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CLOSED SUBALGEBRAS OF GROUP ALGEBRAS

BY
STEPHEN FRIEDBERG(!)

Introduction. Let G be a compact abelian group with character group I'. For
basic definitions the reader is advised to see Chapters 1 and 9 of Rudin [7]. Each
closed subalgebra A4 of the group algebra L!(G) induces an equivalence relation ~
on I': a~B if and only if f(«)=F(B) every fin A, where f'is the Fourier transform
of f. We will denote the equivalence classes of ~ by {E,} where A is in some index
set and distinguish one special class Eo={y € I" : f(y)=0 for every f in A} called
the zero set of 4. Since T is discrete and f'e Cy(T) for every f in LY(G), each E,,
A#£0, is finite. E, may be infinite.

For A#0 let P, be the trigonometric polynomial whose transform is the charac-
teristic function of E,, and A4, the smallest closed algebra containing every P,.
Rudin [7, p. 231] has shown that A4, induces ~ and is contained in every closed
subalgebra which induces ~ with zero set E,. If we define 4° to be the algebra of
all functions whose transforms are constant on every E, and zero on E, then 4°
will be the largest closed algebra inducing ~.

Rudin [7] asked if there exist distinct closed subalgebras which induce the same
equivalence relation. Or, equivalently, does there exist a closed subalgebra 4 with
A°+# A,? Kahane [4] gives a negative answer for G=T, the circle group.

In §1 we give sufficient conditions for an equivalence relation on the integers Z
to be uniquely induced by exactly one closed subalgebra of L!(T). This result
strengthens Theorem 3 of Kahane [4]. We also prove his result on Z x Z.

In §2 we study the algebras 4, and A° in detail and give necessary and sufficient
conditions for A,= A°.

Finally in §3 we will consider factorization in closed subalgebras of L*(G) and
show that although L(G) has factorization, there exists a closed subalgebra 4
without factorization and such that 4 N L?(G) is L-dense in 4, where 1 <p<2.

0. Notation. If B is a linear subspace of L}(G) we define its annihilator

Bt={¢ € L*(G) : $(f)=0 for every f in B} where ¢(f)=fo(—x)¢(x) dx. (dx
denotes normalized Haar measure.)
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Since G is compact we have L*(G)<L*(G), and it makes sense to consider the
Fourier transform of ¢ e L*(G), defined <;§(‘y)=_fa d(x)y(—x) dx where yeTl.
Hence, for a trigonometric polynomial f=3>7"_, a;y;, y; € I we have

800 = [ (3 amt— )b ax

i=1

n

=2 a [ n-0p@ dx = > adt.
For fand g in L(G) we define convolution (f * g)(x)=fa f(x—y)g(y) dy. Thus,
with the above notation, it follows that ¢(f)=(¢ * )(0).

I. Synthesis. In this section we will be concerned specifically with the circle
group T and the torus 72. Z will denote the group of integers. We will exhibit a
class of partitions of Z and Z x Z which are induced by exactly one closed subalgebra
of LY(T) and L*(T?), respectively.

First, we will generalize Theorem 2 of Kahane [4] on Z and second, we will
prove an analagous result on Zx Z.

For the following definition G will be an arbitrary compact abelian group and
I" its dual group.

1.1. DEFINITION. An equivalence relation ~ on I' with a distinguished class E,
with zero set E,.

Kahane [4] has shown that if ~ is an equivalence relation on Z which satisfies:
n~m implies |n—m| < M, where M is a fixed constant, then ~ has synthesis.

The following is a generalization of Kahane’s result.

1.2. THEOREM. Let ~ be an equivalence relation on Z with a distinguished class E,.
Suppose that for n,m ¢ Eo, n~m and |n| < [m| we have that |m—n| = M|n|'?* (M a
constant). Then ~ has synthesis.

