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LIE ISOMORPHISMS OF FACTORSQ

BY

C. ROBERT MIERS

1. Introduction. By a von Neumann algebra M we mean a weakly closed,

selfadjoint algebra of operators (containing the identity /) on a complex Hubert

space //. In this paper we consider a mapping $ between von Neumann algebras

M and N which is one-one, onto, «-linear, and which preserves Lie brackets of

operators (that is <f>[A, B] = [<j>iA), <¿(P)] where [X, Y] = XY- YX). Such mappings

will be called Lie «-isomorphisms. We prove, as our main result, that if Af is a

factor ( = center trivial von Neumann algebra), then <f>=S+\ where 9 is either a

♦-isomorphism, or the negative of a *-anti-isomorphism and A is a *-linear map

from M into the center of N which annihilates brackets of operators in M. This

was proved by L. Hua [6] in the case that M i = N) is a factor of type /n (n>2).

Subsequently Hua's result was generalized in an algebraic sense by W. S. Martindale

[8], [9], to the case where M and N are simple rings with M containing two nonzero

idempotents whose sum is the identity. The algebraic techniques of these papers,

however, are not sufficient in our setting since von Neumann factors are not, in

general, simple.

In all that follows <f>: M -> N is a Lie «-isomorphism between the von Neumann

algebras M and N.

2. Preliminary results.

Lemma 1. Let X, YeM. Then XY= YX iff <j>iX)<j>iY) = <j>iY)j>iX).

Proof. XY=YX iff  [X, Y] = 0   iff <f>[X, Y] = [¿(JT), <KY)] = 0   iff <f>iX)<f>iY)
-WWX).

A von Neumann subalgebra M0^M is called normal in M if (Mu n M)' n

M=M0 where M'0 is the commutant of M0.

As an easy consequence of this definition we have

Theorem 1. If M0 is a normal von Neumann subalgebra of M, then <l>iM0) is a

normal von Neumann subalgebra of N having the same linear dimension.

Corollary. If M is a factor, then so is N.
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Proof. <j> sends the center of M, namely [al \ a e C] onto the center of N. Thus

the center of TV is 1-dimensional.

Lemma 2. If M is a factor, and M0 a finite-dimensional von Neumann subalgebra

of M, then M0 is normal in M.

Proof. See [7, Theorems 1 and 4].

The following lemma is a variant of a result of Hua [6].

Lemma 3. Let M be a factor and P a noncentral projection i = self adjoint idem-

potent) in M. Then 0(P) can be expressed uniquely in one of two forms:

(i) ¿(P) = 0(P) + A(P)/,

(ii)<¿(P)=-0'(P) + A'(P)/,

where 0(P), #'(P) are noncentral projections in N, and A(P), A'(P) are scalars.

Proof. The von Neumann algebra generated by P is 2-dimensional and so by

Lemma 2 and Theorem 1, <j>iP) = aQ-+ßI where Q is a projection in A'and a, ß eC.

Since [[[X,P]P]P] = [X, P] for all X e M, the same relation must hold for P

replaced by <¿(P) and all X e N. Thus a3[[[X, Q]Q]Q] = a[X, Q] for all XeN.

Choosing an X such that [X, ö]/0 we see that ee= ± 1.

For the other part, suppose Q + ¡xI=Q' + p.'I. Then Q commutes with Q' and

ip.- /x')2/=(g- Q')2 = Q+ Q' - QQ'. This is possible only if Q=Q'.

3. The decomposition <f>=8-\-\. We now assume that M is a factor not of type

/„. The notation of Lemma 3 is retained.

Lemma 4. 0(/-P) = /-ö(P), Ö'(/-P) = /-Ö'(P).

Proof. We prove the lemma for 6. Ö(P) + Ö(/-P) is central in N; so, therefore,

is Ö(P)Ö(/—P). Ö(P)Ö(/-P), being the product of commuting projections, is thus a

central projection. If 0(P)Ö(/-P) = /, then Ö(P)=9(/-P)=/ which is impossible.

Hence ö(P)ö(/-P) = 0 and ö(P) + 6i(/-P) = /.

Definition. Projections P and Q are called coorthogonal, written coj., if

(/-P)(/- Q) = 0.

Lemma 5. If P and Q are orthogonal projections in M then either 0(P) _L 0(2),

or 0(P) co± 0(g).

