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SEMIGROUPS ON A HALF-SPACE
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Introduction. The study of topological semigroups on noncompact manifolds

is certainly in its infancy. Such studies as do exist have, in one way or another,

rather restrictive hypotheses. This work is no exception. Attention is devoted almost

exclusively to topological semigroups whose underlying topological spaces are

homeomorphic to the set of number triples {(x, y, z) : i^O}, which we call a half-

space. Nevertheless, due partly to the richness of the structure of Lie groups in

£3 and partly, but to a lesser extent, to the richness of the topological structure of a

half-space, the structure of semigroups on a half-space seems fairly rich and

possibly justifies the hope that some of the significant ideas for the general study

have emerged.

The study of semigroups on a half-plane was carried out in [8], with some

additional results being obtained in [3]. The present work depends in a material

way on both of these papers. It depends even more on [5], a paper which owes a

spiritual debt to [8] again. For there, it was observed that if one can find points x

and y in the boundary such that the left orbit through x and the right orbit through

y of the maximal group is closed, then one has an idempotent, an observation

which leads to the work in [5]. Actually, this dependence on [5] may be so great and

the results in [5] so peculiar to the plane that immediate future progress in the area

will be made by ignoring difficult transformation group questions and proceeding

"formally".

The organization of the paper is as follows: In the section on preliminaries, we

have included statements of results from [5] for convenience of reference, but also

because we use forms of these results which, though proved were not stated ex-

plicitly. In addition, we have included some elementary, but useful results about

the groups {g e G : gx e xG) and {g e G : xg e Gx} because they did not seem to

fit anywhere else and their proofs do not use later material (here and hereafter,

"(?" is the generic name for the maximal group containing the identity; L denotes

the boundary of G and S the entire semigroup).

In §2 we say everything we can think of about a single idempotent e in L. This

section contains the unique result of any consequence which can be proved for an

arbitrary dimensional half-space (and appears to be true for an arbitrary manifold
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with boundary). Namely, e always belongs to the closure of the left isotropy group

G,(e). The next result, that G,(e) is connected, is proved only for a half-space but

it is pretty clear that it can be generalized a great deal, even if it is not unrestrictedly

true. Using the results in the appendix, it is proved that if G,(e) is planar then

G,ie)~ is a half-plane. Thereafter, different combinations of dim Ge and dim eG

are considered. Some combinations determine G completely and the combination

dim Ge=X, dim eG=l and Ge^eG determines S itself (see Theorem 2.5 and the

remarks preceding and following it). One of the very useful results of this section

is that the left orbit Gx of a point x is closed if and only if xG is closed.

In §3, the question is considered whether there is a semigroup on a half-space

such that G is isomorphic to the universal covering group SI (2) of the 2x2 real

matrices of determinant 1. We do not settle whether there is such an example but

show that if there is it has a two-sided zero 0 and L2 = {0}. Moreover, we determine

both the left and right actions of G on I for any such semigroup.

§4 treats sets of idempotents. The set fM is the set of all idempotents e such that

dim C7e = i and dim eG =j except that flx includes only those e such that in addition

Ge = eG (this is because everything is determined by Theorem 2.5 if Ge^eG).

The number of conjugacy classes in f 12 u £2i does not exceed 2 and if G is not

commutative and there is no zero, the number of conjugacy classes in £12 u £21

u f22 does not exceed 2. The total number of conjugacy classes of idempotents is

countable (except for semigroups satisfying the conclusions of Theorem 2.5), and

if there is a two-sided zero and no nilpotent elements it is finite. These results are

used to show that if there is a two-sided 0 then there is a one-parameter group P

which runs to 0.

It is developed in §5 that all orbits, both left and right, are nicely embedded. For

example, if dim Gx = 2 then (Gx)" is the entire boundary L or a half-plane; a

one-dimensional orbit is closed, or its closure is a half-ray.

The radical á? is defined in §7 to be the closure of the set of weakly nilpotent

elements. Initially, x is said to be weakly left nilpotent if xn $ Gx for some positive

integer n and weakly right nilpotent if xn $ xG. The two notions turn out to be

equivalent and n = 2 works if any integer does. The possibilities for the radical are

determined if there is no two-sided zero. We have not seriously tried to determine

the possibilities for ¿$ if there is a two-sided zero. However, if there is a zero 0 and

& is nonempty there is a nonzero nilpotent element. Furthermore, the set N of

nilpotent elements is a closed two-sided ideal containing all left and all right

nilpotent ideals and N3 = {0}.

In the final section, we determine all possible G and L for which the radical is

empty. Actually, it is our belief that if the radical is empty, G and L determine

GuL so we believe we have determined all semigroups on a half-space with

empty radical (compare this with work in [3]). However, we have not considered

this matter very long and the statement remains no more than a belief. In any case,

examples of all of the possibilities listed are actually provided. Two facts surprise
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us here: (1) if S has a zero and no nilpotent elements then S is commutative;

(2) though the number of idempotents must be finite if 5 has a zero and no nilpotent

elements, it is not bounded. Furthermore, examples can all be obtained as sub-

semigroups of the cartesian product of sufficiently many copies of the multi-

plicative semigroup of nonnegative real numbers.

Almost all results after Theorem 2.3 depend on the main result of the appendix

which asserts (in part): if a locally compact semigroup S is the union of a dense

planar group G and a line L then S is topologically a half-plane.

We have not attempted to identify important open questions. It bears repeating

that no example has been given in which G is isomorphic to SI (2). It should also

be mentioned that while the situation is probably nearly settled as far as the radical-

free case is concerned, the case with nonempty radical is not. It may be open to

question how interesting this case is. We know of many instances of semigroups

with radical, and have no doubt that all sorts of bizarre examples exist. However,

while we have tried, we have not succeeded in finding any general method for

constructing them.

1. Preliminaries. A semigroup on a half-space is a topological semigroup whose

underlying space is homeomorphic to the set of number triples {(x, y, z) : x^O}

and such that the subset corresponding to the set with x>0 forms a group. Our

attention is directed almost exclusively to such semigroups (and their subsemi-

groups). Thus, unless the contrary is explicitly mentioned, the context of each

theorem is that of a semigroup on a half-space. Standing notation for this, again

unless the contrary is mentioned, is as follows : S denotes the entire semigroup which

is thus a semigroup with identity 1. The maximal subgroup of S containing 1 (and

occupying the interior of S) is denoted G. Of course, G is a Lie group whose

underlying space is homeomorphic to E3. The boundary of G is denoted L and is

topologically a plane. If A is a set, A " denotes its closure, and it is our custom to

refer to A~\A as the boundary of A and denote it dA.

One theorem (Theorem 2.1) is as easy to prove in higher dimensions as it is in

dimension three and for it we need the notion of a semigroup on a half-H-space.

The definition is directly analogous to the above: it is a topological semigroup

whose underlying space is homeomorphic to {ixi, ...,x„): x^O} and such that

the set corresponding to {x : xx>0} forms a subgroup.

If G is a subgroup of a semigroup S and x e S then G¡ix) = {g e G : gx = x}.

The subgroup G,(x) is called the left isotropy subgroup of G at x. The right isotropy

group is defined similarly and is denoted Gr(x).

It was proved in [5] that L contains an idempotent. Since we repeatedly use not

only this result but other results from [5] on which its proof depends, and some-

times forms of these results not explicitly stated there, it seems appropriate to

review the proof of that result and include statements of these other results as they

will be used here.
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Note first the purely algebraic fact that if G is a group in a semigroup S, if

x e S and x2 e Gx n xG then Gx n xG is a group and in particular, Gx and xG

contain an idempotent. For if x2=gx = xh and w=g_1x then w2 = (g_1x)(^_1x)

= (g_:Lx)(x/!"1) = g~1(x2)/!"1=g"1(gx)/!"1 = x/î"1=g"1x = M so u is an idempotent

in Gx n xG. The proof that Gx n xG is a group is routine.

Second, if G is dense in a semigroup 5 then x2e(Gx)~ n(xG)" since, for

example, xeG" so x2 e G~x<=(Gx)~. These ideas appear in [8] and form the

basis for interest in closed orbit theorems and hence the work in [5]. There it was

stated and proved that any connected Lie group acting on a subset of the 2-sphere

has a closed orbit. This result is sufficient to yield an idempotent in L when L is a

plane. However, several somewhat sharper results were actually proved though

not stated and we need these results in the sequel.

Theorem 1.1 [5]. Suppose a connected Lie group G acts as a transformation group

on a topological space X. Suppose for some xe X, dim Gx= 1. Then there exists a

one-parameter subgroup P of G such that Gx=Px. Furthermore, a necessary and

sufficient condition that a particular one-parameter subgroup F of G have the property

that Gx = Px is that P have no conjugates in the isotropy subgroup Gx at x.

Corollary 1.1.1. If a connected Lie group G acts in the plane and Gx is a one-

dimensional orbit then Gx is homeomorphic to a line or a circle.

Proof. According to [2], if P is a one-parameter group and dim Px= X then Px

is a line or a simple closed curve.

Theorem 1.2 [5]. Suppose G is a connected Lie group acting in the plane L.

Suppose xe L and dim Gx= 1. Then there exists an element y e (Gx)" and a one-

parameter subgroup P of G such that if ze (Gj>)~ then Gz = Pz.

Theorem 1.3 [5]. Let P be a one-parameter group acting in the plane L. Let x e L.

Then there exists y e (Px) " such that Py is closed.

Corollary 1.3.1. Suppose S is a semigroup on a half-space with maximal group

G and boundary L. Ifxe L then (Gx)" n (xG)" contains an idempotent. In fact, if

H is any sub-Lie group of G and x e H~, then (//x)~ n ixH)~ contains an idem-

potent. In particular, if H is not closed in S, H contains an idempotent in its boundary.

We now list a few results which are not needed until somewhat later. However,

their proofs are elementary, and they are used in several different parts of the paper.

Proposition 1.4. If dim Gx = 2 then xG<=Gx; in particular, if dim Gx = dimxG

= 2 then Gx = xG.

Proof. Relative to any subgroup K of G, define the subsets

K\x) = {geK: gxexK}   and   Krix) = {g e K : xg e Kx}.
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Evidently K\x) and A^r(x) are subgroups of K and Kx r\ xK= Kl'x)x = xKrix).

For A^=G and dim Gx = 2, Krix) is an open subgroup of G so coincides with G,

whence xG^Gx.

Proposition 1.5. If x,yeL are such that dim Gy = 2 and xG n Gj# 0 then

xG^Gy. If dim xG = 2 a/so /Ae« xG = Gy.

Proof. Since, by the preceding, yG^Gy, the set {g e G : xg e Gy) is a subgroup

of G which is open since dim Gy = 2 and is nonempty since xG n Gy# 0. There-

fore, xG^Gy. If dim xG = 2 also the hypotheses on x and y are symmetrical so

Gy<=xG.

Proposition 1.6. If xG^Gx then Gr(x) is normal. Thus if dim Gx = 2 or //"

xG = Gx, Gr(x) is normal.

The easy proof is omitted.

Finally, it is convenient to have a list of all Lie groups whose underlying spaces

are Euclidean three space E3. Since these groups are simply connected, they are

uniquely determined by their Lie algebras. An examination of the list of three-

dimensional Lie algebras given in [7] shows that the list is complete. For this list

and elsewhere we let Af (1) denote the affine group of the line—that is, the group

which can be represented as the set Ha, b) : a>0} with multiplication given by

(a, 6)(x, y) = (ax, ay + b).

Lie groups on E3: 1. The three-dimensional vector group V3;

2. The nilpotent group of 3 x 3 matrices

'I    x   y\

0    1

yo  o   i,

3. Rx Af (1) where R denotes the additive group of real numbers;

4. The semidirect products R- V2 which have the representations

(Puit)   Piát)   x\

P21O)   P22ÍO   y

0 0L

where the map

(Puit)   PiÁt)\

v/>2i(0   P*á*)l

is an isomorphism from R into the group of nonsingular 2x2 real matrices;

5. The simple group SI (2) which is the simply connected covering group of the

group si (2) of 2 x 2 real matrices of determinant 1.

2. The position of idempotents. As already mentioned, Theorem 2.1 is as easy

to prove in dimension n as in dimension 3 and is virtually unique in this paper in

this respect, though Theorem 2.2 is surely capable of considerable generalization.
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Except for a few lemmas, it is the only theorem whose hypothesis is other than that

S is a semigroup on a half-space. Each of these theorems concerns the left isotropy

group G¡(e) of an idempotent. Obviously, one has analogous results for right

isotropy groups Gr(e). Generally, only one version of a theorem is stated. Its

"left-right" dual is then regarded as an obvious consequence, frequently without

explicit reference.

Theorem 2.1. Suppose S is a semigroup on an n-dimensional half-space. Let e be

an idempotent in the boundary L of S. Let G,(e) denote the left isotropy subgroup

of G at e. If Ge is locally Euclidean then e e G,(e) ".

Proof. Suppose Ge has dimension k. Let V be a neighborhood of e. Since Ge

is locally Euclidean, there is a closed /r-cell K containing e which forms a neigh-

borhood of e in Ge. There is a neighborhood U of e such that £/<= V and if x e U

then xe e K. Since S is topologically the cartesian product of the nonnegative reals

and a Euclidean space, there is a closed (/:+l)-cell in JS such that J n L= K.

Choose a neighborhood W of e relative to J with the following properties: (1)

lfc U; (2) The set K\W is a k-dimensional annulus surrounding e; (3) The union

of K\W with the part of the relative boundary of Wc\ G which lies in G is a

jfc-cell M.

Let p denote radial projection in K from e onto the relative boundary of K

(which is also the relative boundary of M). Let pix) = xe for x e M. If there is no

member x of M such that xe = e then p¡x is well defined and is a retraction from M

onto its boundary. Since this is impossible, there is an element xe M such that

xe = e. If xe Ge n M then xe^e since then xe = x. Since M n L^K^Ge, x must

belong to G. Thus, every neighborhood of e contains points of G,(e) and the

theorem is proved.

Corollary 2.1.1. Suppose S is a semigroup on a three-dimensional half-space,

and suppose e is an idempotent in L. Then e e G¡(e) ".

Proof. In this case, L is a plane. If dim Ge = 2 then Ge is open. If dim Ge=l

then Ge is a simple closed curve or a line by Corollary 1.1.1. Thus, in any case Ge

is locally Euclidean and the conclusion follows.

For the next theorem we need a lemma which is presumably well known. We

include a proof since we do not know a reference.

Lemma. Let M and N be n-dimensional manifolds and letf: M -> N be a one-to-one

continuous function mapping onto. Then f is a homeomorphism.

Proof. Let x0 e M. Let V be a Euclidean neighborhood of /(x0) in N. Let W

be a Euclidean neighborhood of x0 such that IF" is compact ar\d f'W)^ V. Then

fiW) is a Euclidean subset of V of the same dimension as V so/(IF) is open in V

and hence in N. It follows that if A is any open subset of M containing x0 then

/(x0) efiA)°. Thus/is an open map so /is a homeomorphism.
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Theorem 2.2. Let S be a semigroup on a half-space with boundary L. For each

idempotent e e L, G,(e) is connected.

Proof. Since L is a plane, Ge is a manifold (being either a point, one-dimensional

and therefore homeomorphic to a line or simple closed curve or two-dimensional

and therefore an open subset of L). Now a one-to-one continuous function from

one manifold onto another preserves dimension since a space covered by a count-

able number of closed sets of dimension n is of dimension n. Thus the map

gG¡ie) -* ge from G¡G¡ie) onto Ge is a one-to-one continuous function from one

manifold onto another. By the lemma, it is a homeomorphism so Ge and GjG/ie)

are homeomorphic.

We note next that G u Ge is connected and locally arcwise connected. It is

connected since it is contained between G and G~. To show that it is locally arcwise

connected, it is clearly sufficient to show that each point of Ge is contained in

arbitrarily small, arcwise connected neighborhoods. Let x e Ge. There are arbitrarily

small neighborhoods of x which are homeomorphic to the cartesian product of an

arc and a cell. Let V be such a neighborhood. Thus, if y is any point of Ge C\ V,

there is an arc A contained in V such that A n L = {y}. Therefore if y e Ge n V,

there are arcs Au A2 contained in V such that Ax r\L = {x) and A2 n L = {y).

Since V n G is clearly connected, the endpoints of Ax and A2 which are contained

in G can be joined by an arc to yield an arc in V n (G u Ge) from x to y. Thus

G u Ge is locally arcwise connected.

Finally, G u Ge is simply connected. For this, it is enough to see that any closed

curve in G u Ge which begins and ends at a point in G can be continuously deformed

in G u Ge to this point. But any such arc can be continuously deformed to an

arc contained entirely in G and is hence homotopic to a constant map.

Since the map g -> ge is a retraction of G u Ge onto Ge, Ge is simply connected.

Therefore GjGfe) is simply connected. But by [9, p. 617], the fundamental group

of G/Giie) is isomorphic to the factor group of G¡(e) and its component of the

identity. Therefore G,(e) is connected.

Corollary 2.2.1. Suppose e is an idempotent in L such that dim Ge = 2. Then

Ge is a plane and G,(e) is a line such that G,(e)~ =G,(e) u {e}. In fact, Gfe)~ is

isomorphic to the multiplicative semigroup of nonnegative real numbers.

Proof. Since dim Ge = 2, dim G,(e)=l. The component of the identity of G¡(e)

is a one-dimensional Lie group. By the theorem, G¡(e) is connected. No group on

E3 contains a nontrivial compact subgroup so G,(e) is isomorphic to the group of

positive real numbers. That G,(e)~ = G¡(e) u {e} follows from [4] since e is a zero

for Gfe)~. That a locally compact semigroup which is the union of a dense one-

parameter group and a zero is isomorphic to [0, oo) is proved in the appendix.

Corollary 2.2.2. No orbit of G is a simple closed curve. If e is an idempotent in

L such that dim Ge= X then Ge is a line and Gfe) is a plane.
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Proof. A simple closed curve orbit would be compact. Since the closure of a

left orbit of G is a left ideal, it would be a subsemigroup which would hence be

generated by an idempotent. Since G,(e) is connected, Ge is simply connected. In

general, if dim Ge=\, then, dim G,(e) = 2 so G¡(e) is a connected two-dimensional

Lie group without nontrivial compact subgroups and so is planar.

Theorem 2.3. Let e be an idempotent in L such that dim Ge=l. Let H be the

component of the identity of Gfe). Then H~ is a half-plane.

Proof. We have already shown that there exists a one-parameter subgroup P of

G and a planar subgroup H oî G such that Ge=Pe, e e H~ and He = e. Let P act

on S by left multiplication. There is an arc B in P which forms a closed symmetric

neighborhood of 1 in P and is such that if s, t e B and se=te then s = t. Therefc-e,

by [12], there is a closed neighborhood W of e in S and a closed subset O in IF

such that the map (6, d) -> bd is a homeomorphism from Bx D onto W.

In effect, we show that we may take e e D. More precisely, let e = bd and let E

be the component of iBD) n L which contains e. Let Di he the component of

D C\L which contains d. Then BD1 = E. Since E is closed it is locally compact.

