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A QUANTUM DYNAMICAL, RELATIVISTICALLY

INVARIANT RIGID BODY SYSTEM^)

BY

RICHARD ARENS

1. Introduction. The purpose of this work is to propose and investigate a

quantum dynamical, relativistically invariant system 31 intended to describe the

dynamics of a symmetric rigid body. The Hubert space associated with 21 is the

space L2(£(3)) of square-integrable functions on the ordinary Euclidean group 7s(3).

The (pure) states of 91 are, of course, the rays or one-dimensional subspaces of this

Hubert space.

For any dynamical system one has to specify each dynamorphism or change in

state corresponding to a change from one observer to another. For an invariant

system, this gives rise to a representation (or, more generally, an action) of the

space-time group. In the relativistic case this is the Poincaré group 0s. We exhibit

this representation of & in the case of %. It is, as it should be, an extension to SP

of the regular representation of 7T(3).

In any system (classical or quantum) purporting to describe a rigid body, the

orthogonal group 0(3) must act in the space of states in a manner induced by the

action in the configuration space 7s(3) which reflects the fact that the rigid body

can be orthogonally transformed about its centroid without subjecting the centroid

to the motion which the inclusion of 0(3) in 7s(3) defines by left multiplication.

The symmetry of the body means precisely that this action commutes with all

dynamorphisms. Accordingly one can construct a new system in which the states

are the orbits under this action of 0(3). In the case of 31, the new system may be

denoted by 91/0(3). It turns out to be a quantum system. It is indeed the direct sum

of the well-known positive energy systems with spin 0, 1/2, 1, 3/2,.... Thus the

positive energy Dirac system is a constituent of 91/0(3).

The system 91 has also a classical limit 9i0. The system 910 has as its space of

states the phase space formed in the usual way when the configuration space is £(3).

Each of its dynamorphisms preserves the Poisson bracket. It is thus a Hamiltonian

dynamical system for a rigid body which is Lorentz invariant. It is of course not

the usual one due to Euler which is Galilei invariant.

For the classical system one can also form 9t0/O(3). This is a system in our

general sense, and its state-space has dimension 2 dim 7J(3) — dim 0(3)= 12 —3 = 9.

It has a Poisson bracket and the infinitesimal dynamorphisms have generating
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functions, but the Poisson bracket is somewhat degenerate. Axioms for systems of

this type (which includes the classical systems) are given.

It would go beyond the scope of the present work to explain in what precise

sense 9I0/O(3) is the classical limit of 91/0(3), but it can be done and this gives rise

to a diagram,

h = 0
91

-0(3) -0(3)

h = 0
91/0(3)-> 9I0/O(3).

The content of the following sections is as follows. §2 recapitulates the notions

of space-time, observes, and dynamorphisms both global and infinitesimal. §3 deals

with Hamiltonian systems which among other things have a Poisson bracket which

could be degenerate. It defines completely Hamiltonian systems (generalizing a

suggestion of D. G. Babbitt) in which the infinitesimal dynamorphisms have

generating functions. It is shown that one-particle systems based on the Einstein-

Lorentz category of observers which are completely Hamiltonian, describe only

free particles. This is not the case with Galilei-Newton observers. In order to

permit comparison with the system 9t0, the Galilei invariant Euler system of a

rigid body is set up in a group-theoretic way. §4 deals with the classical system 9I0,

and shows that the differential equations (i.e., the infinitesimal dynamorphisms)

can be integrated to give the necessary action of 0* in 7s(3).

§5 introduces the general concept of completely Hamiltonian systems and shows

that the process of dividing out the symmetry group 0(3) leads to a completely

Hamiltonian system 9I0/O(3). §6 is purely mathematical and presents a way of

deforming Galilean frames into Lorentz frames. This enables us to construct an

action of the Lorentz group on 7s(3). (For system 9l0 we have an action of the

Lorentz group on the cotangent bundle of 7s(3). This action is not induced by the

action of §6.) From there we obtain an extension to 0 of the regular representation

of £(3).

In §7 we construct the quantum system 91. In §8 we divide out the action of 0(3)

and show that the constituent of 91/0(3) with spin 1/2 is the Dirac positive energy

system. This is done by using the inverse of the Foldy-Wouthuysen transformation.

Since we know no reference for any but the purely temporal dynamorphisms

(generated by the Hamiltonian) for the F.-W. system, we calculate the rest of them

in §9.

§10 makes precise the notion of the classical limit of quantum systems. This

construction is the inverse of the process of quantizing a classical system and seems

to avoid the difficulties encountered in the latter process. Then we show that

91 -> 9I0 in the sense defined. The proof is complicated because not all the infinitesi-

mal dynamorphisms of 91 are differential operators.
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§11 is a brief disclosure of the local structure of the Poisson bracket axiomatized

for the "neo-classical" Hamiltonian systems of §3 in the presence of a condition

of constancy of rank.

It is a pleasure to acknowledge helpful discussions with D. G. Babbitt and

V. S. Varadarajan on all facets of this work. Also stimulating was a perusal of the

former's Lecture notes on special relativity—a coordinate free approach.

2. Coordinators in space-time, and dynamics. In connection with manifolds M

we use the notation set forth in [2, §IV]. In particular, if Ç is a vector in M

% = ¿¡'idjdx')       (summation convention)

thus given by components in some coordinate system, then for any (differentiable)

function/defined in M, fis defined for vectors in M, by the formula

(2.01) fil) = ÎWJdx') = lif).

Let x, y, z, t be the cartesian coordinates in 7?4. Then the Lorentz structure in

Ri can be defined by the quadratic (differential) form

(2.1) i2-x2-y2-z2;

and the inhomogeneous Lorentz or Poincaré group 0 can be defined as those

maps T of Ri onto itself which preserve 2.1 in the sense that for any vector Ç in

R*, 2.1 has the same value for T% as for %.

Space-time as conceived by Galileo and Newton involves two quadratic forms

(2.11) i2,

(2.12) x2+y2 + z2.

We will say that a manifold A7 with a finite sequence

(2-2) g,g',...

of one or more quadratic forms has a space-time structure.

Now we want to give a definition of space-time isomorphism which, in case of

2.1, singles out the Poincaré ( = inhomogeneous Lorentz) group and in case of

2.11-2.12 singles out the Galilean group (see, for example [5, 1346]); and we

would like this definition to make sense even when M is not 7?4 so that we avoid

saying "linear".

A geodesic with respect to a set 2.2 is a curve in M such that for each arc thereof

the " pseudo-length " of it with respect to each of these quadratic forms is stationary.

In the special cases these are just straight lines.

A vector % in M is singular with respect to g if g(Ç + rj)=g(Ç) for every vector y)

with the same base point as \.

Now let N be another manifold with space-time structure h, h',.... Let T be a

differentiable mapping of M into N such that

2.21 geodesies are mapped into geodesies,
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2.22 hiTQ = gÇE,) for every vector % in M,

2.23 if I is singular relative to g,

then h'iT%)=g'H), h"iTQ = g"(f>),. . . for all the remaining quadratic forms in 2.2.

Such a map will be called a space-time map. If £and T'1 are both space-time

maps we call T a space-time isomorphism.

We leave it to the reader to show that this definition does single out the desired

groups in the familiar cases mentioned. We call the group of all space-time iso-

morphisms the group of the space-time structure.

Both structures 2.1 and (2.11, 2.12) have the following property. A space-time

structure g, g , . . . in 7?4 is called Euclidean if the maps obtained by extending the

Euclidean motions in the obvious and trivial way to 7?4 are included in the

ig,g',...) group.

We now prepare for the definition of the analogue of an "observer", which will

play a role similar to that of the space-like hyperplane in the theory of dynamical

systems in [7], and to that of observer in [6]. A vector \ in A7 is called time-like

if gi%) is positive. A one-dimensional connected smooth submanifold ("curve")

W in A7 is called time-like if all its tangents are time-like vectors. A time-like curve

W shall be called a world line if it is complete. These definitions are those given in

[7, 2.2, 2.21, 2.22] except that the specifically Einstein-Lorentz structure is left out,

to allow a simultaneous treatment of Galileo-Newton space-time.

A space-like section is a hypersurface 5 in M which has the property that every

world line W intersects S in exactly one point and is not tangent to S.

We now postulate a space-time structure ig, g',...) in R1 which will not be

changed without further notice, and which has the properties

2.3 the hyperplane t = 0 is a space-like section,

2.31 the time translations (a, b, c, d) —> (a, b, c, d+r) is an isomorphism for each

real t.

We will call it the structure of 7<4 for brevity.

Now let M be a manifold with a space-time structure isomorphic with that of

7?4. Then any particular isomorphism x: M<->7?4 shall be called a coordinatorÇ2)

for M. A coordinator x thus consists of four real functions (jc1, x2, x3, xl) defined

in M. The coordinator (x1, x2, x3, xl — t), where r is a constant, is a temporal

variant of x. Supposing that t is positive; for example, the latter coordinator

assigns a smaller time coordinate to a given event than does the former.

The physical idea is that the coordinator (je1, x2, x3, jc4) is concerned with

recording events on or infinitesimally near the hypersurface in space-time M where

x4 = 0.

Now suppose there is some dynamical system involved. The observations of

(2) We would call it an "observer" if we had not used this term in [6, 3.31] for a closely

related, but somewhat different concept. Specifically we are now exploring the case in which the

set Q in [7, 3.1] does not intentionally lie in M and moreover is the same for all "observers".
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(jc1, x2, x3, jc4) should fix and determine which of its dynamically possible per-

formances the system is actually doing. Hence the observations of any other

coordinator (j1, y2, y3, _y4) relating to that performance are determined by the

data supplied by (jc1, jc2, jc3, x4).

When there is a particular dynamical system involved, there will be an appro-

priate space K at hand for each coordinator to mark his observations in, as a point

(cf. phase space). This space K is the kinematics of the system (cf. [7]).

According to what has been said, there should, for each pair of coordinators

x, y, be a 1:1 mapping A* of Aconto itself such that if a given performance provides

the data Ç to x then that performance provides the data A*(Ç) to y. Each such

mapping shall be called a dynamorphism and the collection of all these, denoted

perhaps by A, shall be called the dynamics. The pair (A', A) may be used as a name

for the system being discussed.

We impose two conditions on a dynamics A. These conditions reflect the physical

idea. They are

2.4 AJ o A£= Ax,/or any three coordinators, and

2.41   Ay is the inverse of A£, for any two coordinators.

We now proceed to a specific example, the case of second-order interaction

between n particles (cf. [7, 2.6-2.7]). Having chosen a space-time structure we let B

denote the class of velocities that a world line may have for any coordinator. For

Einstein-Lorentz, this is of course those vectors of length less than 1 while for

Galileo-Newton there is no restriction and B is linearly isomorphic to R3. Let J

be a class of «-tuples of world lines (in M) such that for any coordinator x and any

points »i,..., an in 7?3 and any n velocities \x,.. .,\n selected from B there is one

and only one «-tuple (H/1,..., Wn) in J such that their images x(H/1),..., x(IPn)

in 7?4 pass through the given points a,.,..., a„ and have the velocities(3) v,,..., vn

respectively.

Thus for any W = (M/1,..., Wn) in J on any coordinator x we obtain a "point"

in K=R? x ■ ■ ■ xR?xBx ■ ■ ■ xB. Let us call this point AX(W). For any pair of

coordinators x and y, let

(2.42) A* = A* o (A»)-1.

This certainly implies 2.4 and 2.41 and is thus the dynamorphism for this system.

Remark. In this case the dynamorphism arose because we had a family {Ax}

of 1:1 maps of a fixed set J onto K. We prefer not to take this as a basis for a

general treatment of dynamics because it is generally hard to find a natural

candidate for this space J.

If x is a coordinator and S is an isomorphism of R* (or T is an isomorphism of

M) then S ° x (as well as x o T) is another coordinator and every other coordinator

(3) The velocity of a curve C in Rl is said to be v if it cuts / = 0 in one point a and the

vector with components (v1, v2, v3, 1) is tangent to C at a.
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can be obtained in this way. For a coordinator x and any element S of the group

G defined by the space-time structure presumed selected for 7?4, we may define

(2.5) UJJS) = Ar

This is not generally a representation of G. In fact,

(2.51) t/x0SoS0)= C/X(S) o Í7X(50)

for all S0 in G if and only if S is a dynamical equivalence of the system (AT, A), i.e.