Proof. Pg = 0 implies [[[[X, P], Q]P]Q] + [[X, P], Q] = 0 for all XeM. Hence

the same relation is satisfied with P replaced by Ö(P), Q replaced by &ÍQ), and all

XeN. Writing the latter relation out and multiplying on the left by ö(P)ö(ß) we

get b\P)8iQ)XôiI-P)eiI- Q) = 0 for all XeN. For notation, let P=0(P)6(0

and P' = ö(/—P)6(/— Q). Both R and P' are projections and so, since we are in a

factor, they are comparable. Assume R<R'. Let V e N he such that VV* = R,

V*VSR'- ThenR = RVR'V*R = 0. Since RXR' = 0 for all A^e TV implies P'ZP = 0

for all XeN, we could use the same reasoning if R'<R.
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Definition. A projection ortho-isomorphism between von Neumann algebras M

and TV is a one-one mapping 0 of the set of projections in M on that in N such that

if P and Q are projections in M with PQ = 0, then 0(P)0(g)=O.

Lemma 6. Let sá be an abelian von Neumann algebra contained in M of dimension

ä 3, and letséf = the set of projections in stf. Then either 6 or 6' is an ortho-isomorphism

on s/p and these possibilities are mutually exclusive.

Proof. First suppose that Pu ..., Pn (»^3) are mutually orthogonal projections

in M. We claim that either the 0(Pi),..., 0(Pn) are mutually orthogonal or the

0'fPi), ■ • ■, 8'iTn) are mutually orthogonal. For, suppose Ö(PX) J_ 0(P2). If 0(P3) is

coorthogonal to 0iPx) then /- 0(PX) ̂  0(P3) and so 0(P2) = 0(P2)0(P3). Hence we

have 0(P2) g 0(P3). But either 0(P2) J_ 0(P3) or 1 - 0(P2) ̂  0(P3) a contradiction.

Instead of P3 we could have used any P¡ (/>2) and so 0(P¡) J_ 0(Pi) for all i («V 1).

Applying the above argument to 0(Pi), 0(P¡), 0(P>) for i,j> 1, i#/' we see that all

the 0(P¡) are orthogonal. If 0(Pi) is coorthogonal to 0(P2), then 0'(Pi) is orthogonal

to 6'iP2) and we repeat the argument. We note also that if the 0(Pi),..., 0(P„) are

orthogonal then 0(2 Pi) = 2 #(P) (where the index i runs over any subset of

{1,...,«}) by the uniqueness of the representation of <£(P), P a projection. A

similar comment holds for 0'.

Now choose three mutually orthogonal projections Px, P2, P3 in s/P whose sum

is /. Take any other two orthogonal projections Q, R in séP. These five projections

generate an atomic subalgebra (with finitely many atoms) Af0 of M. Suppose the

0(Pj) 0'=1, 2, 3) are mutually orthogonal. We claim that the atoms of M0 have

orthogonal images. For, if not, the images of atoms under 0' are then orthogonal

and thus, by the additivity of 0' discussed above, the Q'iPj) are mutually orthogonal.

This is impossible since the 0(P¡) are already mutually orthogonal. Applying the

additivity of 0 again we see that 0(P) J. 0(0.

Remark. In the above lemma, if 0 is an ortho-isomorphism on s/p, then both

0 and A are additive on mutually orthogonal projections from s/p. A similar

statement holds for 0' and A' if 0' is an ortho-isomorphism.

Lemma 7. Let M be any von Neumann algebra, P and Q noncentral orthogonal

projections in M, p. a scalar, and X e M be such that

(i) X*X-XX*=P-Q + p-I,

(ii) XP-PX=X=QX-XQ.
Then P~QiM) and p = 0.

Proof, (ii) implies that (P+ Q)X=XP-X+ XQ + X=XiP+Q). Moreover,

since both (i) and (ii) hold if X is replaced by X(P+ Q), we may assume that

P+Q = I by considering the algebra iP+Q)MiP+Q) if necessary. Relation (ii)

implies that if R is a projection and R S P then RX= 0. Hence the projection on the

complement of the null space of X (called the initial projection of X) is contained

in P, and the projection on the closure of the range of X (called the terminal
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projection of X) is contained in Q. We further note that if X=0 then (i) implies

that Q=P + p,I which is impossible.

