
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 147, January 1970

ON THE COUNTING FUNCTION FOR THE a-VALUES

OF A MEROMORPHIC FUNCTION

BY

JOSEPH MILESO

Introduction. If/(z) is a nonconstant meromorphic function in \z\ <oo, we let

n(r, a) denote the number of roots counting multiplicities of the equation /(z) = a

in |z|íí/\ Our principal result is an "unintegrated" analogue for n(r,a) of the

theorem which asserts that the Valiron deficient values of/(z) have inner capacity

zero. Our result contains both an exceptional set of a-values and an exceptional

set of r-values. We also obtain a result on supa n(r, a) having an exceptional set of

a-values which bears on a question of Hayman and Stewart. We show by examples

that all the exceptional sets in our results are in general nonempty. One of our

examples also shows that the exceptional set of r-values in Ahlfors' theory of

covering surfaces is in general nonempty.

1. Terminology and notation. We assume the reader is familiar with such

standard notation of Nevanlinna theory as m(r, a), N(r, a), and T(r,f), as well as

with the definitions of Nevanlinna and Valiron deficient values.

We let X denote the Riemann sphere. If/(z) is meromorphic in \z\ <co then the

mean covering number of the map/: \z\ ^r -»• S is defined by

S(r) =  f n(r, a) dm(d),

where m denotes normalized area measure on 2. In general the mean covering

number of any domain D<= 2 is

S(r, D) = j^rjyj J   n(r, a) dm(a).

It is of fundamental importance that the spherical characteristic of/(z) defined by

has the property that

(1.1) \To(r)-T(r,f)\ = 0(1)        (r -+ oo).
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Because of (1.1), T0(r) and T(r,f) can be used interchangeably for many purposes.

In this paper we shall use the spherical characteristic and for notational convenience

denote it by T(r).

If £<= [ 1, co), the logarithmic measure of E is defined by mt(E) = jE dtjt. For r > 1

we denote E n [1, r) by Er. The upper (lower) logarithmic density of E is defined

to be

hm sup (inf) -+±—-•
r^» logr

If limr^„ (w,(2ir)/log r) exists, it is called the logarithmic density of P.

Many of our inequalities hold only for sufficiently large values of the variable,

denoted by r>r0 or n>n0. It is not intended that r0 and n0 have the same value

each time they occur.

2. Discussion of results. Throughout this paper our concern is with the

functional n(r, a). We show in our principal result (Theorem 2) that if /(z) is a

nonconstant meromorphic function in |z|<oo, then there exists a set A2 in the

complex plane having inner capacity zero and there exists p2c[l,°°) having

logarithmic density zero such that limr^00:riE2 (n(r, a)jS(r))= 1 for all a $ A2.

Given £>0, we show that the above limit is uniform off a set A3 such that

cap {a : a e A3 and \a\ g l}<e and cap {a-1 : ae A3 and \a\ > ]}<e. We thus prove

in Theorem 3 that supai„3 n(r, a)<(\ + e)S(r) for all r in a set of logarithmic density

1.
It is of interest to compare Theorem 3 with the following result of Hayman and

Stewart [2].

Theorem. If f(z) is meromorphic in \z\ <co and e>0, then there exists a set of

r-values having positive lower logarithmic density on which

sup n(r, a) < (1 + e)eS(r).
aes

We observe that Theorem 3 applies to a larger set of r-values than does the

Hayman-Stewart result and also has a smaller upper bound; however Theorem 3

involves an exceptional set of a-values. Hayman and Stewart ask whether the factor

e can be removed from the bound in their result. Theorem 3 answers this question

affirmatively provided we omit from consideration a small set of a-values.

In §4 we are concerned with the existence of both the exceptional sets of a-values

and the exceptional sets of r-values in Theorems 2 and 3. Example 1 demonstrates

the existence of an entire function/(z) and a set Ë having positive lower logarithmic

density such that lim inf._ œ;reg (n(r, 0)¡S(r))>\\ thus in this example for sufficiently

small values of £ the exceptional set A3 of Theorem 3 is nonempty. Since/is an open

mapping we observe that for such values of e the set A3 necessarily contains a non-

empty open set and hence has positive capacity. Example 1 also shows that

{a : lim sup,...«,;,.^ (n(r, a)IS(r))>l}<=A2 is in general nonempty. It is known [4]
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that there exists an entire function f(z) such that T(r)\r is bounded away from 0

and oo and such that/(z) has uncountably many Valiron deficient values. We show

by very elementary methods that for this function every Valiron deficient value

belongs to A2 and hence A2 is uncountable.

Example 2 demonstrates the existence of an entire function f(z), a disk D in

the plane, and a sequence rn -» co such that n(rn, a)> 16S(rn)/15 for all a e D and

all rn. It follows that for this function the exceptional sets of r-values in Theorems

2 and 3 are unbounded. In addition/(z) has the property that there exists an arc L

in the plane and a number ß< 1 such that n(rn, a)<ßS(rn) for all a e L and all rn.

It is of interest to consider Example 2 in connection with two inequalities

obtained by Ahlfors [1] in his theory of covering surfaces. Ahlfors showed that if

D' is any domain on the sphere and if e>0, then there exists a set E0 of finite

logarithmic measure such that

(2.1) \S(r)-S(r, D')\ = 0(S(r)1!2 + *)       (r -> co)

for all r <£ E0. He also showed that for any set au ..., aq of distinct points on the

sphere

(2.2) J (S(r)-ñ(r,av)) ¿ 2S(r) + 0(S(r)1!2 + e)        (r^oo)
v = l

for all r $ E0. (Here ñ(r, av) denotes the number of distinct roots of/(z) = av in

Example 2 shows that the Ahlfors exceptional set E0 is in general nonempty.

