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CHARACTERIZATION OF TAMING SETS ON 2-SPHERESO)

BY

J. W. CANNON(2)

1. Suppose that a 2-sphere S in E3 is tame modulo a closed subset F, and

suppose that F is tame (i.e., F lies on a tame 2-sphere in E3). Is S tame ? And if S

is not tame, at which points of F can S be wild? These questions are answered by

Theorem 1.1. The author is deeply indebted to C. E. Burgess, who in private

conversation pointed out how Lemma 2.3 and linking arguments can be used to

establish special cases of Theorem 1.1 (see [6]).

If £ is a positive number, let Fs denote the closed subset of F consisting of those

points of F which lie in components of F of diameter equal to or greater than e.

Let F# denote the subset of F which consists of those points of F which are degener-

ate components of F. The set F# is not necessarily closed.

Theorem 1.1. If F is a tame, closed subset of a 2-sphere S in E3, S is tame modulo

F, and W^F#, then

(1) S is tame modulo cl F#, and

(2) there is a 2-sphere S' in E3 which contains F such that cl W is the set of points

at which 5" is wild.

Theorem 1.1 characterizes those sets which we shall call taming sets. A closed

subset F of E3 is a taming set if the following two conditions are satisfied :

(i) F lies on a 2-sphere in E3, and

(ii) if a 2-sphere S in E3 contains F and is tame modulo F, then S is tame.

If F is a taming set, then it follows from (i) and [1, Theorem 7] that there is a

2-sphere 5 in E3 which contains Fand is tame modulo F. By (ii), S is tame. Thus a

taming set is tame. Hence we see that Theorem 1.1 characterizes taming sets as

those tame, closed subsets of spheres which have no degenerate components.

Special cases of Theorem 1.1 have been established previously. We mention the

principal results (hereafter referred to as statements (iii)-(vii) of §1): a closed

subset F of a 2-sphere in F3 is a taming set if

(iii) Fis a tame finite graph [9, Theorem 2 and Corollary 1],

(iv) Fis a tame Sierpitiski curve [4, Theorem 8.2],

(v) F is a tame, nondegenerate treelike continuum [6],
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(vi) F is a tame, nondegenerate, locally connected continuum [8], or

(vii) Fis a closed, countable union of taming sets [5, Theorem 3.1].

Although Bing stated (vii) in a slightly different form and for special cases only,

his proof is valid in the general case.

Theorem 1.1 will follow from Theorem 1.2. Our first goal will be to give a proof

of Theorem 1.2 based upon results from §2 and §3. But first we fix some notation

and terminology.

Throughout this paper by a 2-sphere we shall mean a 2-sphere in E3, and P will

invariably denote the plane {(x, y, z) | z = 0} in E3. If X<=E3 and e>0, then Ne(X)

will denote the set {x e E3 \ p(x, X) < e}, where p is the Euclidean metric. An e-set

X is one such that Diam X= sup {p(x, y) \ x, y e X}<e, and an £-map (or homeo-

morphism) is one which moves no point as far as e. A sphere S is tame modulo a

set A'if S is locally tame at each point of S- X. A punctured disk is the set remaining

when the interiors of finitely many disjoint disks, each interior to a disk D, are

removed from D.

Theorem 1.2. If the closed set Flies on a tame sphere and e > 0, then F" is a taming

set.

Proof. The result is clear if Fis a 2-sphere. Hence we may suppose that Fis not

a 2-sphere and that F lies in P since F is tame. Let S be a 2-sphere containing Fe

(e>0).

At this point we insert some informal comments on the proof. Lemma 2.3 asserts

that it is sufficient for our purposes to show that any sufficiently small unknotted

simple closed curve 7 in E3 — S is homotopically trivial in a small subset of E3 — Fe.

Now if F£ were a wild simple closed curve on S, then / might very well be homo-

topically nontrivial in E3 — Fs and yet not be entangled in the "hole" of F£ at all.