Suppose that the initial projection is not P. Then there exists a projection R

such that 0=£RSP and XR = 0. Multiplying (i) on both sides by R we have

0 = (l+/n)Pv and so /*= — 1. Since AVO there exists a projection SSP such that

XS=X. Again by (i), X*X=iX+p)S=0 which implies X=0. Hence the initial

projection of X is P. By similar means we could show that the terminal projection

(which is inside Q) is not smaller than Q.

If X=VH is the polar decomposition of X, then H=iX*X)112 and, by the

above, V*V=P, VV* = Q. Relation (i) implies that

(1) X* X = PiX*X- XX*)P = (1 +p)P,

(2) -XX* = QiX*X-XX*)Q = i-l+p)Q.

But

(3) XX* = VHHV* = VX*XV* = F(l+/x)PF* = (1 +p)Q.

Adding (2) and (3) we see that /¿ = 0.

Corollary. Suppose that Px,...,Pn are mutually orthogonal, equivalent pro-

jections in M. If the 0(P¡) («'= 1,.. ., «) are mutually orthogonal in N then they are

equivalent (A7) and A(P¡) = A(Py) for all i=£j. If the 0'(P¡) ore mutually orthogonal a

similar statement holds for the 0'(P¡) and A'(P0 0=1,...,«).

Proof. If PX~P2 then there exists a VeM such that V*V-VV*=PX-P2,

VPX-PXV= VPX=V=P2V- VP2. Applying <f> and letting X = ^(F) we have

X*X-XX* = 0(P1)-0(P2) + (A(P1)-A(P2))/,

X6iPx)-eiPx)X = X = 0(P2)A--*0(P2).

If 0(Pj) is orthogonal to 0(P2) then by Lemma 7, 0(P^ ~ 0(P2) and

p. = A(P0-A(P2) = 0.

If 0'(Pi) is orthogonal to 0'(P2) then

X*X-XX* = -(/-0(P1)) + (/-0(P2)) + (A(P1)-A(P2))/

= 0'(P2)-0'(Pi) + (AYP2)-A'(P1))

and the roles of Px and P2 in Lemma 7 are reversed.

Theorem 2. Let <j>: M ->N be a Lie isomorphism of the infinite factor M onto the

von Neumann algebra N. Then N is an infinite factor, and if P is a projection in M,

either ^(P) = 0(P) where 0 is an ortho-isomorphism, or </>(P)= —6'iP) where 0' is an

ortho-isomorphism.

Proof. Choose mutually orthogonal, equivalent projections P, (/=1,2, 3) of

sum I in M and assume that 0(P¡) are orthogonal. Hence the 0(PJ are ~ and of
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sum/, and A(P() = A(P;) for i+j. Since PX+P2~P3 we have 0(PO~0(P3)~0(PX)

+ 0(P2), and so TV is infinite. Moreover, since A(P1) = A(P3) = A(P1+P2) = 2A(P1)

all the A(Pf) = 0. The relation </>(/) = 2?= i ¿(P) = 2?= i #(P) shows that <£(/) is a

nonzero central projection and so (/■(/) = /. A similar computation in the 0' case

shows that all the A'(P¡) = 0 and 0'(/)= -/.

Suppose now that the 0(P¡) are mutually orthogonal and that Q, R are orthogonal

projections in M. We shall show that 0(ß)0(P) = O. The technique used here is

similar to that of [5, Lemma 13]. Let S = I-iQ + R).

Case (i). Suppose Q, R, S are all infinite. Write ß = 2?=i ß(i), P = 2?=i^(i)>

5=2?=i S(i> where the Qm (resp. R(i\ Sw) are mutually orthogonal, equivalent

projections of sum Q (resp. R, S). Let P(i)=ß(i>-|-P<í> + ,S<i, (/=1, 2, 3). Then the

Tw are equivalent and of sum /.

If 0(ß), 0(Pv), 0(5) are cox then the 0(ß(i)), 0(P(i)), and 0(S(i)) are cOj., and so

then are the 0(P(i)). Thus <£(/)= -/ which is impossible. We conclude 0(ß)- ß(P)

= 0. If the 0'(P) are orthogonal a similar argument shows 0'(ß)0'(PO = G\

Case (ii). Q, R infinite, 5 finite.