Certainly (2.1) does not hold for the disk D and the sequence rn. Hence rn e EQ

for n>n0. By choosing 3/(1 — ß) distinct points av in L we see that (2.2) also does

not hold on the sequence /*„. In fact it is clear that on the sequence rn, (2.2) does

not hold with 2 replaced by any constant independent of q.

3. Results on n(r,d)\S(r). If A7>0, let AM = {a : \a\^M). Suppose/(z) is a

nonconstant meromorphic function in \z\ <oo and S>0. Let ÄB denote the set of

all complex numbers a e AM for which there exists r^R such that N(r,a)<T(r)

-T(r)ll2 + i. It is a standard result [3, p. 280] that limR_00 cap ÄR = §. Except for

the case/(0) = co which can easily be handled separately, we have from Nevanlinna's

first fundamental theorem for every r>0 and every complex number a#/(0)

N(r,a) < 7(/-)-log|/(0)-a|+log+ |a|+log+ |/(0)| +2 log 2.

It follows that if e>0, there exists Ac AM with cap A<e and there exists R0 =

R0(M, s, S) such that

(3.1) \N(r,a)-T(r)\ < r(/-)1/2 + ö

for all r> R0 and all aeà.M — A. We use this fact to prove Theorem 1. In what

follows we let Ra (unlike r0) have the same value each time it occurs.



206 JOSEPH MILES [January

Theorem 1. Suppose f(z) is a transcendental meromorphic function in the plane.

Suppose £>0, M>0, and 0 < S < 1/4. Then there exists £1c[l) co) depending only

on S such that j"£ (dx/x(log x)ll2 + 6)<co, there exists Ai^AM with cap^^e, and

there exists Rx = Ri(M, e, S) such that r e [Ru oo) — Ex implies

(3.2) (1 - 1/log S(r))2S(r) < n(r, a) < (1 + 1/log S(r))2S(r)

for all a e AM — Ai. If lim infr_œ (log 5'(r)/log log r)> 1, then Er in fact has finite

logarithmic measure.

Theorem 2. Suppose f(z) is a nonconstant meromorphic function in |z|<co. If

0<8<l/4, there exists P2<=[l,oo) such that J£2 (dx¡x(\og x)ll2 + 6)<ao and there

exists a set A2 in the complex plane having inner capacity zero such that

..        n(r, a) „        .
hm = 1   for all a f A2.

r—ca;r$E2    &(?)

2/lim inf,.,«, (log 5(r)/log log r)> 1, then E2 has finite logarithmic measure.

Theorem 3. Suppose f(z) is a nonconstant meromorphic function in |z|<co. If

e>0 and 0<S< 1/4, then there exists P3C[1, oo) such that J£3 (dx/(x(log x)ll2 + 6))

<co and there exists a set A3 in the complex plane for which

cap {a : a e A3 and \a\ ^ 1} < e   and   cap {a-1 : a e A3 and \a\ > 1} < e

such that supaii43 n(r, a)<(\ +e)S(r)for allr $ E3. If lim infr^„ (log S(r)/log log r)

> 1 then E3 has finite logarithmic measure.

Proof of Theorem 1. S(r) is a continuous, strictly increasing function which is

unbounded because/is transcendental. Suppose ?0>1 ¡s sucn that S(t0)>e. For

r>t0 define r by the equation

S(r) = S(r)(l +I ¡log S(r)).

Clearly r is well defined and r>r. Let

F „(logr)1'2^    _A    r   _f_   .„~^ .„
Ea = |r > t0 : log - <   s^yl2.26 j   and   EB = {r > t0 : r > r2}.

Suppose for some values of a and r we have n(r, a)^(l + 1/log S(r))2S(r); thus

N(r,a)-N(r,a) è ["^dt > (l +fJ^) V) log f

We then have

\T(r)-N(r,a)\ + \T(r)-N(r,a)\ ^ \N(r, a)-N(r, a)-(T(r)-T(r))\

(3.3) S((1+_^_)V)-5(F))logJ

S(r) log (fir)

log S(r)

/
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Suppose r $Eavj Ee. Then for r > rQ,

S(r)ll2'ôlog- ä S(f)*(logr)1/a + * > 8(log S(r))(log r)1/2 + <5.

Hence

S(r) log (Fjr)
> 8(5(f) log r)1' 2 + Ô

log S(r)

Because r $ EB and r> t0 we have log rglog ?/2. Hence for r>r0,

S(r) log (r/r)/log S(r) > 8(l/2)1,2 + ó(5(r) log r)ll2 + 6

> 4(T(r)-T(l))ll2 + i > 2T(r)ll2 + ô.

However if a e AM — A and r> R0, then by (3.1)

(3.5) \T(r)-N(F,a)\ + \T(r)-N(r,a)\ < 2T(r)ll2 + i.

Hence by (3.3), (3.4), and (3.5), if aeAM-,4 and r > max (r0, R0), r $ Eavj EB,

then n(r, a)<(l + 1/log S(r))2S(r).