Therefore, D1 is either an arc, a simple closed curve or a half-ray. In any case, b

is not an endpoint of B. Let A = Bd_1 and let C = bD. Thus/I is an arc which forms

a neighborhood of 1 in P, C is a closed subset of W, the map (a, c) —> ac from

AxC onto W is a homeomorphism and e e C.

The next step in the proof is to show that there is an arc K forming a neighbor-

hood of 1 in P and a neighborhood V of e in S such that H~ n (A'c) consists of a

single point if c e V n C. To this end, the following lemmas are useful. For these

lemmas and hereafter, we assume, as we obviously may, that A is not only an arc

of P having the above properties but also, that right multiplication by e is one-to-

one on A and that A is symmetric about 1.

Lemma. If M is any neighborhood of X in A then there exists a neighborhood V

of e such that if t e A, ceV c\C and tce = e then t e M.

Proof. If the lemma is false, there is a neighborhood N of 1 in A such that for

every neighborhood V of e in S, there exists t e A\N and c e V n C such that tee = e.

Thus there exist sequences {tn}n and {cn}n, tn e A\N, cn e C, such that cn -* e and

tncne = e. We may assume tn^t for some t e A, t*£\. But since tncne->te and

tncne = e, this implies te = e which is a contradiction since right multiplication by e

on A is one-to-one and i# 1.

Lemma. There is a neighborhood Zofe in S and a neighborhood K of 1 in P such

that right multiplication by e is one-to-one onKcifceZn C.

Proof. Choose and keep fixed one of the linear orders on P compatible with its

topology. Since A is symmetric, A = [a~1, a] for some aeP, l<a. Take xeP

such that 1 < x < x2 < a. Then

(~]{At : teix-\x)} => (x-1, x).
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By the previous lemma, there is a neighborhood Vx of e in S such that if

c e V1 n C and tce = e then t e (x"\ x).

NowPe is a line. Since for any c, Ace^Pe and since, if c is sufficiently close to e,

Ace must nearly coincide with Ae, there is a neighborhood K2 of e in S such that

if c e V2 n C then e e Ace.

Let Z= V-i n F2 and suppose c eZ r\ C. Then right multiplication by e is one-

to-one on (x_1, x)c. For, on the one hand, c e V2 n C so e = tce for some t e A.

Therefore right multiplication by e is one-to-one on Ate since if aitce = a2tce then

aie = a2e so a1--=a2. On the other hand, since c e Vx n C and tce = e, t e (x x, x)

so (x"\ x)cy4?. Therefore (x_1, x)c^Atc, and since right multiplication by e is

one-to-one on Ate, it is certainly so on (x_1, x)c. Thus take A"=(x_1, x).

It now follows that if H~ n Ac/ 0 and ceZ c\C then //" n À"c consists of a

single point. For if y e H~ then je = e while there is at most one point ueKc

such that ue = e.

Our next goal is to show that all sufficiently small neighborhoods of e in L have

points of H on both sides of Ae. We first observe that H~\H cannot consist of e

alone. For if the closure of H consists of a single additional point, it must be

compact, which is impossible.

Thus, choose x e H~\H but x/e. Since e is a right zero for H~, e = xe e xH~

^ixH)~. Thus, every right orbit Hxof xin H~\Hhas ein its closure. In particular,

xH^x so the dimension of xH is 1 or 2. But if dim xH=2 then xH, being homo-

geneous, is open in L. Since e e (x//)", xH n Kc must contain more than a single

point if c e C n L and c is sufficiently close to e. This is contrary to the previous

lemma, so dim (x//)= 1.

Since dim xH= I, there is a one-parameter subgroup Q of//"such that xH=xQ.

If e e xQ, then xQ contains an open arc containing e. Since H~, and hence xQ,

can intersect Ar at most once if c is an element of C sufficiently close to e, it

follows that xQ (and hence //") has points on both sides of Ae.

Suppose, then, that e $ xQ. Hence xQ is not a simple closed curve, so xQ is a

line. If there are no other points of H~ n L, then the boundary of H in S is a

half-ray. By the result in the appendix, H is topologically a plane. We shall show

that this is impossible.

Let R be a closed half-ray in H~ which emanates from e and is otherwise con-

tained in H. Let D denote one of the components of H~\iR u xQ). Thus D~ is a

half-plane. Now all sufficiently small neighborhoods of x in S are separated by D~

into two components. This is also true of all sufficiently small ¿-neighborhoods of

x. Since e e (x0~, we may assume that x belongs to Z and that x = t1c1 for some

?! e K, c1e C. Thus there is a neighborhood V of x in 5 which is contained in Z

and is such that D~ separates V into two components. Since there are arbitrarily

small neighborhoods of x in S which are products of an arc in K and a closed

neighborhood of c, in C, at most a change in name is involved in assuming V^> KC.

Now, as we have seen, the component of (A"C) n L which contains x contains a
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neighborhood KCX of x in L where Cx is an arc in C containing ct. Since xQ can

cross the sets Kc at most once, the endpoints of Kcx lie on opposite sides of

D~ c~\ L in V n L and hence of D~ in V. Therefore there are ^-neighborhoods

rVi, W2 of these endpoints such that if y e Wx and zeW2 then y and z are on

opposite sides of D~. Let n be the map such that 7r(/c) = c. Then 7r(H/1 n (AX1))

and 7r( IF2 n (A'C)) are neighborhoods of cx in C. Let C2 be a neighborhood of cx

in C which is contained in the intersection of these two. Then KC2 is a neighbor-

hood of x in S such that if c e C and Kc intersects KC2 then Kc has its endpoints

on opposite sides of D~ and hence intersects D~. An analogous argument shows

that there is a neighborhood V of x in S such that if Kc intersects V then Ac

intersects the complementary component of D in H\iR u xQ). But then there

exists c in KCX n V n Z such that Ar intersects both of these components and

hence intersects H at least twice, which is a contradiction.

We have shown that the boundary of H in L does not consist of xQ and e

alone. Let y e H~ n L but y $ xQ and )>#«. We know that e e (j//)~. If y H is

on the same side (locally) of Ae2 as is xH then we may suppose y e KC. This

means that for some ceC, there exist elements tx and t2 in A^ such that y = t1c

and x = /2c. But Kc intersects H~ n L at most once so this is impossible. Thus x//

and yH lie on opposite sides of Ae (more precisely, xH and yH enter a small

neighborhood of e on opposite sides of Ae).

The previous conclusion is based on the assumption that e $ xH. In this case, it

follows that H' C\L = ixH)\JiyH) u {e}. For let ze//-. Then eeizHf. How-

ever, z// can approach e only through x// or _y// so z g (x//) U iyH). Suppose,

on the other hand, eexH. Then H~ (~\L = xH. For, again if z e H~ n L then

e e izH)~. But z// can approach e only through one of the two sides of xH so

zH=xH and zexH. Since xH=eH and since G,(e) is connected, x// is not a

simple closed curve. Therefore xH is a line. Thus, in either case, H~ n L is a line.

Hence, by the results in the appendix, H~ is a half-plane.

Corollary 2.3.1. Let eeL be as in the theorem. Let P be a one-parameter

subgroup of G such that Ge = Pe and let T denote the boundary of the left isotropy

group H of e. Then PT is a neighborhood of e in L.

Proof. According to the proof of the theorem, there is an arc C containing e

and contained in L and an arc A which forms a symmetric neighborhood of 1 in P

such that the map (a, c) —>■ ac is a homeomorphism from AxC onto AC and AC

is a neighborhood of e in L. Thus there exists an /.-neighborhood V of e such that

if x e T O F then x = axcA. for unique elements ax e ^4 and cx e C. The set

{ax e A : x e T n V}

is bounded away from the endpoints of A if Fis sufficiently small. Thus

(]{Aax : xeTnV}

contains a neighborhood B of 1 in P. Hence, if CQ = {cx e C : x = axcx for some
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xeTn V and axeA), then AT=>\J{Ax : xeTn V} = [J{Aaxcx : xeTn V)

^BC0. It remains to show that C0 is a neighborhood of e in C. But if an element

ce C is sufficiently close to e then the endpoints of Ac are near those of Ae so

Ac n 7V 0. Thus all elements of C which are sufficiently close to e belong to C0

so C0 is a neighborhood of e in C. Thus yiTis a neighborhood of e in L and hence

so is PT.

For each of the next two theorems, we need the following facts about a semigroup

H~ on a half-plane (see [8] for details). If H~\H contains an idempotent e such

that He = e and eHj^e then, of course, H is not commutative. Furthermore, eH

coincides with the entire boundary H~\H of H~. In addition, every element of

H~\H is an idempotent and in fact a right zero for //".

Theorem 2.4. Suppose eeL is an idempotent such that dim Ge = dim eG = 1.

Let H be the left isotropy group of e and let J be the right isotropy group of e. Then

the following conditions are equivalent:

(1) H=J;
(2) Ge = eG;

(3) H is a normal subgroup of G ;

(4) J is a normal subgroup of G ;

(5) H is conjugate to J.

If any of these conditions holds then Ge is a subgroup ofL isomorphic to the additive

group of real numbers.

Proof. We make the preliminary remarks that, in any case, according to Theorems

2.2 and 2.3, e e H~, e eJ~ and H~ and /" are semigroups on a half-plane. Thus,

if Hj^ J, neither H nor J is commutative and the previous remarks about semigroups

on a half-plane apply (except that every element of J" n L is a left zero for /").

To begin the proof of the theorem, suppose H=J so He = e = eH. Let P be a

one-parameter subgroup of G having no conjugate in H. Thus Ge = Pe and eP = eG.

Let Fi = {p eP : peeeP] and let F2 = {p eP : epePe). As we have seen Fx and

F2 are subgroups of P and F1e = Pe n eP=eF2. Furthermore the map which

assigns an element p to q if and only if pe = eq is an isomorphism from FY onto F2.

Assume Pe^eP. Then Fx is a proper subgroup of P. For otherwise, Pe^eP so

Pe n eP is a neighborhood of e in eP. Thus eF2 is a neighborhood of e in eP,

whence F2 is a neighborhood of 1 in P. Thus F2 = P so eP^Pe which is a contra-

diction.

If Fi is a proper subgroup of P, it is either closed, discrete and cyclic, or dense.

If Fx is dense, it is not cyclic, hence F2 is not cyclic, hence F2 is dense. But then Fxe

and eF2 are dense in Pe and eP respectively. Thus Pe and eP are a pair of distinct

topological lines such that Pe O eP is dense in each. This is impossible, so Fx and

F2 are cyclic subgroups of P.

It follows that Pe n eP is discrete in Pe and in eP. Therefore there is a neighbor-

hood V of e such that l/nPene/,={e}. In fact, we may suppose Vr^iPe)"
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n (eP)~ ={e] since no point of Pe is a limit point of either end of Pe (and no point

of eP is a limit point of either end of eP). If p eP is sufficiently close to 1 then

epee V. Furthermore, epee(Pe)" n (eP)" since (Pe)" is a left and (eP)~ is a

right ideal. (These last two statements are true since Ge = Pe and eG = eP.) By the

previous corollary, if/? is sufficiently near 1 then ep = qx for some qeP and xeT

(where T=H~ n L). Since e is a two-sided zero for H~, xe = e so epe = qxe=qe ePe

<=(Pe)~. On the other hand, epeeiePf. Thus, if peP is sufficiently close to 1,

epe e V n (Pe)" n (eP)~ and hence epe = e. Using the above notation, epe=qe so

q=X. Thus ep = x. However, eiep) = ep and ex = e so ep = ex and hence ep = e.

This is a contradiction since if p e P is different from 1, e/?#e.

We have shown that Pe = eP which completes the proof that (1) implies (2).

If Ge = eG then Ge is a group and G commutes elementwise with e. Thus

He = eH=e so //=./. Also, ifgeG then g/7g~1e = g//eg~1=geg~1=gg~1e = e so

gHg~1 = H and // is normal. Thus (2) implies (1), (3) and (4).

Suppose next that H is normal but H^J. Then of course His not commutative

since e e //". Thus // is embedded as a direct factor so we may choose P above

to be the center of G and have that G = PH=HP. But then Ge = Pe = eP = eG

which implies that G commutes elementwise with e so H=J. Thus (3) implies (1)

and (2). Similarly (4) implies (1) and (2).

Obviously, (1), and hence each of (2) through (4) implies (5).

Finally, suppose H is conjugate to J. Let g be an element of G such that H=g~ YJg.

Then the right isotropy group of eg is H. But the left isotropy group of eg is also

H. Now eg is also an idempotent element. To see this, recall that His not commuta-

tive (unless we already know that H=J, in which case there is nothing to prove).

Thus eH=H~\H=H~ n L so eH is a closed line in L. Since eG = eP, eG is also a

line containing eH. Thus, eH=eG so egeH~\H and, as we have seen, every

element of H~\H is an idempotent.

We may now apply the previous results concerning e to the element eg. In

particular, eg is an idempotent such that the right isotropy group of eg coincides

with the left isotropy group of eg. Therefore Gieg) = egG, so G commutes element-

wise with eg and hence with e. Thus Ge = eG and we see that (5) implies (1).

If any one of the five conditions (l)-(5) holds then Ge = eG. We have already

seen that then Ge is a group and, being one-dimensional, is isomorphic to the

additive group of real numbers.

Before considering the consequences of the existence of an idempotent e such

that dim Ge=l =dim eG but Ge^eG, we need to recall some facts about the

semidirect product groups R V2. As mentioned above, every such group may be

represented as a group of 3 x 3 matrices as follows:

Puit)   Pifd)   x\

PsiOO p2fd)  y

0 0       1/
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where the map

K}   Wit) p22it)J

is an isomorphism from the additive group of real numbers into the group of

2x2 nonsingular real matrices. If P(?) is reducible, we may assume p2iit) = 0.

If Pit) is irreducible then there is a positive real number p (where we may suppose

p< 1) and a real number 6 such that

/   cos td    sin t0\

m = p\-^te  coste}

Consider the reducible case in more detail. If the proper values of P(?) are equal

we may suppose that P(/) has one of the forms

le1   té-^

m = (o     é )
or

/ef    0\

If the proper values of Pit) are unequal, we may suppose Pit) has the form

/e(   0 \

where a#0. (The case a = 0 yields a Lie group of course but it is isomorphic to

Rx Af (1) which is not one of the semidirect products R- V2 since, by definition

these must have commutator subgroup isomorphic to F2.)

The case a<0 is distinctive: In the above representation it is the only one which

yields a subgroup of Gl (3) which is closed in the entire semigroup of 3 x 3 real

matrices. Indeed if, for the moment, G denotes any one of the above groups except

one with a<0 then G" is a semigroup on a half-space having the semigroup

(00 xV

0 0 y\

0   0    1/

for its boundary. (It is perhaps well to notice here that each of these semigroups

contains an idempotent e such that dim Ge = 2 and dimeG = 0. This situation is

considered in detail in Theorem 2.13.)

A flow has been called hyperbolic if, roughly speaking, it is contracting in one

direction and expanding in another. We shall therefore call a group whose matrices

have the form
(e4   0     x\

0    eat   y j

0    0      1/

with a < 0, a hyperbolic semidirect product.
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The distinctive character of hyperbolic semidirect products appears in the next

theorem as well as in Theorem 2.13. At the conclusion of the proof of the next

theorem we offer a collection of examples of the sort described in the theorem. We

believe this collection to be exhaustive but postpone further consideration of this

matter until a later paper.

Theorem 2.5. Suppose e is an idempotent in L such that dim Ge = dimeG=l.

Let H be the left isotropy group of e and let J be the corresponding right isotropy

group. Assume that Hj=J. Then the following are true:

(1) For each x, y e L, xG and Gy are closed lines in L such that xG n Gy = {xy}.

(2) The left isotropy group ofxeL is conjugate to H and is distinct from the right

isotropy group of x which is conjugate to J.

(3) G is a semidirect product RV2 of the additive group R of real numbers and

the two-dimensional vector group V2. Furthermore, G contains at least two distinct

conjugacy classes of nonnormal noncommutative planar groups and is nonhyperbolic.

Proof. We shall use again the information that e e H~, e eJ~ and that H~ and

J~ are each noncommutative semigroups on a half-plane. Furthermore, by the

preceding theorem, neither H nor J is normal and H and J are not conjugates.

Since H and J are not commutative, every element of H~ n L is an idempotent

and a right zero for H~ while every element of J~ n L is an idempotent and a

left zero for J~. Finally, eG = eH=H~ nL = H~\H and Ge=Ie=J~ n L=J~\J.

Thus eG is a right ideal and Ge is a left ideal in 5.

It follows that Ge n eG = {e}. For let x e Ge n eG. Then xeGe=J~ n L so

ex = e. But xeeG so ex = x, hence x = e. As a consequence, eGGe = eGe = e since

eGGe^eG n Ge.

Now let x be an arbitrary element of L. Since eG is a right ideal, ex = eg for

some g e G. We intend to show that the right isotropy group of x is g_1Jg, that

xe(g_1/g)", that Gx = Geg and that Gx n eG = {eg}. Analogous results hold for

xe. The two sets of results together yield the first conclusion with the "x" of

statement (1) replaced by e, and y of that statement replaced by the present x.

It follows that x then satisfies the same hypotheses as e. Thus the first conclusion

as stated follows by treating e and x generically.

We prove the above assertions in a series of steps labeled "Notes".

Note 1. Assume first that ex = e. Then xG n Ge is empty unless x e Ge (=/" nL).

For suppose xg = he for some g, he G. Then exg = ehe = e so eg = e. Therefore

g eJ. Now gel and xg = he imply x = heg1 = he e Ge.

Note 2. If ex = e then xG n Ge is not empty so xej~ n L.

For this result, we need to know that eG has points on both sides of Ge. Evidently

H has points on both sides of J and, indeed, must have points on both sides oï J

which lie on nonnormal one-parameter subgroups of //. Each such subgroup has

points in H~ n L = eG in its boundary. Thus eG has points on both sides of Ge.



1970] SEMIGROUPS ON A HALF-SPACE 15

Now e belongs to the closure of a one-parameter subgroup P of H and P" =P

u {e}. Let [e, 1] denote the interval in P" from e to 1. If p e [e, 1], let fip, z)=pz

for zeL. Thus/(e, — ) is left multiplication by e and is thus a retraction of L

onto eG. Furthermore,/(e, xG) = eG since ex = e. Since eG has points on both

sides of Ge, there exists some r e (e, 1] such that/(r, xG) nGe+ 0. That is, there

exist elements g, he G such that rxg = he. Hence xg = r~xhe so xG n Ge# 0.

Note 3. Le/ xeL. If ex = eg for some geG then x6(g~Vg)" awo* iAe right

isotropy group at x is g_1Jg.

We may assume x $ Ge since if x e Ge, we may assume g= 1 and the conclusion

is already known. Since ex = eg, exg_1 = e so xg"1 e/" n L. Since every element

of J~ n L is a left zero for J~, x(g"~1/g) = (xg~1./)g = xg"~1g = x. Thus g~xJg is

contained in the right isotropy group of x. Since Gr(x) is connected, if Grix)=^g~1Jg

then Grix) = G—that is xG = x. However, xee(xG)- and xe#x since xe e Ge

and x £ Ge so this is a contradiction. Thus the right isotropy group at x is g~1Ig.