Choose orthogonal infinite projections Ti (7=1,2,3,4) such that ß = Pi + P2,

R = T3 + Ti. Applying Case (i) to the Pf we see that 0(^)0(^^ = 0 if &j. Using the

additivity of 0 on the P, we have 0(ß)- 0(P) = O.

Case (iii).  Q infinite, R finite, /— ß infinite.

Choose R' ± R such that I-Q = R + R'. Since R' is infinite we have 0(P')Ö(Ö)

= 0. Hence O=0(ß)0(/-ß)=0(ß)0(P + P') = ö(ß)0(P) + 0(ß)0(P') = ö(ß)0(P).

Case (iv). ß infinite, R finite, /— ß finite.

Choose ßi J_ ß2 where the ß; (7=1,2) are infinite such that ß=ßi + ß2.

Then 0(ß()- 0(P) = O by Case (iii). Hence 0(ß)0(P) = O by the additivity of 0.

Case (v). Q, R finite.

Choose S, T infinite orthogonal projections such that 1 — iS+T)=Q + R. Then

O=0(ß + 5)0(P + P) = 0(ß)-0(P).

Thus, if ß 1 R, 0(ß) _L 0(P) for all projections Q, R in M.

Finally, suppose we are in the case when 0 conserves orthogonality and let R be

an infinite projection. Write P = 2?=i^i where the R¡ are mutually orthogonal

and equivalent. The argument of the first part of the proof applies to show all the

A(P¡) = 0, and so A(P) = 0. If P is finite, I—P is infinite and we have

/ = <j>il) = <f>iP) + <piI-P) = /+(A(P) + A(/-P))/ = /+A(P)/

and so A(P) = 0. A similar argument holds if 0' conserves orthogonality, thus

completing the proof.

We now consider the case when M is a finite factor. Notice that if M is finite

then N is also. For, if N were infinite we could apply the above reasoning to </>-1

and conclude that M is infinite also. Moreover, if M is of type IL then so must N

be of type XXX. For, if A^ were of type In, the operator I'm N could be expressed as a

sum of at most « mutually orthogonal projections.
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We shall assume for the IL-case that <¡>il) = I. (If ^(/) = a/, replace <f> by the

mapping f G4) = <¿L4) + (1 -a) TrM {A)I.)

Theorem 3. If <f>: M ^ M is a Lie isomorphism of the XXx-factor M onto the

\Xx-factor N, then either 0 is an ortho-isomorphism, or 0' is an ortho-isomorphism.

Proof. Let j/ be a MASA, i.e. a maximal abelian subalgebra, in M. Then

1rM\sép has range [0, 1] and so we can choose orthogonal projections P¡ (/= 1, 2, 3)

in sé such that TrM (P¡)= 1/3. If 0' is an ortho-isomorphism on sép then the 0'(P¡)

are orthogonal, equivalent, and of sum /. Hence TrN (0'(P¡))= 1/3, TrN (0(P¡)) = 2/3.

If 0 is an ortho-isomorphism on sép then Tr^ (0(P¿))= 1/3.

Assume 0 is an ortho-isomorphism on sé and let P e sép. We claim that it is an

ortho-isomorphism on any other MASA SS. In fact, let QeSSP with TrM (ß)= 1/3.

Then TrM(Pvß)a2/3 so that we may choose nonzero projections R, S with

Pv Q, R, S mutually orthogonal. Let séx be any MASA containing P, R, S and sé2

any MASA containing Q, R, S. If 0 is not an ortho-isomorphism on S#, then 0 is

not an ortho-isomorphism on sé2 since &iQ)esé2 and TrN (0(ß)) = 2/3. Since

Trw (0(P))=l/3, 0 is an ortho-isomorphism on séx. Hence on séx n sé2, an abelian

algebra of dimension ¿3, 0 and 0' are both ortho-isomorphisms which is im-

possible. Similarly for the case when 0' is an ortho-isomorphism.

Lemma 8. Let P be a noncentral projection in M. Then each A e M has a unique

dissection A=AX + A2 where PAX = AXP and iI-P)A2iI-P) = 0 = PA2P. One has

Ax=PAP+iI-P)AiI-P), A2 = [[P, A], I-P].

Proof. We need only show uniqueness. Suppose Ax, A2 satisfy the hypotheses

and Ax + A2 = 0. Then 0=P(^1+^2)P=^1P and

0 = iI-P)iAx + A2)iI-P) = AXU-P).