(2.52) UyiS) = UziS)   for all y and z.

This assertion can be established by repeated use of 2.4 and 2.41. In particular

2.53 The group of dynamical equivalences is represented by each coordinator as

a group of permutations in K.

If every isomorphism of the space-time structure is a dynamical equivalence,

then the dynamical system may be called invariantif).

In the classical and conventional treatments of mechanics [1, 14] those particular

dynamorphisms Ax are emphasized in which y is a temporal variant of x. This

amounts to studying £/x(S) where 5 is the one-parameter group of time translations

in 7?4, and differential equations are introduced to govern the behavior of these

one-parameter families (not groups!) of dynamorphisms. In order thus to govern

more general dynamorphisms by differential equations we have to make additional

assumptions.

2.6 The group of M has a topology compatible with its group structure.

2.61 The set K has a differentiable structure, possibly infinite dimensional.

2.62 For each coordinator x and each continuous one-parameter subgroup T of

the group, there is a vector field defined /«(5) K with the property that (/« an

appropriate sense)

= A^
(2.63) js Um*)) iT,x-

When the dynamics is invariant, then these vector fields have to satisfy the

commutation relations of the (Lie algebra of the) group G (see 2.51). It is not

known what conditions (beyond smoothness conditions) ought to be imposed on

the map {T, x) '—> A-jX.

These vector fields A-iX may be referred to as the infinitesimal dynamorphisms.

It is of interest to note to what extent they determine the dynamics. The topology

2.6 defines a topology in the space of coordinators. In the Einstein-Lorentz case

we get a space homeomorphic to the Poincaré group. In principle, if x and y lie in

(4) The principle of relativity would assert that a "natural" dynamical system should be

invariant. We do not invoke this principle as part of the definition because that would exclude

systems with "external forces".

(5) That is, on a dense subset of K. The fact that the Hamiltonian operator of a quantum

system is usually not defined on all of its Hubert space justifies not requiring A^iX to be defined

on all of K.
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the same component [15, 13], then the differential equations should serve to

determine Ax. But additional information is needed to find Ax in the contrary case.

Obviously one needs to know, besides the infinitesimal dynamorphisms, also one

specimen of the set AJ^ and one specimen of the set Ax(=x where Is, It are the

inversions [15, 10].

In the familiar cases, continuous one-parameter subgroups £can be characterized

by the infinitesimal transformations Z which generate them in Ri, and instead of

Ay x we may write Az>x.

2.7 Theorem. For a second-order n particle interaction, the infinitesimal dynamor-

phisms corresponding to the standard dynamorphism 2.42 have the following form.

For each coordinator x there is a set of functions defined on K

(2.71) Mi»':'a- 1,2,3; A = 1,2,...,«}

such that for Z = Z\djdt) + Z\djdx1)+Z\djdx2)+Z3idjdx3),

(2.72) - A¿,x = (ZK-Z1) ^+[Z^k,A + ^(Z0% + ^Z°A)-Z¿,A-i;ÍZj,A] ~

Here /, jc1, jc2, jc3 are the cartesian coordinates in 7?4, x\, x2, jc?, ..., xl, jc2., jc3,

..., jc1., jc2., jc3, v\, v\, v\,..., v\, v2, v3 are the coordinates in K and the summation

convention applies to all repeated indices. Moreover Z'0 means dZ'jdt, Z\ means

dZ'jdx', and the suffix A in every case means that (/, x1, x2, jc3) are replaced by

(0, jc1., jc2, x3), except for the A^iA which were defined on K in the first place.

To prove 2.7 we may identify M with T?.4, using x. Let y be the coordinator (now

a map of 7?4 onto 7?4) which makes a point flow according to Z for e units of time.

We have to compute Ax. According to 2.42 this means to take our initial conditions,

transform them according to y, find the appropriate curves from J and take their

positions and velocities at / = 0. A little reflection shows that we need to think only

of one particle, and that the dependence of the A,% on all the variables takes care

of the generalization.

Suppose our particle is at a with velocity v when / = 0. The tangent to the world

line thus determined has components (1, v1, v2, v3). The y is a transformation

which is approximately

(2.73) it + eZ°, X1 + eZ1, X2 + eZ2, X3 + eZ3).

This moves our point (0, a1, a2, a3) to

(2.74) i + eZ°,a1 + eZl,...,a3 + eZ3)

where the Z's here are evaluated at (0, a) (compare the meaning of the suffix A).

To obtain the transform of the tangent we use the ordinary rules for change of

contravariant vector components, as effected by 2.73, and obtain, as direction

numbers for the tangent,

(1 + eXg + ev'Z?, + eZl + etfZ} + V1, . . ., + eZ% + ev'Z3 + V3).
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We divide by the first component and ignore e2 and obtain another equivalent

tangent vector

(2.75) (1, v1, v2, v3)

where v' = v' — e[v'iZ% + v'Z?) — Z'0 — v'Zj]. Now 2.74, 2.75 provide the position and

velocity at t = eZ° (see 2.74) of a particle whose acceleration is, let us say, A.

Hence at / = 0, its position will be

iai + eZ1-eZ°V1, ...,a3 + eZ3-eZ°V3)

or, ignoring e2,

(2.76) ia1+eZ1-eZ°v1,. . ., a3 + eZ3-eZ°v3);

and its velocity will be

(2.77) iv1-eZ°A1, ...,V3-eZ°A3).

The infinitesimal dynamorphism desired is simply the rate of change (with e)

of the position (2.76) and velocity (2.77). Taking into account the way e enters

into the U1 we see that

-A¿>x = iZ°v1-Zl)idjdxx)+ ■ ■ ■ +(ZV-Z3)(3/&t3)

+ [Z0^ + »'(Zg + r¿Z°)-Z- - v'Z'dfdjdv').

This is the assertion of 2.72 for one particle. Now each particle moves according

to its own law, except for the way in which the other particles affect the Äs.

Thus 2.72 is established in general.

As a check, we take Z= 8j8t. Then y is the transformation that translates upward

in the /-direction by an amount e. Let a, v be the initial conditions (for a particle)

in the sense of x. Now y would say that this event is at ( + e, a). With acceleration

A, the position at / = 0 is a —ev and the velocity v —«A. Thus

(2.78) - A¿,8t.x = tfid/dx1) + A\djdj)

which agrees with 2.72.

3. Hamiltonian systems. Let K be a differentiable manifold, with an anti-

symmetric contravariant tensor field A of the type whose components in any

coordinate system jc1, ..., jc" have two indices A". Then we can form a product

(3.1) {/ g} = A^figj       (summation convention)

of any two functions / g defined on open sets in K, where /, g} are dfjdxi and

dgjdx'. In the familiar case this "product" satisfies the laws

(3.11) ifg}= ~{g,f},

(3.12) {fgh} = {f,g}h + {fh}g,

and the Jacobi-Lie identity:

(3.13) {/, {g, h}} + {g, {«,/}} + {«, {/, g}} = 0

on the common domain of these functions.
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Property 3.13 does not follow from 3.1. A tensor field A satisfying these con-

ditions 3.11-3.13 shall be called an alternating structure. These structures are

analyzed in our appendix (§11 below).

Any function h defined on K defines a vector field Xh on K, via the formula

(3.14) XJ- ={«,/}.

Xh is a vector field by 3.12 and an infinitesimal contact transformation by 3.13,

and « is called the generating function of Xh.

It should be noted that if hi and h2 are generating functions for Xx and X2

respectively, then

3.15 {«!, «2} is a generating function for [Xt, X2].

Let iK, A) be a dynamical system. Suppose

3.2 K has an alternating structure and

3.21 the infinitesimal dynamorphism Ag/gi x has a generating function 77x ithe

Hamiltonian).

Then the system is Hamiltonian. If the second condition is strengthened to the

following extent (3.22-3.24) the system is called completely Hamiltonian.

3.22 For each one-parameter subgroup T the infinitesimal dynamorphism A'TjX

has a generating function g>iX.

Write gz,x for gT>x where Z is the vector field in 7?" corresponding to the subgroup

T.

(3-23) gz1 + z2,x. = gz^+gzz,*,

(3.24) gAZ>x = AgZx   for constant A.

If we have a system iK, A) in which K is the space TliQ) of tangent vectors in a

manifold Q (the "configuration" space) and if that system has a Lagrangian L,

then using the Legendre transformation [1], we can construct a Hamiltonian

system in which the alternating manifold is the space of covectors or cotangent

bundle 7\(0. This system shall be called iT\Q), A)* or (7\(OJ, A*). It is interesting

that it is not necessarily completely Hamiltonian. (Cf. also [8].)

3.3 Theorem. Suppose we have a second-order one-particle system ii.e., 2.42 with

n=l) for which there is a Lagrangian and such that the associated Hamiltonian

system is completely Hamiltonian. Then, in the Einstein-Lorentz case, the Lagrangian

is equivalent^) to

(3.31) 1-(1-jc2--j>2-z2)1/2

and in the Galilei-Newton case, to

(3.32) |(jc2 +f + z2) - Vix, y, z).

(6) Let L and M be two Lagrangians. If there are nonzero constants a, b, c such that

aL — bM is of the form /+ c then L and M are here called equivalent. Of course, then they give

the same dynamical trajectories.
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When there is a Lagrangian L, the Legendre mapping establishes a 1:1 relation

between T\R3) and fiR3) wherein a vector % is identified with the covector

=£?(!;) = (S7./3jc')(¡;) dx\ Equivalently, one can define p{ by dLjdx{, choose (jc1, x2, x3,

Pi,P2,Pz) as coordinates and then make T\RZ) into an alternating manifold using

the familiar formula [14, 141].

Consider 2.72 with A erased, as there is only one particle. This has reference to

the coordinates (jc1, jc2, jc3, v1, v2, v3) where the v* are the coordinates jc' in TxiR3)

(see 2.01 above or [2, (4.6)]). We have to rewrite it in terms of (jc1, jc2, jc3, pu p2, p3).

This requires care as djdx1 relative to one coordinate system is not the same

necessarily as relative to the other. Therefore let us denote the djdx' in 2.72 as D¡.

Then the following hold (using the summation convention):

(3.33) D, = djBx'-H^K^idjdp,),

(3.34) djdx* = Kildjdp,),

where 77 is the Hamiltonian ptx' — L, subscribed coordinates indicate partial

differentiation while Ku is the inverse of the matrix Hp¡1>j which, as usual, is assumed

"ftever to vanish on R3 x B (5 was introduced just below 2.41).

Now x'D¡ + A'idjdx') = HVaidjdxa) — Hx°idjdpa) as Hamilton's canonical equations

say. It results from all this that 2.72 takes the form

(Z«-Z°77Pa)¿

(3.35) 8
-{-Z°Hxc + Kac[Z °Hx>Pa - Z% + 77Pa(Zg + HPbZ%) - HPbZg]} — •

Since (by hypothesis) this has a generating function g, it has the form —gPai^l^xa)

+gxaiSI8pa) from which one can see at once that —g=Zapa — Z°H+f where /

depends only on jc1, jc2, jc3. We calculate gx" from this and equate it to the coefficient

of Sj8pc in 3.35.

After considerable simplification, we obtain a relation which says that

(3.36) 77(Zc°77Pc + Z0°) = (Zc% +/)77Pc + Zlpc - Z bHx» + <p

where <p also depends only on jc1, jc2, jc3, and suffixes on/(as on the components

Z") indicate partial derivatives.

Written in terms of L and the original coordinates (using 77Pii = xa and 77x» = — Lx°)

this says that

(3.37) iZ*Db + xcZ%djdxb))L + ZZidLjdxb) + iZl-+ xcZ°)iL-x\dLjdxb)) = <p-x%.

