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MAXIMAL CLOSED PREPRIMES IN

BANACH ALGEBRASC)

BY

P. CIVIN AND C. C. WHITE

Introduction. In this work we endeavor to investigate the possibility of utilizing

the notions introduced by D. K. Harrison in his Memoir, Finite and infinite primes

for rings and fields [5], in an attempt to provide an apparatus which relates to the

closed subalgebras and the closed subrings of a given Banach algebra.

For a ring R with identity 1, Harrison defines a preprime as a nonvoid set closed

under addition and multiplication and not containing —1. He calls a maximal

preprime a prime. A natural distinction is made between the primes which do not

contain 1, the. finite primes, and the primes which contain 1, the infinite primes.

The fruitfulness of a direct application of the Harrison theory of primes to a

Banach algebra appears unlikely. The natural quotient structures which appear in

profusion lose their topological character as the items factored out are not closed

topologically. Those primes which are closed topologically are shown in §2 to have

a very special form and to be in the case of a complex commutative Banach algebra

in one-to-one correspondence with the maximal ideals of the algebra. By contrast

the maximal closed preprimes appear in a variety of forms even in the simplest

types of commutative Banach algebras. As with primes, the maximal closed pre-

primes are called infinite ox finite according to whether or not they contain 1.

In §1 we obtain the elementary properties of maximal closed preprimes and

closed primes. §2 is devoted to the identification of the closed primes among the

maximal closed preprimes and to their description in more classical terms. The

finite maximal closed preprimes are examined in §3, and one sees that these involve

closed subrings rather than closed subalgebras of the given Banach algebra. One

also sees the automatic introduction of certain special fields other than the traditional

reals, complexes and quaternions.

The final section exhibits as much of a classification scheme as possible for the

infinite maximal closed preprimes within the framework of function algebras. The

study is brought to the point of making contact with the array of measure theoretic

technique that is available for the study of function algebras.
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1. Definitions, examples, and basic results. We adopt the following notation.

Let Z, R, and C denote respectively the integers, the reals, and the complexes.

Let N and R+ denote the nonnegative integers and the nonnegative reals.

We consider only real or complex Banach algebras with identity, which we

denote by 1, and for convenience we take || 11| = 1. In particular, the zero algebra is

excluded from consideration. We are at times forced to consider real subalgebras

of a given complex Banach algebra. In each such instance we shall indicate the

special usage, and the term "subalgebra" without any modifier will indicate that

the same field is in use as in the original algebra. When no reference is made to the

field, it may be taken as either R or C, and a result stated without reference to the

field is valid over either.

Every prime, and every maximal closed preprime, must contain the element 0.

A straightforward application of Zorn's lemma shows that every preprime is

contained in a prime. In order to show that every closed preprime is contained in a

maximal closed preprime, we need the following result.

Proposition 1.1. Let Q be a closed preprime of the Banach algebra A. Then for

each x in Q, ||jc+1|£1.

Proof. Suppose ||x+11| < 1 for some x in Q. Then — 1 +(x+ l)n -»■ — 1. But for

every n, the element -1 +(x+ l)n is in Q. Since Q is closed, we conclude that — 1

is in Q, contradicting the fact that Q is a preprime.

Corollary 1.2. Every closed preprime in a Banach algebra A is contained in a

maximal closed preprime.

Example 1.3. The set R+ is a closed prime, and therefore a maximal closed

preprime, in either R or C. For a fixed prime integer p, the set Zp is a prime in the

ring Z, and a maximal closed preprime in R, but is not a prime in R.

Our next result, which is interesting in its own right, is useful in §4.

Proposition 1.4. Let Q be a closed preprime of the Banach algebra A, and suppose

that R+ c Q. Then for each x e Q there is some A e R+ such that A is in the spectrum

ofx.

Proof. Let xeQ. Let \eR+ be such that A>||x||. Then one checks that

(A — x)-1 e Q. Suppose that (a — x)'1 exists in A for each a e [0, A]. We know that

— x'1 $ Q, for otherwise — l=x( — x'1) e Q. Since Q is topologically closed,

there is a smallest positive real number ß such that (ß — x)'1 e Q. Let ¡j. be any

positive real number such that n > max (/?"1, \\(ß - x) '11|). Then (¡j. - (ß - x) 'x) "1 e Q.

Now (p.-(ß-x)-1)-1=(ß-x)(p(ß-x)-l)-i e Q, so (KiS-x)-l)-1 e(ß-x)-*Q

cß. Thus ((rtS-O-jux^eß, so ((ß-p-^-x)'1 e Q. But tn>ß~1, s« ß>ß
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-p~1>0, contradicting the fact that no positive number S<j8 is such that

(*-*)-» eß.

It is clear that a closed prime is automatically a maximal closed preprime. In

the balance of this section we discuss some of the special properties of the closed

primes.

Proposition 1.5. Let P be a closed prime in the Banach algebra A. Then 1 eP,

i.e. P is infinite.

Proof. We show that finite primes of A are not closed. Let Q be a finite prime

of A. We show I e Q~. Let Q + N={q + n : qe Q,ne N}. Since Q + N properly

contains Q, —1 =q + n, for some qe Q, ne N and «/0. Thus —«—1 =qe Q and

so «+1 =(72 + «<7ë Q. By Proposition 2.1 in [5] it follows that every element of the

form («+ l)llk, k a positive integer, is in Q. Thus 1 eg" and Q is not closed.

Proposition 1.6. Let P be a closed prime in the Banach algebra A. Then R+<=P.

Proof. It is enough to show that § e P, since P is closed and the set

{m(i)n : m,neN)

is dense in R + . Suppose that \$P. Consider the set

<P, i> = {Po+Pi(i)+ ■ ■ ■ +PÁW :neN,PieP,i = 0,...,n}.

Now (P, ^> is closed under addition and multiplication and properly contains P.

Therefore - 1 e <[P, £>, and so we may write — 1 =p0+Pi(\)+ • • ■ +Pn(ï)n- Thus

-2n is in P. But 1 eP by Proposition 1.5, so

2"-l

-2n+ 2  1 - -leP.
fc=i

If S is an arbitrary infinite maximal closed preprime in a Banach algebra A,

then S need not necessarily contain R + , as the following example shows.

Example 1.7. Let X be the closed interval [ — 5, — 1] of real numbers, and let

A = CR(X), the real Banach algebra, with supremum norm, of all real-valued con-

tinuous functions on X. Let S0 be the preprime consisting of all polynomials in the

real variable x with integer coefficients and with constant term a nonnegative

integer. It follows from Theorem 4.2 of [7] that S0 is a closed subset of CR(X).

Therefore, by Corollary 1.2, there is a maximal closed preprime S of CR(X) with

S0<=S, and Sis infinite. Consider the polynomial/ wheref(x) = x. Clearly/e S0<^S.

We now claim that j £ S. For if } e S then \f would be in S. But \\f+1 ]] =f < 1,

contradicting Proposition 1.1. Hence j $ S.

