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SOME RESTRICTED PARTITION FUNCTIONS:

CONGRUENCES MODULO 2

BY

D. B. LAHIRI

1. Introduction. In an earlier communication [7] the author has established

some congruence relations with respect to the modulus 7 for some restricted

partition functions. In the present paper we shall prove congruences for the same

type of functions but with 2 as the modulus. In the derivation of the results for

these two moduli there is some parallelism in approach but there are important

points of difference also.

As explained in the previous paper, the difference between the unrestricted

partition function (cf. Gordon [2])

arP(n),

merely lies in the restriction that no number of the forms an or an±r shall be a

part of the partitions which are of relevance in the restricted case. Thus to determine

the value of ,p(n) one shall count all the unrestricted partitions of n excepting those

which contain a number of any of the above forms as a part.

We now state our main results. The phrase "for almost all values of n" appearing

in connection with certain congruences in this paper means that the number of

integers n g N for which the specified congruence does not hold is o(N).

Theorem 1. For almost all values of ' n

(i) ÎÏP(n) = i82p(n-4) (mod 2),

(ii) Hp(n) = \%p(n-2) (mod 2).

Theorem 2. For almost all values of ' n

(i) ™Áp(n) = x%lp(n-%) (mod 2),

(ii) 19eÎP(n) = iaïp(n-20)       (mod 2),

(iii) 19,lp(n) = 1llp(n-4) (mod 2),

(iv) 19922p(n) = 1922sP(n-l2)       (mod 2).

2. Definitions and notations. We shall use m to denote an integer, positive, zero

or negative; but n is reserved for a nonnegative integer only.

Received by the editors August 12, 1968 and, in revised form, July 14, 1969.
Copyright © 1970, American Mathematical Society

271



272 D. B. LAHIRI [January

Ramanujan [8] defined

OO CO

(1) <¡>r.M =  22 arß$xaß - 2 nr"s-r(n)x\

ct = l   0= 1 n=l

where ok(n) is the sum of the kth powers of the divisors of«. The author has found

it convenient to simplify the notation to Q\s in [5].

The function ura(x), or simply ur, used earlier by the author [5] is defined as

follows.

OO OO

(2) Ur   =    2   n"anXn-  2   K"K,
n=0 rt=0

where an is defined by the well-known "pentagonal number" theorem of Euler,

CO -f  CO CO

(3) f(x) =  U (l-Xn) =   2 (-l)mXm(3m + 1)/2  =   2   anXn,
n=l -co n = 0

and p(n) is the number of unrestricted partitions of « given by the expansion,

(4) [/(*)]-1 = fl 0-*n)        =  2p(n)xn.

We shall use v to denote the pentagonal numbers,

(5) v = m(3m + l)l2,       m - 0, ±1, ±2,... ;

and with each v there corresponds an "associated sign", viz., (— l)m. We shall come

across sums of the type 2,„ [ + V(v)] where it is understood that the sign to be

prefixed is the associated one. With this summation notation we can write

(6) Mr = 2(+^)//w,
V

and Euler's theorem (3) as

(7) 2(+*")//« = 1-
V

3. Some lemmas. We shall have to make use of the identities given in the

following lemma. These identities have been established earlier, Lahiri [5, p. 128].

The first two identities are essentially due to Catalan [1, p. 290] and Glaisher [1,

p. 312] respectively.

Lemma 1.

"i = -#0,1;

u2 = (1/12)0)0,! -(3/2)O1,2 + (5/12)0)0,3;

u3 = -(l/192)<D0,1-r(3/16)cp1,2-(15/8)i'2,3

- (5/96)0>o,3 + (25/32)*!.« - (7/192)<D0>5.
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The truth of the following lemma can be easily verified by writing 4m+j with

7=0, 1, and —2, —1 respectively in place of m in the expression m(3m+l)¡2 for

the pentagonal number and in (— l)m its associated sign. It is to be remembered

that (l/2)(4m-/)(12/n-3/" + l) and (l/2)(4m+7')(12/n + 3/"-l) represent the

same set of numbers.