Now we write this down for an infinitesimal Euclidean vector field, so that

Z° = 0, Zg = 0, ZH + Zba = 0, and the Z% are constants. 3.37 holds for such vector

fields because these belong to the space-time group in either case. Thus

(3.38) êL = <p-x%

where S is the "lifted" form of Z: ^ = ZöD¡)-^-JccZ£(^/^Jc,').
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Now denote 8Lj8xc by Lc. Presently we will also write L(0) and 7_.c(0) to indicate

that we have set all the jc equal to 0 ("evaluation on zero section"). From 3.38 we

see that S'Lc + ZbLb = —f. From this it can be readily deduced that — <f(jccLc(0))

= jcc/c. It is also easy to show -<f(L(0))= -95. It results from this that L = 7.(0)

+ jccLc(0) + M where «í(M) = 0. (We also have M(0) = 0.) This shows that M itself

is a Euclidean-invariant function on TxiR3). Such a function has to have the form

Af=A70), j = jc2-r--j>2 + z2.

Letting 7.(0)= - K(jc, y, z),

(3.39) L = -Vix,y,z) + Aixi + Mis).

The next step is to show that A¡ dx' is exact. We insert 3.39 again into 3.38 and

equate coefficients of jcc. This gives us an expression for/. We differentiate with

respect to xa and express the fact that this is symmetric in a and c:

yb Ab  ,yb Aab  ,yb Aa _  yb Ab  ,  yb Acb ,  yb Ac

Here superscripts on the A's indicate partial derivatives. We evaluate this at the

place where ZX=Z2=Z3, which can be made to be any desired place in R3. At

that place we have ZbiAb-Acb) + ZbiAi-Aba) = 0. We take a=l, c = 3 and select

the Z's so that Z^=-Zf=l while all the other Z£ = 0. This yields A32 = A%.

Similarly A\ = A\, A\ = A\. Thus Ax dxi is indeed exact and this term in 3.39 has

no effect on the solution of Lagrange's equations.

We now take the case of Galilei-Newton space-time which allows Zl = t with

Z° = Z2=Z3 = 0. This we insert in 3.37. The result is L,=cp-jcc/c, or M'is)2x1-+Ai

— q> — x% so that M'is)= —f which makes M' constant. Thus Mis) = ks, and the

assertion 3.32 is proved.

In the situation involved in 3.31, Z1 = /, Z2=Z3 = 0 is a permissible vector field.

Insertion into 3.37, together with 3.39 as before, leads to the relation

2M'i1+^ + i1(M-K-2jcajcaA7') = <p-x%.

Thus 2M' + M- V-2sM'=-f,f2=f3 = 0. Therefore 2M'(1 -s) + M- V depends

only on jc1. Using the vector field Z2 = /, Z° = x2, Zx=Z3 = 0 we discover that the

same expression depends only on x2 and is thus constant, which we absorb into

V, getting 2M'(1 -s) + M=V. Evidently each side here is constant and

M = F(l-(l-s))1/2.

This theorem shows that completely Hamiltonian systems of one particle are

necessarily invariant in the Einstein-Lorentz case. We take this as a justification to

confine the further discussion to invariant systems, although not simply one-

particle systems.

3.4 Corollary. Say 77=¿(/>?+• • •+/>§) and A = A\8j8x1)+----+A3i8j8x3).

Then gtA = A1x1 + A2x2 + A3x3.



164 RICHARD ARENS [January

This can be deduced from 3.36. We may abbreviate

(3.41) A1x1+---+A3x3 = A-x.

We now turn to a brief study of the action of the Galilean group in the space

T1(£'(3)) of tangent vectors in the Euclidean group. It is fairly obvious that this is

the dynamics (in the strong sense of this paper) of a rigid body. However, we need

explicit formulas for this dynamorphism so that we can show how, by means of a

suitable Hamiltonian, this dynamics can be transferred to the space TiiEi3)) (the

phase space for a rigid body), in such a way as to be a completely Hamiltonian

system. Corollary 3.4 will provide a check because the tA there is of course a

Galilean infinitesimal transformation of the peculiarly Galilean sort.

Let Gal (4) be the Galilean group and let £(3) be the Euclidean group. Each T

in Gal (4) acts in Gal (4) by left multiplication, and this action lifts to T^Gal (4)),

the space of vectors in Gal (4). An element of Gal (4) can be written as a point

(t, a) of 7?4 together with a Galilean frame. By this we mean a quartet of vectors

where the first is a unit vector in the sense of 2.11 while the other three are singular

relative to 2.11, and orthonormal in the sense of (2.12) (this is the generalization of

a Lorentz frame). Such a Galilean frame can be characterized by one vector

(t/1, u2, u3, ±1) in 7?4 (the leading member of the Galilean frame), plus a Euclidean

frame F in R3. Thus Gal (4) can be identified with the set of all 5-by-5 matrices of

the form

(3.5)

0   0   0    ±1    t

0   0   0       0    1

F

0

0

u   a

:1     t

0     1

where the box marked F has the vectors of F as its columns. This makes the

operations in Gal (4) agree with matrix operations.

Given a matrix G of the form 3.5, denote the orthogonal matrix by Fa. Let v

and b be vectors in R3 and form the matrix (+l,v, b). Here +1 is the 3-by-3

identity matrix. Form the new matrix FGi+ 1, v, b)G_1. It can be seen to have the

form (+1, v', b') and we can therefore define

(3.51)

It is easily seen that

(3.52)

TG(v, b) = (v', b').

Ta1a2 — *g °Ta

It may be verified that the set of points in R1 for which x = b + /v holds is trans-

formed by G, then the image is the set of points for which x = b' + /v'. Thus Ta

gives the dynamorphism of Theorem 2.7 for a single free particle. We want to use
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it to construct the dynamorphism for a rigid body. The configuration space for

such a body is 71(3). An element of £(3) may be written as a matrix

(3.53)
F0   b

0     1

where F0 belongs to the orthogonal group 0(3). Usually one requires here 5*0(3),

but we must allow sense-reversing matrices because they represent what a left-

handed observer, so to speak, would see.

A vector in £(3) can be described by its base point, say, and another matrix

(3.54) r
Q   w

0     0

where Ü is a 3-by-3 skew symmetric matrix. The vector this is intended to describe

is the one which is tangent at M to the curve given parametrically, with parameter

e, as M exp eY. This is clearly Euclidean. If M is as in 3.53 then the moving point

in £(3) is given approximately by

(3.55)
£o + ££0ü    b + «£0w'

0 1

We have to recognize the kinematic significance of describing vectors in £(3) in

this way. If 3.53 represents the position (b) of the centroid of a body while £0

gives the components of an orthogonal triple of vectors embedded in the body,

then w is not the velocity of the centroid but rather, as 3.55 shows,

3.56 the velocity of the centroid is £0w.

Similarly, the angular velocity is not given by Q alone, but is rather the vector

associated with the skew symmetric matrix £0£2£0_1 [4, Appendix].

The advantage of describing a vector in £(3) by a pair M, Y is that the effect of

left-multiplication in £(3), when extended to T\EQf) is merely to left-multiply

the M and leave the Y alone.

In order to use 3.51 and 3.52 and also because the velocity and the angular

velocity (matrix) are more tangible than the Q. and w in 3.54, we will denote the

vector defined by 3.53, 3.54 (and described by 3.55) by the quadruple

(3.57) [£0,£0Q£0-\ £0w,b].

If a vector is denoted by (£0, cu, v, b) then the scheme of 3.57 can easily be

reversed to give the ¿1 and w.

For a Galilean transformation G we have already defined the orthogonal part Fa.

We note another homomorphism into the real numbers. If G is 3.5 let tg be the

product of nonzero elements of the fourth row. Then

(3.58) rGiG2
=   TGl + T,

<G2-
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For each element 3.57 of £1(£(3)) and each G as in 3.5 let

TG[£0, o>, v, b] = [£G exp (- tgw)F0, ± £G<u£¿- \ £G(v, b)].

The sign ± is to be the same as in the G (3.5). From 3.52 and 3.58 we obtain

(3.59) TGlG2 = TGl o TG2

and thus we have an action of Gal (4) in £x(£(3)).

3.6 Theorem. For each G in Gal (4) and each Galilei-Newton coordination y let

Af»=T0.
Then A defines a Gal iA)-invariant dynamics with state space £1(£(3)).

The proof consists in observing that the t/x defined in 2.5 is nothing but TG.

Hence 2.51 holds by virtue of 3.59. Thus 2.4 and 2.41 hold.

We now proceed to clarify the essentially classical nature of this system, namely

that it is the ordinary dynamics of a rigid body subject to no forces. In the first

place, we obviously have the right configuration space, viz. £(3).

The element [F0, u>, v, b] gives the attitude, angular velocity (matrix), velocity

and position of the centroid. Anyone familiar with the motion of a rigid body

subject to no forces knows how to transform from one observer to another. We

have to convince ourselves that TG reproduces these facts.

First consider the effect of passage of time. Then G is an orthochronous time

translation (i.e., everything in 3.5 is trivial except the t). Then

TJ£0, to, y, b] = [exp (-ro))£0, w, v, b-rv].

If the columns of F0 are the three-unit vector fixed in the body and the relation of

matrix to vector is that specified in [4, Appendix] then this triod is indeed(7)

spinning with angular velocity to.

Next we consider the case where G is Euclidean, i.e., when the ±1 is +1, the u

is 0, and the t is 0. Then

(3.61) T[£0, co, v, b] = [££0, FcoF-\ £v, £b + a].

According to [4, (A.2)] this says that the new angular velocity equals the old one

multiplied by £_1. Taking the transpose, the new angular velocity column vector

is F times the old one, as one would expect.

It is useful to note the following.

3.62 The action T when restricted to G from £(3), is the action induced in £1(£(3))

by left multiplication in £(3).

This is seen as follows. Take the vector [£0, co, v, b]. The Y corresponding to it

(3.54) is

„      \F^toFQ   FoVI

(7) We have to keep in mind that the effect of 7V is supposed to give the conditions t

seconds earlier. Compare 2.78.
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and the 3.53 is just as written there and may be called M. The one-parameter

curve is A7 exp eY. Let us left multiply by

£ =

Then the new one-parameter curve is EM exp eY, and this is the key to the induced

action. We compute the symbol (3.54) corresponding to its tangent and get the

right side of 3.61, as asserted.

For later use we study briefly the peculiarly Galilean transformation of passing

to a moving frame of reference. In such a case, Fis 1, a is 0, t is 0 and the ± 1 is

+1. Thus there is left only the u and we may write Tu for TG. The result is

(3.64) Tu(£0, w, v, b) = (£0, œ, u + v, b).

If u = £C then the infinitesimal transformation is Te = (0, 0, c, 0) for which the

differential operator or vector field in T1iEi3)) is

(3.65) A; = c\8j8xk)

in terms of coordinates (jc1, jc2, jc3, ...) for £(3) where jc' is the coordinate which

assigns to 3.53 the value b\ For the same infinitesimal Galilean transformation

acting, however, in 7?4 the vector field is (cf. 3.4) /(c^e/ebc1) 4- c\8j8x2) + c3i8j8x3))

where now (x1, jc2, jc3, /) are the cartesian coordinates in 7?4.

Thus 3.64 is not unexpected. The purpose of studying this system is to enable us

to prove that its Legendre transform provides us with the first nontrivial example

of a completely Hamiltonian system.

A purely geometric theorem is now presented which settles the "contact" nature

of most of the transformations which we shall meet.

3.7 Proposition. Let Q be a manifold and let 36 be a vector field in Q. Then 3£

induces an infinitesimal contact transformation in TxiQ), the space of covectors in Q.

If x1,..., xn is a coordinate system in Q and X1,. .., Xn are the components of H,

then over the domain ofthat coordinate system this infinitesimal contact transformation

has a generating function —piX1— ■ ■ ■ —pnXn.

It is well known of course that a point transformation S of Q onto Q can be

extended to a contact transformation of £i(ß) to £i(ß), although in several ways.

The way intended in 3.7 is to form the map called S* in [1, 14.16], but we prefer

the notation S,. (Functorial notation would suggest £1(S')~1.)