Definition 1.8. Let Q be any preprime of the Banach algebra A. Then Q is

called archimedean if for each x e Q there is an n e N such that n — xe Q.

Definition 1.9. Let Q be any infinite preprime of the Banach algebra A. Then

we define Q = {x e Q : -xe Q}, and Q+ ={x e Q : -x$ Q}.
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Proposition 1.10. Let P be a closed prime in the commutative Banach algebra A.

Then P is archimedean.

Proof. Let x e P. We choose an ne N with n> \\x\\. Clearly (n — x)'1 e P and in

fact (n — x)~1 eP+ since otherwise — 1 = x(n — xYx — n(n — x)'1 e P. By Proposition

1.6 of [5] it follows that n — xeP.

Proposition 1.11. Let P be a closed prime in the complex commutative Banach

algebra A. Then for each x e P, ix e P.

Proof. Let xsP and suppose ix£P. Then — 1 =p1 + ixp2, since otherwise

P+ixP is a preprime properly containing P. Thus — 1 —pi = ixp2 and

-1 = p2 + 2Pl+x2p22eP.

We have shown that 2?+<=fi for any closed prime P in a Banach algebra A.

If A is commutative, then P is also archimedean and is such that iP^P. It will be

shown in §2 that if 5 is any maximal closed preprime of the commutative Banach

algebra A which possesses the three properties mentioned above, then S = S+R +.

However, for a complete characterization of the aforementioned type of maximal

closed preprime a further notion must be introduced.

2. Real and complex places. By a (real, complex) pair in a complex Banach

algebra A, we mean a pair (B, B) where B is a closed (real, complex) subalgebra of

A containing 1 and B is a maximal ideal in B. For a real Banach algebra A, a real

pair is similarly defined. In this chapter we use the term pair to mean either a real

or complex pair.

We introduce an order on like pairs in A by setting (Bu BO g (B2, B2) if fii is a

closed subalgebra of B2 and B2 n B1 = B1. A direct application of Zorn's lemma

shows that any pair is majorized by a maximal pair. A maximal complex pair is

called a complex place. A maximal real pair is called a real place. In the commutative

case we also use the terms complex place and real place to denote the corresponding

homomorphism from B onto B¡B. Note that the usage permits, via the Gelfand-

Mazur theorem [13, p. 40], a real place to be a homomorphism onto the complexes

as well as the reals. The first objective is to relate the notions of a real or complex

place and an archimedean maximal closed preprime.

Proposition 2.1. Let A be a real or complex commutative Banach algebra with

identity. Then for any place of the form (A, A), A+R+ is a closed prime.

Proof. The result follows immediately from the Gelfand-Mazur theorem and

Example 1.3.

The isolation of the result of Proposition 2.1 is for emphasis. Actually it is a

special case of the next proposition.
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Proposition 2.2. Let A be a real or complex commutative Banach algebra with

identity. For any place (B, B) of A, B+R+ is a maximal closed preprime of A which

is archimedean.

Proof. Let S = B+R + , so that S is a closed archimedean preprime. Suppose

that 7 is a closed preprime and T^> S. Let D = BT, so that D is a normed algebra

over the same field as B, and let D0 = BT<^T. Consequently D„ is a proper ideal

in D~ and is thus contained in a maximal ideal D of D~. Hence, 7)~=>5=>Z) n B

^>B. Since \ $ D, DnB = B. The maximality of the pair (B, B) then implies

B — D~^T^S. However, by Proposition 2.1 S is a prime in B, so S=T.

It should be remarked that a place need not be associated with a closed prime

or a homomorphism of the original algebra. Let T be the circle and A = C(T).

The pair consisting of B, the disc algebra, and B, the subset of B consisting of the

functions whose analytic extension to the disc vanishes at the origin, is easily

verified to be a complex place not coming from a homomorphism of A. Let S be

the associated maximal closed preprime. If/6,4 satisfies f(ew) = \ + ew, then

feS+ and there exists g e A such that fg= 1. If S were a prime then Proposition

1.6 of [5] yields g e S. But then the extensions / and g to the disc satisfy jg—1,

which is impossible since/has a zero in the interior of the disc. Thus the complex

place (B, B) is not associated with a prime. It should also be remarked that the

above shows that Proposition 1.6 of [5] for primes is false for maximal closed

preprimes.

We adopt a notation analogous to that used by Harrison [5]. For S a closed

preprime in A we let As = {y e A \ yS<^S and Sy^S}.

Proposition 2.3. Let A be a Banach algebra with identity. Let S be a maximal

closed preprime in A which is archimedean and contains R +. Then S = S+R +.

Moreover, As/S is one of R, C, or the quaternions.

Proof. S is a proper closed 2 sided ideal in the real Banach algebra As. Let

A0 = AsjS, S0 = S/S, and B0 = S0 — S0. Then S0 is both a maximal closed preprime

and a cone in A0 and for i1( s2 e S0, there is an n e N such that n—Si e S0 and so

n—(si—s2) e S0- Thus S0 defines an order on B0 which makes B0 into an archi-

medean ordered algebra in the sense of Kadison [8, Definition 3.1]. Thus by [8,

Theorem 3.1] there is an order preserving algebra isomorphism of B0 onto a dense

subset of Cr(Q), the algebra of continuous real valued functions on a nonvoid

compact set Q. This isomorphism shows that squares from B0 are in S0, and

guarantees the existence of positive multiplicative functional on B. Let <p be any

such functional on B0. For y e B0, \\y\\ ̂  1, letw = 2i>i C2iy2i andt; = 2t>i C2i + iy2i,

where the C¡ are coefficients in the binomial expansion (1 — r)1,2= 1 — 2t>i C¡/'.

Since each C¡a0, u, v e S0 and consequently l—u—yv e B0 and 1 — y e S0. Hence

y e BQ, and || y\\ S 1 imply <p(y)^ 1. The use of — y as well as y shows that <p is

bounded. Extend <p to (B0)~ by continuity. Then tp~1(R+) is a closed preprime in
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A0 containing S0 so S0 = q>~1(R + ). This implies that S0 = (S0 n (-S0)) + R+ and

that S=S+ R + .

The final statement of the theorem is a consequence of the Gelfand-Mazur

theorem. For if M is a one-sided ideal of As such that M=>5, then M " +7?+ is a

closed preprime in /4S containing S, so S'=M-+Ä+ and consequently AS¡S is a

normed division algebra.

We next show it is possible in Proposition 2.3 that A is an algebra over the com-

plex field, but that As is not an algebra over C. In fact this may even be the case

if A is a C(X).

Example 2.4. Let X be the closed upper half of the unit circle in C, i.e. X=

{eu | 0-¿f¿Tr), and let A = C(X), the complex continuous functions on X with the

usual supremum norm. Let z e Abe the usual z(eu) = eu. Let

■S0 = {axz + a2z2 + • • ■ + anzn \ n e N, and a¡e R,j = 1,..., n}.

