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A 1-LINKED LINK WHOSE LONGITUDES LIE

IN THE SECOND COMMUTATOR SUBGROUP^)

BY

H. W. LAMBERT

1. Introduction. In this paper we give an example of a link L of two polygonal

simple closed curves in S3 such that the longitudes of L lie in the second com-

mutator subgroup, G", of its link group G = tt1(S3— L), but L is 1-linked, that is

the two simple closed curves of L do not bound disjoint orientable surfaces in S3.

The question of the existence of such a link was raised by Eilenberg in [3] and again

by Smythe in [5] and one motivation for this question is the observation that the

longitudes of any boundary link lie in the second commutator subgroup of its link

group. (A link is a boundary link if and only if it is not 1-linked, see Smythe [5]).

In [2], [3], and [5] examples of 1-linking are given. In all these examples the authors

proved 1-linking by showing that at least one of the longitudes was not in the

second commutator subgroup. It is clear then that in our example L we must

invent some other argument to show it is 1-linked.

2. The example L. In E3 let T be the solid torus obtained by rotating the disk

x = 0, (y — 2)2 + z2 S 1 about the z-axis. Let lx be the simple closed curve in S3

consisting of the z-axis and the point at infinity. Figure 1 pictures the oriented

Figure 1
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simple closed curve l2 in T as seen by looking down upon it from a point on the

positive z-axis. (All the remaining figures in this paper will be drawn from the

same viewpoint.) Our example i$ L=lt U l2. Let G = tt1(S3-L). To say the longi-

tudes of L belong to G", the second commutator subgroup of G, we mean that on

the boundary of each component of a regular neighborhood of L there is a simple

closed curve (sec) lying in G" (a loop in S3 — L actually determines a class of

conjugate elements in G); for short we may say lx and l2 belong to G" or Le G".

(See [4, p. 123] for a discussion of longitudes.)

Since /2 is rather complicated some further sets will be needed. Let V he the

neighborhood of l2 in T illustrated by Figure 2; F is a cube with four handles

Figure 2

ax, a2, a3 and ö4. We may think of the a¡'s as disjoint annuli such that Bd (U?= i a¡)

eßd K and Int flj?= x a¡)<= Int T— V. Let aï denote the side of ax facing the same

direction as the small arrow next to ax and aï its opposite side. Define similarly

ai, a3, and aX, and their opposite sides a2, a3, and al. (See Figure 2.) Let

Dt = Tn{(x, y, z) : x = 0, y<0} and Dr = Tn {(x, y, z) : x = 0, y>0}, D, and Dr

are meridional disks of T. Choose the positive side of 7>r, T>r+ (negative side 7)r")

to be the side of Dr intersecting the component V+ (V~) of V— Dr containing the

handles ax and a2 (the handles a3 and a4).

The next observation is important. Suppose / is a loop in T— V and as we go

around / we count 1 or — 1 ( + 2 in the case of a3) each time we pass through a

handle of V, the sign being determined by whether we went through the handle with

or against the direction of the small arrow next to the handle, for instance if we

pass from a3 to a3 on / add —2. Using the right-hand rule we see that the sum

total of the number of times / goes through the handles of V gives the algebraic

linking number of / with respect to l2, denoted by Lk (/, l2). (See [1, p. 81] for a

definition of algebraic linking.) Obviously the number of times / passes through Dr
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( ± 1 each time, depending on which direction one went through DO gives the

algebraic linking number of / with respect to l%.

We first show L e G" and then show L is 1-linked.

3. Le G". Let S0 be the surface (compact, orientable) having one boundary

component and of genus 2. To show L e G" we show that there is a map / of S0

into T— V such that/|Bd S0 is a homeomorphism onto Bd 7), and the image of

the homology generators of S0 belong in G'. We do not build/but rather we con-

struct the desired image S of S0 in T— V. We start with a disk with four holes S' as

illustrated in Figure 3 (in Figure 3, V appears as a dotted 1-dimensional object

Figure 3

except at the right-hand side of the illustration). We add a handle 77i (27i is an

annulus) to S' by starting at y2, following Kup through its handle ax, down through

the hole bounded by yx, through handle a3, then, like a fountain, the annulus

widens out, reverses direction in T and goes back through S' in a simple closed

curve parallel to Bd S' n Bd T, then narrows down again around V, reverses

direction in T, goes through a2 and ends at y4. (See Figure 3.) Notice the figure

eight c£i|8i inS' u 27i is such that (aA) n Dr= 0, hence Lk (au l1) = Lk(ßu h) = 0

and, again using the comment of §2, Lk (a1( l2) =1—2+1=0 and Lk (jSj, /2) = 0.