As usual, pi,...,pn are defined in TiiQ) whenever a coordinate system

(jc1, ..., jc") is given for Q by the specification that if a is a covector(8) at q in Q

(8) Old terminology, covariant vector. Additional notation: &l is the Kronecker delta.

eikm= +1 or 0 according asjkm is an even, odd, or not a, permutation of 1, 2, 3.

£   a

0    1
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with (jc1, . .., Jc")-cotnponents bu ..., bn then èi=/?i(a). Extending the use of jc*,

we set jci(a) = jc'(<7). Thereupon (jc1, ..., xn,pu .. -,Pn) is a coordinate system in

TiiQ) relative to which the alternating structure is (cf. for example [1, loc. cit.]).

(3.') {/, g}      «
8f_8^_   8f_

8xk 8pk      8pk 8xk

Now let 5 be any 1:1 map of Q onto Q. If a is a covector at q we define S^a)

to be that covector at Siq) whose (jc1, . .., jc")-components are the (jc1 ° S,. . ., xn ° S)-

components of a (just as Siq) is the point whose (jc1, ..., jc")-coordinates are the

ix1 o S,   .., xn o 5)-coordinates of q).

We apply this concept to the one-parameter group of transformations Se

generated by X with the intent of thus defining a vector field 3£i in TxiQ). Let

v' = jc' ° Se. Then y' = x' ° 5S is (to a suitable degree of approximation) x' + eXK

Let a be a covector at q, where x'iq) = a'. Then x'iS1ia)) = a' + eXi. Let the jc1

components of a be bu ..., bn. Then the y' components of a are ba = bf8xij8ya).

Ignoring e2, Btt = biihia — eX¡l). Hence the change in pa for a is —eX^pi while the

change in jc' is (of course) eX'. Hence the one-parameter family Se determines in

7^(0) a one-parameter family generated by the vector field

(3.71) Xi = Xfdjcx^-PiXlföjcp,).

This clearly has the generating function proposed in 3.7 which is thus proved.

Incidentally, a coordinate-free form for it is given by gia) = <[a, 3£>.

To transform the dynamical system of 3.6 onto the phase space £,(£(3)) for a

rigid body we need a Lagrangian to set up a Legendre mapping

(3.72) J?:T\Ei3))->TiiEi3)),

via the formula: a = J§?(i) if ptia) = idLjdxi)iO and x%a)=je*(£). We take

(3.73) L = \x-x + L'

where L' is the kinetic energy of rotation in terms of some coordinates for £(3).

When these are selected one can form the Hamiltonian (cf. [4, (4.7)]):

(3-74) H = Üpl+p22+p23) + H'

where 77' does not depend on the jc's and /?'s. Because of 3.62 and 3.7 we can be

sure that the action of £(3) in fiEi3)) will be given by contact transformations,

as will of course the time translations. There remains only to discover a generating

function for the peculiarly Galilean transformation 3.65. We can use 3.33, 3.34

here, provided we understand them in a general way for any Lagrangian system.

Because of the separation of variables in 77, using 3.34 yields

(3.75) A*' = c\8j8Pk) = c\8j8Pl)+ ■ ■ ■ +c3i8j8p3).
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It has a generating function (cf. 3.4)

(3.76) ex.

We used A* instead of A because we are now speaking of the dynamorphism on

7\(£(3)). We sum up our findings.

3.8 Theorem. The dynamics A* defined on £,(£(3)) which

3.81 for Euclidean mappings, is induced by left multiplication,

3.82 for time translations, is generated by 3.74, and

3.83 for the remaining Galilean transformations, is governed by 3.76, is a Galilean

invariant dynamics which is completely Hamiltonian.

The theorem would remain just as significant and valid if "left" in 3.81 were

replaced by "right".

In the next section we will present the analogue of this, in which the Galilean

group is replaced by the Poincaré group.

4. Poincaré-invariant rigid body dynamics. We will say that a dynamical system

iK, A) is a rigid body dynamical system if

(4.1) K is T\Ei3))

and

4.11 whenever S is Euclidean, then U^(S) is the mapping in £x(£(3)) induced by

left-multiplication by S in £(3). [This does make each S1 in £(3) a dynamical

equivalence in the sense of 2.52. (It does not mean that the temporal evolution of

the system commutes with rotations and translations. This latter condition is

expressed by UJT) ° i/x(5')= i/x(5) ° t/x(£) for 5 in £(3) and T a translation in

time. This latter condition would follow, via 2.51, if we assumed that each transla-

tion in time were also a dynamical equivalence. This unexpected twist is traceable

to the fact that these transformations S, T, etc. work in the coordinate space R*

and not in the "physical" space-time, as they do in [5] and [7]. On the other hand,

in the context of [5] and [7], it is not possible to speak of time-translation or

euclidean transformation except with reference to a particular observer. However,

there is no reason for anxiety when dealing, as we will, with completely invariant

systems.)]

C/x was defined in 2.5. Compare also 3.62.

We will show that such systems exist even for the Einstein-Minkowski space time

structure. To construct such a system we have to begin with T as defined in 3.61

and extend the definition of TG to all G in the Poincaré group 0*. Since we are going

to make an invariant system we must insure 3.59 also.

The TG we have in mind is rather hard to present directly. We will define first the

dual dynamical system (A*, Ti(£(3))) and then pass back to £1(£(3)) using a

suitable Hamiltonian and the Legendre transformation.
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We will make use of the fact that £(3) can be written as 0(3) x 7?3, with multi-

plication (£, a)(£0, a) = (££0, a + £0a). In 7?3 we use the coordinates jc1, x2, jc3. In

0(3), we choose any coordinate system, say y1, y2, y3. This defines a coordinate

system (jc1, ..., y3) in £(3), and induces, in the natural way, coordinates

ix\...,y3,pi,p2,p3,ri,r2,r3)

in £i(£(3)). Here the r( are the "momenta" associated with the y'.

Let / be a 3-by-3 skew symmetric matrix, and b an element of 7?3. Then

(exp efi Eb) = Se is an element of £(3). Let (£, a) be a generic element of £(3).

Then 5£(£, a) defines a curve and its tangent for e = 0 is a vector at (£, a) in £(3).

Varying (£, a), we obtain a vector field in £(3) = 0(3) x R3 which may be written

X+Z. If/has the entries/' (column index high) and b has the components bt

(as is appropriate since b is a one-column matrix), Z has the form x'fH8jdxk)

-+bf8j8xk) whereas X has some form eli8j8y1)+ ■ ■ ■ +e3i8j8y3). It must be

observed that

4.2 X+-Z is the infinitesimal left-multiplication corresponding to the infinitesimal

transformation Z in R?.

Accordingly X+Z and also X is r/gVîMnvariant. X is in fact a vector field on

0(3). It is possible to choose/so that (with b = 0) we get Z=Z^ = — eijkx'{8jdxk).

The corresponding X we will now call X¡, and introduce its components (using, as

always, the summation convention),

(4.21) X% = e¡i8j8f).

It is easily seen that [Z¡, Z,\ = emZk. Hence

(4.22) [Xt, Xj] = emXk,

whence

(4.23) ekefk-ekefk = eiike%

where the second suffix indicates differentiation with respect to the y with that

index. We define functions cu¡ on £,(£(3)) by the formula cox = e\r¡. It follows from

4.23 that we have the Poisson bracket relations

(4.24) {co¡, to,} =  -emcok.

We use these to define seven functions J¡, K¡ and 77, as follows: —Ji = coi + eijkpjxk,

77 is the positive square root of 1 +PiPi + ■ ■ • +p3p3 + 6icoitoi+ ■ ■ ■ +co3co3) where

0 is any positive constant (related to the moment of inertia of the body), and

K¡= —xiH+ei'kpjcokliH+H0), where 770 is the square root of

1 + 6ÍC01C01 + • • ■ + ÍO3CU3).

We let £¡=-7^.
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These functions satisfy the relations:

{77, /»,} = 0 {77, /,} = 0 {77, 7Q = -Pt

(4.25) {Pu P,} = 0 {Pu J,} = eijkPk        {P„ Kj) = - Sy77

{Ji,Jjf = eHkJk        \J%, Kj) = eljkKk {K¡, Kj\ =  —eijkJk.

The proof of this is tedious and the reader may prefer to trust us. The table 4.25

is patterned after [10, (1.1)]. It is patterned after the infinitesimal generators of 3P,

which we now list in an order corresponding to 77, Pu Jt, K¡:

,A~r. o    8 ,8,88

(4-26) ww—^w-**-*■&
By virtue of 3.15 we see that

(4.27) the vector fields generated by 77, P¡, /„ K¡ satisfy the commutator relations

of the generators 4.26 of the Poincaré group 3P.

4.3 Theorem. There is a Poincaré invariant, completely Hamiltonian, dynamical

system (A, K) with K=TiiEL3)) and such that for each Lorentz coordinator z, the

dynamorphism Af°z.

4.31 for S in £(3) is defined by lifting to £,(£(3)) the left-multiplication by S,

and more generally,

4.32 is defined infinitesimally by assigning to the generators (4.26) of SP the vector

fields generated in Ti{E{3)) by 77, P¡, J¡, K¡.

Proof. We consider first 4.31. The vector field called Z¡ above appears in the

list 4.26. We have already noted (4.2) that the corresponding vector field is A^+Zj.

According to 3.7, it has a generating function —e\rj-Veijkxjpk and this is indeed Jt.

Now consider the generator 8jdxl. Taking it as the Z in 4.2, we obtain A'=0,

so X+Z is <3/3jc' whose generating function is in fact — p¡.

We now turn to the K{. One must show that there is a one-parameter group of

transformations in £j(£(3)) whose generator (a differential operator) has this K¡

for a generating function. This is indeed true. We will only sketch an argument

which can be filled out to give a rigorous proof.

Let/be any function defined on £,(£(3)). Let Vie) be the one-parameter group

generated by K¡. Let/(«)=/° K(e). Then

(4.33) idjde)fie) = {fe), K}.

If one can solve the system given by 4.33 where / runs over a sufficiently large

class, and the solutions are valid for all e, then one has demonstrated the existence

of the desired K(). The main obstacle to a routine application of this idea is that

the coordinates y1, y2, y3 are not defined everywhere and hence cannot be inserted

in 4.33. We begin, however, by inserting pi,p2, p3, tou co2, co3. This gives a system

in which the jc's and y's do not appear, and has an analytic solution. We adjoin

the equations for jc1, jc2, jc3. This system is greatly simplified by the integral relation

Á''= const.
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It has analytic solutions. These solutions show how the a in the base point

(£, a) under a generic element of £i(£(3)) changes under the influence of Vie).

This brings us to the final question, how does the £ change? We must introduce a

matrix valued function M on £(3) by defining A/~(£, a) = £. The differential of this

M is dM, also a matrix. Let ~ denote transposition. Then the matrix M dM~ is

evidently r/g«/-invariant on £(3). It is also antisymmetric. Denoting the elements

of M by Mik (ac here the row index), we obtain from the antisymmetry that Mik dMjk

= eukAm dym. From the right-invariance we conclude that the contraction with

4.21, namely eUkA^,en, are right-invariant functions, hence constants. Hence A^e^

is a constant ck.

Now {/>'", Aj} = e"£; (a sum) where L¡ is dKfdwj. In other words dyn = e'}Lj de.

Hence Mik dMkj = ei]kA'^le^Ln de = eijkckLn de. The important thing is that the right

side here is defined over all of £x(£(3)) and in fact depends only on p, x, and o>.

Recalling that the transpose here is also the inverse, we see that

(4.34) M~1dM = Nix, p, u>) de,

where N is analytic. Into the N here we insert the solutions for x,..., w already

obtained, valid for all e. The resulting equation has a solution Af(«) for all e,

with A7(0)(£, a) = £. This completes the construction of the one-parameter group

generated by K in £,(£(3)).

It is actually more useful to work with the generating function c A,= c17v1+ • ■ ■

+ c3K3 where the c¡ are constants. In this case let us denote the one-parameter

group by Vcie). It is easy to verify that Kc(e)= Vscil), so we may abbreviate it by

K(c). This c- A'corresponds to an element of the Lie algebra of the Lorentz group.