Since each /e S0 is naturally defined on C and f(uc) = (f(u))c, where c denotes

complex conjugation, sup {|/(w)+1| : me A"} = sup {|/(«)+l| : ueT} with T the

unit circle in C. For fe S0 the maximum modulus principle yields l=/(0)+l

ásup{|/(«)+l| : wE7} = sup{|/(w)+l| : ue X}=\\f+l\\. Thus S0" is a closed

preprime and consequently Sô +R+ is a closed preprime in /I. Clearly So +R +

is archimedean and contains 2? + . The pair (5o" +R, Sô) is then majorized by a

real place (B, B), so by Proposition 2.2 S = B+R+ is an archimedean maximal

closed preprime of A. It remains to see that iS<£S.

Let g be defined on X by g(z) = z. Thus ge50n(- 50), and therefore g e 2?.

Suppose that /g e Ä. Then as X is the maximal ideal space of A and as the Gelfand

representation may be viewed as point evaluation, Proposition 1.4 asserts that

there is an x0 e X, such that ig(x0) 5:0. However, this is not true so we conclude

that iS 4:5.

Proposition 2.5. Every archimedean closed preprime Q which contains R+ is

contained in a maximal closed preprime which is archimedean.

Proof. In the proof of Proposition 2.3, if we start with only an archimedean

closed preprime S containing R+ the argument may be repeated verbatim through

the stage where we obtain a homomorphism cp with <p_1(2? + ) a closed preprime in

A0 containing S0. If -n is the natural map of As onto A0, then n~1(cp~1(R+)), is a

closed preprime in As containing S. But then (tt'1((p'1(R)), 7r-1(ç>-1(0))) is a real

pair and is thus majorized by a real place (D, D). By Proposition 2.2, D + R+ is

an archimedean maximal closed preprime and the order on pairs implies D + R+=>S.

Proposition 2.6. Let A be a real or complex commutative Banach algebra. Then

any closed prime P is associated with a place (A, A) via the formula P = A+R + .

Proof. The results of Propositions 1.6 and 1.10 show that a closed prime P

contains R+ and is archimedean. Thus, since P is also a maximal closed preprime,



1970] MAXIMAL CLOSED PREPRIMES IN BANACH ALGEBRAS 247

Proposition 2.3 shows that P = B + R+ with (B, B) a place. To complete the proof

we must show B = A, so we suppose otherwise. For simplicity we consider only

the case of A a complex algebra.

Let x e A\B. The expressions of the form pQ+PiX+ ■ ■ ■ +pmxm, with p0eP,

p, e B for j= 1, 2,..., m and m some positive integer, are closed under addition

and multiplication. The collection contains P properly, since if Bx^P, then Bx^B

and thus x e AP = B by Proposition 2.3, in contradiction to the choice of x. Thus as

P is a prime and contains R + , there is a polynomial equation of minimal degree «

with — 1 =p0 +PiX + ■ ■ ■ +pnxn, and withp0eP,pjeB,j=l,...,n. Hence

0= pl~\l +P0)+pnn~2(PnX)+ ■ ■ ■ +(PnX)n.

Let 7 be the integral closure of B in A [15, p. 256]. Suppose first that 7=1?. The

prior equation then shows that pnx e I=B, so pnx = qn + A with qne B and XeC.

Since Proposition 1.11 asserts that CB = B, we may assumepnx=qn orp„x = qn+1.

If the first formula were to hold, the equation obtained above shows that the

integer « is not minimal. Thuspnx=qn+l.

As the group G of regular elements of A is open, and we are supposing that B

is a proper closed subspace of A, the set G\B^ 0 and is open. Moreover, as

inversion is continuous where defined, (G\B)_1 is also open and hence cannot be

in B. We may therefore choose y e A\B such that j-1 e A\B. The prior discussion

applied to j"1 yields /> e B,qe B and py~1=q + 1 or p = (q+l)y. Since q+l eP+,

and (q+l)Py=pPcP, Proposition 1.6 of [5] yields yeP^B. This contradiction

shows that 7^ B.

Since £ is a maximal ideal of B, it is a prime ideal of B. Theorem 3 of [15, p. 257]

then gives a prime ideal / of 7 such that J n B = B. As noted earlier in the argument

AP = B. Thus Proposition 2.5 of [5] shows that (B, B) is a valuation pair in the

sense of Manis [10] (or [11, p. 18]). This asserts that (B, B) is maximal with respect

to the order (Ru Pi)^(R2, P2) if 7?L and R2 are subrings of an overring R, in this

case A, P¡ is a prime ideal of R}, j=l,2, Ri<^R2 and P2(~\ R1=P1. However, in

the present situation we have (B, B) á (/, J) and 7# B. This contradiction shows that

B = A.

3. Finite maximal closed preprimes. In this section we examine the behavior of

finite maximal closed preprimes in Banach algebras. It is of no consequence

whether the algebras are real or complex, and commutativity plays no role in the

arguments. The principal result of Theorem 3.4 is that finite maximal closed

preprimes automatically introduce other fields as quotients than the traditional

reals, complexes and quaternions.

Lemma 3.1. Let S be a maximal closed preprime in the Banach algebra B. Then S

is a finite maximal closed preprime if and only if S= —S.
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Proof. The result in one direction is immediate from the definition of a finite

preprime. Suppose then that S is a finite maximal closed preprime and let N

denote the nonnegative integers. Then the set S+N is closed under addition and

multiplication and properly contains S. Thus — 1 -^lim^^ (sk + nk) with each

ske S and nk e N. For arbitrary s e S, — s = limk_ö0 (ssk + nks) e S as 5 is closed.

Lemma 3.2. Let S be a closed preprime in a Banach algebra B, with S=—S.

Then there is a finite maximal closed preprime T such that T^S.

Proof. Suppose that the lemma is false. We know that S is contained in some

maximal closed preprime M, and our supposition implies that only infinite maximal

closed preprimes can contain S. Let p be any prime number. The set (S+Zp)~

is closed under multiplication and addition. If it were a preprime, it would be

contained in a maximal closed preprime, which by our supposition must contain

1 as well as —p and we would have a contradiction as — 1 = —p + (p—1)1. Thus

— 1 e (S + Zp)~. Let ske S and mke Z be such that — 1 =limfcJCO (sk + mkp). We

note that mk < 0 for k ä k0, since otherwise sk + mkp e M and M is closed. However,

for k~^k0,  we have   — mkp — 2ä0 and since S=—S,   — sk — mkp — 2e M and

— l=limk^m( — sk-mkp-2), which contradicts the fact that M is a closed

preprime.

In order to show that the study of finite maximal closed preprimes should be

expected to lead to considerations atypical to the study of Banach algebras, let us

consider the simplest conceivable real and complex Banach algebras and observe

the nature of their finite maximal closed preprimes.