Hence au ßx e G'.

Since it would complicate Figure 3 too much to add the second handle 272, we

just imagine it in Figure 3 as an annulus attaching yj to y3 by going down through

a3, up through S' in a simple closed curve parallel to Bd S' n Bd T, down through

a2, y4 and up through a4. Again S' u 772 contains a figure eight a2ß2 disjoint from

«i/Si such that Lk (a2, /j) = Lk (ß2, /x) = Lk (a2, /2) = Lk (ß2, l2) = 0 (where Lk (a2, l2)

= -2+ 1 + 1 =0). Hence a2, ß2 e G'. It can be checked that S=S' \J H1yj H2 is

the image of S0. It then follows that Bd S is homotopic in T- V to (a^^ï 1ß^x)

• (a2/52a2 W *)• Since au a2, j3j, ß2 e G', Bd Se G" and it follows that lx e G". Let
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Q be the disk indicated in the right side of Figure 3, Q bounds a portion of /2.

The four scc's making up Cl [(l2—Q) U (Bd Q —12)] are homotopic to Bd S in

T-12 and it follows that l2 e G".

It is interesting to note that the singularities of/ on S0 can be made to consist

of two disjoint scc's parallel to Bd S0 and two disjoint scc's in each of the two

handles. Under/one meridian curve is sewed to the other and the remaining two

meridian curves are sewed to the two curves parallel to Bd S0.

4. L is 1-linked. The following nine lemmas combined with the assumption

that li, l2 bound disjoint orientable surfaces Su S2, respectively, (i.e. L is not

1-linked) will be shown to lead to a contradiction. It should be noted that the

linking properties developed in the following lemmas echo those of §3.

Lemma 1. If lu l2 bound disjoint orientable surfaces Su S'2, respectively, then l2

bounds an orientable surface S2 such that S2cInt T, S2 is in general position relative

to Dr and at most one component of l2 — Dr is contained in a component of S2 — Dr

intersecting both sides of Dr.

Proof. By the existence of Sx we may suppose S'2 c Int T and S2 is in general

position relative to Dr. Let l(i), i-l, 2, 3 and 4, be the component (open arc) of

l2— Dr going through the handle a¡ of V and let C(i) be the component of S2 — Dr

containing l(i). Suppose C(l) and C(2) intersect both sides of Dr. If every com-

ponent of S2 — Dr which intersects Dr+ also intersects D~, then we could, by going

around the components of S2 — Dr, find a loop / in S2 such that Lk (/, Bd Dr) > 0

(counting + 1 each time we pass through Dr going from 7>r~ to 7)r+). But from this

it follows that Si n S'2^ 0, contradiction. Hence there is some component X of

S2 — Dr intersecting only T>r+. Then Y separates £3 = Int T—Dr into exactly two

components, one of which contains C(l) u C(2); call this component Ext X, the

other Int X. Replace X by the punctured disk (or disks) Cl (Int X) n Dr. (In this

process we will also have to cut off all other parts of Si u S2 in Int X.) In any case

by repeating this process a finite number of times, it follows that at least one of the

resulting C(l), C(2) intersects only T>r+.

By a similar reasoning relative to the components C(3), C(4) we may suppose at

least one of them intersects only 7>r~ • By general position of S2 and Dr, either

C(1) = C(2) or C(3) = C(4). Hence let S2 = S'2, and S2 satisfies the conclusion of this

lemma.

Let S be an orientable surface in T-(Dr u V) such that Bd S = Bd Dh Int S

<= Int (T— (Dr u V)) and S is in general position relative to (J,*= x a{. If / is a loop in

S, let Lk (/, a¡) be the linking number of / with respect to the handle a¡ only and

Lk (/, a{ u a¡) the linking number of / with respect to the handle ax and a¡ only.