However, since F£ is flat, the homotopic nontriviality of y in E3 — Fc is essentially

equivalent to the entangling of J in the holes of FE. Hence any such entanglement

should be reflected in the entanglement of J in the holes of other sets on S which

closely approximate F£ in some sense. In particular, since the holes in Fe can be

approximated by the holes in a finite graph on S and since every arc on S can be

homeomorphically approximated by tame arcs on S, the entanglement of J with

F£ should be reflected in the entanglement of J with a tame finite graph on S

which has holes much like those in Fe. This intuitive idea is made precise in Lemmas

3.2 and 3.3. But Lemma 2.4 shows that / cannot be badly entangled in any tame

finite graph on S. Although our actual proof uses a finite union of tame arcs on S

rather than a tame finite graph, the preceding discussion gives an intuitive outline

of the proof.

Let/? e F£, and let TV be a spherical neighborhood of diameter less than e centered

at p. Let Nx he a concentric spherical neighborhood whose closure lies in TV. By

Lemma 2.4 there is another concentric neighborhood TV2 whose closure lies in A7!

so that if J is any unknotted simple closed curve in (F3 — S)C\N2 and F is any
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taming set on S, J bounds a disk in Mi - (Nx n T). Let J be any unknotted simple

closed curve in (F3 — S) n N2. We may assume that J is in general position with

respect to P. Let D be the circular disk cl (N n P). Let A/=Bd D u (D C\ F£).

Then M is a continuum because Diam D < e. Let C0 denote a polyhedral cube with

handles in E3—J which is formed by thickening a punctured disk D0 in P as in

Lemma 3.3. By Lemma 3.3 there is a set generator G for rr(C0) so that G n TV", is a

subset of a taming set F on S. The simple closed curve J bounds a disk E in

Ni — (Ni n F) by our choice of JV2. Therefore E n G= 0. Hence by Lemma 3.2,

J bounds a disk E' in F3 — C0, hence in E3 — M. Since Bd TV is a round sphere and

Bd N— M is simply connected, E' can be cut off geometrically just inside Bd N so

as to miss M. We conclude that J can be shrunk to a point in N— M, hence in

N—FE. Since S,p, and N were arbitrarily chosen, it follows from Lemmas 2.2 and

2.3 that Fe is a taming set.

The idea of cutting E' off geometrically near Bd TV was suggested in a seminar on

topology at the University of Wisconsin. We originally used a more complicated

argument to show that the existence of E' implies that J can be shrunk in N—M.

Proof of Theorem 1.1. In order to prove conclusion (1) it suffices to show that S

is locally tame at each point of F— cl F#. Let p e F— cl F#. Let D be a disk on S

with tame boundary such that p e Int D and D<=-(S—cl F#). Such a disk exists by

[2, Theorem 1]. Let F' = Bd D u (F n D). Then F' is the closed countable union of

the taming sets {(F r\ D)Vi}¡%i and Bd D (Theorem 1.2). Hence F' is a taming set

by Bing's theorem given in the introduction as statement (vii). By Lemma 2.1,

Int D is locally tame. Hence S is locally tame at p.

We now indicate without proof some procedures and lemmas sufficient to prove

conclusion (2) of Theorem 1.1.

Lemma 1.3. Let F be a compact subset of P, and let p be a degenerate component

of F. Then there is a sequence {At} of annuli in P such that

(1) Diam Ai -> 0 as i -> oo,

(2) {/>} u Ai+1c bounded component of P — Axfor each i, and

(3) F-{p}^(j^i\ntAi.

Lemma 1.4. Let F,p, and {A¡} be as in the conclusion of Lemma 1.3. Fix m and

let D denote the disk in P bounded by the inner boundary of Am. Let U be an arbi-

trary open set in E3 which contains Int D. Then Bd D bounds a disk D' in Bd D u U

such that p is the single wild point of D' and Ui°°=m + i A^D'.

Indication of proof. The disk D' can be constructed as a feeler which winds in

and out of F in U and is knotted like the arc described by Fox and Artin in [11,

Example 1.2].