Proof. It is well known that if A e LY(T) and is continuous at x, € T, then the
Cesaro sums {U,} of its Fourier series 32 _,, A(j)e”’* converge to h at the point x,.
By a standard computation we may write

M U0 = 2 RalhCi)e
where K,(j)=max (0; 1—|j|/(n+1)). Now let ~ satisfy the above hypotheses.
Also, let A° and A4, be the maximal and minimal subalgebras of L*(T), respectively,
which induce ~. We want to show A°= A4, or equivalently, 4% = Aj.

Obviously, 4°*< 4§ so we need only prove the reverse containment. For this
purpose, choose f€ A° and ¢ € A5. We will show ¢(f)=0.

Since ¢ € L*(G) and fe L(G) we have that ¢ x fis continuous. In particular, it
is continuous at 0. We shall approximate (¢ * f)(0)=¢(f) by the Cesaro sums
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U,(0) of (1) where h=¢ = f. In fact, we will show U,(0) -0 as n— oo. Since
¢ € A} it follows that ¢(P,)=0 or

) > $0)=o.
JEE)

Define j,=min {||;j € E}. Now using (2) and the fact that f'is constant on every
E,, we have
3 Un0) = > > {Ru()—KaG()E()

A#0 jEE)
where the inner sum extends over those A for which j,<n. If j€ E, for such a A
we have |j—j\| £ Mjt2 or |j| £ja+ Mj2 £ (M +1)jn (M + Dn. Hence, it follows
that K,(jr)—K.(j)<(M+1)/n2. Thus, setting N=(M+1)n and applying the
Cauchy-Schwarz inequality and the Plancherel theorem to (3) we obtain

N N N 1/2
w0l = $ED 5 100 = (v 3 10R] 16l

which tends to 0 as N — oo since ¢ € L%(G) and f'e Co(T).

Daniel Rider [6] has an example of an equivalence relation ~ on Z satisfying:
n~m, |n| < |m| implies [n—m| < |n|, and does not have synthesis.

This yields the following interesting question which we have not been able to
answer: Suppose ~ is an equivalence relation on Z satisfying: n~m, |n|<|m|
implies |n—m|< M|n|%, where M is some constant and 1/2<3<1. For which
values of 8 does ~ have synthesis?

The more ambitious task of classifying all synthetic partitions is beyond our
reach. However, suppose S is a “Sidon set” (see [7, pp. 121-130] for the definition
and facts about Sidon sets) and A4 is a closed subalgebra of L(T) with Z— E,< S.
Then A°= A,. In fact, it will follow that if Bis a closed subalgebra of 4 then B°= B,

The problem of diicovering synthetic equivalence relations on ZxZ is open.
Although we will prove an extension of Kahane’s result to Z x Z, the correspond-
ingly stronger result of (1.2) has eluded us.

We begin with some facts and definitions which may all be found in Zygmund
[8, Vol. IT}.

The torus will be denoted T2. Let R(n)={(i,j)e ZxZ : |i|Zn,|j|<n}. For
h e LY(T?) let
M S(®) = 2 k(e

JERM
where X € T2, and - represents the usual dot product.
By a standard manipulation we may write the Cesaro sums {U,(X)} of (1) by

@ UA®) = G, 3. (=Ll + D=l + DR

€R(n.

where j=(jy, jo)-
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1.3. THEOREM [8, VoL. 11, p. 304]. Suppose he L*(T?) and h is continuous at
A_'o € TZ‘ Then Ih(fo)— U,l(fo)l —‘>0 as n — 0.

1.4. THEOREM. Let ~ be an equivalence relation on Z x Z which satisfies; (n,, m;)
~ (ny, my) implies |ny—ny| S M and |my—my| S M for (n, m) ¢ Ey, i=1,2, where
M is some constant. Then ~ has synthesis.