We introduce now another set which will be useful in investigating the linking

properties of S with respect to \J}= i a¡. Let TA = T n xy-plane, TA is an annulus

in T which intersects each a¡ in two arcs (see Figure 2). Adjust S slightly in T— V

so that it is in general position relative to both TA and (J*= i a¡- Note that the
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components of (S n Int TA) — U?=i at are sccs or open arcs whose closures are

either arcs or scc's. Let F = {y : y is a component of (S n TA) — (U*=i a0)- We now

alter S so that S o (7^ u (Uí= i ad) ¡s ¡n a certain sense simpler. By adjusting S

close to (JjL ! af we may suppose that if / is a sec of S n (U*= t a¡) that bounds a

disk in U?=i au then I C\TA= 0 and if / does not bound a disk in Uf=i a¡» tnen

I C\ TA consists of exactly two points. Suppose y e T and Cl y is an arc starting and

ending on the same side of some a¡. We may then adjust S near TA by pushing y

down through a¡, changing two (or more) scc's of S n a¡ to a sec / which bounds a

disk on fl¡ and adjust S close to a¡ so that I c\TA= 0. Since this process reduces the

number of scc's of S n (U?= i «¡) which separate an a¡, it is finite. Now remove those

scc's of S n (U?= i fli) which bound a disk in |Jf= ! a¡ by cutting S off on (Jf= 1 a{,

let S(r) be the component of the resulting surface which contains Bd S. Let

T(r) = {y : y is a component of (S(r) n TA)-((Jf=1 a¡)} and A(r) = {8 : S is a com-

ponent of S(r) — (U?=i a0}- Note that if Cl y is an arc intersecting both sides of an

a¡, then we obtain a spiral in S(r) n 7^ going around at; eventually it reverses

itself and here we obtain an arc intersecting only one side of a¡, contradicting the

form of S(r). Therefore if y e T(r) and Cl y is an arc, then its endpoints lie in

different components of Bd T U (U?= i a0-

To say y e r(r) ends on at means y approaches ax from its positive side (denoted

by y n o¡+ # 0). Similarly we may define y c\ aï i= 0 and, for S e A(r), 8 n a,í ^ 0

and Snaf ^0. We say two distinct elements ylt y2 of r(r) abut on a¡ if they

approach a point of 7"¿ n (U*-i a0 from opposite sides of at and Sj, 82 e A(r)

abut on a¡ if they approach a sec of S r\ a¡ from opposite sides of a¡. If y ends on

a¡, then by the form of S(r), it follows that S n a¡ contains a sec / such that I C\TA

is two points bi, b2 where y approaches b1. Let Op y(a¡+) (or Op y(a~)) be the arc

of r(r) which approaches b2 from the positive side of a¡, a¡+ (or the negative side

of öj, of). It helps to draw in Figures 2, 4 and 5 the various arcs y which arise in

the next lemmas.

Figure 4
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Figure 5

Lemma 2. Suppose 8 e A(r), 8 n a2 == 0, Bd S(r)d: S a«¿/ S contains no y e T(r)

so that Cl y is a sec. Then 8 n a3 / 0.

Proof. Suppose 8005=0. Since Bd S(r)d: S and S contains no y so that Cl y

is a sec, there is an arc yx of r(r) in S going from a¿" to al. Let y2 = Op yi(a¡~),

y2 must end on a2. Let y3 = Op y2(a2 ), ys^yi and y3 must end on a¡~. Let

y5 = Op yÂpl). Continuing in this manner, it follows that Y(r) must be an infinite

set, contradiction. Hence y± must end on a3 and 8 n a3 # 0.

Also we have the following

Lemma 2'. Suppose 8 e A(r), S n #3 # 0, Bd S(r)<£8 and 8 contains no y e T(r)

so that Cl y is a sec. Then 8 r> a2 == 0.

Lemma 3. Suppose 8 e A(r), 8na3V0, Bd S(r)d: 8 a«J S contains no y so that

Cl y is a sec. Then Sna^/0.

Proof. Suppose 8 r\ aï = 0. Since Bd S(r)d: 8 and 8 contains no y so that Cl y

is a sec, there is an arc yx of T(r) in S going from 03 to a2 . Let y2 = Op yi(fl¿"), by

the proof of Lemma 2, y2 must end on 03". Let y3 = Op y2(ö3"), y^ + yx, and y3

must end on a2. Let y4 = Op ysíaí). Continuing in this manner, it follows that F(r)

must be an infinite set, contradiction. Hence yx must end on aï and Sna1+/0.

Also we have the following

Lemma 3'. Suppose 8 e A(r), Sna2V

so that Cl y is a sec. Then S n a¿" == 0.

Bd S(r)d: S a«í/ S contains no y e Y(r)

The next lemma follows easily by examining the various arcs of Y(r) in 8.

Lemma 4. Suppose 8 e A(r), 8 n a£" # 0, Bd S(/) d: 8 o«î/ S contains no y e T(r)

so that Cl y is a sec. Then 8 r\ a2 ^ 0.

Also we have the following.
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Lemma 4'. Suppose 8 e A(r), 8 n a¡ == 0, Bd S(r)d: 8 a«i/ S contains no y e T(r)

so that Cl y is a sec. Then 8 n a3 == 0.