Proof of conclusion (2) of Theorem 1.1. We start with a tame sphere S which

contains a large disk D in F with F<=Int D. (Since Fis tame, we lose no generality

in assuming F<=P.) Let {w¡} denote a countable dense subset of W and proceed

inductively to insert for each /' a Fox-Artin feeler in S with wild point at wt as
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indicated by Lemmas 1.3 and 1.4. The two lemmas show that each adjusted sphere

can be made to contain F. That the adjusted spheres converge to a sphere S' can

be insured by methods described in [2, Theorem 7]. We can insure the wildness of

S' at each point of {vv¡} and hence at each point of cl (W) by picking at stage /' an

arc A{ on the adjusted sphere which contains w¡ and misses Uy#i {wj) and then by

keeping A¡ in all succeeding adjusted spheres. The arc A¡ is necessarily wild at vv¡;

hence S', which contains Ah is wild at w¡. We can make sure that S' is tame modulo

cl(W) by requiring that each point of S— cl(W) lie in a neighborhood which

is not adjusted after some given stage.

2. Taming sets. We now recall three well-known results and prove an elemen-

tary lemma regarding taming sets.

Lemma 2.1 (Bing [4, Theorem 8.3] and Loveland [18, Theorem 18]). If U is an

open subset of a 2-sphere S in E3, T is a taming set on S, and U is locally tame at

each point of U—(U n F), then U is locally tame.

Again we note that Bing states his Theorem 8.3 for special kinds of taming sets

only, but that his proof is sufficient to establish Lemma 2.1.

Let S denote a 2-sphere in E3 and F a closed subset of S. We say that F satisfies

(C, F, S) if for each e>0 there is a 8>0 so that each unknotted S-simple closed

curve in E3 — S can be shrunk to a point in an e-subset of E3 — F. The following is

Lemma 1 of [7].

Lemma 2.2. Suppose F is a closed subset of a 2-sphere S in E3. Then F satisfies

(C, F, S) if for each p e F and for each open set TV containing p there is an open

subset V containing p so that each unknotted simple closed curve in (E3 — S) f~\ V

can be shrunk to a point in TV—(TV n F).

The following is a consequence of [18, Theorem 16] and the proof of [18,

Theorem 13]. Loveland's Theorem 13 [18] states that in the case considered

(*, F, S) is satisfied if and only if (A', F, S) is satisfied. Loveland's proof that

(*, F, S) is satisfied if (A', F, S) is satisfied, however, uses only the weaker hypoth-

esis that (C, F, S) is satisfied.

Lemma 2.3. Suppose that F is a closed subset of a 2-sphere in E3 and that F=Fe

for some e > 0. Then if F satisfies (C, F, S) for each 2-sphere S containing F, F is a

taming set.

Lemma 2.4. Let S be a 2-sphere and e a positive number. Then there is a 8 > 0 so

that if F is any taming set on S andJ is an unknotted 8-simple closed curve in E3 — S,

then J bounds an s-disk in E3 — F.

Proof. Choose 2S in the range 0<2S<e/6 so that each 28-set on S lies in the

interior of an e/6-disk on S. Let F be a taming set on S and J an unknotted S-simple

closed curve in E3 - S. Then J bounds a 2S-disk D in E3. The set 7) n S is a 28-set
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on S, hence lies in the interior of an e/6-disk E on S. By Bing's polyhedral approxi-

mation theorem for open subsets of spheres [1, Theorem 7], there is a homeo-

morphism / from S into E3 that is fixed on F so that f(S) is locally polyhedral

modulo F and thus is tame, so that [/(S) n D]^[f(\nt E) n Int D], and so that

Diamy"(F)<e/6. By the Tietze Extension Theorem there is a map g from D into

D u E so that g is the identity on the component K of D—f(S) which contains J

and g takes D — K into f(E). Then g(7)) is a singular e/3-disk. Because/(S) is tame,

there is an e/3-homeomorphism «: E3 -> E3 that is the identity on / and so that

h o g(D) C\f(S) = 0. Then « o g(D) is a singular e-disk in E3 -f(S) bounded by J

with no singularities near J. Thus by Dehn's Lemma [19], which one can adjust for

nonpiecewise-linear maps by using [1, Theorem 7], /bounds a nonsingular £-disk

in E3-f(S), hence in E3-F.