Thus Ax=A2 = 0.

Lemma 9. Let sé be a MASA in M. Then sé contains a projection P such that

P~I-PiM).

Proof. Suppose sé is nonatomic. Let {Pa}ae?t be a (possibly void) maximal set

of mutually orthogonal finite projections in sé, and let Q = I— 2ae9i P«- Also

ß = 2ße» Qß where the Qe are mutually orthogonal, countably decomposable

projections in sé. For each ß e S3 we can choose Q'B such that 0# Q'ß S Qß, Qß¥" Q'ß,

and Qe — Q'B~ Q'ß. Now each algebra MR<t i=[RaARa\ A e MX) has a faithful

numerical trace Ta, and i¿éRa, Ta) is a nonatomic, finite, measure algebra. Thus we

can choose R'aSRtt such that TaiR'a) = TaiRa — R'a) and consequently R'a~Ra — R'a.

The desired projection is P=2ae« ^á + 2fie» Q'ß-

If sé has an atom, then this atom is a minimal projection in M and so M is of

type I ». Suppose that the collection of orthogonal atoms is finite with sum R.

Then I-R is infinite and contains no finite projection of M in sé. The above
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argument shows that we may write R = RX + R2 with the R¡ mutually orthogonal

and equivalent in sé. Then P=R + RX~R2 is the desired projection.

If the collection of atoms is infinite with least upper bound R, then R decomposes

in the desired way. Since now I—R is infinite or zero it also decomposes in the

desired way.

Lemma 10. Let P be a projection such that P~I—PiM), and V a partial isometry

such that V*V=P, VV*=I-P. Let A be a selfadjoint operator with OS AS I,

A=AP = PA and set RiA) = A+ViI-A)V*+ViAiI-A))ll2 + iAiI-A))ll2V*. Then

R = RiA) is a projection and if W= j(F+ V*) then R+WRW*=I.

Proof. This is a straightforward computation utilizing the relations F2 = 0,

AV=PV=0, VP=V, V*V=P and VV*=I-P.

Lemma 11. If<j>isa Lie isomorphism of a factor M on a factor N then there exists

a C*-isomorphism 0 of M on N such that either (i) <j>iA) — SiA) is central for all

Ae M, or (ii) <¡>iA) + @iA) is central for all A.

Proof. On the set of projections MP of M, either (1) 0 = 0 +A or (2) <f>= —0+A

where 0 is an ortho-isomorphism of MP on NP and A is additive on orthogonal

projections. Moreover, A(P) = 0 if there exists a dissection I=PX+ ■ ■ ■ +Pn with

the Pj mutually orthogonal and P¡~P (in this case we say P divides /). The latter

statement holds true if M is infinite, and in the finite case when </> = 6 + X. If

<p=—6+X with A() = 2TrM() on rational projections, we replace <f> by </>'(') =

<f>i-) — 2TrM (•) and note that if the lemma is true for <j>' it is true for <j>.

Now, applying a theorem of Dye [5, Theorem 1], there exists a C*-isomorphism

0 of M on N which agrees with 0 on MP. It suffices to prove the lemma for self-

adjoint operators A with 0 S A S I. By Lemma 9 choose a projection P such that

PA=AP and P~I-P via F where F*F=P, VV* = I-P. We may additionally

assume that PA =AP = A, since in general A =AP + AiI—P) and the lemma would

hold for each part.

Form the projection RiA) of Lemma 10. Using the notation of Lemma 8 we

have Rx = RiA)x = A+ViI—A)V* and, since A—Ax is a Lie triple product,

<l>iRiA)x) = <f>iRiA))x. 8 conserves Lie triple products and carriers so that again by

Lemma 8, 8iRiA)x)=SiRiA))x. Moreover, by Lemma 10, RiA) divides /. There are

thus two cases: (i) <¿(PL4)) = 9ÇR(Â)) or (ii) <f>iRiA)) = - 0"(Ä(/1)).

Case if). Since AP = A, A commutes with all projections QSI—P- Therefore,

4>iA)6iI-P) = ii0iI-P), and we can write (uniquely) </>iA) = B + A/where P0(P) = P.