To see that x belongs to ig~xJg)~ note that since xg-1 e7",

That is, g~1x e ig'^g)' n L. Since J~ n L is a left ideal, (g_1./g)~ n L is a left

ideal so x e ig~xJg)~ n L.

Note 4. IfxeL then Gx n eG = {ex}.

We know ex = eg for some geG since eG is a right ideal. Now eg is an idem-

potent, H is the left isotropy group of eg, g~xJg is the right isotropy group of eg

and H^g~xJg by Theorem 2.4. The results so far quoted for e are thus available

for eg. In particular, iGeg) n eG = {eg} = {ex}. We want to see that Gx = Geg. But

Geg=ig~1Jg)~ n L for the same reason that Ge=J~ n L. Since x e ig~1Jgf n L,

x e Geg so Gx=Geg.

Summarizing these results, we see that every xeL is idempotent and the right

isotropy group Gr(x) is a conjugate of J. Arguments dual to the above show that

the left isotropy group of x is conjugate to H and hence distinct from Gr(x). Thus

everything proved above for e is true for x. Translated, this means that if x, y e L

then xG and Gy are closed lines in L and Gy n xG = {xy} which gives the first

conclusion of the theorem. Along the way we have also gotten the second.

To prove the third conclusion, examine the list of the various Lie groups whose

underlying space is E3. From what has already been proved, G must have at least

two conjugacy classes of nonnormal noncommutative planar subgroups. This

immediately rules out the two nilpotent groups and the simple group SI (2). The

only groups left are the various semidirect products R- V2 and Rx Af (1). But in

the latter group, R is central so every noncommutative planar group is normal.

Thus R x Af (1) is ruled out. Thus G is one of the semidirect products R V2 having

at least two distinct conjugacy classes of noncommutative planar groups.

It remains to show that G can not be a hyperbolic semidirect product. Let

P=H nj and let Qx denote the normal one-parameter subgroup of H and let Q2
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denote the normal one-parameter subgroup of J. Of course eeP~. Furthermore,

if/7 is in the component of P\{1} which runs from e to 1 then the map x-^pxp'1

is contracting on Qx since H is isomorphic to Af (1)". But the same statement

holds for the map x —»■pxp'1 in Q2. A hyperbolic semidirect product is character-

ized by the condition that if p is restricted to one-component of P\{1} then its

action x^-pxp'1 on one normal one-parameter subgroup is contracting and in

the other is expanding. Hence G is not a hyperbolic semidirect product and the

proof of the theorem is complete.

We next show that each nonhyperbolic semidirect product R- V2 which contains

at least two conjugacy classes of nonnormal, noncommutative planar groups is the

maximal group of a semigroup on a half-space which contains an ¡dempotent e

satisfying the hypotheses of the previous theorem. If G is such a group it evidently

has a faithful representation as a group of 4x4 matrices of the following form:

1 a 0 0\

0 A 0 0

0 0 Ac b

0 0 0 1/

where, since G is nonhyperbolic, c>0 and where A is an arbitrary positive number

and a, b are arbitrary real numbers. Evidently the closure of this group, which

consists of all such elements with AäO and a, b arbitrary is a semigroup on a

half-space. It is easy to check that if x, yeL then {xy} = xG n G y so that the

semigroup is of the sort described in the theorem.

Theorem 2.6. Suppose L contains an ¡dempotent e such that dimGe=l and

dim eG = 2. Then Ge^eG so Ge is a group and the left isotropy subgroup of e is a

noncommutative normal subgroup of G. Therefore G is isomorphic to R x Af (1) and

Ge = Pe where P is the center of G.

Proof. By the results in the first section, we already know that Ge^eG, that in

general if e is an ¡dempotent then Ge n eG is a group and that when Ge^eG,

G,(e) is normal.

To obtain the conclusion about the nature of G, recall that Af (1) is complete

(i.e. zero center and every automorphism an inner automorphism) and that a

complete normal subgroup is embedded as a direct factor. The final conclusion is

immediate since the center obviously has no conjugates in //.

Remark. To see that the hypotheses of the theorem can obtain, consider the

following example of a semigroup S on the set (x, y, z) with x^O and multi-

plication defined by: (a, b, c)(x, y, z) = iax, bx+y, c + z). If e = (0, 0, 0) then

dim Ge= 1 and dim eG = 2.

Theorem 2.7. Let xe L. Then Gx is closed if and only ifxG is closed. In particular,

if e is an ¡dempotent in L such that Ge = e then eG is a closed line //dim eG= 1 and

eG=L //dim eG = 2.
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Proof. If we prove that Gx being closed implies xG is closed, the converse will

follow since all results about left orbits of G have analogues for the right orbits of G.

Suppose that Gx is closed. By Corollary 1.3.1, we may assume that x is an

¡dempotent e. We proceed, then, to consider the various combinations of dim Ge

and dim eG.

Let dimGe = 0 so Ge = e. If dimeG = 0, the conclusion is trivial. Assume

dim eG -» 0 but eG is not closed. Then there is an element y e {eG)~\eG such that

yG is closed. Since every left ideal must meet every right ideal, Ge n yG is not

empty so, since Ge = e, eeyG. Therefore eG=yG so y e eG which is a contra-

diction. It follows that if Ge = e then eG is closed. If dim eG= 1, then eG is a line

since it cannot be a simple closed curve. If dim eG = 2 then eG = L since eG is also

open in this case.

Suppose next that dimGe=l. If dimeG = 0 then again the conclusion is im-

mediate. If dimeG=l, there are two possibilities: If Ge = eG the conclusion is

obvious. If Ge^eG then the conclusion follows from Theorem 2.5. If dim eG = 2

then it follows from the previous theorem that G is isomorphic to R x Af (1) and

that Ge = Pe where P is the center of G. If eG is not closed, then there exists an

element y e(eG)~\eG such that yG is closed. As before, Ge n yG=£ 0. Since

Ge = Pe, there exist elements/? ePandg e G such thatpe=yg. Therefore e=p~1yg

=yp~xg since p belongs to the center. Hence e eyG so y e eG which is a contra-

diction. Therefore, if dim Ge=X, Ge is closed and dim eG = 2 then eG = L and eG

is closed.

The proofs of the desired results in the remaining cases are gotten by inter-

changing references to left and right orbits in the cases already considered.

Theorem 2.8. Suppose e is an idempotent in L such that dim Ge= 1. Then either

Ge is a closed line or Ge is a group, Ge = eG and (Ge) ~ is a half-ray whose endpoint

is a right zero for S. In more detail: //dim eG = 0 or //dim eG= 1 but Ge^eG then

Ge is closed. If dim eG = 2 or if Ge = eG then Ge is a group and Ge is either closed

or (Ge)~ is a half-ray whose endpoint is a right zero for S.

Proof. If dim eG = 2 or if Ge = eG, we have already seen that Ge is a group

isomorphic to the additive group of real numbers. By [2], if the boundary of Ge

is not empty, then it is either a point or a simple curve and in the latter case, it

consists of a single orbit of Ge. It follows that iGe)~\Ge consists of a single left

orbit of G so iGe)~\Ge contains but a single point—say z. Since Gz<^iGe)~\Ge,

Gz = z and z is a right zero for 5.

The conclusion in case dimeG=l but Ge^eG is stated in Theorem 2.5. If

dim eG = 0 then eG = e and Ge is closed by the previous theorem.

The next main result concerns the boundary of a two-dimensional orbit through

an idempotent. Several times in its proof as well as later, we use a result which

assures the existence of certain one-parameter groups which " run to the boundary ",

and accordingly state it as a preceding lemma. For it, we let S be an arbitrary
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locally compact semigroup. Subsequently, S again denotes a semigroup on a half-

space unless the contrary is specifically mentioned.

Lemma 2.9. Let S be a locally compact topological semigroup. Suppose z is a

right zero for S such that every neighborhood of z contains an element which belongs

to a group isomorphic to the additive group of real numbers. Then there exists a

neighborhood V of z and a one-parameter group P such that iP~\P) n V=£ 0. If z

is not the limit point of other idempotents then P~ =P u {z}, and in fact, every point

ve V which is on a one-parameter group is on a one-parameter group P such that

p-=Pu{z}.

Proof. According to Lemma 2 of [2], if F is a compact neighborhood of z then

there is a neighborhood W of z such that VW<^ V. Such a neighborhood has the

property that if x e V n W then xn e V for every positive integer n. If x belongs to

a group P isomorphic to R then iP'\P) n F^ 0. For since P is isomorphic to R,

{xn}n has no accumulation points in P. But since V is compact, {xn}„ has an

accumulation point in V.

For the second conclusion, note that the closure of {xn}n is a compact semigroup,

which thus contains an idempotent. Since we may assume that V has no idem-

potents other than z, z is an accumulation point for {xn}n. Therefore zeP'.

Since z is a right zero for S, z is a two-sided zero for P. By [4], P " =P U {z}.

Theorem 2.10. Let e be an idempotent in L such that dim Ge = 2. Let B denote

the boundary of Ge and assume B is not empty. Then B is a two-sided ideal which is

topologically a line or a half-ray. Furthermore, one of the following holds:

(1) for each xe B, Gx = x and xG = B;

(2) for each xe B, xG = x, and Gx = B;

(3) if xe B, then Gx = xG = B and B is a group ;

(4) B contains a two-sided zero for S and each component of B\{0} forms a left

as well as a right orbit of G ;

(5) B is a half-ray whose endpoint is a two-sided zero for S and 52 = {0}.

Proof. Since Ge is a plane, B cannot consist of a single point. Also there are the

following possibilities: either Ge = eG and Ge is a group, or dimeG=l, eG is a

group and eG^Ge. Clearly £ is a two-sided ideal in the first case. In the second

case, (Ge)G=G(eG)c:G(Ge) = Ge. Thus iGefG^iGef so B is a right ideal in this

case also.

For reference later in the proof, we list the following additional facts about Ge:

In any case, Ge is a semigroup, every element of Ge belongs to a one-parameter

subgroup of Ge and no element of B is a limit point of idempotents of Ge. If Ge

is a group, each of these results is immediate. Suppose dim eG= 1. Then eG is a

one-parameter subgroup of Ge, G is isomorphic to Rx Af (1) and G,(e) is one of

the noncommutative planar groups of G. Let //=G¡(e) and let T=H~ n L. Of

course, H~ is a semigroup on a half-plane and since He = e but eH^e, T=eH.
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Thus, /c Ge. Next, every element of Ge is on a conjugate of eG. For ge e gieG)g~1.

This shows that every element of Ge is on a one-parameter subgroup of Ge and

that the only idempotents of Ge are in T. Since Tc Ge, no element of 5 is a limit

point of idempotents in Ge.

We now proceed to determine the structure of B. Suppose first that B contains

an element x such that Gx = x and xG^x. Then x is a right zero for S and xG is a

closed line. Invoking the previous lemma, we obtain a one-parameter subgroup P

of Ge such that P~ n /?# 0 (since every such P in Ge is closed in Ge, P'\P^B).

Furthermore, P"\P is a point or a simple closed curve. Suppose the latter holds.

Then the identity feP~\P is such that P~\P = Pf. Therefore, dim G/= 1. But then

Gf is a line which is impossible. Thus P~\P is a single point w which is a zero for

P " and it follows from the appendix that P " is isomorphic to [0, oo). We claim

w e xG. For, since {x} is a left ideal, x e (wG)~ so dim wG= X. If x ^ wG then wG

is not closed so Gw^w so dim Gw=X. Therefore wG = Gw and Gw is a group.

Hence iGw) ~ is a closed half-ray with x e (Gm>) ". But if x e (Gh>) " then

xG c (GnA-G c (Gu>G)- = (Gw)~

so the entire line xG is in the closure of the half-ray (Gw)~ which is absurd. It

follows that w e xG. Thus P " =P u {w} where wG = xG and Gw = w. Suppose there

exists yeB\wG. Then yP" =>>P U {yw}=yP u {w}. According to [1], yP~ is a

half-ray from w through y in B. Since it is impossible for three closed half-rays

from a point to lie in the boundary of a plane (in a plane), there is no such y so

B = xG in this case.

If there exists an element xeB such that xG = x but Gx^x then arguments

similar to those just used show that B=Gx.

Suppose next that neither of the previous cases holds and that B contains an

idempotent / which is not a two-sided zero for S. Then Gf=fG and Gf is a one-

dimensional group. Hence, Gf is closed or (G/)~ is a half-ray which is the union of

G/and a two-sided zero. Assume first that Gf is closed. Since Gf=fG is a group,

G commutes elementwise with/ Let H=Grif). Then///=/also so/is a two-sided

zero for the half-plane semigroup H ~. Thus there exists a one-parameter subgroup

Pc// such that P " =P u {/}. Suppose there exists an element y e B\Gf. Since G/is

closed, G/is a two-sided ideal so yfe Gf. Since P 'y=Py U {j/}, P "j is a half-ray

through j to a point in G/ This would again yield a closed triod in the boundary

of Ge. We conclude there is no such y so G/= £.

Continue to assume Gf=fG is a group in /?, but now assume Gf has a two-sided

zero 0 in its closure. If there exists an idempotent heB\iGf)~ then Gh = hG,

Gh is a group and (G//)" =(G//) u {0}. There is certainly no other idempotent in B.

Thus 0 is a right zero in the semigroup (Ge)" which is not a limit point of idem-

potents (in (Ge)"). Thus by the lemma, there is a one-parameter subgroup P of

Ge such that P"=Pu{0}. It is evident once again that under these conditions

5=(G/)"U(G//)".



20 J. G. HÖRNE [January

If there are no idempotents other than/and 0 we can still use the lemma to find

a one-parameter subgroup P of Ge such that P"=Pu{0} and this, as before,

shows that B is at most a closed line. If there are no nonzero idempotents in B

then, since B certainly contains an idempotent, B contains a two-sided zero which

is not a limit point of idempotents in (Ge)~. Once again we see from the above

arguments that B is the union of at most two closed half-rays from 0.

We show finally that if B is a half-ray then the endpoint of B is a two-sided zero

0 for S and P2 = {0}. It is clear that the endpoint of B is a two-sided zero and that

B\{0} is both a left and right orbit of G. If 5VÍ0} then B\{0} is a group. Let/

denote the identity of B. Then G,(/)" is a semigroup on a half-plane with two-sided

zero / Furthermore, G,(/)" n B={f} and (G,(/)" n L)\{f} has two components

such that either both are groups or at least one of them A has the property that

A2={f}. Since L\B=Ge and Ge is a semigroup, the latter cannot occur. But then

A is a one-parameter subgroup of Ge. If Ge = eG, then Ge is a group and therefore

has only one idempotent which is false since each component of (G,(/)" n L)\{f}

contains an idempotent. Hence, dimeG=l, eG^Ge and all one-parameter sub-

groups of Ge are conjugate to eG. However, there is one one-parameter subgroup

of Ge having 0 in its closure so each one-parameter subgroup of Ge has 0 in its

closure. It follows that B has no identity so B2 = {0} and the proof of the theorem is

complete.

Theorem 2.11. Suppose e is an idempotent in L such that dim Ge = 0 and dim eG

= 1. Then L\eG is the union of two right orbits of G.

Proof. We have seen that under these conditions, eG is a closed line in L so

L\eG is the union of two components. Let H be the right isotropy group of e.

Let T denote the boundary of//. Thus //~=//u Tisa semigroup on a half-plane.

Furthermore, as a consequence of the left-right dual of Corollary 2.3.1, T has

points on both sides of eG. Let C denote one of the components of T\{e}. For any

y e C, yH= C; this is so because e is a two-sided zero for H and H " is a semigroup

on a half-plane. Let P be a one-parameter subgroup of G such that eG = eP. Since

eG n T={e}, eG and T are, in a loose sense "orthogonal". Hence, if y e C is

sufficiently close to e, yP<=- C. Hence, for such y, yG is not a line since y H u yP^yG.

Therefore, dim yG = 2.

We claim that the only boundary points of yG belong to eG. For assume that

there exists an element z in the boundary of yG but not in eG. Certainly dim zG^2.

If dim zG = 0 then zG = z. But then z is a left zero for S and e is a right zero for S

and z^e which is impossible. It follows that dim zG= 1 so zG is a line. Let R be a

one-parameter subgroup of H such that R~ =R u {e}. Now e^ze e zR~ and z = e.

Thus zR~ is a half-ray from e through z. Since zR^zG and dim zG= 1, zR = zG.

Let v4 denote the component of L\eG which contains C. Then A\zR is the union of

two components. Let E denote the component which contains C and let F denote

the remaining component. If yeC then yG^E since yG n zR= 0. However,
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e e iyG)~ so eG<=(jG)" <=£". But it is impossible for points of eG which belong

to the boundary of F to belong to E~. We conclude that if y e C then iyG)~ =

iyG) u (eG). A similar argument is applicable to the remaining component of

L\(eG) so each component of L\eG is a right orbit of G.

In the following theorem, we consider in more detail the situation in which e is

an idempotent such that dim eG = 0 and dim Ge= 1. It quickly develops that there

are several ways in which this situation can arise so the statement of the theorem

and its proof are rather long. Primarily to spare the reader, we have restricted

ourselves to determining the possibilities relative to dim Gw, w e L\eG and to

determining right and left isotropy groups of all elements of L. It would not be

difficult, if one's interest did not flag, to determine at least the orbits of G in which

various products lie and to a large extent determine multiplication in L completely

in each case. We postpone this determination for the present. Also we leave until

another time the proof that certain possibilities can actually occur. Thus we say,

for example, that apparently a certain pair of left isotropy groups may be identical

or distinct, etc. This means we have discovered no inconsistencies in the possibilities

and are strongly of the opinion that they can occur but have not actually constructed

examples in which they do occur.

Theorem 2.12. Suppose e is an idempotent in L such that dim Ge = 0 and

dim eG= 1. Let H be the right isotropy subgroup of G at e. {Thus e is a two-sided zero

for H.) Then H is a nonnormal planar subgroup of G. If H is commutative then G is

isomorphic to Rx Af (1). If H is not commutative then G is isomorphic to the group

(u   ulnu   x\

0       u      y\,       u > 0

0       0       1/

of 3x3 matrices of real numbers.

Let the two components of L\eG be denoted E and F respectively. Let T denote

the boundary of H. Let C = E n T and let D = F n T. The possibilities for S may be

more particularly limited as follows:

(1) At most one of the components E, F can contain an element z such that

dim Gz = 2. If' z is such an element then Gz coincides with the component containing

z, Gz is a group isomorphic to Af (1) and G is isomorphic to Rx Af (1). Let z be

chosen to be the identity ofGz. Then G commutes elementwise with z and ifZ denotes

the center of G then G,iz) = Griz)=Z. Thus for all w e Gz, G¡iw)=Z. Suppose E is

the component containing z. The one-parameter subgroups of Gz are the conjugates

of C together with the set N of points in L lying in the closure of the normal com-

mutative planar group H0 of G. The set D may be either a group or satisfy D2 = {e}.

