beta^{16 t+4}\right)=0$ iff $n \neq 2^{r}+8$. Thus $k_{4}^{1}(v)=0$ for $n \neq 2^{r}+8$ from identifying U_{v} with $\beta^{16 t+4}$. Since γ has a lifting $f \circ H: R P^{n} \rightarrow E_{2}$ where $f: C P^{m} \rightarrow E_{2}$ is a lifting for v, clearly $k_{3}^{2}(\gamma)=0$ for $n \neq 2^{r}+8$. One checks indeterminacies and defining relations to show that γ lifts to $\mathrm{B} \operatorname{Spin}(16 t-1)$ iff γ has a lifting to E_{2} and $k_{3}^{2}(\gamma)=0$. Thus γ lifts to $B \operatorname{Spin}(16 t-1)$ and the result follows from (2.1) for $n \neq 2^{r}+8$. For $n=2^{r}+8$ we express the obstruction $k_{3}^{2}(\gamma)$ by a tertiary operation.
We assume now that $n=2^{r}+8$ for $r>3$. The natural map $B O[8] \rightarrow B$ Spin induces a Postnikov resolution for the fiber map $\pi^{\prime}: B O[8]\left(2^{r}-1\right) \rightarrow B O[8]$ from Postnikov resolution III for the map π. We denote the k-invariants for π^{\prime} also by k_{j}^{i} and the spaces in the resolution by E_{i}. Thus k_{2}^{1} in $H^{*}\left(E_{1}\right)$ has the defining relation $S q^{4} S q^{1} w_{2}{ }^{r}=0$ in $H^{*}(B O[8])$ and k_{3}^{2} has the defining relation $S q^{6} k_{1}^{1}+S q^{4} k_{2}^{1}$ $=0$ in $H^{*}\left(E_{1}\right)$. Since $S q^{2} k_{1}^{1}=0$ and $B O[8]$ is 7 -connected, the coset K of $\left(k_{1}^{1}, k_{2}^{1}\right)$ defined in $\S 4$ contains only (k_{1}^{1}, k_{2}^{1}). Let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be the double secondary operation with component operations Φ_{i} chosen in (3.6). By Proposition 4.3

$$
U_{E_{1}} \cdot\left(k_{1}^{1}, k_{2}^{1}\right) \in \Phi\left(U_{E_{1}}\right) .
$$

Let ψ be any tertiary operation associated to the relation (3.7).
By Proposition 4.6

$$
U_{E_{2}} \cdot\left(\hat{k}_{3}^{2}+\left(p_{1} \circ p_{2}\right) * P\right) \in \psi\left(U_{E_{2}}\right)
$$

Here \hat{k}_{3}^{2} belongs to the coset K^{\prime} in (4.6) determined by k_{3}^{2}, and P is a class in $H^{2^{+}+7}(B O[8])$ such that $U^{\prime} \cdot P \in \psi\left(U^{\prime}\right)$ where U^{\prime} denotes the Thom class of the universal bundle over $B O[8]\left(2^{r}-1\right)$.
Let $h: R P^{n} \rightarrow E_{2}$ be any lifting for the map $\gamma: R P^{n} \rightarrow B O[8]$ classifying the bundle $\gamma=\left(2^{r+1}+8\right) \xi$. Now $h^{*} \hat{k}_{3}^{2}=h^{*} k_{3}^{2}$ since $k_{1}^{2}(\gamma)=0$ and $S q^{2} S q^{1} h^{*} k_{2}^{2}=S q^{3} h^{*} k_{2}^{2}$ $=0$. Clearly $P(\gamma)=0$ so we conclude $U_{\gamma} \cdot k_{3}^{2}(\gamma) \in \psi\left(U_{\gamma}\right)$.

Identify U_{γ} with $\alpha^{2^{\gamma+1}+8}$ in $H^{*}\left(R P^{\infty}\right)$ and apply Proposition 3.8 to give $k_{3}^{2}(\gamma)=0$. Thus γ lifts to $B O[8]\left(2^{r}-1\right)$ and the result follows by (2.1).