We denote the exponential of this element by exp (c-À').

We have to carry out this type of argument also for 77. This turns out to be

rather simple and indeed Mik dMjk is some constant times de. Denote the one-

parameter group in this case by KO). e77 itself corresponds to an element of the

Lie algebra, and we denote its exponential in 0> by («).

For the element T of time reversal we define UT to preserve the point of £(3)

but reverse the direction of each tangent vector there. Each element P of 2P can be

written uniquely as a product

(4.35) P = Tm{e) exp (c- K)E       im = 0 or 1)

where £ belongs to £(3), and each of the factors depends differentiably on the

given P. We define

(4.36) UiP) = iUT)mVie)Vic)ViE)

where V{E) is the action induced by left-multiplications as already discussed in

connection with 4.31. It must now be observed that

(4.37) UiPioP2)= UiPi)°UiP2).



1970] AN INVARIANT RIGID BODY SYSTEM 173

First we select a coordinate neighborhood Y in £x(£(3)) and consider the Lie

algebra of vector fields generated by the ten functions in 4.22. According to [12,

Theorem 88] there is a unique local Lie group G acting in Y for which this is the

corresponding set of vector fields. Thus G must be a neighborhood of the identity

of a2 because it has the same Lie algebra. Now 4.37 certainly holds for the local

action assured us by [12, Theorem 88]. One can easily verify that the actions Vc{e)

and Vie) constructed above for the one-parameter groups there discussed are the

(unique!) ones assigned by [12, Theorem 88] to the vector fields in question. The

analogous problems are trivial for the V{E) in 4.36. Thus 4.37 holds in a neighbor-

hood of the identity in the Poincaré group. Let U restricted to this neighborhood be

called U0. By [12, Theorem 63 j it extends to a homomorphism of the simply con-

nected covering group of the group {3P\ )+ which might be two-valued on {IP\ )+•

If so, this double-valuedness would persist on restriction to the orthogonal group.

But we know (4.31) that there is no double-valuedness at that stage.

To extend the validity of 4.37 we must show that

(4.38) t/(£££) = UTU{P)UT

for each £ in {SP f ) + . Again, the hardest case is for £= V{c). In the first place,

£exp (cA.)£=exp ( —c-7v). Thus the question 4.38 in this case is the following:

if one reverses the signs of p and w and applies V{ — c) and then reverses the signs

again, is that the same as applying V{c)1 The answer is "yes" for the following

reasons:

(1) {jc', c-K} retains its value when the signs of c, p, o> are reversed; (2) same

for {>>', c-K}; (3) {pt, c-K} changes sign when c, p, w are reversed; (4) so does

{cot,C-K}.

Now we prove also that

(4.39) UiSPS) = ViS)UiP)ViS)

where S is space reversal, in which x-^ — x, p-> — p, and w^-w. Considering

£= V{c), we note that S exp {c-K)S=exp { — c-K). Again the question is whether

reversing x, p, applying V{ — c) and then reversing x, p again, amounts to V{c).

Applying V{S) takes us from the component of £(3) to the other and we can use

the coordinates v' in each component, more specifically, y,{SE)=y'{E). Thus y* is

preserved. We observe that as the signs of c, x, p are reversed, (1) {jc', c-K} changes

(as does x); (2) {p¡, c-K} changes; (3) {/, c-7v} stays the same; and (4) {cu,;, c-K}

also stays the same. Hence 4.39 holds for V{c).

The verification of 4.37 for P = {e) (time translation) is easy. With that shown,

we may consider 4.3 established.

As mentioned at the beginning of this section, we may use the Hamiltonian 77 to

transfer this dynamics to £1(£(3)). It is clear that this can be done and the details

are of little interest. One might note, however, that the speed of the centroid cannot

approach 1 unless the angular velocity approaches zero.
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5. Hamiltonian systems of a novel type. The definition (3.2-3.24) does not imply

explicitly or implicitly that K be the cotangent space £i(ö) of some manifold Q.

We proceed at once to exhibit a great class of alternating structures not necessarily

of the classical type (wherein, for example, the dimension of K has to be even).

5.1 Theorem. Let ® be a Lie algebra, with real coefficients. Let K be the dual of

the linear space <B. Then there is exactly one alternating structure on K such that if

p, q, r are the linear forms on K defined by X, Y, andZ= [X, Y] in @, then {p, q} = r.

Proof. Let Xu ..., Xn be a basis for @. Letpu .. .,pn be the linear forms they

define on K. Then we must have {p»Pj} = ckjPk where these c's are the structure

constants of © relative to this basis. Hence we must have Aij = ckjpk in this co-

ordinate system, so that A, if it exists, must be unique. Conversely, the components

Au define an alternating contravariant tensor (although the indices for natural

reasons appear as suffixes). The rule {/ g} = {8fj8pi){dgjdpj)ckjpk defines a product

for which 3.13 also holds. (A little reflection shows that in view of 3.12 it is enough

to check it for/ g, h being coordinates, and for these it amounts to precisely the

Jacobi-Lie identity for [ , ] in @.)

When applied to the group 0(3) and K is identified with R3, this operation comes

down to {/, g} = (V/x Vg) • r where r is the familiar position vector (field) with

components jc, y, z.

Since dim 7v = 3 in this example, it cannot be a classical Hamiltonian structure.

Not unrelated is the existence of a function, viz. r, for which {r,/} = 0 for all/

A system of this type can be constructed out of one of the more familiar Hamil-

tonian type, such as the examples of §3 and §4, when such a system has what we

will call geometric symmetry.

We will say that a system {K, A) has a geometric symmetry group G, where G

is some group, if G acts in K in such a way that

(5.2) Axog = goAx

for each pair of coordinators, and each g in G. By G acting in K we mean that for

f in K and g in G there is defined g(£) in K, subject to the rules g2{gi{0) = ig2gi){€)

and g{i) = i for all f when g is the identity of G.

In the Hamiltonian case we will call it a Hamiltonian geometric symmetry if

{f ° g,f ° g} = {f,f2} ° g for any pair of functions on A" and each g in G.

Suppose {K, A) has a group G of geometric symmetry. For £ in A'let G(£) denote

the set of all g{£), g in G. These sets ("orbits") G(£) form the elements of a space

called KjG. We can define a dynamics 0 here by setting 0x(G(f)) = G(AX(£)). It

is easy to verify that {KjG, 0) is a dynamical system.

We illustrate this first for the system 3.6. As our group G we choose 0(3). For g

in 0(3) and an element (3.53)

(5.3) S= 1°    x
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in £(3) we define g{S) to be

\Fog~1   b"
(5.31)

0        1

This means leaving the centroid of the body fixed, but rotating the body. This

action of 0(3) in £(3) lifts to an action in £1(£(e)) because the vector 3.53, 3.54

tangent to the curve 3.55, when that curve is transformed in the manner of 5.31,

becomes a vector at 5.3 characterized by a matrix in the manner described by 3.54,

3.55 of the form

Ig&g'1   g*»

I    0 1

Hence the velocity of the centroid is not changed and neither is the angular

velocity. Thus each state of the "quotient" system (£1(£(3))/0(3), 0) has a well

defined position and velocity for the centroid, and angular velocity of spin about

the centroid, but is equivocal about the "attitude" of body. (Since the group 0(3)

is compact, this is in fact a random = probability = statistical state for (£1(£(3)), A).)

If the vector is described as in 3.57, by [£0, to, v, b] then

g[F0, co, v, b] = [£0g_1, co, v, b].

Obviously TGg=gTG as 5.2 requires. The fact that g[F0, co, v, b] = [F0g_1, co, v, b]

shows that in this case K is of the form NxG where the action of G is confined to

the G. Then KjG will be N, presumably a manifold.

Now we consider the example of 4.3. The space 7\(£(3)) has a factor 0(3) just

as TX{E{3)) does, and there is no difficulty identifying £x(£(3))/0(3). The new

question that arises is this: Has £,(£(3))/0(3) an alternating structure which makes

the dynamics 0 completely Hamiltonian?

5.4 Theorem. Suppose N is a W manifold and let G be a compact Lie group.

Suppose K=NxG has an alternating structure { , } which is invariant under the

action of G in which g{n,g0) = {n,gg0). Suppose the function h on K generates an

infinitesimal transformation which commutes with the action ofG. Then this infinitesi-

mal transformation can be generated by a function h invariant under the action of G.

Proof. For any function « on K let {Lgh){n, g0) = h{n, gg0). Taking the given h,

define h by ft = J" £9ft dg where we are integrating over the normalized Haar measure

of G. Evidently h is an invariant function. The question remains, is {/, «} = {/, ft"}?

We note that Lg-i{fi h} = {Lg-if h} because h commutes with the group action.

Hence {/ h} = Lg{Lg-if «} = {/, Lgh) because Lg preserves the alternating structure.

Thus

{/ ft} = JV, £9ft} dg = {/ J*£gft dg



176 RICHARD ARENS [January

Let X be the vector field generated by/ Then the question is

jX{Lgh) dg = X^Lgh dgj.

This is analogous to the question of equality for

| [a(x, ft) yx + B{x, y) ^h{z+y)<p{z) dz

and

[a{x, y) yx + B{x, y) ij jh{z+y)9{z) dz

(integrations over the whole line, 9? and ft of compact support) and is a standard

technical exercise in Lie groups. The theorem is proved.

We note that on the hypotheses of 5.4

(5.41) there is an induced alternating structure { , }N on N such that

(5.42) {f,f2}N = {ft,f$}

where for f defined on N,f*¡{n, g) =/(«).

One takes 5.42 as the definition and verifies its requisite properties.

5.5 Theorem. Suppose N is a "tf0 manifold and G, a Lie group. Let K=Nx G.

Suppose we have a completely Hamiltonian dynamical system {K, A) in which the

action of G {as in 5.4) defines a Hamiltonian geometric symmetry. Then the quotient

system {N, 0) is completely Hamiltonian.

Proof. Let a certain infinitesimal dynamorphism of {K, A) be generated by a

function ft. Then there is an invariant function ft generating the same dynamorphism.

This ft is of the form/* for some/defined on N. This/generates the corresponding

infinitesimal dynamorphism for {N, 0).

When Theorem 5.5 is applied to the example of §4, we obtain a system {N, 0)

in which N is ©' x fiR3) where ©' is the dual of the Lie algebra © of 0(3). There-

fore a state of this system is a pair of things:

5.51 a state for a one-particle system in R3;

5.52 an angular momentum.

It is our contention that this system contains the "classical" (at any rate, non-

quantum) analogue of the Dirac electron system. To support this contention we

must explore its dynamorphisms.

It can be seen in several ways that the functions on TX{E{3)) which are 0(3)-

invariant are those which depend only on the x', p¡, and tu¡ introduced earlier.

Consequently these can be regarded as coordinates on £i(£3) x 65'. The induced

alternating structure here has then the characterization

{jc', x'} = 0, {x',/>,} = 85,        {x', a>f} = 0,

{cot, co,} =  -emcok, {puPj} = 0, {pi, w¡} = 0.
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The functions involved in 4.25, which generate the infinitesimal dynamorphism

of the system (4.3) are expressible in terms of the x's, p's, and en's and thus those

very expressions generate the infinitesimal dynamorphisms in the quotient system.

(5.6) WO) = to1to1 + co2co2-X-co3co3

is invariant under all the dynamorphisms.

Proof. It can be shown that {wtu,/} = 0 whenever / is any one of the ten

generators/^,/, K, H of the Poincaré group. Furthermore to w is preserved under

the action, as we specified it, of time reversal and space reversal.

Select a real number s^O and consider the subset N{s) of N=f{R3) x &' on

which uu = j. This set N{s) is, by 5.6, invariant under the action of 01 and thus

forms a subsystem. A state in that subsystem consists of two things,

5.61 a state for a one-particle system in R3;

5.62 a direction for the spin axis.

It is evident that the system with configuration space N{s) is the nonquantum

analogue of the Dirac electron.