3. Set generators. Lemmas 3.2 and 3.3 are the goals of this section. By a

3-manifold we shall always mean a compact, connected, polyhedral 3-manifold-

with-boundary in E3.

A set generator G for tt(K), where K is a 3-manifold, is a closed, connected subset

of Int K such that for each loop/: S1 -> K (S1 denotes the 1-sphere or circle)

there is a homotopy H: S1xl^ K such that H(s, 0)=f(s) for each s e S1 while

//(S1 x 1)<=G. The basic properties of set generators are summarized in Lemma 3.1.

Remark. The symbol tt(K) denotes the fundamental group of K, but the presence

of tt(K) in our terminology is merely meant to suggest the properties enjoyed by

set generators. As a group tt(K) will play no role in our discussion.

Lemma 3.1. Let K be a 3-manifold and G a set generator for tt(K).

(1) IfH: G x I -> Int K is continuous and H(g, 0) = g for each g e G, then H(G x 1)

is a set generator for tt(K).

(2) If C is a polyhedipl cube in E3 such that C r\ K is a polyhedral annulas which

is common to Bd C and Bd K, then G is a set generator for tt(K u C).

(3) If D is a polyhedral disk in Ksuch that Bd 7)c Bd K, Bd D is not nullhomotopic

in Bd K(Bd 7>~0 in Bd K), andlnt D^IntK, then G n T># 0.

Proof. (1) and (2) are obvious. To prove (3) we proceed as follows. Suppose

that G c\ D= 0. Under this false assumption we show the existence of a disk E

such that Bd F<= Bd K, Int F<= Int K, and E separates K into two 3-manifolds Kx

and K2 such that Gc Int Ki while K2 is not simply connected. Indeed, if D separates

K, let D = E and let Kx and K2 be the closures of the two components of K— D.

Since G is connected and does not intersect D we may assume that GcInt Kx.

Because Bd 7)^0 in Bd K, Bd K2 is not simply connected. Hence by [20, p. 224],

K2 is not simply connected. This proves the existence of Kx and K2 when D separates

K. If D does not separate K, then thicken D slightly in K— G to form a handle C

for the 3-manifold 7^0 = cl (K—C). Let A be an arc on Bd K0 which joins the two

components of K0 r\ C. Then a regular neighborhood K2 of C u A in K— G is a
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solid torus which intersects the 3-manifold K1 = cl(K—K2) in a single disk E.

Further, G^Int.^. We have thus established the existence of the desired disk F

and 3-manifolds Kx and K2. Let /: S1 -*■ Int K2 be a nontrivial loop in K2 and

H:S1xI^Ka homotopy such that h(s, 0)=f(s) for each seS1 while //(51 x 1)

<=G. Since E is an absolute retract, there is a map H0: S1 x I-> K2 such that H0

agrees with H on the component R of (S1 xI) — H'1(E) which contains S1 x{0},

while H0[(S1xI) — R]<=E. This shows that fis homotopic in K2 to a loop in E,

a contradiction. This completes the proof of (3).

Lemma 3.2. Let K be a 3-manifold, J a simple closed curve in E3 — K, and G a set

generator for tt(K). Then J bounds a disk in E3 — K if and only if J bounds a disk in

E3-G.

Proof. If / bounds a disk in E3 — K, then J certainly bounds a disk in F3 - G.

Suppose that / bounds a disk D in E3 — G. Then we may assume that D is locally

polyhedral modulo J and that D is in general position with respect to Bd K. We

proceed by induction on the number of components of D n Bd K. If D n Bd K= 0,

we are done. Otherwise there is a subdisk F of D such that Bd F<=Bd K and

Int E n Bd K= 0. If Bd F is nullhomotopic in Bd K, then, since G^Int K, the

trivial intersections of D with Bd K can be removed by cutting D off near Bd K.

This reduces the number of components of D n Bd K, and the result follows by

induction. If Bd F is not nullhomotopic in Bd K, then Int Fd:Int K by Lemma

3.1(3); and so Int E<=E3 — K. In this case thicken E into a polyhedral cube C so

that C n K is an annulus and D n C=F<= Int (C U #). By Lemma 3.1(2), G is a

set generator for tt(Cu K). Also J^E3-(Cu K), D n G= 0, and D n Bd (Cul)

has fewer components than does Z> n Bd A". Thus by induction J bounds a disk in

the complement of C u AT, thus in the complement of A". This completes the

inductive proof.