Example 3.3. (1) Any finite maximal closed preprime in R has the form Zp for

some prime number p. (2) To any finite maximal closed preprime S in C, there corre-

sponds a positive integer k and algebraic numbers au a2,..., ak such that S = Zax ®

■ ■ •© Zak. Moreover, there exists a unique p e N n S which is a prime number.

Proof. (1) For any prime number p, Zp is a closed preprime and is thus con-

tained in a maximal closed preprime S, which must be finite since —p s S. Thus

by Lemma 3.1, S is a closed subgroup of the additive group R. One knows from

topological group theory that this implies that S = Zp.

Suppose next that S is a finite maximal closed preprime in R. As S is a closed

proper subgroup of R, S = Zc for some c>0, and as c2 e S, we see that c e N.

If c were not a prime, S would be properly contained in a closed preprime Zr,

with r some factor of c.

(2) Let S be a finite maximal closed preprime in C. Lemma 3.7 says S is a

subgroup of C as an additive group, and S is closed, so 5 is a compactly generated

locally compact abelian group, so by the structure theory for such groups [6, p. 90]

S is isomorphic as a topological group to RmxZnxF, where {m, n}<=N and F is a

compact group. Since C contains no nonzero compact additive subgroups, the

term in F may be deleted. Also, since 5 is a proper subgroup of C, m = 0 or 1.

If m—l, there would exist some c e S, \c\ = 1, and te e S for all / e R. Thus for
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some 0^=t e R we must have t2c2 = uc with ue R. But the prior relation forces c to

be real, which is impossible. Thus w = 0. We thus conclude that S is isomorphic

as a topological group with Zn. In particular S is discrete in C, and S=Zai © Za2

©• • •© Zan. Since S is closed under addition and multiplication, each af,j= I,...,

«, is an algebraic number. Suppose that there is no prime number in N n S.

Then S + N is closed under addition and multiplication, and properly contains S.

Thus   — I =limk^00 sk + nk  with  each  sfc e 5  and  nkeN.   Let  O^ieS.   Then

— i = limfc^œ (ssk + nks).  However,  51 is discrete.  Thus for k sufficiently large

— s = ssk + nks. Since 5#0, — l=sk + nk and we see that S contains some integer.

The least positive integer in 5 must be a prime number.

It is worthy of note that the examples of finite maximal closed preprime in C

are necessarily more complicated than those of R. For if p is any prime number,

then Zp © Zpll2i is a closed finite preprime in C, and since Lemma 3.2 is available

Zp © Zpll2i is contained in some finite maximal closed preprime.

Before we return to the analysis of the nature of the finite maximal closed pre-

primes, it is convenient to introduce certain notions which will appear in the

sequel. We call a ring R a metric ring (see [9]) if there is associated with each r e R

a real number \r\ such that |r| =0 if and only if r = 0, | — r\ = \r\, \r + s\ ;£ \r\ + \s\

and \rs\ á |r| |j|. If in the topology that the norm gives R, R is complete we call

R a Banach ring.

Banach rings arise naturally in the study of Banach algebra if one has a closed

additive subgroup S of a Banach algebra B with identity, and with || 1 +s|| ^ 1 for

s e S. Let D = {x e B | xS^S and Sx^S}, so that D is a closed subring of B, and

Z<= D, since ns = s+ ■ ■ ■ +s, with «-fold addition, is in D if n e N. In the quotient

ring DJS define |x + 5| =inf {||x-t-,y|| : s e S}, where || || is the norm in B. That

D/S is a metric ring is immediate. The proof of the completeness of D/S is identical

with the usual proof for Banach spaces (e.g. [3, p. 26]).

We use the terminology of preprime, closed preprime and so forth for Banach

or metric rings exactly as the terms were used for Banach algebras.

Another notion which we encounter is that of locally finite field. This is a field

such that each element is contained in a finite subfield. Such fields are known up to

isomorphism and any such field is completely characterized by its characteristic

and a single additional invariant, a so-called Steinitz number (see [5, p. 9] or [14]).

It is these fields which enter into the Harrison theory of primes.

Theorem 3.4. Let S be a finite maximal closed preprime in a Banach algebra B

with identity. Let Bs = {x e B \ xScS and SxcS}. Then one of the following holds:

(1) If S O 7V=(0), BSIS (as a ring) is a metric ring, any closed subring of which

is a division ring and contains as a closed subfield a completion of a copy of the

rational numbers distinct from the reals.

(2) If S n Af#(0), BsjS (as a ring) is a locally finite field and is discrete.

Moreover, in either case Bsr^(RS)~.
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Proof. The set Bs is a closed subring of B and 5 is an ideal of Bs. As noted in the

introduction of the concept of a Banach ring, Bs/S is a Banach ring with identity.

Let 77 denote the natural map from Bs onto BS¡S. If Q is a maximal closed preprime

in BS¡S, then tt~1Q is a closed preprime in B containing 5 and consequently

ß = (0).
We shall show that any nonzero closed subring D of BS¡S is a division ring. Let

as D, a/0. Let C=(Da + Za)~. If — 1 $ C, then C is a nonzero closed preprime

in Bs/S, contradicting the above. Thus —\eC and 1 e C. The usual series argument

for the existence of an inverse makes no use of scalar multiplication, so is valid

here. Suppose 1 = lim (dna + mna), dne D, mne Z. Then for sufficiently large n,

dna + mna has an inverse bn in D and consequently a has a left inverse in D. An

identical argument using (aD + Za)~ yields a right inverse for a in D.

The proof now diverges into the two possibilities involved in the statement of the

theorem. If S n N=(0), then BsjS contains Z+S, a copy of the integers. If 7 is

the closure in Bs/S of the ring Z+ S then, as we have seen above, 7 is a division

ring, and as 7 is clearly commutative, 7 is a field. Since 7 contains a copy of the

integers as a dense set, it is a completion of a copy of the rational numbers different

from the real numbers.

In the second instance, it is readily verified that the smallest positive integer in S

is a prime p. Consequently BsjS has characteristic p. Let 7 denote the field Z+ S

in BsjS. For simplicity we write the elements of 7 as 0, 1,..., p— 1. Let \a\ denote

the norm of a in Bs/S. Suppose a e Bs/S, a#0 and |e|<l. Let I[a] represent the

polynomials in a with coefficients in I. Then for fe I[a], f=a0 + a1a+ ■ ■ ■ +anan,

a.j e I, one has |/| -ip 2?=o \a'\ =p(l — lal)_1 since \aj\ ^p for all as I.

Since |û|<1, there is an n e N such that \a\n<p~x(l —1«|)|1|. Then as (I[a])~

is a field, the comments of the prior paragraph apply to (a")"1 and |(an)_1|

^/j(1-|íz|)_1. Hence, |l|á|tfn| Ka")"1! < 1, which implies that Bs/S is discrete.

Any prime P in BsjS is thus closed. If v is the natural map of Bs onto Bs/S,

then tt~1(P) is a closed preprime containing 5 and hence is S. Consequently the

only prime in Bs/S is (0) and Bs/S is a locally finite field by [5, Proposition

1.4].