We now show this same conclusion holds on the set Eg, namely if a e AM — A,

r e Eg, and r> max (r0, R0), then n(r, a)<(l + 1/log S(r))2S(r). Since r e Ee we

have log r — log r > log r/2. Hence for r > r0,

(logr)ll2 + ô      2(logFy'2 + ô ^  S(r)1'2-0

log (fjr) log f 4 log S(r)

Consequently

n0Rnv2 + i<^ë(rlr))S(ry^
u g   ; 4 log S(r)

This implies for r > r0

(log (Flr)XS(r))
(3.6) 27(f)1,2 + i < 4(r(r)-r(l))1/2 + lS <

log S(r)

Thus if a 6 AM- A, re Eg, and r >max (r0, Ä0)> then by (3.3), (3.5), and (3.6) we

cannot have n(r, a)>(l + 1/log S(r))2S(r).

We now show jE (dxlx(logx)ll2 + 6)<co. Without loss of generality we assume

Ea is unbounded. Suppose rxe Ea\ thus Sfo) > S(t0) > e. Define for n^2

rn = inf{re7ia : r > rn_i}.

Then

S(rn) ^ S(rn_i) = S(rn _ i)(l +I ¡log S(rn_i)).

Hence for n S 2

S(rn)-S(rn^) £ S(rn_i)llogS(rn_i) > e.
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Thus rn-> co. Certainly P8-[l,ra)c:|Jr.i VnJnl For «£%,

logsoy-iogs(rn) = log (i +I_i^) > ?T_L^).

Because the intervals (r¡, r¡) are disjoint, for n^n0+l,

(3.7) log S(rn) a log S(r„.J > \ *f ¡-1—-  >
2 Ä log S(r,)      2 log S(rn)

Hence 2"= i 1 IS(rn)k < oo for any k > 0.

Let In= [rn, rn] and 7=IJ^=1 In. Then since rn 6 Ea,

1_log^<U/2 + ó lu6 „     =

Therefore

Thus also

Jr„ xGogx)1'2^ = (logrj1'2^'"6^ - S(rny>2-26

J^Gogx)1'2^ = ¿¿SiA)1'2"^ = A S(rn\l/2
n)

< co.

j;

dx
<   00.

£ox(logx)1'2 +

We now suppose that there exists r¡>0 such that S(r)>(log r)1*11 for r>r0.

Then there exists 8>0 and y>0 such that r>r0 implies (log r)1,2 + ,!/S(r)1'2_2'i

< l¡S(r)y. We carry out the above discussion for such a 8>0. Then for n>n0 we

have

Í"dx _        rn ^(logrnyi2 + *

,   x      lügrn=    Si/»)1'2"2*

< (log/-,)*'3*' <      1

S(rnf>2~2>       S(rny

Hence j, dx¡x<co and therefore J"£ dx¡x<co.

We have thus shown that if r > max (r0, R0) and r ^ Pa, then

n(r,a) < (1 + 1/log S(r))2S(r)

for aeAM — A where capA<e. Furthermore |£ (i/x/x(log x)1,2 + ô)<co and if

lim infr^œ log S(r)/log log r> 1, then, for an appropriate choice of 8, Ea has

finite logarithmic measure.

We now consider the left inequality in (3.2). As before we let t0 > 1 be such that

S(t0)>e. For r>t0, we define r<r by the equation S(r) = S(r)(l — 1/log S(r)).

There is no difficulty in showing that ~ is a well-defined, strictly increasing,

unbounded, continuous function on (/0, oo). We may suppose t0> 1. Let

( r      (logr)1,2 + ö"l
K = y > h : log -f < ys*ryl2_2i |   and   E'B = {r > t0 : r > r2}.
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If n(r, a) S (1 - 1/log 5(r))25(r), then

17(0-N(r, a)\ + \T(r)-N(f, a)| ä |T(r)-T(f)-(N(r, a)-N(r, a))\

(3.8) ^(5(r)-(l-i^r))V))log^

_ 5(f) log (r/r)

log S(r)

If r $ E'a u Eg, then for r > r0,

Sir)1'2'* log (r/r) > 16(log 5(r))(log f)1/2 + <s.

Since r ^ Eg and r>(0we have log f ^log r/2. Hence for r>r0,

S(r) log (r/r)/log S(r) > 8(5(r) log r)lt2 + ô > 4T(r)1,2 + á.

Therefore

(3.9) ^ lQg (f} > 27(r)^2-.
log 5(r)

If f>i?0 and a e AM —^4, then

(3.10) |T(f)-N(f, a)\ + |T(r)-V(r, a)| < 2T(r)1/2 + ö.

Thus if a 6 AM-A, r $ E'au Eg, and f >max (r0, T\0), we have from (3.8), (3.9),

and (3.10) that n(r, a)>(l - 1/log 5(r))25(r).

Suppose r e E'ß. Then for r>r0

(log r)1,2 + i      2(logr)1/2 + a <     ^  5(r)1,2-')

log (rjr) log r 8 log S(r)

Therefore for r > r0,

27(r)1,2 + i < 4(S(r)logr)ll2 + ô

(3.11) 5(0 log (r/r)      5(f) log (rjf)

21og5(r)    *      log S(r)

Thus if aeAM — A, r e E'B, and f >max (r0, Ti0), we have from (3.8), (3.10), and

(3.11) that n(r, a)>(l - 1/log 5(r))25(r).

We have thus shown that n(r, a)>(l — 1/log 5(r))25(r) for all a e AM — A and all

r $ E'a and such f >max (r0, T\0). We now show j"£. (i/jc/x(logx)1,2 + ,5)<oo. We

recall ?0 is such that S(t0)>e and f0> 1- We define tn for «^ 1 by f„ = in_1. Thus

Sfo - 0 = 5(Q = S(tn)( 1 -1 /log S(/„)). Hence 5(0 - S(tn. J = S(/J/log 5(fn) > e.
Consequently /„ -> co. We have for « ^ 1

logSCO-log^.O = -log(l-r^) > ¡^

Therefore

Io«^^|îoïk)àiw
This implies that for any Ar>0, 2™=1 l/S(f„)fc<co.
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Let J denote the set of integers n such that (tn.u tn] n E'a=£ 0. Without loss of

generality we may assume J is unbounded. For neJ, let

rn = sup{f e(fn_!, tn] : tsE'A.