Lemma 3.3. Let M denote a subcontinuum of a circular disk D in P such that M

contains Bd D and M— Bd D<^S, where S is a 2-sphere in E3. Let CQ denote a

polyhedral cube with handles formed by thickening a punctured disk D0 in P which

has the following properties:

(1) Afclnt A-

(2) No two components of P— D0 lie in the same component ofP — M.

Then given e > 0, there is a set generator G for tt(C0) such that G — Are(Bd D) is a

subset of a taming set on S.

Proof. We may assume that 2« < Diam D. Let D' be the circular subdisk of D

that is concentric with D so that p(Bd D, Bd D') = e/2. Choose a>0 so that

a < min (e/4, p(Bd C0, M)). Choose ß > 0 so that if x, y e S and 0 < p(x, y) < ß, then

x and y are endpoints of an a/2-arc on S. Choose y>0 so that y<min (jS/3, a/4).

Let F0 be a polyhedral punctured disk in F which has the following properties:

(3) M^lntEa^E0^Ny(M).

(4) F0 n £>'<= A^fTnt D n M).
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Note that F0c=Int D0 and that, roughly speaking, F0 is a much better approxima-

tion to M than is D0. Let G0 he a connected finite graph in D n E0 that contains

those boundary components of E0 in D. Then G0 is clearly a set generator for

tt(C0). The graph G0 is the union of finitely many y-arcs Ax, A2,..., An so that if

two intersect then their intersection is a common endpoint. Let vx,v2,...,Vj

denote the endpoints of Ax, A2,..., An. To each v¡ assign a point w¡ as follows:

If vt e D — D', let w, = v¡. If v¡ e D', let wt be a piercing point of S in S n Af so that

p(vh w¡) < y. This is possible because of (4) and the fact that the set of nonpiercing

points on S is 0-dimensional [3]. We may require that wx, w2,..., Wj be distinct.

We say that A¡ is of type 1 if the endpoints of A¡ are in D', that Ai is of type 2 if

the endpoints of Ai are in D — D', and that A¡ is of type 3 otherwise. To each At

assign an arc Bx and a homeomorphism «¡: Ai -> B¡ as follows.

Case 1. If A i is of type 1 and v, and v, are the endpoints of A¡, then wr and ws

are piercing points of S in S n Af so that p(wr, ws)<3y<ß. Hence there is an

a/2-arc B{ on S of which wT and ws are endpoints. It follows from [2, Theorem 1 ]

and [4, Theorem 8.5] that there is an a/2-arc B¡ from wr to ws such that B¡ is locally

tame modulo wr and ws. Hence Bt is tame by [12, Lemma 6.1]. Let ht: A¡^B¡

he any homeomorphism that sends vr to wr and vs to ws.

Case 2. If A¡ is of type 2, let Bi = A¡ and let h¡: A¡^ B¡ be the identity map.

Caie 3. If y4i is of type 3 with endpoints vr and vs, let B¡ be the straight line

segment joining wr and ws and let «¡: ^¡ ->■ .B¡ be any homeomorphism that sends

vT to wr and vs to ws.

We now show that G=IJ?=i A satisfies the requirements of Lemma 3.3. Let

«: G0 -> G be the continuous map defined piecewise by «|^i = «¡. Define 7F G0x7

-> F3 by #(g, t) = (l-t)g+th(g) for each g e GQ and í e 7. Thus by Lemma 3.1(1)

we can show that G is a set generator for tt(C0) by showing that 77(G x 7)<=Int C0.