To see the final assertion, we let L be the smallest closed subring of B containing

Bs and 1/2. Then L=>R, so is a real Banach algebra. Also (RS)~ is an ideal of L

and contains S. Thus if (RS)~ is a proper ideal of L, we would have a contradiction

to the fact that S is a maximal closed preprime. Hence, (RS)~ =L^>Bs.

4. Function algebras. In the present section we consider the nature of infinite

maximal closed preprimes in function algebras. By a function algebra we mean a

uniformly closed complex algebra A of complex-valued continuous functions on a

compact Hausdorff space X, such that A contains the constants and separates the

points of A'. There may of course be more than one compact Hausdorff space

capable of serving as the domain of the functions in A. The largest such domain
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space is the space 3R(A) of maximal ideals, and the smallest is the Shilov boundary

8(A).

The principal concept of this section is the notion of a minimal S-set. Given a

function algebra A defined on X, an infinite maximal closed preprime S of A, and

a nonvoid closed subset Y of X, we call Y an S-set (relative to X) if ||/+1 ||y ̂  1

for all / in S. The sets X and 8(A) are both S-sets. There are two other natural

S-sets, which we shall mention later. A standard compactness argument shows that

any S-set contains a minimal S-set. The description of the S-sets and minimal

S-sets depends heavily on the domain space X, as we will show later by an example.

Let (B, B) he a complex place in the function algebra A defined on X. Let S he

the corresponding maximal closed preprime, and let AT be a minimal S-set. We will

show that K is a set of antisymmetry for B (see [4]), and that there is a positive

Baire measure m on X whose closed support is K, and which represents the

homomorphism tponfi associated with B.

If Y is a compact Hausdorff space and A is the algebra C(X), then for each

infinite maximal closed preprime S of A there is a unique minimal S-set, which we

denote by Cs. If we let Js denote the largest ideal of C(X) contained in S, then we

can assert that Cs is the hull of Js.

We make a good deal of use in this section of an operation which we call the

star product. It was used by Jacobson in evolving the Jacobson radical. For any

pair zu z2 of complex numbers, we define zi * z2 = Zi+z2 + ZiZ2. It is well known

that * is commutative and associative, and that — 1 is its zero element. The set

b(— 1, l) = {z : |z+l| ^ 1} is a semigroup under *, with {z : |z+l| < 1} as an ideal

and {z : |z+l| = l} as a subgroup. If/ and f2 are in a function algebra A, we

define / * /2 =/ +/2 +//2.

Many of the results of this section depend on the following lemma.

Lemma 4.1. Let A be a function algebra defined on the compact Hausdorff space

X, and let S be an infinite maximal closed preprime of A. Let L and M be any pair

of nonvoid subsets of X. Then the following four assertions are true.

(1) If there are functions f and g in S such that /= —I on L and g= — 1 on M,

then there is a function « in S such that «= — 1 on Lu M.

(2) If there are functions f and g in S such that f= — 1 on L and \\g+1 ||M < 1,

then there is a function h in S such that ||«+1||ium< L

(3) If R+ c S and if there is a function f in S such that f~1(0) = L and ||/+l|| = l,

then there is no function g in S such that \\g+1 \\L< l.

(4) IfR+^S, then for every fin S, there is a point x in X such that f(x)^0.

Proof. (I) Let h=f*g=f+g+fg.
(2) Let gn =g * g * • ■ • * g, the «-fold star product of g with itself. Then gn -> — l

uniformly on M, and/* gn —>■ — 1 uniformly on M. Choose an integer m such that

||/*£m+l||<l. Let«=/*gm. Then he Sand «=-1 on L, so that ||«+1 \\LuM< 1.

(3) We may without loss assume that the function /+1 peaks on L, since we
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can replace/by \f if necessary. Suppose there is a g in S such that ]¡g+l|¡L<l.

Then there is an open set U containing L such that \g+11| u < 1. Now X\U cannot

be void, and ||/+l|U\t/< 1. Let/„=/*/*■ • •*/, the «-fold star product of/with

itself. Then £*/„—>- —1 uniformly on X\U, while \g *fn+l\\u< 1 for every n.

There is, therefore, an integer m such that \\g */m+l|| < 1. Since g *fm is in S,

we have reached a contradiction to Proposition 1.1.

(4) The preprime S is a closed preprime of C(X). Since R+ CS, we may apply

Proposition 1.4 and reach the desired conclusion.

Definition 4.2. By a triple (A, X, S) we mean a function algebra A defined on a

compact Hausdorff space X, with S an infinite maximal closed preprime of A.

By a couple (U,f) of (A, X, S) we mean a non void open subset U of X and a

function /in 5 such that/= — 1 on U. If A and X are given, we will sometimes

refer to (U,f) as a couple of S. If x e X, we say that x admits the couple (U,f)

if x e U and (U,f) is a couple of S.

Definition 4.3. Let (A, X, S) be given. We define the subset 0S of X by the

rule 0s = {x e X : x admits no couple of S}.

Proposition 4.4. The set 0S is an S-set relative to X.

Proof. We must show that 0S is a nonvoid closed subset of X such that ||/+1 |0s

ä 1 for all / in S. Now 0S is closed, since its complement is open. Suppose 0S is

void. Then each point of X admits a couple of S, and since X is compact there is a

finite collection of couples, say {(i/i,/i),..., (Un,fn)}, such that A= i/i u- ■ -U Un.

Let/=/ *•••*/„. Then/E S and/= — 1 on X, a contradiction. To complete the

proof we must show that ||/+ 1 \\0s = 1 for every/in S. Suppose there is a g in S

such that || g +1 ||os< 1. Then there is an open subset U of X with U^ X such that

Osc{/and ||g+l||t/< 1. Now there is an/in S such that/= -1 on X\U. By part

(2) of Lemma 4.1 there is a function h in S with ||A+1 ||x< 1, a contradiction.

Corollary 4.5. Let Y be any closed subset of X disjoint from 0S. Then Y is not

an S-set.

Corollary 4.6. Let Y be any S-set. Then the set Y (~\0S is also an S-set.

Proof. The set Y n 0S is closed, and it is nonvoid by the previous corollary.

Suppose there is a function g in S with ||g+l||rnos< I- Then there is an open set

U with Y n 0sc U such that \\g+1 ||rj< 1. The closed set Y\U is nonvoid, since Y

is an 5-set and U ~ is not. There is an/in S such that/= - 1 on Y\U. Since/= — 1

on Y\U and ||g +11| v < 1, we can apply part (2) of Lemma 4.1 to obtain an h in 5

such that ||h +11| Y < 1, a contradiction.

We have seen that 0S is an 5-set. Another natural 5-set (relative to X) is the

set Ns, which we define in the course of the following discussion.

Definition 4.7. Let the triple (A, X, S) be given, and suppose R+czS. We

define the subset Ts of S by the rule Ts = {fe S : ||/+11| = 1}.
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The set Ts is the set of all functions in S which are closest to the function — 1.