Proof. The proof is similar to that of (1.2). We define
K,(i, j) = max (0; 1~ i|/(n+1)) max (0; 1 —|j|/(n+1))
iy=min (|i|; (i, j) € E,), and j,=min (|j|; (i, j) € E)). Now if ¢ € A5, f'€ A° we let
h=¢ * f, X,=0 and rewrite (2) as
U0 = > R, NG NSG ),

U,NeZx2Z

= > > (R, ) Rulins iV}, DI, )
A#0 (i,/)€E)
where the inner sum extends over those A for which i, <n and j,<n. If (i, j) € E,
for such a A then |i| S(M+1)n and |j| S(M+1)n. Hence K,(ix, jr) — Ky, )< C/n
where C is a constant independent of n. Thus, as in the proof of (1.2) we have

C A L
vl = 5[ 3 1ane] 16l

which tends to 0 as n — oo.

II. The algebras A4, and 4° Throughout this section, G will be an arbitrary
compact abelian group and 4 a closed subalgebra of L!(G) with induced equivalence
relation ~ and zero set E,. We will be concerned with finding conditions which will
guarantee A,=A°. It will be shown in (2.1) that although 4, and A° have the same
maximal ideal space, their annihilators A3 and A°‘ respectively, can be charac-
terized in (2.3) quite simply. We will construct a linear subspace B of L*(G)
consisting of trigonometric polynomials such that A4°=w*-closure of B and
A =(L?closure of B) N L*(G).

Denote the maximal ideal space of 4 by A(4) and let I be the quotient space
obtained from I'\E, by identifying equivalent elements of I'. If we let ' be the
image of y under the quotient map, it is clear that ' induces a nonzero homo-
morphism 4 on A defined by h(f)=f(y) for fe A. However, the converse is also
true.

2.1. THEOREM. Every nonzero homomorphism on A is induced by an element of T".

Proof. Define T: A — Co(I") by T(f)(y')=f(y). It is easy to show that T(d4,) is
a separating, conjugate-closed subalgebra of Cy(I). Since 4o=A (Rudin [7, p.
232]) we have by the Stone-Weierstrass theorem that T(A) is dense in Cy(I")
under the uniform norm. It follows that the adjoint map T*: I — A(A) carries
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I homeomorphically onto a closed subset of A(4) (see for example [5, p. 76]).
It remains to show T*(I'")= A(A4). Choose h € A(A). Then for f€ A4

RO = 1G] = 1fa = 1" 2o

By the spectral radius formula we obtain

B = 1 Flcow = 1 lcoa

Hence, the function A'(T(f))=h(f) is a continuous homomorphism on 7(4) and
may be extended to all of Co(I) since T(A) is dense in Co(I"). Thus, there exists
y' € IV with A(f)=T*(y')f for every f e A. Consequently, T* is onto.

The above theorem suggests that Banach algebra methods of distinguishing A,
and A° will be of little help. Also, the fact that A4, is generated as a vector space as
well as an algebra by the P, leads us to study the annihilators A} and 4. For this
purpose we introduce the following notation.

Let ~ have equivalence classes {E,}. For A#0 and E,={y,, ..., v,} define

n
B, = {95 eL®(G): ¢ = Z ay; where ay, . . ., a, are complex
i=1
numbers with Z a = }
i=1

and let B, be the linear space of L*(G) generated by the elements of E,. (If E,= &,
let B,= &.) Finally, let B be the linear space of L*(G) generated by the elements of

U B,
2.2. LEMMA. For any closed subalgebra A of L*(G), we have B< A*.

Proof. Pick fe A and an index A. If A#0 and ¢ € B,, then ¢=>7_, a;y; with
>t 1a,=0 where Ex={y, ..., ya.}. Then

H0) = [1b-0 dr = [£60 3 an(-ndx = > aftrd) = AED Y. a =0,
i=1 i=1 i=1

If A=0 and ¢ € By, then ¢=1%_, b;B; with B, € E, for i=1, .. ., k. Then, similarly,

$(f)=371 b, f(B)=0 since f(B)=0 for i=1,..., k. Since the elements of the B,

generate B and are contained in the linear space 4+, we have B< 4.