Lemma 5. There is a loop I in S so that either (1) Lk (/, ax u a2)#0 or (2)

Lk(/, a3 Ua4)==0.

Proof. We first note that if there is a loop /' in S(r) satisfying (1) or (2) of this

lemma, then there is a loop / in S satisfying (1) or (2). For, while retaining property

(1) or (2), we may push /' off the disks of S(r) obtained by cutting S off on lj?= i a¡-

Pushing a Cl y down through some a{ does not alter the linking properties of /'

with the various a¡. Hence reversing the steps needed to arrive at S(r) from S, it

follows that /' gives rise to an / in S satisfying condition (1) or (2).

If there is an element y of T(r) so that Cl y is a sec intersecting either ax, a2, a3

or a4, then /' = C1 y satisfies condition (1) or (2). Suppose then no such sec exists.

Let 80 be the element of A(r) containing Bd S(r) and suppose 80 n a2 ?= 0.

By Lemma 2, 80 abuts a Sj on a2 so that Sj n a3 + 0 (assuming S0# S^. By Lemma

3, 8X abuts a 82 on a3 so that 82n aï # 0 (again assuming 80#S2). By Lemma 4,

S2 abuts a S3 on ax so that 83 n a2 =£ 0. Continuing this reasoning we obtain a

sequence 80, 8X,..., S¡ which eventually repeats an element of A(r). Let m be the

first integer so that «<«7, Sn = 8m and 8¡^8; if i+j and n<i,j<m. If m — «=1,

then Cl (Uf=n 8¡) contains a loop /' so that Lk (/', a,)= ±\ for some i= 1, 2 or 3

and Lk (/', a¡) = 0 forj/í. Hence /' satisfies either (1) or (2). If m — n^2, then it

follows that Cl (UP=n °i) contains a loop /' so that Lk (/', ax u a2)#0.

If 80 n a3 ^ 0 or S0 n ai" # 0, then we may start at either of these places and,

repeating the same pattern as before, obtain a sequence S0,..., 8¡ so that

Cl (Uim=n Sj) contains a loop /' satisfying (1) or (2).

If 80 n a2 # 0, then making use of Lemmas 2', 3' and 4' it follows that S(r)

contains a loop /' satisfying (1) or (2). Since 80 must intersect one of a2 , a^, aï,

or a2, Lemma 5 follows.

Let V¡= F minus its ith handle, ;'= 1, 2, 3 and 4, see Figures 4 and 5 for Vx and

K2, respectively. Let S¡ be a surface in T— (7>r u F¡) such that BdS¡ = BdT)¡,

Int S¡<=Int (T—(Dr u F¡)) and S¡ is in general position relative to (U*»i fl^)—«i.

As before, from S¡ we may obtain a surface S¡(r) so that for each arc y of r¡(r)

= {y : y is a component of (S n 7A) — (((Jl=i aj)_fli)} such that Cl y is not a sec

we have that its endpoints lie in different components of Bd Tu (({Jf=x a,) — a^).

Lemma 6. There is a loop I in Sx so that either (1) Lk (/, a2)^=0 or (2)

Lk (/, a3 u A4) == 0.

Proof. As in Lemma 5, we note that if Sx(r) contains a loop satisfying (1) or (2)

then so does Sx. If there is an element y of Tx(r) so that Cl y is a sec, then /' = C1 y

satisfies (1) or (2) of this lemma. Suppose then no such sec exists. Note that

Sx(r) n a3= 0 and Sx(r) c\ a^ 0. There is an element yx of Vx(r) going from

al to a2. Let y2 = Op yx(a2 ). If y2 ends on Bd T, then the arc y2 abuts on a2 would
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start and end on a2 , contradiction. Hence y2 must end on al. Let y3 = Op y2(al).

Continuing in this manner, it follows that Vx(r) must be infinite, contradiction.

The proof of the next lemma is (geometrically) analogous to the proof of

Lemma 6.

Lemma 7. There is a loop I in S4 so that either (1) Lk (/, a3)^0 or (2)

Lk (/, ai u a2) #> 0.

Lemma 8. There is a loop I in S2 so that either (1) Lk (/, a^O or (2)

Lk (/, a3 U a0 # 0.