Lemma 2. The solutions of the following congruence in v, v = i (mod 2) and the

corresponding associated signs are as follows.

i   solutions (1st set):   sign solutions (2ndset):   sign

0 24m2 + 2m + 24m2 + l4m + 2

1 24«?2 + 22«? + 5 + 24m2 + l0m+l

The truth of the next lemma can be similarly established by writing %m+j with

7=0, ±1, ±2, ±3, —4 in place of m in the expression for v in terms of m.

Lemma 3. v3 + v2, v3 — v and v3 — v2 are divisible by 4 excepting in the following

cases,

v3 + v2 = 2 (mod 4)    if v = 1 (mod 4),

i.e. when v = 96m2 + 20«j + 1, or 96m2 + 44m + 5 ;

v3 - v = 2 (mod 4)    if v = 2 (mod 4),

i.e. when v = 96«?2 + 28«2 + 2, or, 96«?2 + 92«? + 22;

v3-v2 = 2 (mod 4)    ifv = 3 (mod 4),

i.e. when v — 96m2 + 52m + l, or 96m2 + 16m +15.

Taking into account the well-known case of a famous identity of Jacobi [4,

p. 283] viz.

+  00 00

(8) 2 (- l)mXkm2 + lm  =   I I  [(1 -X2kn + k-l)(l -XZ*n + k + ')(\ _x2kn + 2k^

-   OO 71=0

and the easily established fact that

00 OO

(9) ] [(l-xccn + r)(l-xan + a-r)(l-xan + c<)]!f(x) = 2 ?p(n)xn,

n=0 n=0

and noting that

+ 00 +00

(10) 2 xkm2 + lm = 2 (-l)mxkm2 + ,m       (mod 2),
—  OO — OO

one easily obtains the next lemma.

Lemma 4.
+ CO oo

2 xkm2 + lmjf(x) = 2 k-kiP(n)xn       (mod 2).
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To derive the next lemma we start from the obvious relation

(ii) 2(+o= 2 (+*»)+2 (+x")
V v=0 v=l

where we write v = i simply for v=i (mod 2). Then making use of Lemma 2 we

obtain

+  00 +   GO

2(+*") = 2 x2im2+2m-x2 2 x24m2+i4m

(12)
+   00 + CO

iy.5   ^C    y24m2 + 22m_jt-   ^    „24 m2 + 10m

—  CO —  00

Now dividing both sides of (12) by f(x) and remembering the relation (7) and

Lemma 4 we obtain,

oo co x co

(13) 1=2 %p(n)x"-x2 2 î8oP(n)xn + x5 2 >(«)*"-* 2 "/X")*"-
n=0 n = 0 n=0 n=0

Hence equating to zero the coefficient of xn, n>0, on the right-hand side we get

Lemma 5.

Lemma 5.      tB2p(n) + iS2p(n-5) = \lp(n-\) + ?oP(n-2),       n > 0.

In precisely the same manner as above we can make use of the identity,

(i4) 2 (+*») = 2 2.(+*">
v i = 0 v = i

where v = i stands for v = i (mod 4), to obtain the next lemma.

Lemma 6. If n is positive then

19922p(n) + Y9âp(n - 5) + ™\p(n - 7) + ™\p(n - 22)

192
76^2p(n-l) + 1llp(n-2) + ^2lp(n-\2) + illp(n-l5).

4. Proofs of Theorems 1 and 2.    The proofs rest upon the following two basic

theorems which we shall immediately establish.

Theorem 0.1. The following congruences modulo 2 are true for n>0.

(i) \lp(n-\)-™p(n-5) = a(n);

OO É§/>(»)-ÍS/>(«-2) ==*(/!).

Theorem 0.2. The following congruences modulo 2 are true for n>0.

™2p(n-l)-1l2p(n-5)

= 2-7[7a5(n) + 2(53n-35)a3(n) + (l04n2-4n-l5)a(n)];

^%p(n-2)-^lp(n-22)

= 2 -7 [7<75(«) + 2(53« + 5)<x3(n) + ( 104n2 - 36« + 65)a(n)] ;
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19dp(n-D-1B22oP(n-l5)

s 2 -7 [7a5(«) + 2(53« + 45)a3(«) + ( 104«2 - 68« +1 l)o(n)] ;

19322P(n)-xrBp(n-l2)

= 2 -7 [7(75(n) + 2(53« + 53>3(«) + ( 104n2 + 28« + 33)o(n)].