The left isotropy group of any member of D iand therefore F) is a noncommutative

planar group.
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(2) dim Gz = 1 for all z e L\eG and C and D are both groups. In this case, H is

commutative, so G is isomorphic to i?xAf(l). Furthermore, there exist distinct

noncommutative planar groups Ku K2 of G such that Kx is the left isotropy subgroup

of any element of E while K2 is the left isotropy subgroup of any element of F.

(3) dim Gz = 1 for all z e L\eG, C is a group and D2 = {e}. In this case H is com-

mutative and G is isomorphic to RxAi (1). The left isotropy subgroup of any element

of E is a fixed noncommutative planar group in G. The left isotropy subgroup of any

element of F is a fixed planar subgroup of G distinct from K.

(4) dim Gx= 1 for all z e L\eG, C2 = D2 = {e}.

If H is commutative, then G = R x Af (1), there exist planar subgroups Kr and K2

of G such that Kx is the left isotropy subgroup of each element of E while K2 is the

left isotropy subgroup of each element of F. Apparently Kx and K2 may coincide or be

distinct and may be, independently of each other, noncommutative or be the normal

commutative planar subgroup of G. If H is not commutative then, of course, G is

isomorphic to the second of the two groups listed above and the left isotropy subgroup

of each element of L\eG is the normal, commutative planar subgroup of G ithat is,

the commutator subgroup of G).

(5) In any case, if z e E is an element such that dim Gz = 2 than E is filled by

mutually disjoint conjugates of C. The right isotropy subgroup of an element w e E

is then determined as follows: w belongs to a conjugate (//')" f"> E of (//") n E.

Then Gr(w) = G,(u') n//'.

Proof. We already know that //" is a semigroup on a half-plane with e e H~.

Also if g e G, g"1egE(g"1//g)" so, since g_1e = e, eg e (g_1//g)". Since //" n eG

= {e}, and since there exists g e G such that eg/e, H is not normal.

Note that if c is any central element of G then ce H, since ge = e for all g e G

and ec = ce. Already then, we can say that G is not nilpotent (else H would be

normal) or simple, since the center of SI (2) is contained in no planar subgroup.

Therefore, G is either isomorphic to fix Af (1) or G is isomorphic to one of the

semidirect products R V2 where V2 denotes the two-dimensional vector group.

Suppose His commutative. Then G is not isomorphic to one of the groups R- V2.

For suppose it is, then the commutator subgroup F of G is isomorphic to V2.

Since H is not normal, //# V so H n F is a one-parameter subgroup of G. Since

H n V commutes elementwise with H and with V, it commutes elementwise with

G. That is, G has a nontrivial center. But an examination of the Lie algebra of any

one of the groups R ■ V2 reveals that no such group has a nontrivial center (the

assumption of a center leads to the contradiction that dimL'=l). Therefore, if

H is commutative then G is isomorphic to R x Af (1).

Now suppose H is not commutative. Therefore G is not isomorphic to R x Af (1)

since the latter group has a nontrivial center while H does not. Hence G is iso-

morphic to one of the semidirect products R- V2. Furthermore, since G contains

the noncommutative planar group H, the following situation must obtain for the
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Lie algebra 3? of G: Let S£' denote the derived subalgebra and let ge££\<£'.

Then ad g acting in J?" has an invariant subspace (corresponding to the normal

subgroup V n H).

In order to determine G yet more exactly, we must utilize information about

H " not used up to now. Since H ~ is a semigroup on a half-plane with two-sided

zero e and since H is not commutative, it follows that every nonnormal one-

parameter subgroup of H has e in its closure. For 0 is not a limit point (in H~)

of idempotents, yet every point of H belongs to a one-parameter subgroup. Thus,

there is at least one nonnormal such group. All others are conjugate to this one,

so the assertion follows.

As a consequence of this fact, there can be no noncommutative planar subgroup

of G which is not conjugate to H. For suppose K is such a group. Then K n H is a

nonnormal one-parameter subgroup of H. For if K n H is normal in H then

K n H=H n V=K n V. Now it is not difficult to show that two noncommutative

planar subgroups of a group R V2 are conjugate if and only if they intersect Fin

the same one-parameter subgroup. Therefore eeK~,soK~isa semigroup on a

half-plane with e e K~. Since K=£H and eG#e, eK^e, so e is not a two-sided zero

for A'". Hence A'- is isomorphic to Af (1)". Therefore, if Q is the normal one-

parameter subgroup of K then eQ = e (since Ke = e and dim eK=X). Now Q = Kn V.

Since K is not conjugate to H, Kn V and Hn V are distinct one-parameter

subgroups of V. Since e(ATn F) = e and e(//n V) = e, it follows that eV=e. But

since eH=e and F#//, this implies eG = e which is a contradiction.

Up to this point we have shown that if H is not commutative then every non-

commutative planar subgroup is conjugate to H. An examination of the Lie

algebras of the groups R ■ V2 reveals that there is exactly one which has precisely

one conjugacy class of noncommutative planar subgroups. This group is the one

listed in the statement of the theorem so that part of the theorem is proved.

We prove next that if "dim Gz = 2 for some zeC then Gz is a group. For, recalling

that C=Hz = H~ n E=Tn E, we know that either C2 = {e} or C is a group.

We also know, in any case, that if dim Gz=dim zG=2 then Gz=zG. Suppose

C2 = {e}. It follows that xy = e for all x, y e Gz. But then xy = e for all x, ye iGz)~.

However, if eg/e then (eg)2 = (eg), (eg) = eg#e, which is a contradiction.

We conclude that if there exists an element z eT n E such that dim Gz = 2 then

C is a group. Therefore we may assume z2 = z. Hence, as we have seen, Gz = zG is a

group. We can, in fact, say somewhat more. The one-parameter subgroup Q of H

such that Q~ = Q[J{z} is normal in G and G commutes elementwise with z.

Also H cannot be the noncommutative planar group, for then every element of T

is an idempotent (which is impossible in this case) or e is a two-sided zero for H ~

and T2 = {e} (which is also impossible if Cis a group). Thus, His commutative and

G is isomorphic to R x Af (1). Since the only normal one-parameter subgroup of a

commutative planar group in fix Af (1) is the center Q0 of G, we have Q0= Q so

the normal one-parameter subgroup of G which runs to z is the center of G. This
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implies that Gz is isomorphic to G/Q0 and hence to Af (1). It also implies that the

other component F of L\eG can contain no element having a two-dimensional left

orbit since surely the center of G cannot run to more than one element of L.

The remaining conclusions about case (1) are now easy to draw. Clearly, Gfw) =

Griw)= Qo for every w e Gz. Also, C is a one-parameter subgroup of Gz and all

its conjugates are such. Multiplication in eG makes it clear that iGz)~ is isomorphic

to Af (1)". The normal one-parameter subgroup N of Gz cannot, of course be

conjugate to C. On the other hand, since Qô = Qo u {z} and since the normal

commutative subgroup H0 of G is generated by Q0 and the normal one-parameter

subgroup P0 of the various noncommutative planar groups of G, z e H0~. Also

H0z = PoQoz=Poz = zPo = zH0. Since dim Gz = 2, H0z=£z so H0z is a one-parameter

subgroup of Gz. Since H0 is normal and z is central, H0z is the normal one-

parameter subgroup of Gz, whence H0z=N. To see that A^ forms the complete

boundary of H0 in S, first let x e H0~ n E. Then x = gz for some g eG. Let

pn e P0, qn e Q0 be such that pnqn -> gz. Then pnqnz -> gz so pnz «* gz. But //0z

is closed in iGz) " and hence in S so since pnz e H0z, gz e H0z. Since HQ~ \H0 is an

ideal in Ho, it is connected. Thus H0~ nL = H0~ n E=H0z. Except for giving

examples that D may be either a group or D2 = {e}, all of the assertions in (1) have

been proved.

Now suppose dim Gz= 1 for one and hence every z e E n T. Since Gz is a line

and Hz is a line such that (//z)" = Hz u {e}, Gz=Hz = Tn E. Let xe/s. Then

there exists geG such that x = zg. Since zeTnE, g~1xgeg~1iTn E)g so

g-ixeg-Xrn/sJg. Now Gig~\Tn E)g)=g~\GiTn E))g=g~\Tn E)g. In

particular, G-g'^cg-^rn E)g. Therefore xEg_1(Tn E)g and it follows that

E is covered by conjugates of T n E and that dim Gw= 1 for all w e E.

We claim that distinct conjugates of T n E are disjoint. For assume

ig-\TnE)g)niTnE)¥= 0.

Thus suppose g~1zg=w for some z, weTn E. Then Gw = Gg~1zg=Gzg. Since

dimGz = dimG)v=l,Gz=rn£'=Gw. Hence T n E=iTn E)g. Now e 6(Tn£)"

so egeiTn E)~g = ((Tn E)g)~ ={Tn E)'. But (in £)" n (eG) = {e} so eg = e,

whence g e//and g " ̂ T n E)g=T n E.

Since the same argument applies if z 6 F, we have shown that if z e L\eG is such

that dim Gz=l then the component of L\eG containing z is covered by mutually

disjoint conjugates of H~ n L lying in that component.

We notice that the left isotropy group of any two elements belonging to a given

component of L\eG are equal while if the left isotropy group K of the elements

in one of the components of L\eG—say E—has the property that K' n Ej= 0

then K must be distinct from the left isotropy group of the elements of F. Indeed,

any two elements belonging to a given right orbit of G generally have the same

left isotropy group. To see the truth of the second assertion notice that no element

of E ~ can fix any element of F on the left—that is, if v e E ~ and w e F then
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iw# w. For clearly E ' is an ideal in 5 so vw e E ~ while w $ E ~. Thus if K is the

left isotropy group of the elements of E and v e K~ n E then K cannot be the left

isotropy group of the elements of F since then vw = w if w e F.

It follows from the last assertions that if dim Gz = 2 for some z e E then the left

isotropy group of the elements of F is a noncommutative planar group. For, as

we show in the next paragraph, Gfw) is not conjugate to H for any w e L\eG

under any condition. The only other possibility is that it be the commutative normal

planar group H0. But when E=Gz = zG, H0~ n E=£ 0 since, as we have seen, the

center Z runs to the identity of E. This completes the proof of all assertions made

in case (1).

To gain information about the various right isotropy groups of elements in L\eG,

we make the general observation that if x ^ eG then Hx = x. For, since eG is closed,

it is a right ideal. Therefore ex e eG and hence ex^x. If Hx = x then H~x = x so

ex = x. It follows from this that G¡iw) is not conjugate to H for any w e L\eG.

For suppose w e L\eG and G,(w)=g"1//g. That is, g~1Hg-w=w. So Hgw=gw.

But if w $ eG then gw $ eG since then w eg~1eG = eG.

It follows that if w e H ~ then Gr(w) = G¡(vv) n H. For let Q be the one-parameter

subgroup of//such that Qw=w. If His commutative, then Qw = wQ so Gr(w)= Q.

Since Giiw)^H, Q = G¡iw) n H. If// is not commutative then the subgroup Q of

H such that Qw = w is the normal one-parameter subgroup of H and being the

only closed subgroup of H~ also satisfies: wQ = w. Thus Q^Gfw) so Griw)=Q.

As before, Q = G¡iw) n H.

If w belongs to a conjugate (//')" of H~ then Gr(H>) = G¡(w) n //'. For let

we(//')" nL with H' =g~xHg. Then //' is the right isotropy subgroup of eg.

The argument just completed is applicable here to yieli the indicated result, where

eg plays the role just played by e.

The right isotropy groups of all elements of L have been identified in all cases,

at least in terms of the corresponding left isotropy groups.

It remains to identify, as far as possible, the various left isotropy groups and the

various possibilities for multiplication on C and D.

Let z eL\eG. If dim Gz = 2 we have already seen that G¡iz) is the center of G.

Suppose dim Gz=l. Let A_=G¡(z). Suppose G is isomorphic to the second of the

two groups listed in the statement of the theorem. Since K is not conjugate to //,

K is the commutator subgroup of G. If, instead, G is isomorphic to fix Af (1)

and the component of L\eG not containing z is a group we have seen that G¡iz) is

a noncommutative planar group.

If dim Gz=l and z2 = z then K is one of the noncommutative groups of G.

For, to be definite, suppose z e F. Then we may suppose z e H~ since in any case

z belongs to a conjugate of //". Let Q be the one-parameter subgroup of H such

that Q~ = Q u {z}. Since the various conjugates of D in F are, under the present

circumstances, mutually disjoint, Q is not normal in G. If Gxiz) is the normal

commutative planar group H0 then  Q = H n H0. But H n H0 is central and
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therefore normal which is a contradiction. Incidentally, we see in this case that

K~ n F# 0. Since the left isotropy group of all elements of either component

of L\eG are the same we conclude that if a given component of L\eG contains an

idempotent but is not a group then the corresponding left isotropy group is a

noncommutative planar group having points of that component in its closure.

It follows that if both E and F contain idempotents but neither are groups then the

isotropy groups for the elements of the two components must be distinct.

The possible multiplications on C and D are of course known. For H~ is a

semigroup with zero on a half-plane. Thus either C and D are both groups, or

one, say £ is a group and D2 = {e), or C2 = D2 = {e}.

We have not determined the left isotropy group of an element of C if C2={e}

and H is commutative. We shall settle this matter later. Apparently it may be

either a noncommutative planar group or the normal commutative planar group.

Also, apparently, it is not influenced by the left isotropy group of elements of D

if D is a group.

Theorem 2.13. Suppose e2 = e e L is such that dim Ge = 2 and dim eG = 0. Then

G is a nonhyperbolic semidirect product R ■ V2. If, conversely, G is a nonhyperbolic

semidirect product then G is the maximal group of a semigroup on a half-space

containing an idempotent e such that dim Ge = 2 and dim eG = 0. Of course, if L is

the boundary of such a semigroup, L is left trivial; i.e. xy = x for all x, y e L.

Proof. Since dimeG = 0, Ge = L by Theorem 2.7. Since dimGe = 2, G¡(e) is a

one-parameter subgroup P of G such that P " =P U {e}. For any g e G, eg_1 = e

so igPg_1)~ =igPg~1) *J {ge}- Since Ge = L, this implies P is not normal.

Since eG = e, the center C of G is contained in P. But since P is not normal, P is

not central. This means that C is either trivial or infinite cyclic and the latter holds

only if G is isomorphic to SI (2). In particular, G is not nilpotent nor is G isomorphic

to R x Af (1) since nilpotent groups and R x Af (1) have nontrivial centers. In fact,

G is not isomorphic to SI (2) either. For then e e (C) " so for every g e G,

ge eigCg'1)' =C~ which is impossible since P~=Pu{e}. The only possibility

for G is one of the semidirect product groups R V2.

To see that G cannot be one of the hyperbolic groups, note that if it is, then there

exist two normal one-parameter subgroups Qx and Q2 of the commutative sub-

group V of G. Thus PQi and PQ2 are two noncommutative planar subgroups Kx

and K2 of G. Of course, e e Kx and ee K2 .

We prove Kx =KX u Kxe. First, Qx must operate on L on the left without fixed

points since the left isotropy groups of the various points in L are conjugates of P

which Qx is not. Thus every left orbit of Qx in L is a closed line by [3]. In particular

Qxe is closed. Let xe Kx n L. Then x=ge for some g e G and x = lim qnpn for

some sequence {#„/>„}„ with qne Qx, pneP. Therefore x = xe = liman/>ne = lima„e

since Pe = eP=e. But qne e Qxe so x e Qxe = Kxe.
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It now follows by the result in the appendix that Kx is a semigroup on a half-

plane. Since all elements of Kx n L are idempotent, Kx is isomorphic to Af (1)~

by [4]. (Af (1)" is the closure of Af (1) in the representation of Af (1) given above.)

What has just been proved about Kx and Kx is equally true about A^2 and K2

respectively. Thus the argument which was used in the proof of Theorem 2.5 to

show that G is not hyperbolic is available here so the proof of the first half of the

theorem is complete.

We observed (parenthetically) in the discussion that preceded Theorem 2.5 that

each nonhyperbolic semidirect product R- V2 has a representation as a group of

3x3 matrices in such a way that its closure in the semigroup of all 3 x 3 matrices

is a semigroup on a half-space containing an idempotent e with dim Ge = 2 and

dim eG = 0. Thus the proof of the theorem is complete.

Theorem 2.14. Let P be a one-parameter subgroup of G which is not closed in S.

Then there exists an idempotent e such that P ~ =P u {e}.

Proof. We already know that there exists an idempotent eeP~. By [4], it is

sufficient to prove Pe = e. Also, because of the known structures of semigroups on

a half-plane, the conclusion follows if at anytime it is known that P is contained in

a half-plane semigroup.

Assume Pe^e. Then eP^e so Ge/e and eG^e. Suppose first that dim Ge= 1.

Let //=G¡(e). If P has a conjugate in H then P is contained in a half-plane semi-

group. If P has no conjugates in H then Ge = Pe and H~ is a local cross-section to

the orbits of Pat e. ThenPe has points on both sides of//-. Since Pe<^P~ ,P must

intersect H repeatedly which is impossible for any group in E3. A similar argument

applies if dim eG= 1.

If dim Ge = dimeG = 2 then G,(e) is a normal one-parameter group Q. Since

Pe/e, Pe is a one-parameter subgroup of Ge lying in the boundary of the planar

group PQ and closed in Ge. As we have seen before, Pe forms the entire boundary

of PQ in Ge so by the result in the appendix PQ u Pe is a semigroup on a half-

plane with e e P~ and the conclusion follows in this case also.

3. Semigroups with G isomorphic to SI (2). Examples have been or will be

offered which show that every group in E3, with the possible exception of SI (2),

can be the maximal group of a semigroup on a half-space. We can not yet offer an

example in which G is isomorphic to SI (2), nor can we yet rule out the existence of

such an example. In this section we show that if there is a semigroup on a half-space

with G^Sl (2) then it must be essentially unique.

Thus, throughout this section we assume that S is a semigroup on a half-space

and that its maximal group G is isomorphic to the universal covering group SI (2)

of the group si (2) of 2 x 2 real matrices of determinant 1.

It is useful to have a number of facts about SI (2) readily available. Let y denote

the natural or covering homomorphism from SI (2) to si (2). The kernel Z of y is
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an infinite cyclic central subgroup of index 2 in the center C of SI (2), the center of

si (2) consisting of the two element group. The compact one-parameter subgroups

of si (2) are all conjugate to the group of rotations in the plane. If a one-parameter

subgroup P of SI (2), hereafter simply denoted by G, is mapped onto a compact

one-parameter group by y we shall call P distinguished. This condition is evidently

equivalent to containing the center C. Certainly if P^C then y(P) is compact.

If yiP) is compact then P nZ is a nontrivial, cyclic subgroup of P. Let c0 be a

generator of C. Let eg be a generator of P n Z. Let cx be the Ärth root in P of eg.

Since c0 is central, c0jcx is well defined and if C<£P, c0¡cxj=l. However, ic0¡cx)k

= Co/Ci = l so G contains an element of finite order which is impossible for a

group on a Euclidean space. Thus every distinguished one-parameter subgroup of

G contains the center.