6. An extension to 0* of the regular representation of £(3). Let £ be the left

regular representation of £(3). This takes place in the Hubert space £2(£(3), C) and,

for cp in £2(£(3), C) and g in £(3), Tg{cp){h) = cp{g~1h). Now £(3) can be written as

a product, £(3) = 7?3 x 0(3) with a multiplication suggested by 5.3. We form a

partial Fourier transform 93 -» [ e~ipbcp{b, £0) db where p = {pi, p2, p3) and ph=

P\bi-+p2b2-+p3b3. We thus come to a representation U equivalent to £ again in

the Hubert space £2(£3 x 0(3), C). We will call it the representation U of E{3).

The Lie algebra of £(3) has a basis of right-invariant vector fields corresponding

(in the sense explained just prior to 4.2) to the infinitesimal euclidean trans-

formations

(6.1) 8j8x\        -ejkmxk{8j8xm)       (y =1,2, 3).

In the representation U of £(3), the basis elements of the Lie algebra corre-

sponding to 6.1 are represented by the skew-adjoint operators

(6.11) ¡Pi,       Xj-ejkmpk{8j8pr^.

Here X¡ are the vector fields on 7?3 x 0(3) corresponding to the second triplet

in 6.1.

We want to make the analogous remarks concerning the simply-connected

covering group of £(3).

The simply-connected covering group of £(3), which we will call jSC£(3), can be

regarded as a cartesian product 77(2, 0) x 5(7(2) x{— 1, 1} where the last factor is

the two-element group consisting of -1 and 4-1. We will write the identity of

SU{2) also as 1 for brevity. 77(2, 0) is the set of 2-by-2 hermitian matrices of trace 0.

The product is defined by (A, u, £)(/, v, T¡) = {h + Çufu*, uv, £17). For (ft, u, £) e SCE{3)
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and j hermitian, define (ft, u, ^)f=h + iufu*. Thus we have SCE{3) acting in the

linear space 77(2, 0). By identifying each point {au a2, a3) of R3 with the hermitian

matrix

(6.2) (a:, *-«)

\ai + a2      -a3 /

we obtain an action of SCE{3) in 7?3. This action preserves the euclidean metric

and leads to the desired 2:1 homomorphism of 5C£(3) onto £(3). Space inversion

i, is provided by the action of (0, 1, — 1).

The regular representation £of 5C£(3) takes place in £2(5C£(3), C) analogously

to that of £(3). We form a partial Fourier transform «p^- J e'iph<p{h, u, Ç) dh

wherep is as before but/?-ft for ft as in 6.2 isPiOi+ ■ ■ ■ +p3a3. This leads us to the

representation U of SCE{3). In this representation, U assigns to the infinitesimal

generators of 5C£(3), the same operators 6.11 except that now the X¡ are the right-

invariant vector field on SU{2) x {— 1, 1} corresponding to the second triplet in 6.1.

The Poincaré group 0> contains £(3) as remarked earlier. We have also to

embed 5C£(3) in a simply-connected covering group of 0*.

Let us form a group SC0> whose elements are the elements of 77(2) x SL{2, C)

x{— 1, l}x{—1, 1}. Here 77(2) is the set of hermitian matrices (cf. 6.2).

\a + bi    d—c)

(which can be identified with points of 7?4 in such a way that the determinant is the

Minkowski form). The multiplication is defined as

(ft, U, Í, a){j, V, T), t) = {h+[iujU*]a, UV, £r¡, or)

where the notation [ ]" applied to a hermitian matrix, say 6.3, is that matrix itself

if a is +1 and merely reverses the sign of d if a is — 1.

This does define a group. As before, we can let it act on R* and this gives a 2:1

homomorphism -n into 0*. The element (0, 1, 1, — 1) provides time reversal it. The

element (0, 1, —1, —1) provides space inversion. The element N={0, —1, 1, 1)

commutes with every element of SC0> and is the only generator of the kernel of -n.

The group SC3P contains 5C£(3) as a well-defined subgroup. Let us denote the

set of (ft, u, f,.a) for which a is -f-1 by SC0> f .

6.4 Theorem. £fte representation U ofE{3) can be extended to a unitary representa-

tion of 0* f in a manner assigning to the infinitesimal Lorentz transformations {cf.

4.26) -x'(a/ax°)-x°(3/e>x0 (j = 1, 2, 3) the operators

<64l> si+Ts+îl0t

and to time translation by t, the multiplication operator exp irS where S0 is the

positive square root of — d{Xx o X± + X2 ° X2 + X3 o X3), S is the positive square root
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of S2+pi+p2+p3, and 6 is a nonnegative real number. This representation can be

extended to be a representation of 3P by defining U{it), where it is time reversal, to

mean "take the complex conjugate and replace p by —p".

6.42 Theorem. £fte Theorem 6.4 remains true if all groups are simultaneously

replaced by their simply-connected covering groups.

The next two theorems are about another representation, but they are analogous

to 6.4 and 6.42. They are easier to prove and will enable us to prove 6.4 and 6.42.

6.43 Theorem. Replace S0 in 6.4 by any positive scalar E0 and replace S by £,

the positive square root of E2+p2+p2+p2. Then the theorem remains true.

The representation of 01 f will not be the same (unless 0 = 0 and £0 = 1) and we

will call it W.

6.44 Theorem. The analogue o/6.42 holds for W also.

To prove 6.43 we will introduce an "action" of £ in £(3). A matrix of the form

(cf. 3.53)

[F   al

(65) [o   I.

is an element of £(3). Here £is in 0(3). When a = 0 we will say that 6.5 is in 0(3),

although it is still a 4-by-4 matrix. Be that as it may, 6.5 is also a homogeneous

orthochronous Galilean transformation and this suggests a way of mapping £(3)

onto the orthochronous Lorentz group L f . This mapping is to be called "Rect"

(for "rectification") and will have the properties

6.6 Rect maps £(3) onto L f ,

6.61 ft Rect (g) = Rect (ftg) if g is in 0(3).

We will use other properties of Rect which follow from the definition now to be

given. Let g be the matrix 6.5. Form the unit vector (in the Minkowski sense)

(6.62) {au a2, a3, {a\ +a22 +a23+ l)1'2).

Consider the two-dimensional subspace containing (0, 0, 0, 0), (0, 0, 0, 1) and

6.62. There is a unique Lorentz transformation in £+ f which sends (0, 0, 0, 1)

into 6.62 and leaves invariant all vectors Minkowski-orthogonal to the vectors

(0, 0, 0, 1) and 6.62. We apply this transformation to the Lorentz frame whose

vectors are the columns of

F   0

.0    1

This gives us a new Lorentz frame

= Rect (g)(6.63)
£a£   a

a~£   b
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where b is (a2 + ■ ■ ■ 4-a§-r-l)1/2, a~ is the transpose of £ and Ta is the 3-by-3

matrix

(6.64) l+{X+b)-1aa-

Rect (g) is defined by 6.63.

In the interest of saving space we merely assure the reader that the construction

geometrically described does take a given element g of £(3) into Rect (g). The

analytic form of 6.64 and 6.63 is going to be of some consequence.

Now 6.61 holds because of the rotation-invariant definition of the process.

Finally, let ft belong to £ f and have a certain well-known normal form. Then a g

can be formed such that Rect (g) = ft. From here, 6.61 leads to 6.6.

As a result of 6.6, we can define an action (compare the discussion below 5.2)

of £ j in £(3). For ft in £ f and g in £(3), let Rh{g) = Rect -x (ft Rect (g)). Evidently

Rh! ° Rh.2 = Rh1n2- From 6.61 we also see that Rh{g) = hg if ft is in 0(3). These results

may be formulated as follows.

6.7 Proposition. The action R ofL+ in £(3) is an extension toL\ of the restriction

to 0(3) of the left-regular representation of E{3).

We come now to the main result on "Rect".

6.8 Lemma. £fte action R of £ f in £(3) assigns to the infinitesimal Lorentz

transformation — x\8j8x') — x;(S/cx4), the infinitesimal transformation

(6.81)

in E{3).

(l+a-a)1'2^
tj'/cml akXm

8a¡    H-(l+a-a)1,:

For the Xm, see 4.21. To Xm corresponds the skew-symmetric matrix —sm with

entry — emjk in they'th column and kth row.

We sketch the proof for m = 1. The infinitesimal Lorentz transformation then

involved corresponds to the matrix

0 0 0 1"

0 0 0 0

0 0 0 0

j 0 0 0.

which we will call Z.

The thing to be proved is that, if g is 6.5 then

(6.82) RexpeZ ig)

is the same as what the infinitesimal transformation 6.81, performed for e units of

time (so to speak) on g produces. This latter quantity can be estimated as follows.
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The a in 6.5 changes in accordance with the first term of 6.81 and thus is trans-

formed, to a suitable degree of approximation, to a + ebu where

T

0

0.

because m = X. The £0 changes in accordance with the second term of 6.81, which

means it is left-multiplied by exp e Y where the matrix

Y = {a3s2-a2s3)l{X+b).

The thing to be proved is therefore that

Rect"1 (exp eZ Rect (g)) =
(exp e Y)F0

0

a + ebu

X

or that

Rect
{exp eY)F0   a + ebu

0 1
exp eZ Rect (g).

Now we must appeal to 6.63 and 6.64, and compute these matrices. It turns out

that we must verify four things, two of which are obvious while the other two are

(6.83)

and

Ta + cbu{X+eY) = £a-l-£ua~

(a-r-Eèu)~(H-eF) = a~-r-eu~£a.

It is better to put 6.83 into the form £a-r-eftu = (£a + eua~)(l —bY).

The last two equations can be verified. It takes about five pages of computation.

This completes the proof of 6.8.

Let £0 be any positive number and introduce the new variables pu p2, p3 where

p, = E0aj. This gives us a result more versatile than 6.8.

6.84 Lemma. There is an action of L f in E{3) which is an extension to £ t of the

restriction to 0(3) of the left-regular representation of E{3) and which assigns to

-x4(a/r3xO-x;'(S/ax4) the vector field

(6.85) E{8j8p,) + B,.kmpkXmj{E0 + E)

in £(3). 77er<? £=(£0 + pp)1/2.

6.86 Proposition. This Lemma 6.84 also holds if all three groups are replaced by

their simply-connected covering groups.

Denote by v the 2:1 homomorphism of SCE{3) on £(3). For an element ft near

the identity e of & f and each g in SCE{3), define R'h{g) by three conditions :

(1) Tr{R'n{g)) = Rh{TT{g)), (2) R'h{g) depends continuously on ft, (3) 7?4(g)=g. This

defines a local homomorphism of 0* f   into the group of homeomorphisms of
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SCE{3), which lifts to a homomorphism R" of the component of the identity of

SC0* f , into that group of homeomorphisms. For ft in the other component, write

ft =ji where i is space-inversion, and define R'h{g) = R"j{ig).

This proves 6.86.

As pointed out in [11, 100-101], when a group acts in a manifold S it gives rise

to a unitary representation of that group in the intrinsic Hubert space 3tf of that

manifold. If we choose a measure m for S, then $f{S) is unitary-equivalent to

L2{S, m) and this representation takes the concrete form of substitution (of the

inverse) and multiplying by a power of the Radon-Nikodym derivative.

Suppose a one-parameter group V{t), acting in S has the infinitesimal trans-

formation

(6.87) X^d/Sx1) +■■■+ Xn{8j8xn).

Then the unitary representation W{t) to which V{t) gives rise has a skew-adjoint

generator in L2{e?, m). This operator is obtained by adding to 6.87 some function

calculated to produce a formally skew-adjoint operator [11, 101].

We apply this idea to <? = £(3), selecting for m the Haar measure for £(3). This is

the product of ordinary Lebesgue measure in 7?3 and Haar measure in 0(3). The

vector fields Xm are already skew-adjoint, since they are the generators of the

rotations. The Xm commutes with the />'s and hence the second term in 6.85 is

skew-adjoint. However, the first is not and has to be replaced by

2[E8Pi    \E8p) J  -2[E8Pi    \8p) E\

2 L    dp j    dpi    J dp j    2£

Thus we have arrived at the following.