Certainly E'ac{Jne}[fn,rn}. For n e J, let I'n = [r„, rB] and let 7' = |Jne, 7;. If ne 7,

then

dx log (rjrn)

J?„ *(Iog*)1,2 + <^(logf,,)1'2^

Since r„ e PB,

log (/n/fn)    < 1

(log?,)1'8*4 = SCrB)1/s-a<"

S(rn)>S(in_!) implies 2nG/ [l/S(/-n)1'2-2"]<co. Hence

1f _dx_<y
Jr xOogx)1'2^ =  ¿SW*-"

<  OO.

ne/ '

Therefore certainly

Ç dx
Je:)E.ax(logx)ll2 + ô

< 00.

Finally if S(r)> (log r)1 + " for r>r0 and some 77>0, then as before for some S>0

and y>0

(logr)1/2 + ö 1

S(r)112-26     s(ry

for r>r0. For such a 8>0 and all n>n0,

["dx      ,     rB,(logf,r

J-r„   x        °gfn =   SK)"9-

(log/.n)i/2 + a J

1/2 + 6

26

S(rny2-2'   - 5(rn)"

Hence

f   ¿X V 1

Since 2Ja<=7', the proof of Theorem 1 is finished upon setting Ei = Eau E'a and

Ai = A.

We observe that Ei may be regarded intuitively as the set where S(r) is increasing

very rapidly. It is trivial to verify that

I dx
< 00

Elx(logXy>2 +

implies Ei has logarithmic density zero.

We also remark that the method of proof of Theorem 1 cannot give a result

having an exceptional set of r-values with finite logarithmic measure without some
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growth condition on 5(r). Consider the two functions g(x) and hx(x) defined on

(0, oo) as follows:

g(x) = 0 -co < log x < 2,

= (n+l)22" + 1       22" ^ log* < 22" + 1 n = 0,1,2,...;

hi(x) = 2g(x) 22"-1 ^ log x < 22"       n = 0, 1, 2,...,

= g(x) otherwise.

Clearly hi(x)^2g(x) on a set of infinite logarithmic measure. Since hi(x)^g(x)

> log x for log x ä 2 we easily verify that

I
r/^)¿*>0ogrZ       ^

x 2

A direct computation shows that

r dx
(hi(x)-g(x)) — = o(log r log log r)       (r-> oo).

Jo x

Therefore, for any 8 > 0,

[ (hi(x) ~g(x)) ^ ^ (£ ^ ä) 1/2 for r > r0.

We note hi(x)/log x -> oo as x ->• oo. Certainly ftx can be redefined to become a

strictly increasing continuous function h such that g and h still have these properties.

It follows that if we only assume 5(r)/log r -> co as r —> oo then the information

contained in (3.1) is not sufficient to imply that if a e AM — A then n(r, a) and 5(r)

are asymptotic off some set of finite logarithmic measure.

Proof of Theorem 2. Since the result is trivial for rational functions, we concern

ourselves only with transcendental functions. Let E2 be the set Ex of Theorem 1.

Theorem 1 implies that limr^ „ ;ríE¡! n(r, a)¡S(r)= 1 for all a e AM except for at

most a set of capacity e. Since this is true for every e>0, we conclude the set of all

aeAM for which limr^oo;rtE2 n(r, a)/S(r) does not exist and equal 1 has capacity

zero. Theorem 2 now follows from the fact that the inner capacity of an arbitrary

set is the supremum of the capacities of its compact subsets.

Proof of Theorem 3. Again we need only consider transcendental functions.

We apply Theorem 1 with M=l to conclude that there exists R such that r>R

and r $ Ei implies n(r, d)<(\ +£)5(r) for all a e Ax — AY where cap Ai<e. We also

apply Theorem 1 to g(z)=l/f(z). We attach the obvious meanings to n(r,a,f),

n(r,a,g), S(r,f), and 5(r, g). It is elementary that S(r,f) = S(r,g); we denote the

common value by 5(r). The functions/and g clearly have the same exceptional set

Ei. By Theorem 1 applied to g(z), there exists R' such that r> R' and r $ Ei implies

n(r, a, g)<(l +e)S(r) for all aeA1-A' where cap,4'<£. Let R = max(R, R').

Since n(r, a, g) = n(r, a-1,/), the result follows upon setting E3 = Ei u [1, R].
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4. Examples.

Example 1. Suppose 0 < e < 1. Let p be an integer such that 2p¡(p + 1 ) > 2 — e and

let k be an integer such that p<l+2k~i. Let J be the set of all positive integers con-

gruent to s mod 2k where s = k+l, k + 2, . . ., 2k—I, or 0. Define

For thisf(z) there exists /?<= [1, co) having positive lower logarithmic density such that

..    . en(r, 0)
hminf   y     7 > 2 — e.
r-.oo;re£    >->(/)

Before proving the above assertion we remark that by familiar considerations

f(z) has order log pjlog 2p.

Select A^sO mod 2k and define

and

To simplify notation we do not indicate the dependence of fi,f2, and/3 on N.

We consider the behavior oif—fif2f3 on \z\ =r for r e BN where

BN = {r : (2p)N < r < 2(2/,)"}.