Next note that the only elements of SI (2) which fail to lie on some one-parameter

subgroup belong to a set cH for some nontrivial central element c and some planar

subgroup H of G. To see this, suppose A is a 2x 2 real matrix of determinant 1.

If A is irreducible then A is conjugate to a rotation and hence lies on a one-parameter

subgroup of si (2). If A is reducible then A is conjugate (in si (2)) to a matrix of the

form

\0    X/t)

Now the group of all such matrices with ?>0 is a (noncommutative) planar group,

all of whose elements lie on one-parameter subgroups. If/<0 then A can lie on no

one-parameter group. However, in that case,

(o   i//)=Zo( 0   -1//)

where z0 is the nontrivial central element of si (2). Thus A e z0H where H is a

planar group. Suppose x eG lies in no one-parameter subgroup of G. If y(x) lies

on a compact one-parameter subgroup of si (2) then y(x) e yiP) for some distin-

guished one-parameter subgroup P of G. But then x e Pz = P. If y(x) belongs to a

planar group H then x e H'x where //' is a planar group in G so x e cH' for some

central element c and //' is a planar group. If y(x) belongs to no one-parameter

group then y(x) e z0H so x e Cz0H'^CH' where //' is a planar group.

The planar groups of G are all isomorphic to Af (1) and are conjugate to each

other. Let H be a planar subgroup of G and let Q be the normal (in H) one-

parameter subgroup. The set of all conjugates of Q form a (topological) cone c€

in G which plays a significant role in determining the structure of S. The various

claims made about <€ can perhaps best be established by recalling properties of the

Lie algebra S£ of G. The algebra J? is isomorphic to the Lie algebra on the set of

2x2 matrices of the form :

ix       y\
X = \ \,       x, y, z real.

\z     -x]
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The element X belongs to the ideal of a two-dimensional subalgebra of ££ if and

only if ad X is nilpotent. If X is nilpotent then ad X is nilpotent and in this case

conversely. But if X is nilpotent then x2= — yz. Thus, the elements of a? which

belong to ideals of two-dimensional algebra form the cone x2= —yz. If x2= — yz

then exp X=I+ X where / is the identity matrix. Hence the exponential map is a

homeomorphism on the cone x2= — yz. It follows that ^ is a cone. Furthermore,

the points belonging to distinguished one-parameter groups lie "inside" ^ while

the points on planar groups lie on or "outside" e€.

We need one further fact about G. By definition, any two one-parameter groups

contained in ^ are conjugate. It is important to note, however, that a complete set

of conjugates pQp'1 of a given Q in ^ is gotten by restricting/? to lie in the compact

interval [1, c0] of a distinguished one-parameter subgroup of G, (here, c0 denotes

a generator of the center of G). This is easy to see as soon as it is realized that each

element of si (2) can be represented (uniquely) as a product of the form

cos 9    sin 6\ it     b\

-sinö   cos6y\0    X/t)

with t > 0.

We turn now to study the structure of a topological semigroup S on a half-space

whose underlying group G is isomorphic to SI (2).

First recall the two results proved in the first section: (1) If x e L and xG<=Gx

then Gr(x) is normal, and (2) if dim Gx = 2 then xG^Gx so if dim Gx = dim xG = 2

then Gx = xG. While these results hold for any group on E3 they obviously have

special significance now since SI (2) has no normal, nondiscrete subgroup.

Theorem 3.1. If S is a semigroup on a half-space whose maximal group G is

isomorphic to SI (2) then the boundary L of G contains exactly one idempotent e and

e is a two-sided zero for S.

Proof. We already know that L contains an idempotent. We will show, by

contradiction, that if e is any idempotent in L then dim Ge = dim eG = 0. This

implies that e is a two-sided zero for 5 so, since a semigroup can have at most one

two-sided zero, L contains a zero and no other idempotents.

We have just observed that if dim Gx = 2 or dim xG = 2 then G must contain a

normal subgroup of dimension 1 which is false. Thus in particular, dimGegl

and dimeG^l. Suppose dimGe=l. If dimeG=l then Ge = eG by Theorem 2.5

so Gr(e) is a normal planar group which is impossible. Thus dim eG = 0. But then

G^Sl (2) by Theorem 2.12. Similarly we cannot have dim eG= 1 and dim Ge = 0.

The only remaining possibility is dim Ge = dim eG = 0.

Throughout the remainder of this section we will denote the idempotent in L

by "0".

Theorem 3.2. // G £ SI (2) and x e L\{0} then dim Gx = dim xG = 1.

(



30 J. G. HÖRNE [January

Proof. The desired conclusion requires only the knowledge that dimGx#0

^dim xG since dim Gx = 2 and dim xG = 2 are already ruled out. But since 0 is a

two-sided zero, 0 e (Gx) " and 0 e (xG) " for all x e L\{0}.

Theorem 3.3. Assume that S is a semigroup on a half-space with G^Sl (2). If

x e L\{0} then G,(x) is a planar subgroup and Gx = Px where P is any distinguished

one-parameter subgroup of G.

Proof. By the above, dim Gx = 1. But Gx is never a simple closed curve so Gx

is a line and G¡(x) is a planar subgroup. The only one-parameter subgroups having

no conjugates in G¡(x) are distinguished and each such group has this property.

Theorem 3.4. IfG = S1 (2) then 0 is not in the closure of any planar subgroup ofG.

Proof. If 0 is in the closure of one, it is in the closure of every planar subgroup

of G since any two such groups are conjugate. Now 0 can not belong to the closure

of the isotropy subgroup of any nonzero element. Since each x e L\{0} has G¡(x)

as a planar group, the conclusion follows.

Theorem 3.5. Let ^ denote the cone in G that is the union of the normal one-

parameter subgroups of the various planar groups in G. Then ^ is closed in S.

Proof. First, observe that each one-parameter group Q contained in ^ is closed

in S. For otherwise there is an idempotent in Q~ n L so 0 e Q~ and 0 belongs to

the closure of a planar group in G.

Let Q be a fixed one-parameter group contained in tf. Assume hn -^ x for some

hnem and x e 5. For each n, there exists elements /?„ and qn with qne Q such that

hn=pnqnpñ1- Moreover, as we mentioned earlier, the pn may be chosen from a

compact subset of a distinguished one-parameter subgroup P of G. Thus we may

suppose pn -»• p for some peP so p*1 -+P'1- It follows that qn -*> pxp ~1, which

implies pxp'1 e Q by our first observation. Thus, x e ^ so ^ is closed.

Theorem 3.6. If G is isomorphic to SI (2) and P is a distinguished one-parameter

subgroup of G then 0eP~.

Proof. As above, let ^ denote the cone formed by the union of those one-

parameter subgroups which are normal one-parameter groups of the various

planar groups. As we mentioned above, the distinguished one-parameter subgroups

of G lie "inside" <€. We first want to see that 0 lies in the closure of the inside

(rather than the outside) of if. We give two proofs of this fact, one being a simple

consequence of the fact that 0 belongs to the closure of no planar group, the other

seeming somewhat more general.

First we note that if c is a nontrivial central element and H is a planar subgroup

of G then cH n(€= 0. For otherwise there exists a one-parameter group Q^^,

an element q e Q and an element he H such that ch=q. Since c e C, yi¿) is either

the identity of si (2) or yic) is the nontrivial central element z0 of si (2). Now y(//)
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is a planar group in si (2) and yiq) belongs to a one-parameter subgroup. Since no

element of z0-y(//) belongs to a one-parameter subgroup y(c)=l and y(A) = y(a).

Since no two noncompact one-parameter subgroups of si (2) intersect except

trivially yiP) = yiQ) where P is the one-parameter subgroup of H containing h.

Thus, PC= QC. But P and Q are the components of the identity in PC and QC

respectively so P=Q. It follows that cQnQ+0 whence cQ=Q and c=l,

contrary to the fact that c is a nontrivial central element. It follows that cH n <& = 0

for each c^ 1 in C and planar group H.

We know, then, that every point outside if belongs to a one-parameter subgroup

lying in some planar group. Suppose 0 belongs to the closure of the outside of (ê.

Then every neighborhood of 0 contains a point lying on a one-parameter subgroup

of a planar group. Therefore, by Lemma 2.9, there is a one-parameter group P,

lying in a planar group H, such that 0 e P ". But then 0 e H ~ contrary to Theorem

3.4.

As an alternate proof to the preceding, assume again that 0 lies in the closure

of the outside of #. Run an arc A from 0 to a point of ^ other than the identity.

Let P be a distinguished one-parameter subgroup of G and let [1, c0] denote the

interval in P from 1 to a generator of C. As p ranges from 1 to c0 in [1, c0], the

endpoints of p-Ap'1 describe a simple closed curve on the cone # and the arcs

pAp'1 must go around the outside of c€, back around to A. However, the arcs

pAp'1 converge pointwise and one can then show even uniformly to A. Since it is

impossible for arcs both to go around & and converge uniformly to A, we conclude

that 0 does not belong to the closure of the outside of <€.

We now prove that every neighborhood of 0 contains points lying on a dis-

tinguished one-parameter subgroup of G. By Lemma 2.9 again, the conclusion of

the theorem follows.

Let #_ denote the nape of <€ lying between 0 and the other nape of (€. Let c0

be the generator of C which is contained between #_ and L. For each positive

integer n, let Dn be the component of G\(cr]'^'_) contained between cffi _ and L.

Evidently Z)n + 1c Dn. Furthermore, (\n Dn= 0. It follows that every neighborhood

F of 0 intersects some cf£_. For if we take F to be a connected neighborhood of

0 and Vncl(€. = 0 then V^Dk. Since V<t(]n Dn, Vnc%€^0 for some k.

Since all points between cf€ and ^_ lie on distinguished one-parameter groups, it

follows that points of cf€ _ can be approximated arbitrarily closely by points lying

on distinguished one-parameter groups. Therefore F contains points lying on

distinguished one-parameter groups. The proof of the theorem is complete.

We next prove a result which can be stated for any G but whose most immediate

application is to the case G s SI (2).

Let S then denote an arbitrary semigroup on a half-space with maximal group

G. Let P1( P2 be commutative subgroups of G and let xeL. Set

JiPx, P2, x) = {p e Px : px e xP2}.



32 J. G. HÖRNE [January

If Px, P2 are understood, we set JiPx, P2, x)=Jx and if x is also understood, we

abbreviate "Jx" to "/". Evidently / is a subgroup of Px and for each pePx,

Assume that Px, P2 are one-parameter subgroups of G such that for some element

Ô in L, Px =PX u {6} and P2 =P2 u {6}. Furthermore, assume that x is an element

of L such that 6x = xd^x. Let r¡xip)=px for p ePx and r¡2iq) = xq for qeP2.

Thenijj andr¡2 are homeomorphisms which, as maps intoL are closed. In particular,

Px x and xP2 are topological closed half-rays in L.

As we shall see, Jx is necessarily a closed subgroup of Px so that, if it is neither

trivial nor all of Px, it is an infinite cyclic subgroup. In this case, we can say how

xP2 is situated relative to Pxx. To do so, we need to define what we mean by saying

one ray spirals around the endpoint of another and of certain arcs going around

the endpoint of another.

In the present context, assume that Jx is an infinite cyclic subgroup of Px and let

i/be a generator of Jx. There is an element eGP2 such that dx = xe. Therefore

dkx = xek for each integer k. Also Pxx n xP2=Jxx. Let A be the closed interval

of Pj from 1 to a7 and let B be the closed interval of P2 from 1 to e. Thus, for each

integer k, the set Sk = iAdkx) u (x5efc) is a simple closed curve. We will say that

the arc xBek goes around 6x (relative to Pf x) provided 6x lies inside Sk. We will

say that xP2 spirals around 6x (relative to Pxx) provided xBek goes around 6x

for every integer k.

Theorem 3.7. Let S be a semigroup on a half-space with maximal group G. Let

Px andP2 be one-parameter subgroups of G such that Px =PX U {0} andP2 =P2 U {9}

for some 6 e L. Suppose xe Lis such that 6x = x9^x. Then J is a closed subgroup of

Px. If J is a proper subgroup of Px then xP2 spirals around 6x relative to Pxx.

Proof. Let {/>„}„ be a sequence in J such that /?„ -> /? where /? e Px. Then there

exist elements qn eP2 such that pnx = xqn. Thus xqn -> px. Since the map -q2iq') = xq',

q' eP2 , is closed, there exists qeP2 such that xqn <-*■ xq. Hence px = xq. If q=6

then p = 8 which is false. Thus q e P2 so p e I and / is a closed subgroup of Px.

Suppose J is a proper subgroup of Px. Then J is infinite cyclic. Let d be the

generator of I which lies between 1 and 6 and order Px so that d<X. Let A be the

closed interval from a" to 1 in Px. Let e be the element of P2 such that dx = xe and

let B be the closed interval of P2 between e and 1. Of course dkx = xek for each

integer k. Assume that for some integer k, the arc xekB does not go around dx.

That is, 6x lies outside the simple closed curve Sk = iAdkx) u ixekB).

Let p e Px be between d and 1. Now pdk~1xP2 is disjoint from xP2 and hence

pdk~1xP2 is disjoint from xekB. Since Pxipdkx) n ipdkxP2)=Jpifx-pdkx=Jx-pdkx

and Pxpdkx=Pxx, we have Pxx n ipdkxP2)=Jxpdkx so the nearest points in

Pxx n pdkxP2 to pdkx are pdk+1x and pdk~1x. Each of these points is a point of

Pxx lying outside the interval Adkx. Hence pdkxP2 intersects Sk only in pdkx.

Since dx lies outside Sk by hypothesis, dk+ix lies outside Sk for ally'^1. Since
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pdkxP2 must get frompdkx topdk + 1x,pdkxB=pxekB must, except for the endpoint

pdkx lie outside Sk.

Now allow/? to approach 1 in Px. Clearly the arcspdkxB must approach the arc

xekB at least pointwise. But by [10] there is a point of almost uniform convergence

which by translation and compactness implies the convergence is in fact uniform.

Because of the fact that the arc pdkxB can not intersect Pxx except at pdkx and

pdk+1x and lies, except for the point pdkx outside Sk, this is evidently impossible.

We conclude that dx is not outside Sk for any k so that xP2 spirals around 9x

relative to Pxx.

Now suppose G = S1 (2). Let P be a distinguished one-parameter subgroup of G.

Let xgL\{0}. We know Gx = Px, xG = xP and Gx^xG. Let PX=P2 = P in the

above. Since the center C is contained in Jx, Jx is nontrivial. Since Gx+xG, Ix is

a proper subgroup of P. By the preceding theorem, Px must spiral around 0

relative to xP. We thus have the following result.

Corollary 3.7.1. Let S be a semigroup on a half-space with G ̂  SI (2). Let P be a

distinguished one-parameter subgroup of G. Then for each xeL\{0}, Gx = Px,

xG=xP and Px spirals around 0 relative to xP.

Theorem 3.8. // G^ SI (2) then xy = 0 for all x,yeL.

Proof. We first prove x2 = 0 for all xeL. We know (Gx)" =(Px)" =P"x and

(xG)~ =(xP)" =xP" where P is a distinguished one-parameter subgroup of G.

Now (Gx)" is a left and (xG)" is a right ideal. In particular, (Gx)" and (xG)~

are subsemigroups so x2 e (Gx)" n (xG)". If x2^0 then x2 e Gx n xG. But then

Gx n xG is a group which is impossible. It follows that x2 = 0 for all xeL.

Let xeL\{0} and yePx. Then y=px for some peP so yx=px2 = 0. Hence

the product of any two elements of Px is 0 for any xeL.

Finally, suppose x, y are arbitrary nonzero elements with Px^Py. We know

that yP spirals around 0 relative to Py and hence relative to Px. Therefore Px n yP

+ 0. Hence there exist elements px and p2eP such that pxx=yp2. Therefore

0 = ipxx)2 = ipxx)iyp2)=pxixy)p2 so xj = 0.

We summarize all of the results of this section in

Theorem 3.10. Suppose S is a topological semigroup on a half-space whose

maximal group G is isomorphic to SI (2). Let L denote the boundary of G. Then L

contains exactly one idempotent and this is a two-sided zero 0 for S. For each

x e L\{0}, dim Gx = dim xG = 1. Every distinguished one-parameter subgroup P of G

has 0 in its closure and if xe L\{0}, Gx = Px while xG = xP. Furthermore, Px spirals

around 0 relative to xP. Ifx, y are any two nonzero elements ofL then Px n yP^ 0.

For every x, y e L, xy = 0. The cone *£ of one parameter subgroups of G which are

normal subgroups of planar groups is closed in S and "opens toward" 0.

4. The sets £i;. If i,j are integers between 0 and 2, let (if denote the set of

idempotents e such that dim Ge = i and dim eG=j, except that Çxx is assumed to

include only idempotents e such that Ge = eG.
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Lemma 4.1. Suppose S is a topological semigroup containing a commutative

planar group H as a dense subgroup. Then there are at most two nonzero idempotents

e e S such that for some one-parameter subgroup P^H, P " =P u {e}.

Proof. Let ex, e2 be nonzero idempotents and let Px, P2 be one-parameter sub-

groups of H such that Pf =P¡ u {ej. Note that exe2 is zero for H. For H=PXP2

so Hexe2 = PxP2exe2 = PxexP2e2 = exe2. Now Px and P2 divide H into four sets Axx,

Ax2, A2X and A22 characterized as follows: every element xeH has a unique

representation of the form x=pxp2; with pxePx and p2eP2. Place xeAxx iff

p\^ex and p2 —> e2. Place x e AX2 iff px^-ex and (l//>2)" —3- e2; xeA2X iff

(1/Pi)n -*■ ex and /?2 -*■ e2 while x e /422 iff il¡px)n -> ex and (l/^)" -»■ ̂ 2- Suppose

there is a third nonzero idempotent e3 such that e3 e P¿" for some one-parameter

group P3. We show, however, that e3 is not in the closure of any of the sets Au.

Recall from the above that e2e3 = eie3 = 0. If e3eiA22)~ then there exists a

sequence pXnp2ne A22 such that pXnp2n -* e3. Now either pXn^-pxe Px and

I/P2n -► e2 or, dually, with the roles of Px and P2 interchanged, or l//?ln -> ej and

i/P2n^e2. In the first case, (l//?ln)(/?ln/?2n). l\p2n^ illpx)e3e2 = 0 while (l/plB)

'ÍPinP2n) = 2. The other two cases yield the same contradiction.

If PmPin^ Ax2 then either pXn^pxePx and l\p2n^e2, or />i„-► <?i and

P2n->P26P2 or l/p2n^e2 and />ln -> ex. In the first case, (l/Pm)(PinP2n)(l/P2n)

-* (1/Pi)e3e2=0. In the second case, ÍPinp2n)iXlp2n) -*■ e3p2 yet ipXnp2n)iXlp2n) -> Ci

so ex = e3/?2 so ex = e^ = exe3p2 = 0 which is false. Finally, if /?ln -»■ ex and 1 ¡p2n —>- e2

then ipxnp2n)il¡p2n) -*■ e3e2 = 0, implying e^O which is also false.

The other possibilities yield similar contradictions.

Theorem 4.2. If H is a commutative planar subgroup of S and if S has a zero in

H " then there is a one-parameter subgroup P of H with 0 e P ".