Proof of Theorem 1.6. Let $\gamma: R P^{n} \rightarrow B S O$ classify the bundle $\gamma=2 p \xi$ $=\left(2^{\phi(n)}-(n+1)\right) \xi$. The argument that γ lifts to $B S O(n-8)$ for $n \equiv 5 \bmod 8$ and $\alpha(n)>3$ is similar to the proof of Theorem 1.3 and so is omitted. We consider the case $n \equiv 1 \bmod 8$ and $\alpha(n)>3$. Write $n=8 t+9$ and refer to Postnikov resolution IV. By (2.1) it suffices to show γ lifts to $B S O(8 t+1)$. Let $v: C P^{m} \rightarrow B S O$ classify the bundle $v=p \eta$ where $m=4 t+4$. One checks easily that γ lifts to $B S O(8 t+1)$ iff $k_{4}^{2}(\gamma)=0$. Clearly $k_{4}^{2}(\gamma)=0$ if v lifts to E_{2}. Note that v and hence γ lift to E_{1} by $\S 2$.

Let $h: C P^{m+1} \rightarrow E_{1}$ be a lifting for the bundle v based on $C P^{m+1}$. The defining relation for k_{4}^{2} gives $\beta \cdot S q^{4}\left(h^{*} k_{2}^{1}\right)=0$ in $H^{2 m+2}\left(C P^{m+1}\right)$. But $S q^{4} \beta^{4 t+2}=\beta^{4 t+4}$ so $h^{*} k_{2}^{1}=0$. Thus $k_{2}^{1}(v)=0$ and v lifts to E_{2} iff $k_{5}^{1}(v)=0$. Consider the following commutative diagram.

Here $p: E \rightarrow B S O$ is the principal fibration with classifying map

$$
w_{8 t+2} \times w_{8 t+4} \times w_{8 t+8} \times W: B S O \rightarrow C
$$

where W represents the class $w_{2} w_{8 t+6}+w_{3} w_{8 t+5}+w_{2}^{2} w_{8 t+4}$ in $H^{*}(B S O)$. The following exact sequence from [26] holds for $j \leqq 8 t+15$

$$
0 \longrightarrow H^{j}(E) \xrightarrow{\nu^{*}} H^{j}(\Omega C \times B S O(8 t+1)) \xrightarrow{\tau_{1}} H^{j+1}(B S O) .
$$

Let ι_{j} for $1 \leqq j \leqq 4$ denote the fundamental classes of the components of ΩC. Now

$$
\begin{aligned}
v^{*} k_{5}^{1}= & 1 \otimes 1 \otimes S q^{1} \iota_{3} \otimes 1 \otimes 1 \\
& +1 \otimes S q^{4} S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes 1+1 \otimes S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes w_{4} \\
& +1 \otimes S q^{2} S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes w_{2}+S q^{1}\left(1 \otimes S q^{2} \iota_{2} \otimes 1 \otimes 1 \otimes w_{2}\right) .
\end{aligned}
$$

Let y be the unique class in $H^{8 t+7}(E)$ such that

$$
\begin{aligned}
\nu^{*} y= & 1 \otimes 1 \otimes 1 \otimes \iota_{4} \otimes 1+1 \otimes S q^{2} \iota_{2} \otimes 1 \otimes 1 \otimes w_{2} \\
& +1 \otimes S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes w_{3} .
\end{aligned}
$$

Define z in $H^{*}(E)$ so that

$$
\begin{aligned}
\nu^{*} z= & 1 \otimes 1 \otimes S q^{1} \iota_{3} \otimes 1 \otimes 1+1 \otimes 1 \otimes 1 \otimes S q^{1} \iota_{4} \otimes 1 \\
& +1 \otimes S q^{4} S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes 1+1 \otimes S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes w_{4} \\
& +1 \otimes S q^{2} S q^{1} \iota_{2} \otimes 1 \otimes 1 \otimes w_{2} .
\end{aligned}
$$