The first identity of Lemma 1 coupled with the relation (6) for r= 1 shows that

05) 2( + vx»)lf(x)= -<D0,i-
V

An immediate consequence is

(16) 2       ( + *")//(*)= -<t>o,i       (mod 2).
v= Kmod2)

Now, remembering Lemma 2 we get

(17)
„5   ^C   „24m2 + 22m_„  X*   v-24m2 + 10n f(x) = -<D0,i       (mod 2).

Applying Lemma 4 to the above relation and comparing the coefficients of xn,

n > 0, on both sides we obtain the first congruence of Theorem 0.1. This congruence

considered along with Lemma 5 leads to other congruence of this theorem. Thus

Theorem 0.1 is fully established.

We now turn to Theorem 0.2. Eliminating wr's between (6) and Lemma 1 we

obtain three identities, and the following congruences are very trivial deductions

therefrom.

2 l + (v3 + v2)]lf(x) = (5/64)O0>1-(21/16)O1,2-(15/8)O2>3
(is) r

+ (35/96)<Do,3 + (25/32)<Dli4-(7/192)<P0,5       (mod 4);

2 i + (v3-v)]/f(x) = (191/192)cPo,1 + (3/16)<D1,2-(15/8)<P2,3
(19) T

-(5/96)d>o,3 + (25/32)<Dli4-(7/192)00,s (mod 4);

2[ + Cy-»W(X> ■ -(17/192)(Po,1 + (27/16)(Dli2-(15/8)cI>2,3
(20) V

-(15/32)4>o,3 + (25/32)<Pl!4-(7/192)<Do,5 (mod 4)-

With the help of Lemmas 3 and 4 the left-hand sides of (18), (19) and (20) may be

replaced respectively by

OO 00

(18') -2x 2 1?lX«)^n + 2x5 2 T2p(n)xn;
71=0 71=0

CO OO

(19') -2jc2 2 TsP(n)xn + 2x22 2 19îp(n)xn;
71=0 71 = 0

(20') 2x7 J TiP(n)xn-2x15 J 1llp(n)xn.



276 D. B. LAHIRI [January

Now comparing the coefficients of xn, n>0, on both sides of (18), (19) and (20)

we obtain the first three congruences of Theorem 0.2. To establish the last con-

gruence (iv) of this theorem we make use of Lemma 6 and these three congruences

(i)-(iii) in the obvious manner.

Now Theorems 1 and 2 are almost immediate consequences of Theorems 0.1

and 0.2 when one remembers the well-known congruence, [9, 3, p. 167],

(21) °k(n) = 0       (mod M)   for almost all values of«,

for arbitrarily fixed M and odd k; the phrase "almost all values of«" is in the

sense explained in the introductory section. The passage from Theorem 0.1 to

Theorem 1 needs the special case k= 1, M = 2 of the relation (21). But for the other

theorem we make use of the cases k=l, 3, 5 with M=2B, in Theorem 0.2.

5. Further results. The results given in the last section lead to certain interesting

corollaries.

Corollary 1. 77;e members of each of the following pairs have the same parity

unless « is a square or twice a square.

(i) \lp(n-l)   and   i/X«-5);

(ii) tlp(n)   and   \lp(n-2).

Corollary 2. For given n, the members of each of the following pairs are either

always of the same parity or always of opposite parity within the entire range A ̂  0.

(i) 19|/>(2A + 7«-l) and l!!X2*+7«-5);

(ii) 1||/7(2A + 7«-2) and 19|^(2A + 7«-22);

(iii) 19itp(2Á + '7n-7) and 1Up(2^ + 1n-15);

(iv) 1l2p(2x + 1n) and 19|/<2A + 7«-12).

In connection with the above corollaries it may be explained that two numbers a

and ß are said to be of the same parity if both are even or both are odd ; and they

are said to be of opposite parity when one is even and the other is odd.

Theorem 0.1 gives rise easily to the first corollary when considerations are given

to the question of divisibility of a(n) by 2. Derivation of Corollary 2 from Theorem

0.2, however, is not quite so straightforward. We shall have to make use of the

following easily proved congruence.

(22) ak(2Á + 7n) = ak(27n)       (mod 28k),   k £ 1.

As an illustration we shall show how (22) can be used to establish (iv) of Corollary 2
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from (iv) of Theorem 0.2. In this last congruence we write 2A + 7« in place of n,

and then make use of (22) to establish the following.