Clearly 0 is in Ts.

Theorem 4.8. Let (A, X, S) be given, and suppose R+<^S. Then the following

three assertions hold.

(1) The set Ts is closed under star products.

(2) The set Ts is a closed convex subset of A, and 0 is an extreme point ofTs.

(3) The set Ns = (~] {/" 1(0) : fe Ts} is a nonvoid closed subset of X.

Proof. (1) Suppose /and g are in 7S. Then/* g is in S, and

i â !(/**)+1|| = ||/+*+/g+i|| = ¡K/+ i)(s+i)ll ̂  ll/+i|| lk+i|| = i.

Thus/* g is in 7S.

(2) Suppose / and g are in Ts, and suppose a^O, /3ï:0 with a+ ¿3=1. Then

af+ßg is in S, and

1  á  ||«/+fe+l||  =  K/+1) +ß(g+l)\\  ¿ a\\f+l\\+ß\\g+l\\  = a + ß =  1.

Thus of+ßg is in 7S. We omit the easy proof o|¡ the fact that 0 is an extreme point

of Ts.

(3) Suppose that the closed set Ns is void. Then for each point x of X there is a

function/in Ts and an open neighborhood U of x such that/does not vanish at

any point of U. Since X is compact there is a finite collection {Uu ..., Un} of

nonvoid open subsets of X, and an associated collection {/,.. .JJcTj such that

Y= Ui u• • • u Un and/ does not vanish at any point of £/¡ for i=l,..., n. Let

the function / be defined by f=(if1) *•••* (\fn). Then fe S, and ||/+11| < 1, a

contradiction.

Corollary 4.9. The family {/_1(0) :feTs} is closed under the formation of

finite intersections.

Proof. Let {/,.. .,/„}<= Ts. Then {££,.. .,£/"„}<= 7*s since 0 is in 7S and 7S is

convex. Let/= &/i) *• ■ ■*&/"»)■ Then/e 7S and/"^^rHO) n- •  n/"^).

Proposition 4.10. 7e< (A, X, S) be given and suppose R+^S. Let Y be any closed

subset of X disjoint from Ns. Then Y is not an S-set.

Proof. If Y= 0, then Y is not an S-set. If Y is nonvoid, then the nonvoid open

set X\Y contains Ns. By the compactness of X and Corollary 4.9 there is an /in

Ts such that/" 1(0)cY\Y. Now \fe S and ||i/+l||y<l, so Fis no S-set.

Proposition 4.11. Let (A, X, S) be given, with R+<=S. Then Ns is an S-set.

Proof. The set Ns is nonvoid and closed. Suppose it is not an S-set. Then there

is a g in S with \\g+ 1 ||Ws< 1. There is an open set U with Ns<^ U and |[g+l||[7< 1.

As in the proof of the previous corollary, there is an/in Ts such that Ng^f'1^)
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c27. Let L=f x(0). Then |g+l[|L<l, and we have reached a contradiction to

part (3) of Lemma 4.1.

Corollary 4.12. Let (A, X, S) be given, with R+<=S. Let Y be any S-set. Then

Y n Ns is an S-set.

Proof. The set Y n Ns is a closed subset of X, and it is nonvoid by Proposition

4.10. Suppose there is a g in 5 with || g + 11| ynns < 1 • Then |#4-11 v< 1 for some

open set ¡J containing Y n Ns. The closed set Y\U is nonvoid, since Y is an S-set

and U~ is not. There is an/in Ts such that ||/+1 ||y\L,< 1 and/_1(0)n Y<=U.

The argument in the proof of part (3) of Lemma 4.1 shows that Y is not an S-set,

a contradiction.

Proposition 4.13. Let (A, X, S) be given and let Y be any S-set (relative to X).

Then Y contains a minimal S-set.

Proof. Let {Ya : a e A} be an indexed chain of S-sets such that each Ya<^ y.

By Zorn's lemma it is sufficient to show that Y0 = P) {Ya : a e A} is an S-set.

Suppose it is not an S-set. Then for some/in S, ||/+1 ||y0< 1. There is an open set

U with Yq^U such that ||/+1 ||rj< 1. Since the ya's form a chain there is an

index ß such that Y0^ Yß<=U. Thus ||/+ 1 \\Ye< 1, contradicting the fact that Yß

is an S-set.

Theorem 4.14. Let (A, X, S) be a given triple, and let K be a minimal S-set.

Then the following assertions hold:

(1) Let S' = S\K={f\K:fe S}. Then S', regarded as a preprime of

A\K = {g\K : g e A},

is such that 0S. = K.

(2) Suppose R+<= S. Then NS. = K.

(3) K^0S.

(4) Suppose R+^S. Then K<=NS.

(5) Suppose R+ cj. Then K is either a singleton or a perfect set.

(6) Suppose that S is archimedean and contains R +. Then K is a set of antisymmetry

for the Banach algebra B, where B={feA : fS<=S). That is, if fis in B and fis

real-valued throughout K, then f is constant on K. Moreover, to each element in

A\K there is a unique best approximant in S\K.

Proof. (1) By definition 0S<^K. Moreover 0S< is an S'-set, and so an S-set.

Therefore 0S. = K.

(2) The same argument applies, with Ns, in place of 0S-.

(3) By Corollary 4.6, Kr\ 0S is an S-set. Since K is minimal, 2vc0s.

(4) By Corollary 4.12, K n Ns is an S-set. Therefore K^NS.

(5) Suppose K is not a singleton. We must show that K possesses no isolated

point. Suppose that x is an isolated point of K. Then {x} is relatively open in K,
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and so part (1) of this theorem shows that there is no /in S withf(x) = — 1. There-

fore, by Example 1.3, every /in S is such that/(x)^0. Thus {x} is an S-set which

is strictly smaller than K, a contradiction.

(6) We first prove the assertion about antisymmetry. By Proposition 2.3,

S=S+R + . According to that same proposition, either B = S® R or B=S® C,

depending on whether or not the Ä-module S is in fact a C-module. We treat the

two cases separately. Suppose first that B = S® R. In this case it is sufficient to

show that iff is in S and is real-valued throughout K, then / vanishes on all of K.

For such an/ the function — f2 is in S, and so for some 8>0, — 8f2\Ke Ts\

But 7s- = {0} by part (2) above. Therefore -S/2 = 0 on K, so f=0 on K. Now

suppose that 5=S© C. life S and/is real-valued on K, then/=0 on K. Let

fe B, and suppose / is real-valued on K. Then f=g + ß where g e S and ß e C.

Now Im ß = 0, for otherwise the function g=f—ß never takes on a real value on

the set K, thus contradicting part (4) of Lemma 4.1, applied to the closed preprime

(SlA")-. Therefore ß is a real number and/=/3 on K.

Finally, iffe B and f=g + ß where g e S and ß e C, then the fact that 7S={0}

implies that g-|AT is the unique element of S|K which is closest to f\K.