Also if W=<KV), then IF is a partial isometry such that W*W=b\P), WW* =

0(/-P). Now <t>iVA) = </>[V, A] = [W, B+XI]=WB and <j>iA-VAV*) = <j>[V*, VA]

= [W*,WB] = B-WBW*. Thus 4>iRx) = <j>iA-VAV*) + <f>iI-P) = B-WBW* +

WW* = B+ Wil-B) W*. 8<RX) = SiA) + 9iV*iI-A)V) and, as 8 conserves carriers,

b\A) lives on 0(P), 0(F*(/-^()F) lives on 0(/-P). Thus we must have B=BiA),

and so <j>iA)-SiA) = XL
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Case (ii). In this case we have <f>iRx)= —6iRx), <¡>iA) = B-+XI with B living on

0(P). However, in this case if W=<f>iV), WW* = 8iP), IF*IF=0(/-P). Calculating

as before,

<j>iVA) = 4>[V,A] = [W, B+XI] = -BW,

4>iA-VAV*) = [W*, -BW] = B-W*BW+4>iI-P)

= B- W*BW-<f>iI-P)-8iRx)
= -8iA)-8iViI-A)V*).

The part of <f>iRx) living on 0(P) is B, and the part of - SiRx) living on 0(P) is

- 8iA). Thus B= - 8iA) and <f>iA) + SiA) = XI.

Theorem 4. If <f>: M —s* N is a Lie isomorphism between the factors M and N,

then (f> has one of two forms: if)<j>=S-+X where 8 is an isomorphism and X is a *-linear

functional which annihilates brackets or (ii) <f> = — 8+ X where 8 is an anti-isomorphism

and X as before.

Proof. In Case (i) of Lemma 11 we define A(/l) = <j>iA) — SiA) and in Case (ii)

AL4) = </>(v4) + 0(v4). In (i) 8 must be an isomorphism. For, if it were an anti-iso-

morphism, X[A, B] = <f>[A, B]-8[A, B] = [<f>iA), 0(P)] + [0"L4), 0(ß)] = 2[0L4), #£)].
This implies all commutators are central which is impossible. In Case (ii), 8 must

be an anti-isomorphism by similar reasoning.

In both cases A vanishes on brackets. For example in (ii),

X[A, B]-8[A, B] = <f>[A, B] = [<j>iA), 0(5)] = [SiA), 0(5)] = -6[A, B].

Corollary. If <f> is as in Theorem 4 and M of type III on a separable Hilbert

space, or of type Im, then <f> is bounded.

Proof. In these cases, by theorems of Brown and Pearcy [1], [2], the span of

commutators is all of M. Hence, the A of Theorem 4 is identically zero.

Lemma 12. Let M be a von Neumann algebra. If X is a norm continuous linear

functional on M which annihilates brackets and the center of M then A = 0.

Proof. Given A e M, the uniform closure of the convex hull of [UAU~X \ U a

unitary operator in M] contains at least one central element [3, p. 272, Théorème

1]. Choose C in the center of M and elements 5n = 2 «in>^i("M(L'i('l))-1 such that

Sn -> C uniformly. Then A(S„) -> A(C) = 0. But for any unitary U, 0 = A([t/-\ UA])

= XiA)-XiUAU'1) so that A(Sn) = AL4) for each «. Therefore AL4) = 0.

Corollary. Let <f> be a uniformly continuous Lie isomorphism between factors

M and N. Then (1) if M is infinite, <f> is either an isomorphism or the negative of an

anti-isomorphism, and (2) if M is finite, </> is either an isomorphism or the negative of

an anti-isomorphism + 2 TrM ( ■ ).

Proof. The A in Theorem 4 is continuous in this case. Applying the above

lemma and conserving the normalization of Lemma 11 we have the result.
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Added in proof. The author has proved, as a generalization of the above, that

if 0: M—>N is a Lie*-isomorphism between the von Neumann algebras M and

N, M, N with no central summands of type Xx or I2, there exists a central projection

C in M such that <f>\Mc~'J + ^ where a is a *-isomorphism and A is a *-linear map

from M into ZN which annihilates brackets, and <f>\M,.c = (J' + ^' where a' is the

negative of a *-anti-isomorphism and A' has properties similar to those of A.

As an application of this result it can be shown that a uniformly continuous

group isomorphism between the unitary groups of two simple C*-algebras induces a

Lie *-isomorphism f between the ultra-weak closures of the universal representa-

tion algebras of the respective C*-algebras, and that the above generalization

applies to <f>.

These results will appear as part of a later paper.
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