Proof. Again note that if S2(r) contains a loop satisfying (1) or (2), then so does

S2, hence assume no Cl y is a sec. Since S2 n ax =£ 0, there are arcs y', y" in T2(r)

so that both y', y" start on of, y ends on at, y" ends on at and /, y" end on the

innermost sec of S2(r) n ax (see Figure 5). Let y0, y'0 be the arcs y', y" abut on a3,

a4, respectively. Since not both y'0, y"a can end on Bd T, it follows that yó = yó and

the sec 2=C1 (y' u y" u yó) plus an arc in S2(r) n a± satisfies (2) of this lemma.

We also have the following

Lemma 9. There is a loop I in S3 so that either (1) Lk (/, a4)#0 or (2)

Lk (/, Ü! u a2) + 0.

Theorem. L is l-linked.

Proof. Suppose llt l2 bound disjoint orientable surfaces S1; S2, respectively. Let

/(/), C(i), i=l, 2, 3, and 4 be as given in the proof of Lemma 1. By Lemma 1, l2

bounds an orientable surface S2 such that S2cIntr, S2 is in general position

relative to 77 r and at most one component C(i) of S2 — D, intersects both sides of

Dr. Suppose this i= 1.

Let U be a closed regular neighborhood of C(3) U C(4) u Dr chosen so Bd U

contains a surface S such that Int S^Int (T-(Dr u l2)) and Bd S=Bd D¡. Further,

U may be chosen so that S n C(i)= 0 for i = 2, 3 and 4, since these C(¡')'s intersect

just one side of Dr. Since S o l2 = 0, we may push S off V (we may need to use a

cut and paste argument on S U (U.4=2 C(i)) to get S off the handle of V inter-

secting a3 since l2 goes through this handle twice).

There are disjoint arcs xu x2 in Cl (C(3) u C(4)) n 7>r so that either (1) /' =

/(3) u /(4) u xx u x2 is a sec or (2) /(3) u x, and /(4) u x2 are scc's. In Case (2)

let D be a disk in Int Dr so that xr u x2cBd 2) and the arcs x[, x'2 forming

Bd D-Int (xi u x2) form a sec I" = 1(3) u 2(4) u xí U x'2 which admits an orienta-

tion compatible with the orientation on 1(3) and 1(4) induced by the orientation of

l2. Let dn, n= 1, 2,..., m be the disks in DT bounded by the scc's of Cl (C(3) u C(4))

n Dr. Let C' = C1 (C(3) U C(4)) u (Un=i 4) and C" = C u 77. It then follows

that 2'~0in C and /"~0in C" (using integer coefficients). Since S n C^SnC

= 0, by Alexander Duality for each loop / in S, Lk (/, a3 u a4) = 0.
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If both C(l), C(2) intersect just one side of Dr, then by a similar argument as

used above, it follows that for each loop / in S, Lk (/, ax u a2) = 0. But this is

impossible by Lemma 5. If C(l) intersects both sides of Dr, then, since C(2)

intersects only one side of Dr, C(l) o C(2)= 0 and it follows that for each loop /

in S, Lk (/, a2) = 0, but this contradicts Lemma 6. The cases i = 2, 3 and 4 are

similar. Hence the surfaces Sx, S2 could not have existed and L is 1-linked.

5. Concluding remarks. Since our example L = lx u l2 is 1-linked it follows that

if ¡i bounds the orientable surface Sx in S3 — l2, then Sx contains a loop /such that

1*0 in Hx(S3-l2). In particular we have the following

Theorem. If K=kx u k2 is a link of two components, then K is a boundary link

if and only if kx bounds an orientable surface Sx in S3 — k2 such that the inclusion of

HX(SX) in Hx(S3-k2) is trivial.

Proof. The only if part follows immediately from the definition of boundary

link. If the surface Sx exists then k2 bounds an orientable surface S2 in S3 — kx.

Put S2 in general position with respect to the homology generators H (figure

eights) of Sx. Since the inclusion of Hi(Sx) in Hx(S3 — k2) is trivial, we may add

handles to S2 minus a small regular neighborhood of H to form an orientable

surface S2 such that BdS2 = A:2 and S'2^S3-(kx u H). Since Sx-H is a disk

minus a finite number of points we may put S2 in general position relative to

Sx — H and cut S2 off on Sx. We then obtain an orientable surface S"2 such that

Bd S2 = k2 and Sx n S2= 0. Hence Kis a boundary link.

This theorem and our example L motivate the following

Question. Does there exist a link K=kx U- • -U kn, 2<«, such that each k{

bounds an orientable surface S¡ in S3-(K—kt), and the inclusion of HX(S¡) in

H^-ÇK-k,)) is trivial but A:is 1-linked?

Such a link K of the question would also be an example of a 1-linked link whose

longitudes all lie in the second commutator subgroup.
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