Proof. Let F be a compact neighborhood of 0 as in the proof of Lemma 2.9.

Thus, if x e V then xn e V for every positive integer n so for every xeV there is an

idempotent ex in the closure of {xn}„. If Px is a one-parameter subgroup of H

containing x then Px =Pxv {ex}. By the lemma, there are at most two such

idempotents. By choosing V sufficiently small, we may assume that 0 is the only

such idempotent in F. Thus, if x e V then 0 e (Px)".

Lemma 4.3. Let e be an idempotent in S and suppose S is not one of the semigroups

satisfying the conclusions of Theorem 2.5. If x is conjugate to e then x e Ge U eG.

In particular, if ex and e2 are idempotents then ex and e2 are conjugate if and only if

iGex U exG) n (Ge2 u e2G)# 0.

Proof. Under the circumstances, Ge^eG or eG^Ge for every idempotent e e L.

But then geg'1 e Ge U eG for any g e G.

Theorem 4.4. f12 u f21 contains at most two conjugacy classes of idempotents.
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Proof. Let e s £21. Let H=Grie). Then eG is a group contained in Ge, //" is a

half-plane semigroup isomorphic to Af (1)" and Ge is filled with conjugates of eG,

each such conjugate intersecting H " n L in exactly one idempotent. Let P be the

one-parameter subgroup of H such that P" =P u {e} and Q be the center of G.

Then PQ is a commutative nonnormal planar group with e e (P0". We have seen

before that the only elements of (PQ)~ O Ge are elements of eG = eQ. Hence

(P£?)~ n (G u Ge) is a semigroup on a half-space.

Next, if K is any commutative nonnormal planar subgroup of G then K is con-

jugate to PQ. Hence there is an idempotent fe K~ n Ge and a one-parameter

subgroup Px of K such that Px =Pxkj {/}.

The remarks proved so far have obvious left-right duals if e £ £2X instead of £12.

Suppose there exist as many as three elements ex, e2, e3 e £12 u £21, no two of

which are conjugate. By the previous lemma, if /V/ then (Ge¡ u efi) n (Ge; u e,G)

= 0. Let A" be a commutative, nonnormal planar subgroup of G. Since any two

such groups are conjugate, the previous arguments show that for each /'= 1, 2, 3,

K contains a one-parameter group running to some idempotent in Get u e¡G.

This means that K contains three one-parameter subgroups running to nonzero

idempotents in the boundary, contrary to the first lemma of this section.

Corollary 4.4.1. If G is not commutative then \ÇX2 u £21 u |22| ^2 where, in

general, \A\ denotes the number of conjugacy classes of elements of A.

Proof. If £12 u £21= 0 the result is immediate since if |f22| ^3 then G is com-

mutative. If $x2 u f217¿ 0 then G is isomorphic to fix Af(l). We know in any

case that \$X2 u £21| ^2. If |£12 u f21| =2 then f22= 0. For whenever £12 u £21

/ 0, the one-parameter subgroup of G which forms the normal one-parameter

group of every copy of Af (1) in G is closed in S (it is closed in H~, for example,

if //= G¡(e), e e f 12). Thus, if e 6 |22 then G,(e) is the center g of G since the center

is then the only other normal one-parameter subgroup of G. This shows, incidentally,

that whenever f12 u f21# 0 then ||22|¿1. Assume, again, that ||12 u |21| =2,

but that £22# 0 with ee £22. Since ß belongs to every commutative planar K,

e e K " for every such K. On the other hand, if e2 e |12 u f21 then A' " n (Ge2 u e2G)

# 0. Hence, if ||12 u $2X\=2 then A'" contains three one-parameter subgroups

running to idempotents in the boundary in violation of Lemma 4.1.

If |fi2 u £ai| = l> the conclusion is immediate since then ||22| S X.

Consider the collection £xx. If for any ee £U) Ge is closed then £xx={e}. For

suppose e2 is a second such idempotent. Since Ge = eG and Ge is closed, Ge is a

two-sided ideal. Therefore Ge n (Ge2)"^ 0 so Ge=(Ge2)~. But for any e2 e £n,

(Ge2)" consists of Ge2 and at most one additional point which is a zero for S.

Thus assume Ge is not closed for some (and hence all) e e £xx. Then S has a

two-sided zero 0 and iGe)~ =Ge u {0} for each e e £xx. It follows that if ex and e2

are any two elements of £M then e1e2 = e2e1 = 0. For e^ e (Ge^" n (Ge2)~ ={0}

and similarly for e^.
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If e e fn let He denote the isotropy group of G ate and let Te = H~ n L = H^\He.

Alternately, if in some notation, some member of £xx is denoted e¡, set //e¡ = //¡

and Te. = Ti. If ex and e2 are distinct members of £xx then HX^=H2 since if HX = H2

then Hx has two two-sided zeros ex and e2. Neither can ex belong to T2. For

suppose ex e T2. Since e2 is a two-sided zero for H2, e2ex = e2 while as just shown,

e2e! = 0. In fact, Gex n T2= 0. For if gex e T2, then gexe2 = e2, though e^^O.

Let ex, e2 e fu and assume Tx n r2# 0. Let xeTxnT2 and let A¡ denote the

component of T¡\{et} containing x. According to the known structures of semi-

groups on a half-plane, either Ai is a group or A2 = {e¡} and if A¡ is a group then

//¡ is commutative. Suppose A2 = {e^. Then e¡ = x2 e Tx n T2 which is contrary to

what was just proved. Thus Ax and A2 are both groups and Hx and H2 are normal

(since Gei = efi) commutative planar groups. The only groups on E3 which contain

as many as two normal commutative planar groups are the two nilpotent groups so

if Tx n T'a/ 0, G is nilpotent.

Let/ denote the identity of A, with At and x as above. Since/ e //¡x, Hlf = Hix

for /=1,2, so Gx=>HxfxVJ H2f2. Therefore dim Gx = 2. Similarly dimxG = 2.

The only time a two-dimensional left orbit of G can contain as many as two idem-

potents is when the corresponding right orbit is one or zero dimensional. Since

dim Gx = dim xG = 2 and the idempotents/ and f2 belong to Gx, fx=f2. Thus

Gx = Gfx =fxG and G/ is a planar group which, being homomorphic to a nilpotent

group is abelian. Furthermore, ex, e2 and 0 lie in the boundary of G/. Thus

Gex u Ge2 u {0} forms the complete boundary of G/. It follows that Tx n Gfx

and T2 n Gfx are one-parameter subgroups of Gfx so iTx n Gfx) n (T2 n G/2) = {/}.

Therefore TxnT2n G/={/} and x=f.

What we have proved so far shows that Tx n T2 consists of at most two idem-

potents. Suppose there are in fact two idempotents/ and gx in Tx n T2. Then Hx

is a semigroup on a half-plane with zero ex so fxgx =ex. But H2 is also a semigroup

on a half-plane with zero e2 so/1g1 = e2 which is a contradiction.

We pause to summarize what has been proved up to this point:

Theorem 4.5. Let fu denote the set of idempotents e such that dim Ge=l and

Ge = eG. If for any ee £lit Ge is closed, £xx={e}. If £xx contains more than one

element then S has a two-sided zero 0 and for each e e £lu (Ge)" =Ge U {0}. If

ex, e2 are distinct members of £xx then e1e2 = 0. For such ex, e2, set //i = G¡(e¡) and

r,=(J?i)~ n L. Then HX^H2 and Gex n T2= 0. If Tx n T2^ 0 then Tx n T2

consists of a single idempotent f and (G/)" =G/U Gex U Ge2 U {0}. Moreover, in

this case, Hx and H2 are abelian and G is nilpotent.

If fn contains three distinct elements ex, e2, e3 such that for each /', j=l, 2, 3,

T, n T,# 0 then evidently L= G/12 U G/23 u G/13 u Gex u Ge2 u Ge3 u {0} where

fa is the idempotent in Tif for i,j=l, 2, 3, i&j. That is, L is isomorphic to the

boundary of the maximal group inP" xP~ xP" where, as usual, P " denotes a copy

of the nonnegative reals under multiplication. Presumably S itself is isomorphic
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to P~ xP~ xP~. Certainly, G is abelian. For G is already nilpotent and

{Giif,)}i,j is a set of three normal one-parameter subgroups of G. But we do not

go further into this matter now. In any event, $xx = {e1, e2, e3} and we state these

results as a theorem :

Theorem 4.6. Suppose ¿;xx contains distinct idempotents ex, e2, e3 such that for

each i,j=X, 2, 3, Ts n Trf 0■ Let fi,- denote the idempotent in f n T¡ for i^j.

Then G is abelian and L is isomorphic to the boundary of the maximal group in

p-y.P~xP-.In particular, L = i\Ju Gfi,) u flj¡ Ge,) u {0}.

Theorem 4.7. Except in the case where there exists an idempotent e with dim Ge

= dimeG=l but Ge^eG, the number of conjugacy classes of idempotents in L is

countably infinite. If there are no nilpotent elements, this number is finite.

Proof. Of course ¡f12 U f2i| = 2 and |f22| is countable since {Ge : e 6 f22} is a

collection of open, pairwise disjoint subsets of L. It remains to prove |fu| is

countable. We have seen that if e e fn and Tis the boundary of G,(e) then GTis a

neighborhood of e and hence of Ge (Corollary 2.3.1). Furthermore, GTcan contain

at most three idempotents—e and possibly one in each component of T\{e}. Each

of the latter, if any, belongs to f22. Therefore GTis a neighborhood of Ge which is

disjoint from G/for every other/E (lt. If £X1 were uncountable, the sets {Ge : ee£xx}

would cluster at some Ge0, e0 e £u which we have just seen is impossible.

If the number of conjugacy classes is infinite then \¿¡1X U faa| is infinite. Whether

|ln| °r II22I is infinite we can select a sequence of rays {(Gx¡)"}¡ emanating from

0 such that gx¡-gx; = 0 for each i+j. This sequence will cluster at some j^O and

y2 = 0.

Remark. We do not explore the extent to which \£1X u f22| can be infinite.

In §7 we show that \Ç1X u f22| can °e arbitrarily large even in the abelian,

nonnilpotent case.

Corollary 4.7.1. If S contains a two-sided zero 0 then there exists a one-

parameter subgroup PofG such that 0 e P ". Hence ife is any idempotent in L there

exists a one-parameter subgroup P of G such that P " =P U {e}.

Proof. If G is isomorphic to SI (2), we already have the desired conclusion.

Assume that G is not isomorphic to SI (2). We shall use the fact that then every

element of G belongs to a one-parameter group, a fact used before which can be

proved directly in each case, or derived from the fact that every such G is some

kind of semidirect product of the one dimensional vector group and a planar group.

Consider two cases according to whether $12 U f21 is empty or not. First suppose

£12 u £21^ 0 • To be definite, take e e £2i. Then G^fix Af (1) and Gr(e) is a non-

commutative planar group. Let Pi be the one-parameter subgroup of Gr(e) such that

e ePf. Let Q denote the center of G. Then 0 e (eG)" =(e0-cz(/»1g)- and PXQ

is a commutative planar group. By Theorem 4.2 above, PXQ and hence G, contains

a one-parameter subgroup P with 0 e P ".



38 J. G. HORNE [January

If f12 u f2i= 0 then every nonzero idempotent belongs to ¿;xx u f22. Moreover,

fu u £22 is countable. Choose a neighborhood F of 0 having the property that

if x e V n G then xn e V for every positive integer n. It follows that if x e V and

Px is a one-parameter subgroup of G containing x then Px n L contains an

idempotent. Since F can not be covered by a countable number of one-parameter

groups, there exists an x e F such that no idempotent in £X1 u f22 is in Px . Thus

0 eP*. The rest of the conclusion is immediate from what has gone before.

5. The position of orbits. This is a short section in which it is proved for orbits

generally what has already been proved for orbits through idempotents: to wit,

that they are all nicely embedded.

Theorem 5.1. Suppose dimGx = 2. Suppose Gx is not closed and let S(Gx) =

(Gx) " \Gx. Then 8Gx is either a point, a line or a half-ray. If e is an idempotent in

8Gx such that Ge is closed then either Ge = dGx iand eG = e or Ge = eG) or Ge = e

and eG is a line or e is a two-sided zero for S. IfdGx consists of a single point, S has

a two-sided zero 0 and 8Gx = {0}. Furthermore, in this case, L2 = {0}.

Proof. We know there exists an idempotent e in 8Gx such that Ge is closed.

Assume dim Ge= 1. If dim eG = 2 then eG = L and every left orbit is one-dimen-

sional. Therefore, dim eGSX. If dim eG = 0, Ge is the entire boundary of Gx by

Theorem 2.11. If dim eG= 1 then Ge = eG. Thus Ge is a two-sided ideal in S and

//= G¡(e) is a normal planar group such that H " is a half-plane with e for two-sided

zero and //" forms a local cross-section at e for the left orbits of P where P is a

one-parameter group in G with G = PH. Suppose there exists y e S(Gx)\Ge. Since

any left ideal meets any right ideal, Ge n (Gj) " / 0 so e e iGy) ". Since H ~ forms

a local cross-section at e to the orbits of P, we may assume y e H~. Therefore,

since //" is a half-plane, (//»" =Hy u {e} so Hy = Gy and (Gy)" =Hy u {e} which

is contrary to the fact that Gec(Gj)". It follows in this case that 8iGx) = Ge.

Suppose dim Ge = 0. Thus eG is closed so dim eG^2. If dim eG= 1 then L\eG

is the union of two right orbits and eG forms their common boundary. Thus

Gx = xG since dim Gx = 2, so Gx has eG for its boundary.

Suppose d(Gx) contains a two-sided zero 0. Choose a one-parameter group P in

G with P"=P u{0}. For anyjed(Gx), j#0, Gy = Py so (Gj)" =(Pj)" =P~y.

It is thus clear in this case that S(Gx) consists either of 0 alone, a half-ray or the

union of two half-rays.

Suppose SGx consists of a single point. This point must obviously be an idem-

potent e such that Ge = e. Given the alternatives mentioned above, it follows that

eG = e so e is a two-sided zero 0 for S.

In this case, x2 = 0. For xG^Gx. If x2 e xG then xG and hence Gx is generated

by an idempotent which is impossible. Therefore x2 = 0. Let u, v be nonzero

elements of L. Then there exist elements gx,g2,g3eG such that u=gxx, v=g2x

and xg2=g3x. Hence uv=gxg3x2 = 0 soL2 = {0}.
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At present, we do not know whether there is a semigroup on a half-space with

Gx=L\{0} for some x. If there is such an example with G commutative then there

is in addition the following pathological situation: There is a planar group H in G

such that H " => L. For let P be a one-parameter subgroup of G with 0 e P ~. Choose

a second one-parameter group Q such that the component of the identity of G,(x)

is not contained in PQ. Let H=PQ. Then 0e//~. Since //" cannot consist of

just one additional point, there is a nonzero element yeH~ n L. But y e Gx

= H-Giix)x=Hx so y e Hx and xe H~. Therefore Gx<= H" and L<= H".

Theorem 5.2. Let xeL and assume dim Gx= 1. If Gx is not closed, then there

exists an idempotent e such that (Gx) " = Gx u {e}, (Gx) " is a half-ray, Ge = e and

dim eGSX. If dim xG = 1 also then S has a two-sided zero 0 and (Gx) " = Gx u {0}

while ixGf =xG u {0}. In any case, if S has a two-sided zero 0 and dim Gx= 1

theniGx)-=GxU{0).

Proof. There exists an idempotent e e (Gx) " \Gx such that Ge, and hence eG,

is closed. Certainly dim Ge^=2. Suppose dim Ge= 1. If dim eG = 2 then eG=L so

every left orbit of G, being a right multiple of a member of G is closed. Thus,

dim eGSX. If dim eG= 1 then Ge = eG since otherwise all left and right orbits of

G are closed by Theorem 2.5. Therefore Ge = eG so Ge is a group and if//=G,(e)

then //isa normal planar subgroup of G such that ee H' and // " is a half-plane.

Furthermore, // " provides a local cross-section at e to the orbits of P where Pisa

one-parameter subgroup with G=PH=HP. Since Ge*=(Gx)~ and Ge has points

on both sides of H " ni, Gx intersects // ~ n L so we may suppose xe H~ n L.

However, since H " is a semigroup on a half-plane with two-sided zero e, (//x) " =

//x u {e}. Since Gx is a line containing Hx and Gx n Ge= 0, (Gx)-=(//x)~,

whence (Gx)~ = GxU{e} which is a contradiction. Therefore dimeG^l so

dim eG = 0. But if dim Ge= 1 and dim eG = 0 then L\Ge is the union of two two-

dimensional right orbits which is a contradiction since dim Gx= 1.

We conclude that dim Ge = 0. Furthermore, dimeG^2. Since, again, in that

case all left and right orbits of G are closed. Therefore dim eGSX.

Of course, if dim eG = 0 then e is a two-sided zero and if S has a zero then e = 0

since there cannot be distinct left and right zeros in a semigroup.

We must show (Gx) " = Gx u {e}. Suppose first that dim eG = 1. By Theorem

2.11, L\eG is the union of two right orbits of G. Now x £ eG since then gx = x for

all g eG. Thus xG must coincide with the component of L\eG containing x. Since

dim Gx=l, every left orbit of G in xG is one-dimensional. Furthermore, the left

orbits of G in xG are just the portions of the various conjugates of (G,(e)") n L

which lie in xG. The closures of each of these are half-rays emanating from points

of eG. Since e e (Gx)", (Gx)" =Gx u {e} in this case.

Suppose dim eG = 0 so e is a two-sided zero. Let P be a one-parameter subgroup of

G with 0 e P ". Then P has no conjugates in G,(x) since if so, 0 e G¡(x) " which is false.

Therefore Gx=Pxand (Gx)~ =(Px)" =PxU{e},so(Gx)" =GxU{e} in this case also.
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Of course, if dim Gx = dim xG= 1 and Gx is not closed then S has a two-sided

zero 0 and (Gx)" =Gx u {0} while ixGf =xG u {0}. For by what has just been

proved, there exists a left zero e such that (Gx)" =Gx u {e}. By the dual to this

result, there exists a right zero/such that (xG)" =xG u {/}. If a semigroup has a

left zero and a right zero, the two are equal so e=/and e is a two-sided zero.

6. The radical. An element x e S is nilpotent if S has a two-sided zero 0 and

xn = 0 for some positive integer n. An element x of 5 is weakly left nilpotent if

dim Gx"<dim Gx for some positive integer n. If dim xnG<dim xG for some n, x

is weakly right nilpotent.

Recall that for each xeL, iGx)~\Gx is a closed left ideal and ixG)~\xG is a

closed right ideal. For example, that iGx)~\Gx is closed is due to the fact that Gx

is locally compact and that a locally compact space is open in its closure. The rest

is clear since G((Gx)"\Gx)^(Gx)"\Gx.

Theorem 6.1. Let xe S. Then x2 e Gx if and only ifx2 e xG. Thus, ifxn e Gx u xG

for some positive integer n then x2 e Gx n xG, Gx n xG is a group and the left as

well as the right G-orbit through x contains an idempotent.