2.3. THEOREM. Let A be a closed subalgebra of L*(G), then
(1) As=(L2?-closure of B) N L*(G)
(2) A°+=w*-closure of B.

Proof. (i) By (2.2) we have A+> B. Now choose ¢ € (L?-closure of B) N L*(G).
We will show ¢ € A§.
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Now, there exists a sequence ¢;, ¢y, ... in B with ||¢—¢,|s =0 as n— co.
Suppose P, € 4,. Applying the Cauchy-Schwarz inequality and using the fact that
¢.(P)) =0 for every n, we have

#l = [4P- dx| < | [ @00 (=2 x|+ 4.5

< |¢—dnll2 fPrllz—0 as n — 00.

Thus, ¢(P,)=0. Consequently, since linear combinations of the P, are dense in A,
we have ¢ € 4§. This yields

(L3-closure of B) N L*(G) < At.

(ii) Choose ¢ € A5. Clearly ¢ € L*(G). We will show ¢ € (L2-closure of B). Let
A1, Ag, . .. be the indices for which $(E,)#{0} and {8,, B, . . .} = E, N support of §.
If Ex={y1,..., va} then 0=¢(P)) =231, $(7¢)- So ¢a=201 $(‘}’4)7’i € B, B. By the
Plancherel theorem ¢ is the L%limit of the sums ¥, (¢),+8:) € B. Hence,
¢ € (L3-closure of B) N L*(G). We have proven

A < (L*closure of B) N L*(G).

Consequently, (i) and (ii) yield (1).
(iii) Using (2.2) we have 4% > B. But every annihilator in L*(G) is w*-closed.
Thus,

A%t o w*-closure of B.

(iv) We will show A% <w*-closure of B. Let D={fe L*(G) : ¢(f)=0 for every
¢ € B}. Then D*=w*-closure of B. Hence, it will suffice to show 4°> D, for then
A%< DL,

Pick g € L(G) with g ¢ 4°. Then either there exists y; ~y, with y,, y, ¢ E, and
8(y1) #8(y2) or there exists B € E, with g(8)#0. If the former is true, let &=y,
—vy € B then ®(g)#0 and hence g ¢ D. Otherwise, let ¥'=8 € B and conclude
¥(g)#0. Consequently 4°> D, or

A% < w*-closure of B.
Combining (iii) and (iv), we have proven (2).

II1. Factorization. If a commutative Banach algebra B has an approximate
identity there exists a bounded set U of B such that x belongs to the closure of xU
for every x in B. It is this property that motivates the following definition.

3.1. DEFINITION. Let B be a commutative Banach algebra. We say that B has a
pseudo-identity (p.i.) if and only if x belongs to the closure of xB for every x in B.

It is well known that L*(G) has an approximate identity which may be chosen to
be a (p.i.) for L*(G), 1 £p<oo. But if 1 <p =00, it will follow from the Hausdorff-
Young theorem that L?(G) has no approximate identity.
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Cohen [1] has shown that any Banach algebra B with approximate identity has
factorization, i.e., B=B-B. In particular, L}(G)=LY(G) * L*(G). One may ask if
this property is transferred to all the closed subalgebras of L}(G). We will use a
result of Daniel Rider [6] to prove the existence of a closed subalgebra 4 without
factorization and 4 N L?(G) is L'-dense in 4 for 1<p<2.

We begin with a definition.

3.2. DEFINITION. Let 1 <p=<o0. A closed subalgebra 4 of L!(G) is a p-algebra if
and only if 4 N L?(G) is L*-dense in A.

Clearly, A, is a p-algebra for every p and every algebra A.

For what follows, we will adopt the notation: A2=A4 x A and A'=A""'% A
for j=3,4,..., where A is a closed subalgebra of L(G).

3.3. LEMMA. Let A be a p-algebra. Then there exists an integer k such that A™< A,
for m=k.

Proof. Case (i). Assume p=2. Then A,<A=L'-closure of (4 N L?(G))<L!-
closure of (4 N L% G))< A,. Hence, A=A, and so A™< A, for every integer m.