We shall be concerned both with

d ,,   ...       _   reief¡(ree)
^arg/,(rO = Re^¿^

and with max_„ses„ \fj(rew)\.

We have

(4.1) Rèf=Ref + Ref+Re^.f(z) A00 f*(z) f3(z)

Consider r e BN. On \z\ =r

MZ) »,/£<* Z-(2Pf

Since r>(2p)n for all n<N, elementary considerations show Re (reie¡(rei& — (2p)n))

> 1/2 for all Ö e [ —w, tt]. Hence for r e BN we have for all z = reiB,

(4.2) Re7zîr^  "t  Pn = \(p-\r\\-P1-k)pN.

Similarly for r e BN and all z = rew,

(4 3) Re ^^ > - nN
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We now consider

. z/3'OO ^

213

(4.4) **7m=  I pnRe
Ja\¿)        neJ;n>N z-ÇLpf

For reßN and n > N we have (2p)n > r. Hence for all 0 e [ — tt, tt],

Re
re" r2 — (2p)nr _       —r

rë° - (2p)n - (r - (2p)n)2      (2p)n - r

Thus for r e BN and all z = rew,

/3O) 6¿>/ (2/»)"-r

If n e 7 and n > N then « ä V+A- +1. For such n, r e BN implies r < 2(2p)n(2p)

Hence for such n and r

»nni-i-i

1 1 l+(2/>)-fc

(2/0»-r = (2/7)"(l -2(2/7)-*"1) -     (2/;)»

Thus for r e BN and all z = rew,

(4.5) RCH ^-'X'+^'X2"
ä  -r(l+(20-'c)2-iv-'£ è  -(l+(2/7)-fc)21-Víí.

A straightforward verification shows that p < 1 + 2" ~4 implies ^(/j — 1 ) " *( 1 — p1 " k)

>(l+(2/?)-ic)21-'c. Hence from (4.2) and (4.5) we conclude that

(4.6) Re#i) + Re#i)>0
/it» /ato

everywhere on |z| =r for r e 2?w. This together with (4.1) and (4.3) implies

^ arg/(rei9) > 0

everywhere on \z\ =r for r e BN.

We now estimate max_sg9SR \fi(rew)f3(reie)\ for r e TV We have

w?i\- n »-g&r* n ((&)"
Hence

log |/i(re»)I á     2    ^"(lo8 2 + log r - n log 2/?)
ne/;n <Ji

JV-1

á   2 ^2 loê 2 + (N- n) log 2/7)
n=l

5¡ 2(log2)(/7N-/7)(/,-l)-1 + (log2/?) 2V(^-")-
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Certainly

2 pn(N-n) ^ pN-1 + 2pN-2+ f       (N-tWdt.
71=1 Jl

Integration by parts yields

h logp \     log/?/    logp \ logp)

Hence there exists Ci > 0 and independent of N such that for all r e BN and all

9 E  [ — 77, 7r]

(4.7) log \fi(rei!>)\ Ú clP".

Similarly if r e BN and Be [—it, w], then

(4.8, l0^'">is,J,pM,+Wr)

â r    y    2~" ^ 2-N-kr ^ 2x~kpN.

neJ;n>N

Thus if r e BN and 9 e [ — 77, n], we see from (4.7) and (4.8) that

(4.9) \fi(reie)f3(reM)\ ^ exp ((cx + l)pN).

We now consider the function l—z¡(2p)N on the circle \z\ =r = (2p)N(l+e),

0<e< 1. The image of \z\ =r is a circle centered at 1 having radius 1 +e. We have

1 -z¡(2p)N = 1 -(1 +e)(2p)Neiel(2p)N = l-(l+e)COS 6-i(l+a) sin 9.

Let a = a(e) in (0,71-/3) be such that cos a = (l+e)~1. As 9 increases from — a(e) to

a(e), arg(l—re'el(2p)N) increases by 77. Furthermore, for z = (2p)N(l +e)ew,

-a(e)^6^a(e),

\l-z¡(2p)N\2 = (l-(l-t-E)cos0)2 + (l+£)2sin26>

=  1 + (1 + e)2-2(1 +e) COS 9 ^ 2e + £2<3£.

Combining these two observations we see that if r =(l +e)(2p)N, the argument of

f2(re'e) increases by npN as 9 increases from — a(e) to a(e) and that \f2(rew)\ < (3£)p"'2

for -a(e)S9S«(e).

We now choose e±>0 such that (3ei)1,2eci + 1< 1/2. We note ej is independent

of TV. We define CN^BN by CN = {r : (2p)N<r<(l + e0(2p)N}. Combining the

above observations about f2(rew) with (4.6) and (4.9) we see that if r e CN, so that

r = (l+s)(2p)N for some £, 0<e<ej, then there exists a = a(e) in (0, tt/3) such that

(i)       \f(reie)\ <2-pS       if -a(e) ¿ 9 í a(e) and
(4.10) ' '

(ii)       arg/(reia)-arg/(re-ia) > irpN'.

We now show that if a0^0, then dargf(reie)¡d9>0 on [ —tt, 77] implies n(r, a0)

is equal to the number of values of 9 e [ — n, 77) such that Im a¿" y(rei9) = 0 and
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Re 0¿a/(re,s)aL Let a0 = tQei9o. We first suppose a0^f(reiB) for any 6 e [ — tt, tt].