Proof. The first assertion is true if Gx is closed since then xG is also closed and

we always have x2 e(Gx)" n (xG)~. A similar statement holds if xG is closed.

Assume that neither xG nor Gx is closed. Therefore dim Gx#0^dim xG. If

dim Gx = dim xG = 2 then Gx = xG and the first assertion is clear in this case.

Suppose dimGx=l and dimxG = 2. Then Gx^xG. If x2 e Gx then certainly

x2 e xG. Suppose x2 e xG. Since dim Gx= 1 but Gx is not closed, (Gx)" =Gx u {e}

for some idempotent e where Ge = e. Thus, ifx2 $ Gx then x2 = e. But then e s xG

so xG and hence Gx is closed which is a contradiction. A similar argument applies

if dimGx = 2 and dimxG=l. Finally, suppose dim Gx = dimxG = 1. Then S has

a two-sided zero 0 and (Gx)" =Gx u {0} while (xG)" =xG u {0}. From this, it is

clear that x2 e Gx if and only if x2 e xG in this case, so the proof of the first

assertion is complete.

Since iGx)~\Gx is a left ideal and ixG)~\xG is a right ideal, if x2 $ Gx u xG

then xn $ Gx u xG for any positive integer n so we have the first part of the second

assertion.

We have already seen that ifx2 g Gx n xG then Gx n xG contains an idempotent

and is a group.

Note that dim Gxn < dim Gx if and only if x" ^ Gx since all orbits of G are

regularly embedded. Thus, the previous result yields the

Corollary 6.1.1.  Weak left and right nilpotency are equivalent notions in L.

Hereafter we shall refer to a weakly left or right nilpotent element as a weakly

nilpotent element. The notion of weak nilpotency is in some respects more critical

than nilpotency but it is useful to study the latter notion first.

Lemma 6.2. If e is an idempotent then Ge is a semigroup.
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Proof. If dim Ge = dim eG = 2 then Ge = eG and Ge is a group. If dim Ge=l

and dim eG = 2 then Ge^eG and Ge is a group. Suppose dim Ge = 2 and dim eG= 1.

Let H=GTie). We know G^fixAf(l), H is a noncommutative planar group,

//"is isomorphic to Af (1)~ and every element of Ge can be represented in the

form hp where h e H~ n L and /? belongs to the center of G. Since multiplication

in //" n L satisfies "x_y = x", if hxpx and h2p2 are arbitrary elements of Ge then

hxpxh2p2 = hxh2pxp2 = hxpxp2 e Ge so Ge is a semigroup.

If dim Ge = dim eG= 1 and Ge = eG then Ge is a group. If Ge^eG then {x>>} =

xG n Gj> for all x, y e L. In particular if gx, g2e G then {gieg2e}=g1eG n Gg2e

=gieG n Ge^Ge so Ge is a semigroup.

Other cases are either immediate, or analagous to those already considered.

Theorem 6.3. If S has a zero 0 and x2 = 0 then ab = 0 for all a, b e (Sx u xS) ~.

Proof. We prove first that if x2 = 0 then a2 = 0 for all ae Gx u xG. Suppose

dim Gx= 1 and let g eG. If (gx)2/0 then (gx)2 e Gx so Ggx = Gx contains an

idempotent e and Gx = Ge. But Ge is a semigroup so x2 e Ge which is a contradiction.

A similar argument shows that if dim xG= 1 then if g g G, (xg)2 = 0 so xgx =

(xgxg)g_1 = 0 whence (gx)2 = 0. Based pn a dual argument which we do not give,

we conclude that if dim Gx= 1 or dim xG= 1 then a2 = 0 for all a e Gx u xG.

Since there is a two-sided zero, the only other case to be considered is that in

which dim Gx = dim xG = 2. In this case, Gx = xG so clearly a2 = 0 for any

aeGx\J xG.

Note next that if x2 = 0 then xgx = 0 for all g e G since gxgx = 0 so xgx = g " x(gxgx)

= 0. It is now easy to see that ab = 0 for all a, b e Gx u xG. Thus ab = 0 if

fl,i)6 (Gx)" u (xG)" so ab = 0 if a, o e Sx u xS and hence the final conclusion.

If xn = 0 for some positive integer // then x4 = 0. Indeed, if x" = 0 but x2^0 then

dim Gx = dim xG = 2 since, for example, if dim Gx= 1 and x2=¿0 then x2 e Gx so

Gx = Ge for some idempotent and Ge is a semigroup. Furthermore, if dim Gx =

dimxG = 2 and x2/0 then x2e(Gx)"\Gx. We know that when dimGx = 2, the

boundary 8Gx of Gx consists either of 0 alone, or 0 plus a set A where A = Ga = aG

for aeA or 0 plus two sets A, B where A = Gz = aG for aeA while B=Gb = bG

for beB. When x2/0, we may suppose x2e^4. But dim Gx2=l so if (x2)2^0

then A is a group and (x2)"Y0 for any positive integer m which is false when x" = 0.

We can say somewhat more :

Theorem 6.4. If xn = 0 for some positive integer n then x3 = 0. If x2^0 then

dim Gx = dim xG = 2. Let 8Gx = A Ufiu{0) as described above except that B may

be empty. Then iGxf^A and iGx)A = AiGx) = {0}. For any a, b, c e (Gx)", abc = 0.

Proof. We already know that if xn = 0 then x4 = 0 and if x2^0 then dim Gx

= dim xG = 2 and the boundary BGx of Gx consists of 0 together with a set A,

or 0 and two sets A, B where both A and B are left as well as right one-dimensional
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G-orbits. Suppose x2 e A. Since A~ is a two-sided ideal, if x3#0 then x3=gx2 for

some g e G. But then 0 = x4=gx3 so x3 = 0. In any case, x3 = 0.

If a, b e Gx then we may write a=gx and b = xh for some g, h e G so ab = gx2he A

since A is both a left and right G-orbit. If a e A, b e Gx, write a=gx2 and b = xh so

ab=gx2xh = 0. A similar argument shows ba = Q. It follows that abc = 0 for all

a, b, c e (Gx) ".

Call a left, right or two-sided ideal / nilpotent if there exists a positive integer n

such that xxx2. . . x„ = 0 for any set xx,..., xn of n elements of/.

Theorem 6.5. The set N of nilpotent elements of S is a closed two-sided ideal

which contains every nilpotent left ideal as well as every nilpotent right ideal. Moreover,

the product of any three elements of N is zero.

Proof. Let xe N. If x2 = 0, we have seen that (Sx u xS)2 = 0. Suppose x3 = 0

but xVO. Then dim Gx = dim xG = 2, Sx U xS=(Gx)" and the product of any

three elements of (Gx) ~ is zero. Thus, in any case, if x e N then Sx u xS<= N so N

is a two-sided ideal. Since x3 = 0 for all xe N, N is obviously closed.

We prove that the product of any three elements of N is 0 in a series of steps

which we number for easy reference.

1. Ifx2 = 0=y2 then either xy = 0 or dim xG = dim Gy = 2,

xy e ((xG)" n iGy)~\ixG u Gy)),

Gxy = xyG and xyx = 0=yxy.

Proof. Always xyeixG)~ niGy)~. If xy = xg then x = xjg_1 so xy = xyg~1y.

But yg~1y = 0 since y2 = 0. A similar argument applies if xy e Gy.

If xy#0 and xy $ xG u Gy then dim xG = dim Gy = 2. If xG = Gy then xy = 0 so

if xy^O then xG n Gy= 0 since when dim xG = dim G>> = 2 and xG n Gy^ 0,

xG = Gy. Thus if xj^O then xy is a common nonzero boundary point of xG and

Gy. In general, if dimGw = 2 and v is a nonzero boundary point of Gu then

dim vGS X so vG^Gv. Similarly, if dim uG = 2 and v is a nonzero boundary point

then Gv^vG. Thus Gxy = xyG and dim Gxy=X. Finally, xyx=yxy = 0 since, for

example xy e (xG)" and ((xG)")2 = {0).

2. Ifu2 = 0, Gu = uG, dim Gu=X and v is a nilpotent element then uv = vu = Q.

Proof. If uv ̂  0 then uv=gu = uh for some g, he G. Thus u = g~1uv so uv = g~1uv2.

This is false if t;2 = 0. If r?V0 then Gv = vG, dim Gi> = 2 and v2 e iGv)~\Gv. Also,

mi; e (Gz;)- but wi; ̂  Gy. For if mi; e Gv, then g_1wt;2 e Gv while i;2 e (Gi>)"\Gi; and

iGv)~\Gv is an ideal. But Mi>2 = (Mi>)t> = 0 by Theorem 6.3, which implies here that

((Gi;)~\(Gt;)). Gv = {0}. In any case, uv = 0. Since the hypotheses are symmetrical,

vu = 0 also.

3. Ifx and y are nilpotent then xyx=yxy = 0. In particular, ifx and y are nilpotent,

ixy)2 = 0.
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Proof. If x2=j2 = 0 we already have this result. Suppose x2 = 0 butj>2#0. Then

xy e (xG)~ so xjx = 0. On the other hand, xy e (Gy)~. If xj e Gy then (xG)" n Gy

7^ 0 so xG n Gy+ 0 since dim Gy = 2. But then xG<=Gy, and since x2 = 0, y2 = 0

which is a contradiction. Therefore xy e iGy)~\Gy so yxy = 0. A similar argument

applies if y2 = 0 and x2 ̂  0. Suppose x2 ̂  0 and y2 ̂  0. If Gx = Gy we know xyx and

j>x_y are zero. If Gx n Gy= 0 thenxj^ Gy since if so then (xG) " n Gj5¿ 0, whence

xG n G>># 0. Thus, xy e iGy)~\Gy and similarly v>xe(Gx)"\Gx. The first state-

ment implies yxy = 0 and the second implies xjx = 0.

4. Ifx and y are nilpotent then Gxy = xyG and ifxy^O then dim Gxy= X.

Proof. If x2 = 0=j2, we already have this result. Suppose x3 = 0 but x2^0. Then

dim Gx = dim xG = 2 and iGxf^A where A is a left and right G-orbit in 8Gx.

Now xje(Gx)" and the desired conclusion follows if xj>eGx = xG. Suppose

xy=gx. If y2 = 0 then xy2=gxy = 0 which is false. Therefore yVO and dim Gy

= dimyG = 2 and xy e Gx. Since xy e (Gy)-, Gx n Gy^= 0 so Gx=Gy. But then

xj> £ Gx since (Gx)2<=.4.

That the product of any three nilpotent elements is zero now follows. For

suppose x,y,ze N. Then either xy = 0, or Gxy = xyG, dim Gxy= X and (xy)2 = 0.

Therefore (xy)z = 0 by 2 above.

For the next result, and subsequently, it is useful to have the following lemma

which is of some interest in its own right.

Lemma 6.6. Ife is an idempotent then Se = (Ge)" so Se is closed and either a point,

a line, a half-ray, a plane or a half-plane.

Proof. For any element x, Sx=G~x<=(Gx)" so Se<=(Ge)~. Since e2 = e, xe = x

for all x e (Ge) " so (Ge) ~ <= Se. The final assertions about the shape of Se come

from the fact that every orbit of G is "regularly" embedded.

Theorem 6.7. For an element xeL, the following conditions are pairwise

equivalent:

(1) Sx=Sefor some idempotent e;

(2) Gx = Ge for some idempotent e;

(3) xS=eS for some idempotent e;

(4) xG = eG for some idempotent e;

(5) x is not weakly nilpotent;

(6) Gx contains no weakly nilpotent elements;

(7) xG contains no weakly nilpotent elements.

Proof. Suppose Sx = Se. Since Se is closed, Se = (Se)~c(Gx)~, so eE(Gx)".

If e £ Gx, then Ge<^iGx)-\Gx so Se = (Ge)" <=(Gx)~\Gx which is a contradiction.

Hence, when Sx = Se, e e Gx = Ge. Similarly if xS=eS.

Suppose Gx=Ge. Since Ge is a semigroup, x2 e Gx and x2 is not weakly nilpotent.

If x is not weakly nilpotent then there exists an idempotent e e Gx n xG so

Gx = Ge and xG = eG.
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If Gx=Ge then e=gx for some g e G so Se = Sgx = Sx. Similarly if xG = eG.

If x2 6 Gx u xG then Gx=Ge and xG = eG for some idempotent e e Gx n xG.

Since Ge and eG are semigroups, no elements of Gx u xG are weakly nilpotent.

The proof of the theorem is complete.

Even though, if x is weakly nilpotent, all elements of Gx u xG are weakly

nilpotent, this need not be true of all elements of Sx u xS. Indeed, the square of a

weakly nilpotent element need not be weakly nilpotent. For example, on the set of

triples ia,b,c) with a>0, ¿?^0 define (a, b, c)(x, y, z) = iax, by, bz + cy). Then

(a, b, c)2 = (a2, f?2, 2bc). Thus, if a = (a, 0, c) then a is weakly nilpotent but Ga2

contains the idempotent (1, 0, 0) so a2 is not weakly nilpotent.

Theorem 6.8. Let 0t denote the closure of the set W of weakly nilpotent elements

of S. Then 3% is a iclosed) two-sided ideal of S.

Proof. By the results above, if x e IF then Gx u xGc IF so Sx u xS=G~x

UxG-c(Gx)" u(xG)-c^. Thus SWvjWS^M so S(IF)" u W~ S<=-<SW)-

u iWS)- a St so á? is a closed two-sided ideal of S.

Definition 6.9. The set 0t of the theorem is the radical of S.

Theorem 6.10. If S has a two-sided zero and 3&+ 0 then N has a nonzero element.

Proof. Let x be an element with x2 ^ Gx u xG. Thus x^O. If x2 = 0 we are

through. If x2^0 then dim Gx = dim xG = 2 and x2 e 8Gx. Let A denote the one-

dimensional right and left G-orbit in 8Gx which contains x2. If (x2)2^0 then A

is a group so by Theorem 2.10, 8Gx also contains a right and left G-orbit B. Since

Gx = xG and x2 e A, abe A for all a, b e Gx so (Gx)"<=yl". Since B~ is an ideal,

P2czfi" so 52<=fi- n A~ ={0} and S contains a nonzero nilpotent element.

Theorem 6.11. Suppose S does not contain a two-sided zero. Then the radical 3%

has one of the following structures iexclusive of left-right duals):

(1) HI is empty;

(2) for some element xe W, dim xG= 1, dim Gx = 2 and 3i = GxVJ Ge where

(xG)" = xG u {e} and 0t2 = Ge;

(3) for some pair of elements x, y e W, dim xG = dim yG = 1, dim Gx = dim Gy = 2,

GxnGy=0, (xG)" =xG u {e}, iyG)~ =yG u {e}, á? = Gx u Gj u Ge=L and

L2 = Ge;

(4) for some element xe W, dim Gx = dim xG = 2, there is an idempotent ee3i\W

such that 8Gx=Ge = eG, @=WVJ Ge = Gx u Ge andâ?2 = Ge;

(5) for some elements xx, x2 eL, dim Gx¡ = dim x,G = 2/br i=\, 2, Gxx n Gx2

= 0, there is an idempotent e in the common boundary of Gxx and Gx2 such that

Ge = eG and 0t = Gxxv Gx2 u Ge=L while âê2 = Ge. If ai is of one of the types

described in (2)-(4) then G is one of the two groups described in Theorem 2.12.

Every group on E3 except SI (2) is the maximal group of a semigroup on a half-space

in which M is empty ithough generally in more than one way).
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Proof. Suppose Si is not empty and let x s IF. If dim Gx= 1 then dim xG = 2

(else there is a two-sided zero since Gx is not closed). Furthermore, (Gx) " = Gx u {e}

where Ge = e and dim eG=X. Thus by Theorem 2.11, L\eG is the union of two

right orbits. If the right orbit yG of L\eG different from xG is a group then 9t is

one of the type described in (2). If yG is not a group then as is shown in Theorem

2.12, we may assume y2 = e and Si is of the type described in (3).

Suppose no element of W has a one-dimensional left or right orbit and again

choose xeW. Then dim Gx = dim xG = 2 and since x2e(Gx)", x2 e S(Gx). If

dim x2G = 0 then x2 is a left zero and dim Gx2= 1 since S has no two-sided zero.

But then, by Theorem 2.12, L\Gx2 is the union of two two-dimensional left orbits

and it can not happen that both are also right orbits. Furthermore if one is, it is

also a group. Therefore dim x2G = 1. Similarly, dim Gx2 = 1 and since S has no

zero, Gx2 = x2G is closed and is a group. It may be that Si = iGx)~ in which case

St is as described in (4). If á?#(Gx)", let y e Si\(Gx)~. Then dim G^ = dim jG = 2

since neither Gy nor yG is closed and if either is one-dimensional, there is a left

or a right zero which is false. But then y2 e yG so y actually belongs to W and

y2 e (Gx) ". Thus Si is as described in (5).

To show that every group on E3, other than SI (2), is the maximal group of a

semigroup on a half-space, we appeal to the next section, wherein it is shown that

every group with a normal one-parameter subgroup is the maximal group of such

a group with L a group. The only group on E3 which does not contain such a

subgroup is the following:

pl cos 6    pi sin 6    x\

p~l sin 6    pt cos 6    y\,       0 < p < X

0 0 1/

and it is obvious that the closure of this group yields a half-space semigroup.

7. Radical free semigroups. In this section, we determine all possible multi-

plications on the boundary of half-space semigroups which have empty radical.

In addition, examples are offered of each possibility. As we have indicated before,

it is our belief that the examples offered exhaust the types that include them but this

belief is not settled here.

Theorem 7.1. Suppose S does not have a two-sided zero and that the radical of S

is empty. Then L has one of the following forms or has the left-right dual of one of

these forms when this makes sense:

(1) L is a group;

(2) L is left trivial (/'.e. xy = xfor all x,yeL);

(3) for some idempotent / fG=f and dim G/= 1 while one of the right orbits of

L\Gfis a group and the other has the form : dim Ge = 2, dim eG = 1 for some idempotent

e ias described in Theorem 2.12);
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(4) for some idempotent / fG=f, dim G/= 1 and the two right orbits of L\Gf

are each generated by idempotent s with one-dimensional left orbits;

(5) L is a rectangular band: {xy) = xG n Gy;

(6) L = Ge and dim eG= 1 for some idempotent e;

(7) L is the union of three groups Gex, Ge2 and Gf where ex, e2,f are idempotents

and dim Gej = dim e¡G = 2for /'= 1, 2 while dim G/=dim/G= 1. Thus Gf forms the

common boundary of Gex and Ge2. Moreover, G is either commutative, isomorphic

to R xAf(l) or G is one of the semidirect products RV2 which has at least two

conjugacy classes of noncommutative planar groups ibut G may be hyperbolic).

Proof. Since the radical is empty, every left as well as every right orbit of G is

generated by an idempotent. Suppose there exists an idempotent e such that Ge = L.

If eG = L, L is a group. If dim eG= 1, we have case (6) while case (2) occurs if

dim eG = 0. If there exists an idempotent / with dim G/= 1 and dim/G = 0 then

(the dual of) one of the situations described in Theorem 2.12 obtains. The only

ones of these with empty radical correspond to cases (3) and (4).