Case (ii). Assume 1<p<2. Choose k such that p*~>g where p~*+g~1=1.
Now suppose m=k and f=f; x---x f,, where f;e€ A4 for j=1,2,..., m. We will
show fe A,. Let >0 be given.

Since A4 is a p-algebra, we may choose h=h, *- - -* h,, with h; € A N L?(G) for
j=1,2,...,mand |h—f], <e. If we define ¢,=4h, for j=1,2, ..., m it will follow
from the Hausdorff-Young theorem that ¢, € LYT") for each j.

Let K be any finite subset of I'. Then by the Holder inequality we have

> 1A = 2};{ |61- - -bal () < [,EZK |¢1|'I(y)]“" [; |63 - -¢m|*’(y)]""

o L
< |!¢1||q[ﬁzx |¢2-~-¢ml*’(y)]" .

By repeated applications of the Holder inequality to (1) and the fact that
pm-V2p¥-D>qg we obtain

> 1AWl

yeK

IA

c[z |¢,..(y)|"‘“"’]"“'““’

yeK

@

IIA

C[3, 141" = Clbal

yeK

where C is a constant independent of K. Since K was arbitrary, it follows that
h e LY(T)<L¥T). Hence by the Plancherel theorem we have h € (L%(G) N A)< A,.
Since ¢ was arbitrary, we conclude f€ A,.

3.4. THEOREM. If A is a p-algebra such that A< L'-closure of A? then A= A,.
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Proof. From (3.3) we may pick k such that A®< A4, for m=k. It follows that
Ay A<L'-closure of A%< ..-c<L'-closure of A% where ¢ is chosen to satisfy
2t> k. Hence A= A,.

The following corollaries are immediate.

3.5. COROLLARY. If A is a p-algebra with (p.i.) then A= A,.
3.6. COROLLARY. If A is a p-algebra with factorization then A= A,.

Rider [6] has constructed a closed subalgebra A of L}(T") which is generated by
a function fe LP(T) (1 <p<2) such that 4°=A4+# A,. It follows from (3.5) that A4
does not have a (p.i.) and from (3.6) that 4 does not have factorization.

Now let G be a locally compact abelian group and I a closed ideal of LY(G).
Define Z(I)={y € T : f(y)=0 for every f e I}. The problem of “spectral synthesis”
is concerned with the following question: Do there exist two distinct closed ideals
I, and I, of LY(G) such that Z(I;) =Z(l,)? Malliavin [7, p. 172] has shown that this
will always be the case if G is not compact. For G compact, Z(I)=E,, and it is
clear that Z(I,)=Z(Il,) implies I, =1,.

Helson [3] has shown that if I, and I, are two distinct closed ideals of L(G),
G not compact, with I,<1, and Z(I,)=Z(l,;) then there exists a closed ideal /
with Z(I)=Z(I,)=2Z(l,) and I, SIS I,. One is struck with the following question
for G compact: Suppose A is a closed subalgebra of L*(G) with 4 # A,. Does there
exist a closed subalgebra A, with A2 4,2 4,? We will use Rider’s example and
(3.3) to show that this is not generally the case.

For this purpose, let 4 be a closed subalgebra of L*(T) with 4 # A, and generator
f€ L?(G), 1 <p<2. Now, functions of the form A(f) where 4 is a polynomial with
h(0)=0 are dense in A. If f represents the image of f under the quotient map
A — A|A,, we have that the functions h(f) are dense in the quotient algebra A/A4,.
Now by (3.3) there exists a positive integer k such that f" e A, for n=k. Since
every finite dimensional linear subspace of 4/A4, is closed, it follows that A/A4, is
a finite dimensional vector space with generators f, f2,..., f*~? and thus has
dimension less than k.

Suppose we could always find a closed subalgebra B, to satisfy B2B,2 B,
whenever B was a closed subalgebra with B# B,. Then by induction we may choose
k distinct closed subalgebras of LY(G) say A,, Agy ..., A, with A2A4,2-- 24,

24o. But then A/A,24,/402 - 24,/4,2{0} implies A/4, has dimension
greater than k. Contradiction.
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