Proposition 4.15. Let (A, X, S) be a given triple, and let Y be any S-set. Then

for every fin A,f is in S if and only iff \ Y is in S | Y.

Proof. Let T={fe A : f\Ye S\Y}. Since fe T => ||/+11 £ !/+1 fT £ I, we
conclude that T~ is a closed preprime. But S<^T<=T~, and so S =T.

We have concluded our discussion of general function algebras. In the remainder

of the section we will discuss some special results on infinite maximal closed

preprimes of C(X). The results obtained for function algebras assume a neat form

when A = C(X). The structure of closed ideals in C(X) is important in this con-

nection, and so also is the fact that X is (up to homeomorphism) the only compact

Hausdorff space which can serve as the domain of the functions in C(X).

Definition 4.16. Let S be an infinite maximal closed preprime in C(X). Let Js

be the largest ideal of C(X) contained in S, and let Cs = (~) {/_1(0) : /e7s}.

We note that since S is closed, Js is closed. Consequently

Js = {feC(X):fsOonCs}.

Proposition 4.17. Let S be an infinite maximal closed preprime of C(X). Then

Cs is an S-set.

Proof. Suppose Cs is not an S-set. Then there is some g in S such that ||g +1 ||Cs

<1. There is an open set U such that Cs<= U and ||g+l||t;<l. Clearly U¥=X, so

X\U is a nonvoid closed subset of X disjoint from Cs. Let/E C(X) he such that

f=0 on Cs Wdfm-] on X\U. Then feJs^S. We now have fe S and g e S

such that/= -1 on X\U and ||g+1 ||t;< 1. By part (2) of Lemma 4.1 there is an

« in S with |j«+1 \x< I, a contradiction.
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Proposition 4.18. Let S be an infinite maximal closed preprime of C(X). Then

Cs is the unique minimal S-set.

Proof. Let Y be any S-set. We must show that Cs<= Y. By Proposition 4.15,

S contains the ideal 7 of all functions in C(A') which vanish on Y. Therefore J^JS

and Cs<= Y.

Proposition 4.19. Let S be an infinite maximal closed preprime of C(X). Then

Os = Cs.IfR+^S,thenNs = Cs.

Proof. By the previous proposition, CSC0S. If x$Cs, then there is an open

neighborhood U of x such that U~ -n Cs= 0, and an/in C(X) with/=0 on Cs

and/=E — l on U~. Then feJscS and x admits the couple (U,f). Consequently

x$0s, and so CS = 0S. If R+^S, then CS^NS. If x $ Cs, then there is some/in

CR(X) such that/=0 on Cs,f(x)=-l, and -1 á/áO. Now/e Ts and/(x)#0,

so x $ Ns. Therefore CS = NS.

Theorem 4.20. Let S be a maximal closed preprime of C(X) such that R+(^S

and S is closed under conjugation. Then for some point x in X, S = {feC(X) :f(x)^0}.

Proof. First we will show that S is archimedean. Since R+ ^S, it suffices to show

that (1-/)eS whenever fe S and ||/||<I. Suppose fe S and ||/||<1. Then

(1-/)_1eS, and so (1-/)_1eS. Suppose (1— f)$S. Then there is a finite

collection {/,,/,.. .,/»}<=S such that ||1 +/0+/(l -/)+■•• +/n(l -ff\\ < 1. Let

A=/o+/i(l -/)+■••+/»( 1-/)". Then ReA<0 on X. Let g = (l -/)-(l -/)-».

Then g e Sandg>0 on X. Let k=gh. Then A: e Sand Rek<0 on X, contradicting

part (4) of Lemma 4.1.

Next we will show that there is a point x in X such that/(x) = 0 for all/in S.

Suppose there is no such point. Then for each point x in X there is a function /

in Sand an open neighborhood U of x such that/(_y)^0 for all y in U. Since Xis

compact there is a finite collection {Uu ..., Un} of nonvoid open sets and an

associated collection {/, ,.,,/JcJ such that X=U1 u- ■ -u t/n and/(j^)#0 for

all y in t/i, /=T,..., n. Now/e S, where/=/(-/) + • • ■ +/(-/„)= -¿7„ |/|2.

Now/<0 on A', contradicting part (4) of Lemma 4.1. Therefore there is a point x

in A" such that/(x) = 0 for all/in S.

By Proposition 2.3 S = S+R + . Therefore S = {/e C(X) : f(x)^0}.

Corollary 4.21. Let S be a maximal closed preprime of CR(X), and suppose

that R+<=S. Then there is a point x in X such that S={fe CR(X) : f(x) ^0}.

Proof. The corollary can be proved in the same manner as the theorem. The

proof of the corollary is simpler, since conjugation plays no role.

By the last corollary we see that any maximal closed preprime S of C^A")

which contains R+ is archimedean. However, we do not know whether or not a

maximal closed preprime in C(A") which contains R+ is necessarily archimedean.
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If it is true that /?+<=S implies that S is archimedean for every maximal closed

preprime S of C(X) and every compact Hausdorff space X, then the same implica-

tion holds for an arbitrary function algebra. For if the triple (A, X, S) is given,

with R+I=S, then S^Si for some maximal closed preprime Sj of C(X). If S± is

archimedean, then so is S, since S=Si n A.

The next result, which is similar to the first assertion in Theorem 4.14 (6), is all

we can say at present for the maximal closed preprimes of C(X) which contain R +.

Proposition 4.22. Let S be a maximal closed preprime of C(X) which contains

R + . Then Cs is a set of antisymmetry for S.

Proof. Since S|CS is a maximal closed preprime of C(CS), there is no loss in

assuming that CS=X. Let SR = S h CR(X). We must show that every function in

SR is constant.

Our first goal is to show that SR is a closed type 0 semialgebra in the sense of

Brown [2]. Surely SR is a closed semialgebra containing R +. We must show that

(1 +/)"1 e S whenever/E SR and (1 +/)"1 exists in CR(X). If/is as above then

it is a straightforward matter to show that the strictly positive function (1 +/)-2

is in S. But now(l+/)-1 = (l+/Xl+/)"a6'S.Thus SR is a closed relatively type

0 semialgebra.

It is now an easy consequence of the main representation theorem of [2] that SR

is closed under the usual lattice operations for CR(X). We now claim that/äO for

every/in SR. For given/in Sä,/aO is in SR, so S(/a0) e Ts for some S>0. Now

CS = X, so Ts = {0}, and so/^0.

Now suppose fe SR and / is not constant. Then there are nonnegative reals

a, ß, and y such that inf/=a</3<y = sup/ Consider the function/, =/aß. Then

fB e SR and/, takes on the distinct values a and ß. Let U=f~1((ß, oo)). Then U is

a nonvoid proper open set andfB = ß on U. Now the nonnegative function ß—fB

is in SR since SR is a closed relatively type 0 semialgebra. Now ß—fB = Q on U,

and since the nonvoid closed set X\U is no S-set, there is a sequence {gn}cS with

gn -> — 1 uniformly on X\U. Therefore gn(ß—fe)-*-fe~ß uniformly on X, so

fB-ßeS. Now/,-¿8^0 and fß-ß^0. Therefore fB = ß on X, contradicting the

fact that/g takes on the distinct values a and ß.