Suppose (¡i < 92 < ■ ■ ■ < &q is the set of distinct 6 in [ — n, tt) such that Im a¿" y(rei9)

= 0 and Re a0~ 1f(reie) > 1. Set 6q + j = 0j + 2tt. Trivially, for 1 újúq,

arg (/(rei9/ +1) - a0) - arg (/(>ef90 - a0)

is either 2tt, 0, or — 2tt. We certainly have

d rewf'(rew)
¿argC/W-Oo) = Re/fr^F¿ > °       * e = ** 1 *' S *

This fact enables us easily to eliminate two of the above possibilities and to conclude

arg (f(reiei * i) - a0) - arg (f(reie>) - a0) = 2n

for l^jSq. Hence by the argument principle q = n(r,a0). This establishes our

contention in the case a0 $ {/(rew) : — tt^B^tt}.

We now suppose there exist 9± < 02 < ■ ■ ■ < dq as above and in addition {6~u ..., 0~Q,}

is the set of all distinct 6 e [-tt, n) such that/(reifl) = a0- We remark that

Re^>0
/OO

on |z|=r implies/'(rew07e0 for ISjúq'- Let 7)x and D2 be the components of

S-{/(rew) : -tt^6^tt} such that for some S>0, {tew» : t0-8<t<t0}<=Di and

{teiSo : t0<t<tQ + 8}c D2. By the above argumenta s Dx implies n(r, a)=q+q' and

a 6 D2 implies n(r, a)=q. In \z\ <r,/assumes the value a0 at mosto times counting

multiplicities; this follows from the fact/is an open mapping and a0 s D2. The fact

that f'(reai) # 0 for 1 íkjíkq' now implies n(r, a0)áo+o'. Because/is continuous

and a0 e D± we conclude n(r, a0)^q+q'. Thus, in this case as well, n(r, a0) is the

number of values of 8 e [ — n, tt) for which Im a¿" 1f(rete) = 0 and Re aö y(reie)^ 1.

We draw two conclusions from this fact. First, for a fixed r e CN, n(r, teie) is a

nonincreasing function of t on [0, co) for each 6 e [ — tt, tt]. Hence n(r, 0)a«(r, a)

for all a e S.

Secondly, suppose reCN and \a\>2'pN. We have r = (2p)N(l+e) for some e,

0<e<El. By (4.10Í) if 6 is such that Im a~1f(rei8) = 0 and Re a-y(rei9)^ 1, then

0 £ [ — a(e), a(e)]. Let a < &i < ■ ■ ■ < dq < 2tt — a be the q values of 6 in [0, 27r) for

which Im a_1/(rei9) = 0 and Re a~xf(reie)= L From the above remarks n(r, d)=q.

dargf(rée)ldd>Q for all  0e[O, 2tt]  implies  arg/(rei9>+i)-arg/(ri?i90^27r for

1 &]£q—l. Hence

arg/(reí(2,,-a))-arg/(reia) ^ 2t7(ö-1).

Let AN={a : |a| > 2_pW}. We thus conclude

(4.11) arg/(rei(211 * a)) - arg f(reia) ^2tt(-1 + sup n(r, a)).
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By the argument principle

(4.12) arg f(reii2n ~ a)) - arg/'(re ~ia) = 2irn(r, 0).

We combine (4.10Ü), (4.11), and (4.12) to conclude that for any r e CN

(4.13) -1 + sup n(r, a) + (l¡2)pN ^ n(r, 0).
aeAx

For ceCjwe have

n(r, 0) =     2    Pn ¿ P—^T£ <
¡V + 1 _„ „N + 1

neJwS» P~ 1 P~ 1

Hence pN >p~\p - l)n(r, 0). Thus from (4.13)

- 1 + sup n(r, a) á n(r, 0)-±pN g n(r, 0)^—-
aeAtj ¿P

Certainly

S(r) =        n(r, a) dm(a) + n(r, a) dm(a)
JAN JS-AN

£ m(AN)(l +P-±± n(r, 0)) +mÇL-AN)n(r, 0).

Thus S(r)-\ ún(r, 0)(m(AN)(p+l)l2p + mÇL~AN)). We let J' be the set of positive

integers congruent to 0 mod 22c and define E— (JNeJ' CN. As r tends to infinity

through values in Ë, /Valso tends to infinity and thus m(AN)-> 1 and mCL — AN)^0.

Consequently lim inîr^x.JEÈn(r, 0)l(S(r)-i)^2p¡(p+\); this certainly implies

lim infr^ „.re£ n(r, 0)1 S(r) ^ 2p¡(p + I).

Finally we observe that the lower logarithmic density of Ë is not less than

W¿£n[l,(2p)"»»
TI"1    mi[i,(2Pyk«)

We have m¡(E n [1, (2p)2kn)) = (n- 1) log (1 + Bl) and mt[l, (2p)2kn) = 2kn log 2p.

Consequently the lower logarithmic density of Ë is at least log (1 + e-0¡2k log 2p > 0.

It is in fact easy to verify that the logarithmic density of Ë is log (1 + £i)/2/r log 2p.

Before proceeding to Example 2 we prove the assertion in §2 that for some

functions/(z) the exceptional set ^42 of Theorem 2 is uncountable. Let/(z) be a

function having uncountably many Valiron deficient values such that 0<cx<

T(r)/r<c2<co for some c± and c2 and all r>r0. Thus cxr< T(r)<T(l) + S(r) log r

for r>r0. Hence for this function the exceptional set £2 of Theorem 2 has finite

logarithmic measure. Let CE2=[l,cc) — E2, E2 = E2n [l,r), and CE2 = CE2 n [l,r).