Suppose none of the previous cases nor their duals occurs. If £12 u £21 u f22 is

empty then dim Ge S 1 and dim eG S X for every idempotent e. By the cases already

excluded, we may suppose dim Ge = dim eG= 1 for all e. Then Ge^eG and L is a

rectangular band by Theorem 2.5. For if Ge = eG for all e then Ge is closed for all

e or else there is a two-sided zero. But if Ge and/G are closed then Ge nfG^ 0

so since/G = G/ Ge = G/which is a contradiction.

Thus, we may suppose there exists an idempotent e with dim Ge = 2 but Ge^L.

By Theorem 2.10, we may suppose S(Ge) is a group since the other possibilities

lead to one of the cases already considered or to the existence of a two-sided zero.

Therefore eG = Ge since if dim eG= 1, d(Ge) contains a left zero. Similarly, if e2 is

an idempotent in L\iGe) " then Ge2 = e2G and Ge2 and Ge have a common boundary

and one of the cases in (7) obtains. Since e and e2 commute, ee2 is an idempotent

so ee2=/ Let //=G,(/). Since ef=f=e2f ex and e2 belong to //". [To see that

exeH~, write G = PH where Gf=Pf. Let pnhn -»■ ex. Then pnhnf^ ejsopj-^f.

But then/?n -*■ 1 so l¡pn^- 1 so hn ->eand e e //".] Thus His a normal commuta-

tive planar group and if Pi = Gi(ei) then P^H and P¡ is normal in G. Therefore G

has one of the forms given in (7).

We show next that each of the possibilities mentioned in the theorem actually

occurs.

Each group G on E3 which contains a normal one-parameter subgroup P is the

maximal group of a semigroup on a half-space in which L is a group. To see that

this is so, we notice the following very general situation, alluded to in [6].

Suppose a one-parameter group P acts as a transformation group on a locally

compact space X so that X is a fiber bundle over the space X\P of orbits of P.

Define a topology on X u XjP as in [6]. This space is Hausdorff and when X

satisfies the second countability axiom is homeomorphic to P" x XjP [11].
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Let G be one of the groups on E3 containing a normal one-parameter subgroup

P. Then G is a fiber bundle over G/P so G u GjP is a half-space. Define a multi-

plication on G u G/P as follows: multiplication in G is that already given. If g is an

element of G and Px is an element of G/P, define g-Px = Pigx) and iPx)g = Pixg).

Define PxPy = Pxy. It is not difficult to prove that this multiplication is continuous

in G u G/P. We thus have

Proposition 7.2. Let G be a group on E3 containing a normal one-parameter

subgroup P. With multiplication as defined above, G U GjP becomes a semigroup on

a half-space with maximal group G and L isomorphic to GjP.

Examples in which multiplication on L is left trivial were offered in Theorem

2.13. It may be of interest that these can be constructed, using the topological

properties of G U G/P, defining multiplication by:

PxPy = Px, x, y e G,

giPx) = gP, g,xeG,

iPx)g = Pxg,       g,xeG,

and searching out conditions on P that make this multiplication be continuous.

An example in which Lis as in case (3) of the theorem is provided by P" x Af(l)" :

(a, b, c)(x, y, z) = (ax, by, bz + c),       a, b,x,y £ 0.

In this case, if/= (0, 0, 0),/G =/and dim G/= 1. If e = (0, 1, 0), dim Ge = dim eG = 2.

If e2 = (0, 1, 0) then dim Ge2 = 2 and dim e2G=X.

An example in which L is as in case (4) is provided by

(a, b, c)(x, y, z) = (ax, acy + b, cz),       a, c,x,z ^ 0.

Here, take/=(0, 1, 0), ex = i0, 1, 1) and e2 = (l, 1, 0). While there may be entirely

natural ways of arriving at this example, we were led to it by trying to construct

it "intrinsically", beginning with G" u G"¡P where G" =Rx Af (1)" and P is a

one-parameter subgroup of G other than the center and not contained in {0} x Af (1).

We have already listed a class of semigroups in which L is a rectangular band

(these were given following Theorem 2.5).

For an example in which L contains an idempotent e with L = Ge and dim eG= 1,

takePxAf(l)" (or fix Af (1)-, of course):

(a, b, c)(x, y, z) = (ax, ay + b, cz),       a, x > 0, b,y £ 0.

An example of the case in (7) with G commutative is provided by the subsemi-

group of elements of P~xP"xP" with x > 0. An example with G isomorphic to

R xAf(l) is provided by P~ xH~ where //"is the semigroup on a half-plane

with H=Ai (1) and 8H a group.
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To obtain examples as in (7) with G = R- V2, note the following result:

If 3~ is a semigroup of endomorphisms of a semigroup T then we may form

the holomorphic extension of T by 3~ exactly as in the theory of groups. Namely,

define

(flj TiX'a» T2)  = it2itlT2), TX12).

We apply this to the following situation: Choose a one-parameter group of

endomorphisms of P~ xP". Such may be constructed as follows: Let (a, b) be

fixed ordered pair of not identically zero real numbers. If A > 0 and (x, y) e P ~ x P "

(where P " here denotes the multiplicative semigroup of nonnegative real numbers),

define (x, y)A* = (x(AO), ylAb)). The map \^*AÁ yields a one-parameter group of

endomorphisms of P~xP". The holomorphic extension of P~xP" by {AÁ}A

leads to the following definition of multiplication:

ixx, x2, \x)iyx, y2, A2) = (x^^, x2a^y2, \x\2)

for xx, x2, yx, y2 2:0 and Xx, A2 > 0.

Here, (1, I, 1) is an identity and (0,0, 1), (1,0, 1) and (0, 1, 1) are the only

idempotents. L consists of all (xls x2, A) with xx=0 or x2 = 0. If ex = {X, 0, 1) then

(x1; x2, A)(l, 0, \) = ixx, 0, A) = (l, 0, l)(x1; x2, A) so Gex = exG and dimGe1 = 2.

Similarly if e2 = (0, 1, 1). On the other hand if/=(0, 0, 1) then dim G/=dim/G= 1.

Examples have now been given of each of the possibilities listed in Theorem 7.1.

We turn to the case in which S has a two-sided zero.

Theorem 7.3. If S has a zero and no nilpotent elements then S is commutative.

Proof. First, SX2 u SJ2X = 0. For suppose there exists e e S2X. Of course 0 e (eG)~

so 0 belongs to the closure of every conjugate of eG. By Theorem 2.10, 8(Ge) is a

line. Let T= 3(Ge). Since there are no nilpotent elements, T\{0} is the union of two

groups. Let/be the identity of one of these groups. Let K=Gt(f); K is a normal

planar group and K~ must have points in Ge. If k is the component of (A"" n L)\{f}

in Ge, k is a one-parameter group. The only such groups in Ge are conjugate to eG

and all of these run to 0 which is a contradiction. The argument is similar for <f12

so SX2 u S2X = 0.

From this fact, the fact that every orbit is generated by an idempotent and the

fact that the number of conjugacy classes of idempotents is finite (Theorem 4.6),

it follows that U {Ge : e e S22) is dense in L. In fact, |^22| 3:3 which implies that

G, and hence S, is commutative.

For suppose \é'22\S2. Since if eeS22, 8Ge is a line by Theorem 2.10 again,

|(f22| =2. Let ex, e2 e ¿"22. For /'= 1, 2, (Ge¡)~ is a semigroup on a half-plane with

zero and no nilpotent elements so Ge¡ is commutative and there are two nonzero

idempotents/,/ in the common boundary ToiGex and Ge2. Furthermore, ex and

e2 belong to the center of S so exe2 is idempotent. Suppose exe2 =/. Let {x„}„ be a

sequence in Gex converging to/2 and let {yn}n be a sequence in Ge2 converging to
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f2. On the one hand xnyn e GexGe2 = Gfx, while on the other, xnyn^~f2f2=f2

which is impossible. Thus exe2j=fx and a similar argument shows exe2^f2. If

exe2 = 0 then the xn, yn above satisfy: xnyn = 0. Thus/¡ = 0 which is also impossible.

It follows that |<f22| 2:3 as claimed and the proof of the theorem is complete.

We conclude with a class of examples of commutative, radical free semigroups

with zero. Among other things, they show that even though |(^22| is finite, \<a22\

can be arbitrarily large (and indeed, assume any value other than 0, 1 or 2).

Let « be a fixed positive integer greater than 2. We will construct a semigroup in

which \é'22\=n and which is a subsemigroup of (P")™ + 3 where, in general, if Pis

a semigroup and k is an integer, Tk denotes the product semigroup on the /c-tuples

of members of T.

The construction is given in terms of a certain set of« linear functions/, ...,/„

on R3. The functions should have the following properties:

(1) any set of three of them are linearly independent;

(2) if Z¡ denotes the zero set of/ then the component of R3\{Jf=xZ¡ where

every / is negative is contained in the octant T of R3 where all coordinates are

negative. One can think of this component as an infinite polyhedron II whose

faces are contained in the various Z¡'s. Furthermore, it is intended that no / be

any multiple of any of the projections on R3 so the faces of II are, except for the

origin, contained also in F. That such functions can always be found is easy to see.

For example, let irn be an «-sided polygon contained in a disc C in F which is not

contained in a plane through the origin. Order the vertices of irn cyclically. Join

each vertex to the origin by a line. If L¡, Li + X denotes a consecutive pair of such

lines, letZ¡ denote the plane spanned by L¡, Li + X. For each /', choose a linear function

/ whose zero set is Z¡ and which is negative on the side of Z¡ containing, for example,

the center of the disc C. The functions/,.. .,/„ have the desired properties and the

construction of the example proceeds with a fixed set of such functions in mind.

Let H be the following subset of fin + 3:

//={(x,/(x),...,/n(x)):xEfi3}.

Let exp denote the usual exponential map from R to P and let Exp (xl5..., x.1 + 3)

= (expx1;..., exp xn + 3). Let A^=exp //and let A'" be the closure of A'in (P")n + 3.

The semigroup A"" is the desired semigroup.

Let L denote the boundary of K~ ; i.e., L = K~\K. Note that L consists of those

points of (p-)n + a all of whose coordinates are zero except for a "cyclic pair";

a "cyclic pair" being either a pair ui,i+l" or "3, « + 3" and />3. In particular,

all elements of Z. have their first three coordinates zero. For if x e L~\L and i S3,

x¡ = limexpx¡n where {xin}„ is a sequence of real numbers. If any one of the

sequence of coordinates of (xln, x2n, x3n) has a finite limit at least one of the

sequences /(xln, x2n, x3n), 7=1,...,«, has +oo for limit since the sequence

(•*in, *2n, x3n) must eventually lie outside the polyhedron IL
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Thus L is the union of a "cyclic" collection of "sectors", each of which is

topologically a half-plane so that L is obviously a plane.

The points lying in the boundary of the sets Exp L¡ are idempotents in $22 so

l^aal =n- (If {*n}n is a sequence in L¡ becoming negatively infinite, lim„/(xn)= —oo

if_/'#/', z'+l, when /'<«, and limn/(xn) = 0 iij=i, i+X. Thus limn Exp (xn) has 1

in the z'th and (/'+ l)th place and zero elsewhere.)

To see that A'" is homeomorphic to a half-space, let Pbe the line {(/, t, t) : t e R)

and let P = Exp T. Let D = (Exp II)". It is straightforward to prove that D is a

disc. Let X be the half-space {(x, y, z) : xï:0}. Write each x e S in the form pu

where p is a positive real number and m is a point of the unit hemisphere E in S.

Identify E with D by a homeomorphism «. The map (/?, d) —>- pd is a homeo-

morphism from Px D onto K " \{0}, so the map /? • m —s- /? ■ «(w) is a homeomorphism

from 2\{(0, 0, 0)} onto K " \{0} which extends naturally to a homeomorphism from

2 onto K~.

Appendix. This section is devoted to a proof of the result which, in the main

body of the work, frequently allowed us to conclude that the closure of a planar

group is a half-plane. In view of the examples in [3], this result is not entirely

expected. According to these examples, it is possible to put a given semigroup on a

line and a given planar group together to form nonisomorphic semigroups on a

half-plane. Nevertheless, according to the principal result of this section, there is

only one topological possibility for a semigroup which is the union of a plane and

a line.

Theorem. Let S be a locally compact Hausdorff topological semigroup whose maxi-

mal group is a planar group G which is dense in S. IfS\G is a line then S is topologic-

ally a half-plane, while ifS\G is topologically a half-ray then S is topologically a plane.

We treat the cases in which S has or does not have a two-sided zero 0 separately.

Suppose S does not have a two-sided zero. Let xeL. Since any endpoint of Gx in

L is a right zero and any endpoint of xG is a left zero and since a semigroup can

not have a left zero and a right zero without having a two-sided zero, either

Gx = xG=L and L is a group or Gx = x and xG=L or xG = x and Gx = L.

In [3], it was proved that if a semigroup on a half-plane has no nilpotent elements

then G and L determine G u L. However, once it is known that a one-parameter

subgroup P and an idempotent eeL can be found such that P" =P u {e} and

that P " is homeomorphic to [0, oo), the arguments given there are valid knowing

only that G is planar, L is a line and G u L is locally compact. Moreover, when

there is no zero, the result actually proved is the following: there exist one-parameter

groups P, Q such that G u L=P~ Q and the map (/?, q) -> pq is a homeomorphism

from P~ x Q onto G U L. Therefore, if we can prove under our present hypotheses

that there exists an idempotent eeL and a one-parameter subgroup PcG such

that P ~ =P u {e} and that P ~ is homeomorphic to [0, oo), we may conclude that

the theorem is true when S does not have a two-sided zero.
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When S has no zero, we may assume L contains an idempotent e such that

Ge=L. Let P be the component of the identity of G,(e). Then eP = e since either

eG = e or Ge = eG=L, L is a group and e belongs to the center of S. Let Q be a

one-parameter subgroup having no conjugates in P. Then G=PQ= QP. Let {xn}n

be a net in G converging to e. Write xn = qnpn with an £ Q, pn e P. Then qnpn -> e,

so a„/>ne —> e, whence qne -> e. Since the map q -*■ ae is a homeomorphism from g

to G?e, an-> 1. It follows that /?„-> e so e eP". But Pe = e so e is a zero for P",

whence P"=Pu{e}.

It remains to prove that P ~ is homeomorphic to [0, oo). (In effect, this result is

the one-dimensional version of the theorem.) To do this, we prove a lemma

which turns out to be needed later in another connection.

Lemma. Let T be a locally compact, connected Hausdorff topology on [0, 1) whose

restriction to (0, 1 ) is the ordinary topology. Then T is either the ordinary topology

on [0, 1) or ([0, 1), T) is homeomorphic to a simple closed curve.

Proof. Since [0, 1) is P-connected and (0, 1) is open, 0 6(0, 1)". Therefore

0 6 (0, 1/2)" or 0 e (1/2, 1)". There is no loss in generality in assuming the former.

Since closed intervals in (0, 1) are P-closed, it follows that 0e(0, a)~ for all

a e (0, 1). We assert that every P-neighborhood of 0 contains a set of the form

[0, a) for some a. If this is false, then there is a P-neighborhood F of 0 such that

F" is compact and no component open interval of V n (0, 1) abuts 0. Furthermore,

since Fn(0, a)^ 0 for all ae(0, 1), it is possible to choose a sequence xn of

endpoints of component intervals of V n (0, 1) such that x„->0 in the ordinary

topology of [0, 1). Since F" is compact, we may suppose xn converges in the

P-topology to some point xeV~. But x is obviously not in (0, 1) so xn —>0 in the

P-topology. Now there is a P-neighborhood IF of 0 such that W~<=- V. If U is a

component open interval of W n (0, 1) there is a component open interval Z of

F n (0, 1) such that U^Z. Now U cannot abut at 0 so 0 £ U~. Since U~<=-V,

£/"<=z. Therefore xn $ U for any n. However, since IF is a neighborhood of 0

and xn->0, IFn(0, 1) must contain all xn for n sufficiently large, which is a

contradiction. We have shown that P-neighborhoods of 0 contain ordinary

neighborhoods of 0.

Now, if 0^(|, 1)" then obviously P coincides with the ordinary topology. If

0 e i\, 1)~ then reasoning of the previous type shows that every neighborhood of

0 contains a set of the form (a, 1) for some a e (0, 1). In this case, ([0, 1) ,P) is

homeomorphic to a simple closed curve.

Let A, B denote the two components of P\{1} and assume 0 e A~. By the lemma,

^u{0}u {1} is an arc. If 0 e fi" then B U {0} U {1} is an arc and P " is a simple

closed curve which is false since P can be embedded in no compact semigroup. It

follows that P " is homeomorphic to [0, oo) and, as we have already indicated,

conclude the theorem is proved in case S does not have a zero.
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Throughout the remainder of this section, then, assume that S has a two-sided

zero 0. Let x be a nonzero member of P. Then Gx = xG so either xG is a group or

(xG)2 = 0. Therefore 0 is not a limit point of idempotents. Hence there exists a

one-parameter subgroup P of G such that P~ =P u {0}. Let A^=S\{0}. Let P act

on X by left multiplication. By [6], X is a fiber bundle over the space XjP of left

cosets of P and XjP is a Hausdorff space.

Since GjP is homeomorphic to a line, GjP u {Px}, x a nonzero member of L,

satisfies the conditions of the lemma. Thus, since XjP is Hausdorff, if L is a line,

XjP is an arc. If L is a half-ray, XjP is either homeomorphic to [0, 1] or is a simple

closed curve. In either case, X must satisfy the second countability axiom so there

is a complete cross-section A to the orbits of P in X [11]. Let I denote the arc of

P " from 0 to 1. Let D=JA. Then D is a neighborhood of 0. For suppose there is

a net {zn}n, zne G converging to 0. There exists pne P such that pnzn e A.XÍ zn$ D

then pn e I so we may suppose pn —> p e P ~. But then pnzn -> 0 which is a contra-

diction since 0 £ A.

Evidently f) {tD : t eJ, /^0} = {0}. For assume x is a nonzero element of this

intersection. Then for every /, there exists txeJ, axeA such that x=t-tx-ax.

However, x = t0a0 for unique t0eP, a0e A so t-tx = t0 and ax = a0 for every x.

Since we may choose a sequence t„ —> 0 and the corresponding txs are bounded,

this is impossible.

Let F be a compact neighborhood of 0. Then there exists tel, t^0, such that

tD<= V. Now tA^tD and tA is closed so tA and hence A is compact. It follows

that in case L is a half-ray then XjP is a simple closed curve.

We complete the proof of the theorem in case Lisa line. The argument in case L

is a half-line is similar and is omitted. Choose a homeomorphism hx from A onto

the unit semicircle in the right half cartesian plane. Let «2 be a homeomorphism

from P" onto the nonnegative x-axis. If x e X, x=pa for unique peP, aeA.

Let «(x) = «2(/?)//1(a) (complex multiplication). Let «(0) be the origin. Then « is a

one-to-one and continuous function which is a homeomorphism on X. Further-

more, « maps the compact neighborhood D above onto the unit half-disk so « is a

homeomorphism on D and hence a homeomorphism everywhere.
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