6.9 Lemma. There is a unitary representation W of L\ in £2(£(3)) which is an

extension of the restriction to 0(3) of the left-regular unitary representation of E{3)

in £2(£(3)) and which assigns to — x4(S/SxJ) — x'(3/r3x4) the skew-adjoint operator

ffiCm F    S     I   Pi   .   ZjkmPkXm(6-91) E8jj + 2É+-Ë7ÏT

The next step is to extend this representation to all of 01 f . Denote by a the

translation defined by 6.3. (The ¿7 is then the amount of time translation.) Denote

Pia+p2b+p3c +Ed by ap. We will define

(6.92) W{a) = e'"".

This is a multiplication operator. It will be appreciated that this combines with the

W in 6.9 to give a representation Of 0* f if

(6.93) exp (/(ftaft - x)p) = W{h)eiap W{h) " \
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for each ft in £ f . In checking 6.93 we can forget about the Radon-Nikodym

factors in the W{h) and Wty)'1 because they cancel. Hence XV{h) becomes a sub-

stitution operator, as a matter of fact, substitution of (£„)_1. Thus the validity of

6.93 follows from

(ftaft-1)/? = <xp o {R^-1 = ap o Rh-i,

and this can be seen as follows. In general ap evaluated for any g, say g as in 6.5,

is the dot product (in the Minkowski sense) of the fourth vector in the Lorentz

frame Rect (g) with the vector {a, b, c, —d). In the process of rectification this gets

operated on by ft-1. Thus ap{Rh-i{g)) is the Minkowski dot product of (a, b, c, —d)

and the image under ft "x of this fourth vector ; while {hah " ^p{g) is the fourth

vector dotted with the vector {a',b',c', —d') corresponding to the translation

hah'1. Computation shows they are equal. The result is the following.

6.94 Theorem. One may replace L f in 6.9 by 0>J[.

One can extend the representation W in 6.9 to all of 0" by defining, for time-

reversal ;'¡,

(6.95) ( W{it)9){F, p) = <p(F, -p).

Here we are regarding £(3) as the product 0(3) x Tí3.

Thus 6.43 is now proved.

Just as 6.94 is based on 6.8, we can build instead on 6.86, obtaining the following.

6.96 Corollary. One may replace, either in 6.9 or in 6.94, all groups simul-

taneously by their simply-connected covering groups.

The added fact about W{N) follows from 6.87.

We can improve 6.9y6 by extending the representation to all of SC0> by defining,

for time-reversal,

(6.97) {W{it)9){p, n, 0 = <p{-p,p, ?).

This is the substance of 6.44 which is therefore also proved. From 6.43 we now

prove 6.4. The Hubert space in question, we may call JF. Let u be an irreducible

matrix representation of the compact group 0(3). Let 3PC{u) denote the closed

linear subspace generated by those elements <p for which there exist functions fk

on 7?3 such that

(6.98) <p{p, F) = fk{p)u'k{F)       (F in 0(3)).

Now Jf is the orthogonal sum of these ^{u), if u runs over a complete collection of

representatives, one from each equivalence class. If a representation having the

desired infinitesimal form (e.g., 6.41) exists in each 3^{u), then 6.4 is proved.

Now in Jf{u) the operator Xx o Xx + X2 ° X2 + X3 ° X3 is indeed a scalar, a

negative scalar — r¡ at that. We let £0 = (1 + 6~nf12 and consider the representation
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W of 6.43. This representation leaves Jf{u) invariant, and its infinitesimal genera-

tors, in Jf{u), coincide with those given in 6.4 when restricted to J*i?{u). We can

therefore adopt W on &P(«) to define U on Jf{u). We have only to check that they

agree on £(3), where U is already given. 6.94 shows that they agree on 0(3). The

definition for translations (6.92 with ¿7=0) shows that W agrees with U there,

and thus agrees with U on all of £(3). Thus 6.4 is proved. To prove 6.42, we use

6.44 (instead of 6.43) and 6.96 (instead of 6.94). The representation u in this case

is again a representation of the compact subgroup, in this case SU{2)x{— X, 1}.

7. Poincaré invariant quantum dynamics of a rigid body. We adhere to the

G. Birkhoff-von Neumann concept of a quantum system as simplified by Gleason

and extended by Mackey [11, 135-136]. We have, however, to extend the definition

before it defines a dynamical system in the sense of this paper. Accordingly, we

shall call a dynamical system (A, k) a quantum dynamical system if K is the union

of disjoint sets Ku K2,... where each K¡ is the projective space P{^,) of (complex)

one-dimensional subspaces of some infinite-dimensional Hubert space ¿Cf, and Ax

maps each K, onto itself in such a manner as to be a physical correspondence

[16, 203], which is to say if f and £' are elements of K¡ and [f:f] is defined as

\{<p; <p')\2 for unit vectors <p in i and <p' in £', then [Ax£:Axf] = [£:£']•

In view of a theorem of Wigner [16, 204] a mathematically equivalent definition

is as follows. A dynamical system (A, 77) is a quantum dynamical system if 77 is the

union of disjoint infinite-dimensional Hubert spaces ¿#1, JF2,... and each Ax, when

restricted to any ^C¡ is

7.1 a unitary or an antiunitary map of ^ onto 3^¡.

However, we must understand that with this revised definition we have to relax

2.4 and 2.41 as follows.

7.11 On each JFj, Ay o Ax = A(x, y, z,y')Ax, where a{x,y,z,j) is a complex

number.

7.12 7« each JFj, Ax=A(x,7') where A(x,y) is a complex scalar.

Finally, let (A, 77) and (0, K) be two quantum dynamical systems with a 1:1

mapping of 77 onto K which is a unitary or antiunitary U¡ when restricted to each

^ and such that

(7.2) @x * Ut = (4x, yj)t/y « A',

then we must call these two systems isomorphic.

All these complex numbers will have modulus 1.

Finally (cf. 2.5), S will be called a quantum dynamical equivalence of a given

system if

7.21 on each J?j, Ax°x = v(x, y,y')Af where v(x, y,j) is a complex number.

Then instead of 2.53, we obtain [11, 126],

7.23 if S and T are quantum dynamical equivalences then, on Jí?, {see 2.5),

£/x(S) o í/x(£) = v{x, T o x,y)A(x, £ ° x, S o £ o x,j)Uw{S o £).
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It is natural in quantizing a classical system with configuration space Q to use the

intrinsic Hubert space ^{Q). Thus we will call a quantum dynamical system

(A, 77) a quantum dynamical system of a rigid body if 77=£2(£(3), m) where m is

the Haar measure of the Euclidean group £(3), and (compare 4.1 and 4.11) when-

ever S is Euclidean, and x is any coordinator, then there is a complex number

fj(x, S) such that, for u in £2(£(3)) and g in £(3),

(7.3) (t/x(S)<p)(g) = a(x,5M5-1g).

The first Poincaré invariant example is given by the representation of 6.4. One

defines Ax°x as U{S) for every S in 0*.

We analyze this representation, for another purpose, in §7. It appears that in

this system, the total spin has only the values 0, 1,2,.... The same is true if we

use 6.43, but it does not "correspond" in a sense to be described in §8, to the

"classical" system described in §4.

To obtain another example we turn to 6.42. Here the Hubert space is £2(5C£(3)),

but the representation is one of SC0> and not 0. It is not hard to see that if we have

a representation U of SC2P by unitary and antiunitary operators in a Hubert space

M' of such a sort that U{g) and U{g') produce the same effect in P{Jf) whenever

77(g) = 77-(g') in 0>, then U{N) must be either +1 on all of ¿f or - 1 on all of Jf.

Since this is not true of U{N) in L2{SCE{3)) we consider the subspaces ^f(-f-)

and &{ — ) on which the unitary U{N) is + 1 and — 1 respectively.

We can map £2(£(3)) into £2(SC£(3)) by sending <p into <p ° n. The image of

£2(£(3)) here is exactly Jf{ + ). Therefore 3^{ + ) yields a system equivalent to the

previous example. The orthogonal complement 3^{ — ) consists of those <p in

L2{SCE{3)) for which <p{Ng)= —93(g). There are several ways of mapping £2(£(3))

unitarily on ^f ( — ). By using the upper and lower hemispheres of SU{2) for example,

one can divide SCE{3) into two measurable sets A and B such that B = NA=AN.

For 93 in £2(£(3)), there is exactly one ¡/> in ■#"( — ) such that \jj and 93 ° tt have the

same restriction to A (and hence are negatives on B). We can thus carry our

representation U of SC01 back into £2(£(3)) as 7.3 requires. We denote this

representation by V.

7.4 Theorem. For S in 0* take g in A such that 77(g) = 5 and define

Ax°x = V{g).

This defines a quantum dynamical system of a rigid body. With varying choices of A

and B one obtains isomorphic systems.

The proof is simple enough to be omitted. The various multipliers in 7.11-7.3

are of course all +1.

7.5 Theorem. 7« the case of each of the two systems defined above there is in

£2(£(3)) a projective representation [11, 126] of 0(3) by isomorphisms of the system.

The kinematic significance is the following: if ü and r¡ are related by one of these
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isomorphisms then in these two states the body has the same location and momentum

of the centroid and the same angular momentum, but the body itself will have undergone

an orthogonal transformation.

Proof. It will suffice to deal only with the more complicated case arising from

•?£"( — ). First we employ an isomorphism to replace £2(£(3)) by 3^{ — ).

Now we define a new action of SLr{2) x {— I, 1} = G. For {v, rj) in G and (ft, u, Ç)

in SCE{3) define (ft, u, g){v, r¡) = {h, uv, £t>). Computation reveals that this action

commutes with left multiplication in 5C£(3). Hence it gives rise to a representation

of G in £2(5'C£(3)), which commutes with the regular representation and in

particular with N. Thus it preserves Jff { — ). In this representation of G the operator

corresponding to TV* is the same as for the regular representation: — 1 on 3tf{ — ).

In an obvious way this generates a projective representation of 0(3). The kinematic

significance cannot be demonstrated until the observables involved have been

defined.

When this is done in the conventional way, it turns out to be true. For example,

observables depending only on the momentum of the centroid and the position of

the body relative to the centroid are operators which merely multiply 93 in £2(£(3))

by some function defined on £(3). The position operator is — i"Vp. All of these are

related to the representation in the way required by our assertion.

We obtain only isomorphisms in this projective representation of 0(3) because

the action of G commutes not only with the left-regular action of £(3) on itself but

also with the action of £ f on £(3); and the representation of G commutes with

the operations defined to extend W to 0>. Thus 7.5 is proved.

Let °ll{±) be the class of irreducible representations u of SU{2)x{—l, 1} for

which u{N) is the scalar operator ± 1. Let ai({±) be a set of matrix forms, one for

each equivalence class. For each u in <%{ ± ), let Jf{u) be the subspace of those

functions in £2(SC£(3)) of the form </<y(7>K- Then Jf{u) lies in Jf{ ± ) and (cf.

[4, 2.46])
7.6 Jf {+ ) is the direct sum of the Jf{u) for % in u{±).

8. The quotient concept for quantum systems. We turn to a quantum analogue

of 5.5. The question is, if a quantum dynamical system (A, 77) has a group G of

geometric symmetries (5.2) is the quotient system also a quantum dynamical

system? For simplicity we take 7/ to consist of only one Hubert space 3tf and we

suppose(9) that (cf. 7.2, 7.5)

(8) We do not include in our general concept of a system any specification of which

functions on K are to be observables. A system with observables is therefore a more specific

thing than a system in our sense. Mackey systems [11] are systems with observables, evidently.

As Mackey does, one could specify a logic as the collection of certain subsets of K. One could

require the action of G to define an automorphism of the logic. This would imply 8.1. The idea

of the quotient of a system with a logic is in [4]. However, the full set of dynamorphisms is not

considered in [4].
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8.1 G is represented by isomorphisms of {A, 77).