If geAH0et£l, ^nd At is of type 2, then H(g, t) = g e Int C0. If «eJ¡

and ^¡ is of type 1 or 3, then 5, n A7# 0 while Diam (^4¡ u JSj)<a because

(1) Diam ^¡<y, (2) Diam 7i¡<a/2, (3) pL4j, 5()<y, and (4) y<«/4. Hence

H({g) x I), which is in the convex hull of Ai u B¡, is in the convex hull of an a-set

which intersects M. Since p(M, Bd C0)>a, /7({g}x7)<=Int C0. Thus G is a set

generator for 7r(C0). Now IJ {B(\Ai is of type 1} is by statements (iii) and (vii) of §1

a taming set on S. Hence in order to complete the proof it suffices to show that if

g e At where At is of type 2 or 3, then H(g, 1) e TVe(Bd D). But if g e At, where A{

isoftype2or3, then P(g, Bd D) < e/2-r-y because (I) Diam A¡<y, (2) A¡ n (D-D')

jí0, and (3) P(x, Bd D')<e¡2 for each xe D-D'. Thus p(7F(#, 1), Bd D)<eß

+ y + a < e because p(H(g, 1), 77(g, 0)) < a for each g eG. This completes the proof.

4. Applications of Theorem 1.1. The fact that certain sets are taming sets has

played an important role in several papers published previously. Notable examples

are Bing's papers [4] and [5], Eaton's results in [10], and Gillman's work on

piercing points [12]. In another paper we use the fact that a tame, nondegenerate,
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locally connected continuum is a taming set in giving the following extension of a

result announced by White [21]:

Theorem 4.1. A 2-sphere S in E3 is tame if for each p e S, each e>0, and each

component V ofE3 — S, there is a map f: A^-Ku5 such thatf\Bd A is a tame loop

in S that links p on S and f '(Int A) is an e-subset of V (A denotes a standard disk).

However, in this paper we prove only some of the most immediate consequences

of our characterization of taming sets.

Theorem 4.2. Let F be a closed subset of a 2-sphere S in E3 such that

F= Ü(F-(F)#),
i=l

where each F¡ is closed and tame. Then F is a taming set.

Proof. F is a closed countable union of taming sets by Theorem 1.2. Hence F

is a taming set by statement (vii) of §1.

Corollary 4.3. If{F¡}f=1 is a finite collection of tame continua on a 2-sphere S

in E3, then (J"= x F¡ is tame.

Proof. The set 1J {F¡|F¿ is nondegenerate} is a tame set by Theorem 4.2. But a

tame, closed subset of a sphere plus a finite number of points on the sphere is

clearly tame.

Example 4.4. Theorem 4.2 and its corollary are in a sense best possible. Indeed

any arc in E3 which is wild only at an end point lies on a 2-sphere and is a closed

countable union of tame continua. Each such arc is also the union of two closed,

tame sets which, by Theorem 4.2, must have a degenerate component in common.

Theorem 1.1 shows that the following definition has reasonable consequences.

If F is a closed subset of a 2-sphere, then we say that F is locally tame at p if

Ne(p) n F lies on a tame sphere for some £>0.

Theorem 4.5. A closed set F on a 2-sphere S is tame if it is locally tame modulo a

taming set T on S such that F#<= F.

Proof. For each/? e F— (F n F), there is a small disk DP<^S—T so that/? e Int Dp

and Dpn Fis tame. There is a countable subcollection {Dp.}¡°=1 so that F—(Fr\ T)

CU¡" i Int A- Then Fu F is a closed countable union of the taming sets F and

{(F n A^'Oi.r Thus F u F is tame.

Theorem 4.5 has a corollary which extends a result proved by Doyle and

Hocking [9, Corollary 6] to the effect that if/7 is an isolated wild point of a 2-sphere

5*, then any arc on S which contains p is wild at p.

Corollary 4.6. Ifp is an isolated wild point of any continuum M on a 2-sphere S,

then any nondegenerate subcontinuum of S which contains p is wild at p.
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Corollary 4.7. Ifp is a point of a 2-sphere S in F3, thenp is a piercing point of S

if and only if p lies on a nondegenerate tame subcontinuum of S.

Proof. This follows from Theorem 1.1, Theorem 4.5, the fact that p lies on an

arc A on S that is tame modulo/;, and from Gillman's characterization of piercing

points [12, see Theorem 11] as being those which lie on tame arcs on S.