Given £>0, there exists r0 such that m¡(Es n [r0, co))<£. Thus for r>r0,

f   îÊldt g T(ra) + eS(r) £ T(r0) + eT(er) < 2c2eer.
Je'2    t
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Thus

(4.14) J   ^2*-o(2XO)       (r-^oo).

It is trivial that if lim infr^OT;rí£2 n(r, a)/S(r)^ 1, then

..    .  JcEi(n(t,a)¡t)dt
hm inf   -     ,  ,-— > 1.

'—     ScE'2(S(t)lt)dt   -

This fact, combined with (4.14) and the inequality

N(r, a)     _|C£r („(/, g)//) dt_

T(r)   - T(l) + jCEi (S(t)lt) dt + jEr (5(0/0 dt

implies that lim infr_oo:ríE¡J n(r, a)¡S(r)< 1 for all Valiron deficient values of/.

Hence for this function A2 is uncountable.

Example 2. Lei

There exists a disk D in the plane and a sequence rN-^co such  that n(rN, a)

> l6S(rN)/l5 for all a e D and all rN. In addition there exists an arc L in the plane

and a number ß<l such that n(rN, a) < ßS(rN) for all ae L and all rN.

Before proving/(z) has the required properties, we observe that

where cou ..., «j2» are the distinct roots of cu2"=l. Thus/(z) has 2" zeros evenly

distributed on the circle of radius exp (2"). The order of/(z) is certainly zero.

For any integer N^2we let

a»-g (>-£)")

and

As before we do not indicate the dependence of fuf2, and/3 on N.

We consider the behavior of/on \z\=rN = (l+eN) exp (2") for a value of eN in

(0, 1) as yet undetermined. On \z\ =rN we have

N-^1 I /   7   \2"l
tog|/i(z)|- 2tog|l-(£)
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Since log (1 +x) < log x+ l/x for every x > 0, we have

(e2N(l+eN)\2n     -1

[January

2n \ 2"

^^PPr+Xbfà
(4.15)

(e2N(l+eN)\ ,(N-l)ë

»fi M      e2"      re2N(l+£w)

s wf 2nl°s p^^W-iK2"-1
71=1 \ e "

Similarly we have everywhere on \z\ =rN

log l/.MI - Ï .081. - (£)"| Ï   Z hi (päpäf- l)

Since x ^ 2 implies log (x — 1 ) > log x — 2/x, we have

(4.16)
»™*%**FP*)->lbfc2)

22Mog(!3ii-))-2<W-l>- 2"-l

Hence from (4.15) and (4.16) we conclude

(4.17)
121 = rN

Everywhere on \z\ =rN we have

log Max |/i(z)|—log Min |/i(z)| ^ SfJV-l)«-8""1.
I«l = 7JÏ

log|/3(z)|=    2    log|l-(¿)2
n = N + i \e    /

(4.18)
e2"(l+£N)\2"

n = N+l \ \ e /     / n-JY+1   \ c /

S    2    e2N(lÍEN) ̂  Id+e^e-2**1 = 2(l+£W)g-
71-ÍÍ+1 ^

We also have on \z\=rN using calculations in (4.18)

>ogi/,wu 2 >o8(.-(q^)")
7l=JV + l \ \ C /       /

n = N+1  \ e /

(4.18) and (4.19) imply

(4.20) log Max |/3(z)|-log Min \f3(z)\ < 6(l+eN)e-2".
I4=rw |s|=rÄ

(4.19)
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Combining (4.17) and (4.20) we conclude that if 8>0, there exists A^ such that

N>N0 implies

(4.21) Max \fi(z)f3(z)\ < (1 + 8) Min \fi(z)f3(z)\.
|2| = r« lzl=r)i

For N>N0 we now specify the value of eN. We first let e'N be such that

(4.22) l+e'N = (l+eN)2t'.

We determine e'N (and hence eN) so that

(4.23) 2*'% Max \fi(z)f3(z)\ = 1,

where as before rN = (l+eN) exp (2N). This is certainly possible. If e^ = 0, the left

side of (4.23) is 0; if e'N= 1, the left side of (4.23) is greater than 1 by (4.16) and

(4.19). The left side of (4.23) is a strictly increasing, continuous function of s'N for

e'N in [0, 1]. Thus the choice of e'N in (0, 1) is in fact unique. We note also 0<eN<e'N.

For N¡tN0 we now consider the behavior of/2(z) on the circle

|z| = rN = (l+eN)exp(2N).

The image under f2(z) of |z|=rw is a circle of radius l+e'N centered at 1. Thus

\f2(rNew)\ Z¿N for all 8 e [-tt, tt]. This fact together with (4.21) and (4.23) implies

that for all N>N0 and all 8 e [-tt, tt]

2"1'2(1 + S)-1 = 4(1+ S)-1 Max |A(z)/3(z)|
1*1 «n»

(4'24) < 4 Min |/(z)/3(z)| ï |/(r„e'9)|.
1¿I = r«

We let D = {a : \a\ ^2"1,2(1 + 8)-1}. From the argument principle and (4.24) we

conclude for N^N0 that if a e D, then n(rN, a) = n(rN, 0) = 2N +1 - 2.

We again consider the image under w—f2(z) of |z|=rw for N^N0. The circle

{w : | w—11 = 1+%} is traversed 2N times as 8 increases from — 7r to 7r. Let

Q = {x+iy : x¿¡ — \y\). Clearly there exist 2N -1 disjoint intervals [an, bn]<=(-Tr, n)

such that for l^n^2N-l

(0       /2(r/)eß   if 8 e[an,bn]

(4.25)        (ii)       argf2(rNe^)-argf2(rNeian) = nß       and

(iii)       |/a(r*OI =21,24   ifd€[an,bn].