Thus $k_{5}^{1}=z+S q^{1} y$ since $\nu^{*}\left(S q^{1} y\right)=\nu^{*}\left(z+k_{5}^{1}\right)$.
By [2] we can select a secondary operation Γ associated to the relation

$$
\left(S q^{4} S q^{1}\right) S q^{8 t+4}+S q^{1} S q^{8 t+8}+S q^{1}\left(S q^{8 t+6} S q^{2}\right)+S q^{8 t+8} S q^{1}=0
$$

so that $\lambda S q^{2} x \cdot S q^{3} x \in \Gamma(x)$ for any class x of dimension $8 t+3$ in the domain of Γ
and such that $\lambda \in Z_{2}$ is independent of x. Note that $S q^{8 t+6} S q^{2} U=U \cdot W$ in $H^{*}\left(T_{B S O}\right)$. The generating class theorem [30, Theorem 6.5] gives the result

$$
U_{E} \cdot\left(z+k^{\prime}\right) \in \Gamma\left(U_{E}\right)
$$

for some class k^{\prime} in $H^{8 t+8}(E) \cap \operatorname{kernel} j^{*} \cap$ kernel q^{*}. It follows that $\Gamma\left(U_{v}\right)$ $=U_{v} \cdot z(v)=U_{v} \cdot k_{5}^{1}(v)$. One checks from §2 that the highest power of 2 dividing $c_{1}(v)$ is 2 , dividing $c_{4 t+2}(v)$ is $2^{\alpha(n)-2}$, and dividing $c_{4 t+4}(v)$ is $2^{\alpha(n)-1}$. By Proposition 3.4

$$
\Gamma\left(U_{v}\right)=2^{\alpha(n)-3} U_{v} \cdot \beta^{4 t+4} .
$$

Thus $k_{5}^{1}(v)=0$ for $\alpha(n)>3$ so v lifts to E_{2} and the proof is complete.
6. Appendix. These Postnikov resolutions for the fiber map $\pi: B_{m} \rightarrow B$ are constructed by the techniques of [26]. We refer the reader also to [17] and [8] for the theory and construction of modified Postnikov resolutions. The homotopy groups of the fibers for π appear in [13] and [22]. The tower of spaces is displayed only for resolution I. The k-invariant k_{j}^{t} represents a class in $H^{*}\left(E_{i}\right)$ whose defining relation is a relation in $H^{*}\left(E_{i-1}\right)$ where $E_{0}=B$.
6.1. Postnikov resolution I for the fibration $\pi: B \operatorname{Spin}(4 t+1) \rightarrow B \operatorname{Spin}$ for stable spin bundles over complexes of dimension $\leqq 4 t+6$ for $t>1 . K(n)$ denotes $K\left(Z_{2}, n\right)$.

Defining relations for k-invariants:

$$
\begin{aligned}
& k_{1}: S q^{2} w_{4 t+2}=0, \\
& k_{2}:\left(S q^{2} S q^{1}\right) w_{4 t+2}+S q^{1} w_{4 t+4}=0, \\
& k_{3}:\left(S q^{4}+w_{4}\right) w_{4 t+2}+t S q^{2} w_{4 t+4}=0, \\
& k_{4}: S q^{2} k_{1}+S q^{1} k_{2}=0 .
\end{aligned}
$$

6.2. Postnikov resolution II for the fibration $\pi: B S O(8 t+5) \rightarrow B S O$ for stable
orientable bundles over complexes of dimension $\leqq 8 t+13$ for $t>0$. Defining relations for k-invariants:

$$
\begin{aligned}
& k_{1}^{0}= w_{8 t+6}, \\
& k_{2}^{0}= w_{8 t+8}, \\
& k_{1}^{1}:\left(S q^{2}+\cdot w_{2}\right) w_{8 t+6}=0, \\
& k_{2}^{1}:\left(S q^{2}+\cdot w_{2}\right) S q^{1} w_{8 t+6}+S q^{1} w_{8 t+8}=0, \\
& k_{3}^{1}:\left(S q^{4}+\cdot w_{4}\right) w_{8 t+6}+S q^{2} w_{8 t+8}=0, \\
& k_{4}^{1}:\left(S q^{4}+\cdot w_{4}+\cdot w_{2}^{2}\right) S q^{1} w_{8 t+8}+S q^{1}\left(w_{2} \cdot S q^{2}\right) w_{8 t+8}=0, \\
& t \text { even } k_{5}^{1}:\left(S q^{8}+\cdot w_{8}\right) w_{8 t+6}+w_{6} \cdot w_{8 t+8}=0, \\
& t \text { odd } k_{5}^{1}:\left(S q^{8}+\cdot w_{8}\right) w_{8 t+6}+\left(S q^{6}+w_{4} \cdot S q^{2}+w_{2} \cdot S q^{4}\right) w_{8 t+8}=0, \\
& k_{1}^{2}:\left(S q^{2}+\cdot w_{2}\right) k_{1}^{1}+S q^{1} k_{2}^{1}=0, \\
& k_{2}^{2}: S q^{1} k_{4}^{1}+\left(S q^{2} S q^{3}+\cdot w_{5}\right) k_{2}^{1}+S q^{2}\left(w_{2} \cdot S q^{1} k_{2}^{1}\right)=0, \\
& k_{3}^{2}:\left(S q^{2}+\cdot w_{2}\right) k_{4}^{1}+\left(S q^{2} S q^{3}+w_{2} \cdot S q^{2} S q^{1}+\cdot w_{5}\right) k_{3}^{1} \\
&+S q^{1}\left(w_{2} \cdot S q^{2} k_{3}^{1}\right)+S q^{4}\left(k_{1}^{1} \cdot w_{3}\right) \\
&+\left(S q^{7}+S q^{4} S q^{2} S q^{1}+w_{4} \cdot S q^{2} S q^{1}+w_{6} \cdot S q^{1}+w_{2}^{2} \cdot S q^{2} S q^{1}+\cdot w_{3} w_{2}^{2}\right) k_{1}^{1} \\
&+k_{1}^{1} \cdot S q^{3} w_{4}+\left(S q^{4}+S q^{3} S q^{1}\right)\left(k_{2}^{1} \cdot w_{2}\right) \\
&+\left(S q^{6}+w_{4} \cdot S q^{2}+w_{3} \cdot S q^{2} S q^{1}+\cdot w_{6}+\cdot w_{2}^{3}+\cdot w_{3}^{2}\right) k_{2}^{1} \\
&+S q^{1}\left(k_{2}^{1} \cdot w_{2} w_{3}\right)=0, \\
& k_{1}^{3}: S q^{1} k_{2}^{2}+S q^{3}\left(k_{1}^{2} \cdot w_{2}\right)+\left(S q^{2} S q^{3}+w_{2} \cdot S q^{2} S q^{1}+w_{2}^{2} \cdot S q^{1}+\cdot w_{5}\right) k_{1}^{2}=0 .
\end{aligned}
$$

6.3. Postnikov resolution III for the fibration $\pi: B \operatorname{Spin}(16 t-1) \rightarrow B \operatorname{Spin}$ for stable spin bundles over complexes of dimension $\leqq 16 t+8$ for $t>0$.

Defining relations for k-invariants:

$$
\begin{aligned}
& k_{1}^{0}=w_{16 t}, \\
& k_{1}^{1}: S q^{2} S q^{1} w_{16 t}=0, \\
& k_{2}^{1}:\left(S q^{4}+\cdot w_{4}\right) S q^{1} w_{16 t}=0, \\
& k_{3}^{1}:\left(S q^{4}+\cdot w_{4}\right) S q^{2} w_{16 t}=0, \\
& k_{4}^{1}:\left(S q^{8}+\cdot w_{8}\right) S q^{1} w_{16 t}+S q^{1}\left(w_{4} \cdot S q^{4}+w_{6} \cdot S q^{2}+\cdot w_{4}^{2}\right) w_{16 t}=0, \\
& k_{1}^{2}: S q^{2} k_{1}^{1}=0, \\
& k_{2}^{2}: S q^{2} S q^{1} k_{1}^{1}+S q^{1} k_{1}^{2}=0, \\
& k_{3}^{2}:\left(S q^{6}+\cdot w_{6}\right) k_{1}^{1}+\left(S q^{4}+\cdot w_{4}\right) k_{2}^{1}=0, \\
& k_{4}^{2}:\left(S q^{4}+S q^{3} S q^{1}+\cdot w_{4}\right) k_{3}^{1}+\left(S q^{6}+\cdot w_{6}\right) S q^{1} k_{1}^{1}+\left(w_{4} \cdot S q^{1}\right) k_{2}^{1}=0, \\
& k_{5}^{2}: S q^{1} k_{4}^{1}+\left(S q^{7}+S q^{4} S q^{2} S q^{1}\right) k_{1}^{1}=0, \\
& k_{1}^{3}: S q^{2} k_{1}^{2}+S q^{1} k_{2}^{2}=0, \\
& k_{2}^{3}: S q^{1} k_{5}^{2}+S q^{4} S q^{1} k_{2}^{2}=0, \\
& k_{1}^{4}: S q^{1} k_{2}^{3}+S q^{2} S q^{3} k_{1}^{3}=0 .
\end{aligned}
$$

6.4. Postnikov resolution IV for the fibration $\pi: B S O(8 t+1) \rightarrow B S O$ for stable orientable bundles over complexes of dimension $\leqq 8 t+9$ for $t>1$.

Defining relations for k-invariants:

$$
\begin{aligned}
& k_{1}^{0}=w_{8 t+2} k_{2}^{0}=w_{8 t+4} k_{3}^{0}=w_{8 t+8}, \\
& k_{1}^{1}:\left(S q^{2}+\cdot w_{2}\right) w_{8 t+2}=0, \\
& k_{2}^{1}:\left(S q^{2}+\cdot w_{2}\right) S q^{1} w_{8 t+2}+S q^{1} w_{8 t+4}=0, \\
& k_{3}^{1}:\left(S q^{4}+\cdot w_{4}\right) w_{8 t+2}+w_{2} \cdot w_{8 t+4}=0, \\
& k_{4}^{1}:\left(S q^{4}+\cdot w_{4}\right) w_{8 t+4}=0, \\
& k_{5}^{1}: S q^{1} w_{8 t+8}+\left(S q^{4}+\cdot w_{4}\right) S q^{1} w_{8 t+4}+\left(w_{2} \cdot S q^{2} S q^{1}\right) w_{8 t+4} \\
&+S q^{1}\left(w_{2} \cdot S q^{2}\right) w_{8 t+4}=0, \\
& t \text { even } k_{6}^{1}:\left(S q^{8}+\cdot w_{8}\right) w_{8 t+2}+w_{2} \cdot w_{8 t+8}+\left(w_{4} \cdot S q^{2}+\cdot w_{6}+\cdot w_{2} w_{4}\right) w_{8 t+4}=0, \\
& t \text { odd } k_{6}^{1}:\left(S q^{8}+\cdot w_{8}\right) w_{8 t+2}+S q^{2} w_{8 t+8}+\left(w_{4} \cdot S q^{2}+\cdot w_{6}+\cdot w_{2} w_{4}\right) w_{8 t+4}=0, \\
& k_{7}^{1}:\left(S q^{4}+\cdot w_{4}\right)\left(S q^{2}+\cdot w_{2}\right) w_{8 t+4}+S q^{2} w_{8 t+8}=0, \\
& k_{1}^{2}:\left(S q^{2}+\cdot w_{2}\right) k_{1}^{1}+S q^{1} k_{2}^{1}=0, \\
& k_{2}^{2}: S q^{1} k_{5}^{1}+S q^{1}\left(w_{2} \cdot S q^{2}\right) k_{2}^{1}+\left(S q^{2} S q^{3}+w_{2} \cdot S q^{2} S q^{1}+\cdot w_{5}\right) k_{2}^{1}=0, \\
& k_{3}^{2}: k_{4}^{1} \cdot w_{2}+\left(S q^{6}+\cdot w_{6}\right) k_{1}^{1}+\left(S q^{4}+S q^{3} S q^{1}+w_{2} \cdot S q^{2}+w_{3} \cdot S q^{1}+\cdot w_{4}+\cdot w_{2}^{2}\right) k_{3}^{1} \\
&+S q^{2}\left(k_{2}^{1} \cdot w_{3}\right)+\left(w_{2} \cdot S q^{3}+w_{2} \cdot S q^{2} S q^{1}+w_{4} \cdot S q^{1}+w_{2}^{2} \cdot S q^{1}\right) k_{2}^{1}=0, \\
& k_{4}^{2}:\left(S q^{2}+\cdot w_{2}\right) S q^{1} k_{4}^{1}+S q^{2} S q^{1}\left(k_{3}^{1} \cdot w_{2}\right) \\
&+\left(S q^{2} S q^{3}+w_{2} \cdot S q^{3}+w_{2}^{2} \cdot S q^{1}+\cdot w_{2} w_{3}\right) k_{3}^{1} \\
&+\left(S q^{6}+w_{2} \cdot S q^{4}+w_{4} \cdot S q^{2}+\cdot w_{6}+\cdot w_{3}^{2}\right) k_{2}^{1}+S q^{3}\left(k_{2}^{1} \cdot w_{3}\right) \\
&+S q^{4}\left(k_{1}^{1} \cdot w_{3}\right)+\left(w_{2}^{2} \cdot S q^{1}\right)\left(k_{1}^{1} \cdot w_{2}\right) \\
&+\left(w_{2} \cdot S q^{2} S q^{3}+S q^{7}+S q^{4} S q^{2} S q^{1}+w_{4} \cdot S q^{2} S q^{1}\right. \\
&+\left.+w_{6} \cdot S q^{1}+\cdot w_{7}+\cdot w_{3} w_{4}\right) k_{1}^{1}=0, \\
& k_{1}^{3}: S q^{1} k_{2}^{2}+S q^{1}\left(w_{2} \cdot S q^{2}\right) k_{1}^{2}+\left(S q^{2} S q^{3}+w_{2} \cdot S q^{2} S q^{1}+\cdot w_{5}\right) k_{1}^{2}=0 .
\end{aligned}
$$

6.5. Postnikov resolution V for the fibration $\pi: B \operatorname{Spin}(16 t+7) \rightarrow B$ Spin for stable spin bundles over complexes of dimension $\leqq 16 t+16$ for $t>0$.

Defining relations for k-invariants:

$$
\begin{aligned}
& k_{1}^{0}=w_{16 t+8}, \quad k_{2}^{0}=w_{16 t+16}, \\
& k_{1}^{1}: S q^{2} S q^{1} w_{16 t+8}=0, \\
& k_{2}^{1}:\left(S q^{4}+\cdot w_{4}\right) S q^{1} w_{16 t+8}=0, \\
& k_{3}^{1}:\left(S q^{8}+\cdot w_{8}\right) w_{16 t+8}=0, \\
& k_{4}^{1}:\left(S q^{4}+\cdot w_{4}\right) S q^{2} w_{16 t+8}=0, \\
& k_{5}^{1}:\left(S q^{8}+\cdot w_{8}\right) S q^{1} w_{16 t+8}+S q^{1} w_{16 t+16} \\
& \quad+S q^{1}\left(w_{4} \cdot S q^{4}+w_{6} \cdot S q^{2}+\cdot w_{4}^{2}\right) w_{16 t+8}=0, \\
& k_{1}^{1}: S q^{2} k_{1}^{1}=0, \\
& k_{2}^{2}: S q^{2} S q^{1} k_{1}^{1}+S q^{1} k_{2}^{1}=0, \\
& k_{3}^{2}:\left(S q^{6}+\cdot w_{6}\right) k_{1}^{1}+\left(S q^{4}+\cdot w_{4}\right) k_{2}^{1}=0, \\
& k_{4}^{2}:\left(S q^{4}+S q^{3} S q^{1}+\cdot w_{4}\right) k_{4}^{1}+S q^{5} k_{2}^{1}+\left(S q^{7}+S q^{6} S q^{1}+\cdot w_{7}\right) k_{1}^{1}=0, \\
& k_{5}^{2}: S q^{1} k_{5}^{1}+S q^{4} S q^{1} k_{2}^{1}+S q^{7} k_{1}^{1}=0, \\
& k_{1}^{3}: S q^{2} k_{1}^{2}+S q^{1} k_{2}^{2}=0, \\
& k_{2}^{3}: S q^{1} k_{5}^{2}+S q^{2} S q^{3} k_{2}^{2}=0, \\
& k_{1}^{4}: S q^{1} k_{2}^{3}+S q^{2} S q^{3} k_{1}^{3}=0 .
\end{aligned}
$$