Since the notions of 7-set and minimal 7-set can be defined for any closed

preprime T, we have the following two corollaries.

Corollary 4.23. Let T be a closed preprime of C(X) with R+ <= T, and let K be

any minimal T-set. Then K is a set of antisymmetry for T.

Proof. Let J be the ideal of all functions in C(X) which vanish on all of K.

Then the closed preprime (T+J)~ is contained in a maximal closed preprime S,

and K= Cs.

Corollary 4.24. Let The a closed preprime ofCR(X) such that R+ <= 7". Then any

minimal T-set K is a singleton.
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Note that Corollary 4.24 implies Corollary 4.21.

Theorem 4.25. Let X be the finite discrete space {xu ..., xn}. Let S be an infinite

maximal closed preprime ofC(X). Then S = {fe C(X) : f(x)^0} for some x in X.

Proof. First we will show that if Ä+CS, then S has the desired form. Then we

will show that S necessarily contains R +. Suppose that R+<=S. Then by part (5)

of Theorem 4.14 the set Cs is a singleton, so S has the desired form.

Next we will show that S must contain R +. Suppose R+ is not contained in S.

Then -J $ S. Therefore there is a finite subset of S, say {/0,/, ■ ■ .,/„} such that

l|l+/o+Z(i)+---+/n(i)1<l- Therefore Re(/)<0 and fe S, where /= 2»/0

+ 2n"lfi + ■ ■ ■ +fn- Let zj=f(xO = aJ + ibj with a; and bj real, for7= 1,..., n. Then

Oj<0 for f—\,..., ». Now the polynomial (2 —z3)(z —z;) is a polynomial in z

with real positive coefficients, so the same is true of the polynomial Q, where

Q(z) = a2n\~[]=1(z — zO(z — zO and a2n is a positive integer, as yet undetermined.

We see that ß(z) = 2?=o d2nhjZ\ where S2n= 1 and the remaining h¡ are the elemen-

tary symmetric functions of the numbers {z„ z¡ : /'= 1,...,«}. Let 7J(z) = 2í = o OjZ1

where the a, are undetermined positive integers. Since Q(zO = 0 for 7=1,...,«,

we know that |fi(z,)| = |P(z,)- Q(zO\J= I»...,«. Therefore 1^)1 á2?2o |«*A-aj

■ |z;|f. By a result in Niven [11, p. 47] we know that for any £>0 there is a finite

set of integers, say {a0, au ..., a2n} such that \a2no} — aj\ <e for/' = 0, 1,..., 2n— 1.

We may without loss assume that a2n>0. If we also require that

e < min{80, 81,. . ., S2n_i, 1},

then each a¡ is a positive integer. We have shown that it is possible to find

a polynomial P with positive integral coefficients, including a positive integral

constant term, such that |fi(z,)| < 1 for;=l,..., n. Then P o/e Sand U(fi <=/)|| < 1.

Let g = (P °f)—\. Then g e S and ||g+11| = \\P o/|| < 1, a contradiction. Therefore

R+ cS, so S has the desired form.

Corollary 4.26. Let ^={^1,..., xn} and let S be an infinite maximal closed

preprime of CR(X). Then S = {fe CR(X) : f(x)^0}for some x in X.

We close the paper by pointing out a way in which the methodology of measure

theory may be brought to bear on maximal closed preprimes which are associated

with complex places.

Theorem 4.27. Let S be a maximal closed preprime of C(X) which is associated

with a complex place (p. Then there is a positive Baire measure m on X such that Cs

is the closed support of m and j /' dm = cp(f) for all f in B, where B = S© C.

Proof. By a result of Glicksberg [4, p. 419], there is a positive Baire measure m

on X of total mass 1 such that m represents <p and the closed support of m is a set

of antisymmetry for the algebra B. Let K be the closed support of m. Then K is an
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S-set, so CS^K. Since no strict superset of Cs can be a set of antisymmetry for B,

we conclude that CS = K.

Theorem 4.28. Let (A, X, S) be a given triple and suppose that S is associated

with a complex place <p of A. Let K be any minimal S-set relative to X. Then there is a

positive Baire measure m on X whose closed support is K, such that m represents <p

on B, where B = S@ C.

Proof. By the previous theorem it is sufficient to show that there is a maximal

closed preprime Sx of C(X) such that S^SU CSi = K, and Sy is associated with a

complex place of C(X). Since K is an S-set, (S|/Q_ is a closed preprime of C(K).

First we will show that (S\K)~ =(S\K)~+R + . Suppose ge(S\K)~. Then there is

a sequence {gn} <= S such that gn ->■ g uniformly on K. Therefore the set of numbers

{||g„|A^|| : n e N} is bounded. Each gn can be written in the form gn=fn + oin,

where fne S and ane R +. Now the sequence {an} is also bounded. For if {an} is

not bounded then there is a subsequence, still called {an}, such that an -> oo. We

assume each an>0. Since {||gn|/C|| : neN} is bounded, a~ 1gn = a~ 1(fn + an) -> 0

uniformly on K. Therefore, for « sufficiently large, we see that HañVñ+l IL< L

contradicting the fact that K is an S-set. Therefore {an} is a bounded sequence in

R + , so there is a subsequence {ot„J and a number a0eR+ such that ank-*aQ.

Therefore g = (g — a0) + a0 is the desired representation of g as a member of

(S\K)-+R + .
Now ((S\K)~ © C, (S\K)~) is a complex pair of C(K), and so is majorized by a

complex place (B, B) of C(K), and B+R+ is a maximal closed preprime of C(K).

Let T=B+R + . Let Si = {fe C(X) : f\KeT\K}. It is easy to check that Sx is a

maximal closed preprime of C(X) such that R+<=Si, Si is archimedean, Sx is a

C-module, and CSl = K. By Proposition 2.3 Sj is associated with a complex place

of C(X), and the present theorem now follows.

Example 4.29. Let A = C(T), and let (B, B) he the complex place of A given by

the disc algebra B together with the maximal ideal B of all functions in B which

vanish at the origin. Let S=B+R + . Then S is a maximal closed preprime of A.

Since (0) is the largest ideal of A contained in B, Cs = T, and T is the only S-set.

However, S is a closed prime in B, and (B, X, S) is a triple, where X is the closed

unit disc. There are uncountably many minimal S-sets relative to X. Two of these

are T and {0}. For 0 < r < 1 let Kr denote the circle of radius r and center 0. Each

Kr is an S-set by the maximum modulus principle. Actually, each KT is a minimal

S-set, by part (4) of Lemma 4.1 and the fact that S is a C-module containing the

function g, where g(z) = z.
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