5. Final remarks. One of the advantageous properties of taming sets is the

following

Theorem 5.1 ([18, Theorem 16] and [12]). A closed subset F of a 2-sphere in E3

is a taming set if and only if(*, F, S) is satisfied for each 2-sphere S containing F;

i.e., F is a taming set if and only if each 2-sphere containing F can be side approxi-

mated missing F. (See Loveland [18] for a precise definition of(*, F, S).)

However, the fact that (*, F, S) is satisfied implies that (*, F', S) is satisfied for

each closed subset F' of F. In view of this fact and since any nondegenerate closed

set F has closed subsets which are not taming sets (Theorem 1.1), it follows from

Theorem 5.1 and conclusion (2) of Theorem 1.1 that there are many examples of

closed subsets F of spheres S and S' so that (*, F, S) is satisfied while (*, F, S')

is not. Furthermore, even though in a particular instance (*, F, S) is not satisfied,

it may very well be that (*, F, Int S) or (*, F, Ext S) is satisfied. In view of these

remarks it is valuable to develop for (*, F, S), (*, F, Int S), and (*, F, Ext S)

analogues to the theorems on taming sets. Many such results appear in [18]. As

our final result, Theorem 5.3, we prove the analogue to statement (vii) of §1.

Theorem 5.3 answers in the affirmative a question raised by Loveland [18, p. 515].

Notation and concepts which now appear but did not appear in §§1-4 of this paper

are explained in [18].

Lemma 5.2. Let F be a closed subset of a 2-sphere S in E3 so that (*, F, S) is

satisfied. Then given e>0, there is a taming set F' on S such that F<=F'C A^F).

Proof. From plane topology and the results of [2] it follows that there is a finite

family A, • ■ -, A of disjoint punctured disks on S such that F<^(J?=1 Int A

CU"=1 Dt^Ne(F) and such that (Jf=1 Bd A consists of a finite number of tame

simple closed curves. Then Fu ((J?=i Bd A) satisfies (*, Fu ((J"=i Bd A), S)

by [18, Theorem 21]. Thus by [18, Theorems 6 and 16] there is a null sequence

{F¡}¡" ! of disjoint disks on S so that if M=S— 1J¡™ j. Int F¡, then M is a taming set

and Fu (U"=i Bd A)CA*-Ui°°=i Bd E¡. From [18, Theorems 16, 19, and 21] it

follows that M n ((Jf= j A) is a taming set and hence satisfies the requirements of

the lemma.

Theorem 5.3. Let {F„} be a countable collection of closed sets on a 2-sphere S in

E3, and let V be a component of E3 — S. Suppose further that F=(J¡°=1 Ft is closed

and that (*, Fn, V) is satisfied for each n. Then (*, F, V) is satisfied.
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Proof. By the Hosay-Lininger Theorem ([14] and [16]), there is a homeo-

morphism / from S u F into E3 that moves no point as far as 1 and so that y"(S)

is tame from E3—f(S u V). Lister [17] has shown that (*, Fn, V) is satisfied if and

only if (*,f(Fn),f(V)) is satisfied. Since/(S) is tame from E3-f(S u V), it follows

from Lister's theorem just mentioned, that (*,f(Fn),f(S)) is satisfied for each «.

By Lemma 5.2, for each n there is a taming set Fn on Sso that/(F„)<= Fn<= Nxln(f(Fn)).

But since/(F) is closed, F=(J(" x Tn is closed. By statement (vii) of §1, F is a

taming set. Hence by Theorem 5.1 and the remark following it, (*, T,f(S)) and

(*,/(F),/(S)) are satisfied. Thus Lister's theorem implies the desired result.

Corollary 5.4. If F is a closed subset of a 2-sphere S and F# = 0, then properties

(A, F, S), (B, F, S), (C, F, S), and (*, F, S) are equivalent, and each of these four

properties implies that F is a taming set. If' U is a component of E3 — S, and F#= 0,

then (A, F, U), (B, F, U), (C, F, U), and (*, F, U) are also equivalent.

Proof. Theorems 1.1 and 5.3 allow one to extend Theorems 8, 9, 10, and 13 of

[18] in a straightforward manner to yield Corollary 5.4.
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