For notational convenience we do not indicate the dependence of the intervals

[an, bn] on N.

If de [an, bn] for some n, 1 ̂ «^2N-1, it follows from (4.23) and (4.25iii) that

\f(rNete)\ Í l/0V9)| Max \fi(z)f3(z)\
|2| » rw

(4-26) ¿21'2£;Max|/1(z)/3(z)| = l.
|z|=r«
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We now estimate Re (z//(z)//i(z)) for / = 1, 2, and 3 by the same methods as those

employed in obtaining estimates (4.2), (4.3), and (4.5) of Example 1. We recall that

these estimates depended only on the moduli and not on the arguments of the

zeros of/(z). We see easily that everywhere on \z\ =rN

Ref|>Iy12" = 2«-1-l
ZOO    2 „4a

and

R=fM)^2"-'-
For N^NQ we have on \z\ =rN

RezJM> _.   f J?—> _2r   y £
Re/s00-     r\^+ie2"-rN=     2r\¿+1e2»

Ú -4rN2N + 1e-2N + 1 £ -2lf+*e~aK > -1.

Thus, for N^N0, d arg (fif3)(rNeie)ld0 > 0 and dargf(rNee)!dd>0 for all

8 e [ — tt, tt].

Because of (4.25Ü) and the fact that darg(fif3)(rNeie)ldd>0 for all 8e [-tt, tt],

we see that for each n, l^nS2N— 1, there exists a subinterval [cn, dn]<=(an, bn)

such that

arg/"(rwei<!»)-arg/(rweic») = «r/2.

By adjoining additional points to the set {cn : 1 ̂ n^2N— 1} u {</, : 1 fín-¿2N — 1},

we obtain a sequence — w = 0O < "i < ■ • • < ^wi = "" such that

(i)       arg/(rNeiflJ ♦ ») - arg f(rNew>) < 2tt,       Og/i /.(TV) - 1,

for at least 2N— 1 values of/,

( '    ^        (U)        arg/(rivei9i + i)-arg/(rNei90 = tt/2    and

\f(rNeie)\ g 1    for0e[0;,0i + 1].

The second condition in (4.27Ü) follows from (4.26).

For 0^/^/>(A0-l, let

^. = {//(reiS) : 0 < t g 1 and 0, < 0 g 0i + 1}.

Since dargf(rNeie)/d8>0 for all 0 e [ — 77,77], we conclude from the same discussion

as in Example 1 that if a#0, then n(r, a) is equal to the number of values of 0 in

[ — 77,77) for which Im a_1/(rei9) = 0 and Re a_1/(rei9)ä 1. Since this is also the

number of distinct values of y such that a e A¡, we have S(rN) = 2f=No ~ * m(Af).

Let T be some set of 2N— 1 values of/ satisfying (4.27h). Certainly

(4.28) 2 (arg/^e'^O-arg/^O) - \ (2W-1).
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Since the total increase of argf(rNeie) on [ — 77,77] is 2rm(rN, 0) = 2t7(2w +1 — 2), we

conclude

(4.29) 2 (arg/(/-Neie> + 0-argf(rNew0) = 2tt(2n^-2N~2-7/4).
HI

Because for any/'

(4.30) m(A0 < (l/277)(arg/(rNe"'> + i)-arg/(rweie0),

we conclude from (4.29) and (4.30) that

(4.31) ^m(A0 < 2N + 1-2N-2-7¡4.

IfjeJ, it follows from (4.27Ü) that m(A,)<\ß. Hence

S(rN) = 2m(A0 + J,m(A0
Hl HJ

<-   1M + 1 _9«-2_l  1  i. (JN_ 1\   _   |_ |9N + l_i_£
4+8(/      i)-yl6j¿ g

Since n(rN, a) = 2N + 1 — 2 for all a e D and all N>N0, we have for such values of a

and TV

ufo, a) 2* + 1-2 16
S(rN)       (15/16)2" + 1-15/8      15'

This establishes the first of the required properties for/(z).

We now prove/(z) has the second property as well. We have shown there exists

a disk D, a sequence rN, and a number y > 1 such that n(rN, a) > yS(rN) for all

a e D and all rN. This implies there exists a>0, ß<\, and sets DN such that

m(DN)>a and such that ae DN implies n(rN, a)<ßS(rN). To show this, for ß< 1

we let DN(ß) = {a : n(rN, a)<ßS(rN)}. We then have

S(rN) = m(2))5(riv, D) + m(DN(ß))(S(rN, DN(ß))

+ m(S - (7> U Z)wfj8)))S(rw, 2 - (2) U Z)wfjS)))

à m(Z>)yS(rw)-r(l -m(ß)-M(PM)ßS(rK)

= (ym(D) + ß(l -m(D))-ßm(DN(ß)))S(rN).

For /S sufficiently close to 1, (4.32) implies that m(DN(ß)) is bounded away from 0.

This establishes our contention. We take DN = DN(ß) for such a ß.

We conclude that there exists a0^0 belonging to DN for infinitely many values

of N. Let a0 = t0ew° and let L = {tewo : /^/0}- Thus for a subsequence of rN, which

we again denote by rN, we have n(rN,a0)<ßS(rN). Since dargf(rNeiB)¡d9>0 for

9 e [-77,77] implies n(rN, tew) is a nonincreasing function of / on [0, 00) for each

9 e [ — 77,77], we have for a e L that n(rN, a) ¿ n(rN, a0) < ßS(rN). On this subsequence

rN we conclude/has both the required properties.
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