27[1iK2* + 7«)-1!¡7<2A + 7«-12)]

= 7a5(2A + 7«) + 2(53.2A + 7« + 53)a3(2A + 7«)

+ (104.22A + 14«2 + 28.2a + 7« + 33)(t(2a + 7«)

= 7a6(27«) + 106a3(27«) + 33a(27«)       (mod 28).

In relation (iv) of Theorem 0.2 again, we write 27« for « and get

2TflK27»)-1!i/*27«-12)]
(24) = 7<75(27«) + 2(53.27« + 53)a3(27«) + (104.214«2 + 28.27n + 33)a(27«)

= 7c75(27«) + 106a3(27«) + 33cr(27n)       (mod 28).

Comparing (23) and (24) we obtain

(25) 13922p(2" + 7«) - 11¡/)(2A + 7« - 12) = 1l22P(21n) - 19ap(Vn -12)       (mod 2).

And this leads in an obvious manner to the case (iv) of Corollary 2. Cases (i)-(iii)

may be similarly established. In the above demonstration we have tacitly assumed

A SO, but it is easily seen that this corollary may be extended to the case (if any)

where A is given negative values consistent with the condition that 2A« remain

integral.

The above corollaries deal exclusively with the restricted partition functions.

It is possible to obtain congruences involving exclusively the divisor functions

ok(n). A large number of congruences on divisor functions has been obtained by the

author [6] previously.

Corollary 3. (i) o3(n) = (2n — l)o(ri) (mod23);

(ii) for the sets of values (-35, -4, -15), (5, -36, 65), (45, -68, 17) and (53, 28,

33) of (a, b, c) the following congruence is true,

lob(n) + 2(53n + a)o3(ri) + (lQ4n2 + bn + c)o(ri) = 0       (mod 27).

The second part of the corollary is an immediate consequence of Theorem 0.2.

The first follows from a joint consideration of Theorem 0.1 and 0.2 as explained

in the next section.

6. Relationship between the theorems. We shall now discuss the relationship

between Theorems 0.1 and 0.2, and also between Theorems 1 and 2. For this

purpose we require the following lemma.

Lemma 7.  With respect to the modulus 2 we have

(i) '%lp(n) - 1922sP(n - 12) - ^X« - 2) + *>(« - 22) = f2p(n) - \lp(n - 2),

(ii) ^26p(n -1) - '%22p(n - 5) - lHX« - 7) + 19™P(" - 15) = ÍSK« - O - 42/>(« - 5).

These two congruences may be established by the same method, as illustrated by

the following proof of the congruence (i). Obviously for / = 0, 1

(26) 2   [+*"]+   2    [+*"]=   2   [+*"]•
v = i(mod 4.) v = i + 2(mod4) v = ¡(mod 2)
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As a consequence we have by using Lemmas 2 and 3 and confining to case /=0,

+ 00 +00 +co +°o

X* ^-96m2 + 4m_  X^ y.96m2 + 28m + 2 _i_  "*C ^96m2 + 92m + 22_  "*C y96m2 + 68m + 12

-CO

+ CO + CO

_    X*   y24m2 + 2m_ V   ~24m2 + 14m + 2

— CO

Now dividing both sides by f(x) and applying Lemma 4 we get

CO CO CO CO

2 19a22p(n)xn-x2 2 19âp(n)xn + x22 2 19ïp(n)xn-x12 2 lllp(n)xn
71 = 0 71=0 71=0

CO CO

= 2 aX«)*"-*2 2 \oP(n)xn       (mod 2).

(28)   n-°

Relation (1) of Lemma 7 is an immediate consequence.

The two sides of the congruences in Lemma 7 may be replaced by expressions

involving the divisor functions crfc(«) as given in Theorem 0.1 and 0.2. After a

little simplification we have the first part of Corollary 3, viz.,

(29) <73(«) = (2«-l)a(«)       (mod23).

If the above congruence is proved independently then one can prove Theorem 0.1

from Theorem 0.2. Also Theorem 1 can be obtained from Theorem 2 with the

help of Lemma 7. Either of such derivations would be very round about and

complex, and we have thought fit to establish Theorems 0.1 and 1 by the simple

and direct method in §3.
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