References

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 \#4530.
2. J. Adem, Sobre operaciones cohomologicas secundarias, Bol. Soc. Mat. Mexicana (2) 7 (1962), 95-110. MR 29 \#5243.
3. J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53-78. MR 29 \#5255.
4. -_, Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana (2) 9 (1964), 37-50. MR 32 \#461.
5. M. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 \#A1727.
6. S. Feder, Non-immersion theorems for complex and quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 62-67. MR 38 \#721.
7. S. Gitler, The projective Stiefel manifolds. II: Applications, Topology 7 (1968), 47-53. MR 36 \#3373b.
8. S. Gitler and M. Mahowald, Geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85-107. MR 37 \#6922.
9. -_, The immersion of manifolds, Bull. Amer. Math. Soc. 73 (1967), 696-700. MR 35 \#4940.
10. S. Gitler, M. Mahowald and R. J. Milgram, Secondary cohomology operations and complex vector bundles, Proc. Amer. Math. Soc. 22 (1969), 223-229.
11. -_ The nonimmersion problem for $R P^{n}$ and higher-order cohomology operations, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 432-437. MR 37 \#3581.
12. M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 \#9980.
13. C. S. Hoo and M. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661-667. MR 31 \#1675.
14. A. Hughes and E. Thomas, A note on certain secondary cohomology operations, Bol. Soc. Mat. Mexicana (1) 13 (1968), 1-17.
15. D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 \#4821.
16. I. M. James, On the immersion problem for real projective spaces, Bull. Amer. Math. Soc. 69 (1963), 231-238. MR 26 \#1900.
17. M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349. MR 28 \#620.
18. ——, Some Whitehead products in S^{n}, Topology 4 (1965), 17-26. MR 31 \#2724.
19. M. Mahowald and F. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377. MR 28 \#612.
20. C. R. F. Maunder, Cohomology operations of the Nth kind, Proc. London Math. Soc. (31) 13 (1963), 125-154. MR 35 \#2279.
21. R. J. Milgram, Immersing projective spaces, Ann. of Math. (2) 85 (1967), 473-482. MR 35 \#2293.
22. G. Paechter, The groups $\pi_{r}\left(V^{n, m}\right)$ I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249-268. MR 24 \#A1725.
23. A. D. Randall, Some immersions of manifolds (to appear)
24. B. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964), 137-153. MR 29 \#2814.
25. J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232. MR 15, 643.
26. E. Thomas, Seminar on fiber spaces, Lecture Notes in Math., no. 13, Springer-Verlag, Berlin, 1966. MR 34 \#3582.
27. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184-217. MR 35 \#1029.
28. -, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183-1205. MR 35 \#1030.
29. - The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86-110. MR 35 \#6158.
30. ———, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225-244. MR 38 \#2804.
31. G. Walker and J. F. Adams, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103. MR 30 \#1516.

University of Notre Dame, Notre Dame, Indiana