We will consider/or simplicity a situation slightly more general than that presented

by 7.5. Let £ be a space with a measure and let G be a compact group. Let « be a

continuous matrix representation of G which is equivalent to its complex conjugate

(8.11) ü=aua-\

We have a natural measure in £ x G and can form £2(£ x G, C) and single out

therein the closed linear subspace 0P>.{u) generated by the functions of the form

'I'kipWig) where the summation goes (in each case) from 1 to d, the degree of u.

We will suppose that we have a system (•#", A) in which JÉ" is 3ft°{u). We suppose

that the way in which G acts is by right transformation, i.e., for 93 in ^ and a in G,

iKv)ÍP, g) = <PÍP, ga) for each (/?, g) in £x G.

We can form £2(£, Cd) thinking of an element </< of this space as a column of d

complex-valued functions defined on P. Let * as usual denote taking the complex-

conjugate transpose of the matrix to which it is applied. Then iji* is a row (of

functions) and </>*« is a row of functions (defined on £ x G) because « is a d-by-d

matrix. It would obviously be neater here to take </< as a row-matrix and leave off

the * but we have to use columns if we want to compare our results with others in

the physics literature.

Denote by r(i/>) the subspace of £2(£ x G) generated by the d functions in the

row-matrix </i*w.

8.2 Proposition. Y{Jj) is in Jt{u). If ^>^0, then Y{f) is d-dimensional and G-

invariant and is minimal with respect to being G-invariant. Every minimal G-invariant

subspace of 3^{u) is of the form Y{i(i) for some ijj and this 4> is unique up to a scalar

multiple.

A proof of this is easy. The fact that every minimal G-invariant subspace is of

the form T(i/i) can be made up along the lines of [4, 356], but there are a few

misprints on that page 356. Every reference to 2.43 should be to 2.42 and every

reference to 2.42 should be to 2.43. Also (2.41) is not the (usual) definition of

representation used here.

Now suppose D is one of the dynamorphisms of the system. Presumably, because

Ra is an isomorphism of the system, we have D is unitary or antiunitary and

(8.21) D o Ra = p{a)Ra ° D

where p.{a) is a scalar. Then we can show that

8.22 there is a unitary or anitunitary {resp.) operator D in L\P, C) such that

IX2ty)=.D(f#)).
In greater detail (with v = l/fj),

8.23 £V=[v£>(«/.*M)e]* if Dis linear;

8.24 Û$=[vD{>l>*u)eo]* if D is antilinear.

Here </r*w is a row of elements of £2(£ x G) and £>(</"*«) is meant to be the row

whose elements are the images under D of the elements of </<*w. The subscript e is
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intended to indicate that the result is evaluated at the identity element of G. We

verify the sufficiency of 8.24. Insert </i*w into 8.21 and obtain

D{RJ*u) = p.{a)Ra[D{ru)}.

Now Rau = uu{a), so p{a)Ra[D{^t*u)] = D{t/j*u)U{a) = D{^i*ü)au{a)a~1. Evaluation at

e (this does not mean set a = e\) gives jU.(a)£a[7J)(i/>*w)e] = 7)(i/'*M)eaw(a)a~1 from

which one obtains pD{\jj*u) = D{<¡j)*u)eouo~'í, or vD{f*u)eau= D{^*u)a. Now let A

be any column matrix of d scalars. As A ranges over all possibilities, D{^*u)<j\

takes on all possible values accessible to 7)(¡/>*w)A' where A' is any column matrix

of scalars, as a is nonsingular. This latter set of values is the same as the set of

values of D{^*u\") and hence the same as the subspace D{Y{i¡¡)). This is thus equal

to the set of values of vD{^*u)eau\, i.e., Y{{vD{^j*u)ea)*). This, in view of 8.24,

establishes 8.22 for the antilinear case. The linear case is easier: just omit the a.

We have thus proved the following

8.3 Theorem. £fte quotient system for {Jif{u), A) is the quantum dynamical system

(£2(£, Cd), Â) where the dynamorphisms are obtained from those of {Jf{u), A) by

the formulas o/8.22.

Now let W be a class of mutually equivalent continuous irreducible representa-

tions of G, satisfying 8.11 (with a o for each u, of course). Suppose we have a

quantum dynamics A in the Hubert space Mf{<%') generated in £2(£ x G) by the

subspaces J^{u) where each 2PC{u) is invariant under the dynamorphisms. Also

assume / at G acts by right transformation in J^{u) in a manner defining iso-

morphisms of {Jf {<%'), A), meaning 8.21 holds for each dynamorphism. We

obtain the following result.

8.4 Theorem. £fte quotient system is the quantum dynamical system (77, A) where

77 is union of the Hubert spaces 3^fu where each ¿c°u is L2{P, Cd), d= degree of u,

and the dynamorphism is defined in each Jtu by 8.22.

There is an interesting thing here. Whereas for the original system there was

only one Hubert space, for the quotient system there are several, i.e., a "super-

selection rule" operates [11, 136].

These ideas apply to the systems for the rigid body described in §7. The group of

geometric symmetries is 0(3). Let us consider the system involving «3f( — ), and

study the equivalent form given in 7.5. Thus the Hubert space is 3f{ — ), the set of

functions in £2(£3 x 5(7(2) x{— 1, 1}) for which <p{p, —g,Ç)=—<p{p,g,(;). Here

the group of isomorphisms to be divided out is the group of right transformations

by G = SU{2)x{-l, X}.

Take °li' to be those continuous matrix representations « of G for which

u{N)= —u{e), where e = {X, 1) is the identity of G. We form ^t°{al/') as explained

above. Then obviously ^" is the <%{—) defined in the last section and

(8.5) j^QW') is <&{-).
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Moreover,

8.51 each ^f(w) is invariant under the dynamorphisms.

Also (cf. 8.11)

8.52 for u in W, ü is equivalent to u.

The reason is this. If G were merely SU{2), then u would be equivalent to ü

because they have the same degree and for SU{2) there is only one equivalence

class for each degree. For our G this is not the case: it is easy to see that for each

representation of SU{2) there are two of G. But only one is in 'W.

Thus 8.4 holds for the quantum dynamical system for a rigid body given by

&{-). (It also holds for JV{ + ).)

We now take a closer look at the quotient system given by 8.3 for the single

representation u0 of G where u0 is that representation in ûa" which reduces on SU{2)

to the identity representation of SU{2), i.e.,

(8.6) u0{g, ±l)=±g   for each g in SU{2).

One can verify (cf. 8.11) that

(8.61) w0 = o-aWocrj1    where a2 = I     .      I.

Time-reversal in the system 7.5 and in Jt?{u0) is given by

<PÍP,g, 0-^<pi-p,g, £)•

We want to get the corresponding operator in J^Uo=L2{R3, C2). The ¡i in 8.21

for this is clearly 1. Calculating on the basis of 8.24, we obtain

8.62 time-reversal in JC„ sends'«0

Up)
Mp)

>Kp)

into o2th{—p), the entries of which are itji2{—p) and — i^ii—p).

We could just as well omit the i. Either way, the square is minus 1.

Space-inversion in 7.5 and in Jf{u0) is given by the operator U{is) calculated

from 7.3 for 5" being space inversion. Actually, we are working in L2{SCE{3)),

and not £2(£(3)), as 7.3 envisions, and according to the nature of the equivalence

set up in 7.5 we calculate U{0, ±1, —1) where U is the representation in 6.42.

The operator corresponds to left-multiplication by (0, ±1, —1). Thus in J^{u0),

space-inversion sends <p{p, g, f) into cp{—p, ±g, —£) and since we are in Jt{— 1),

these are ±<p{—p, g, — 0. We had, of course, the right to expect these two vectors

to be linearly dependent. The /x in 8.22 is 1 in this case also (as it is for every

dynamorphism in this system). Using 8.23 for the operator D: 93-> <p{—p,g, — 0

gives D which sends i/> into —<f¡{—p). In any case,

8.63 space-inversion in JFUa sends ${p) into +${—p).
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We must now observe that if au o2, a3 are the Pauli matrices and y1, y2, y3 real

then exp [y'o^i] is in SU{2) and its image in SO(3) is the rotation whose matrix is

exp {y'Sj) where s} is the matrix which has efkm in the kth column and the with row

(cf. [4, A.5]). This matrix corresponds to the ejkmxk{djdxm), as can be shown by

going back to 4.2. From this we can discover the operator D for the case of D = Xm,

the Xm being the one defined in 6.42 and thus a vector field on 5(7(2). From 8.23

it follows that Xmtp = {Xmu0)fjj. The matrix {Xmu0)e is the rate of change of u0 at e

when one follows a one-parameter subgroup whose tangent is {Xm)e. The matrix

corresponding to Xm in 0(3) is — sm, as already remarked just after 6.81. Thus we

have to differentiate the unitary matrix corresponding to exp( — esm), namely

exp [ — eoJ2i], at e = 0. Therefore (since sm is self-adjoint)

(8.64) Xm=-hJ2.

Looking at this and at 6.41, but thinking about 6.42, we see that

8.65 the operator corresponding to — x'{8jdx°) — x°{8j8x') is{10)

o   8        p,      JEjkmpk(Jm_

dp,2S   2(50 + 5)'

8.66 the operators corresponding to 6.1 are ip¡ and — io¡j2 — ejkmpk{8j8pn), and

8.67 the operator corresponding to 8j8x°, thus giving the infinitesimal dynamor-

phism for infinitesimal time translation is the multiplication operator iS.

8.7 Theorem. The quotient system of the quantum dynamical rigid-body system

7.4 when {that quotient system is) restricted to Jt{u0), is isomorphic to the Foldy-

Wouthuysen system restricted to the

8.71 negative-energy subspace when m = S0 and

8.72 only orthochronous changes of observer are considered.

The truth of this consists in comparing 8.65-8.67 with 9.5 and 8.63 with 9.6.

We can easily obtain a system in which 8.71 is replaced by

8.73 positive-energy subspace.

To do so we replace the system 7.4 by a system based not on the representation

U given by 6.42 but on the representation U' defined by U'{g) = T~1U{g)T where

T is the time-reversal operator given in 8.62,

4> ">+ °2Thi-p)-

This changes the signs in 8.65 and 8.67.

(10) Time-reversal anticommutes with the infinitesimal Lorentz transformation in 8.65.

Hence the composite of the operator in 8.65 with 8.62 should be at worst a scalar multiple of

the composite in the opposite order. One may wonder how that can be, when o2 occurs in 8.62

and the om appear symmetrically in 8.65. The resolution of this paradox is that am is real for

m=\, 3 and pure-imaginary for m = 2.
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We may form the direct sum U'+ U of these two representations and obtain a

representation equivalent to the F.-W. representation, restricted as before to 0> f .

The system 4.3 after which to some extent 7.4 was patterned, turns out really

to be more closely related to the system involving U' which we just mentioned.

The reason for our somewhat gauche discussion is that the "Rectification" idea is

more immediately applicable to 7.4 than its reversed-energy form.

We must remark that when observables are properly assigned to the quotient

system here discussed (8.7) that it does not represent an elementary particle unless

the constant 6 appearing in 6.4 and 6.42 is 0. For if 8 is positive, then the velocity

of the centroid has an upper bound less than 1, and 1 is the speed of light here.

Setting 6 = 0 makes the mass equal to 1. This is not essential. A separate param-

eter can be included from the beginning to make the mass any desired value.

9. The Foldy-Wouthuysen representation. The theory of the Dirac equation

provides us with a unitary representation of the "inhomogeneous 5£(2, C)" [15,

p. 14]. This group is the simply-connected covering group of & f +, the restricted

Poincaré group. The homomorphism is 2:1. The Lie algebra (of infinitesimal

transformations) for 0> is isomorphic to that of the inhomogeneous 5£(2, C).

Hence we may describe a unitary representation of the inhomogeneous 5£(2, C)

by telling what skew-adjoint operators it assigns to the infinitesimal Poincaré

transformations (4.26).

Foldy and Wouthuysen transformed the Dirac representation to a form making

evident the spectrum of the Dirac Hamiltonian. It is possible to compute the

transforms of all the operators assigned by the Dirac representation to the

infinitesimal Poincaré transformation with the following result in which m is a

positive number.

9.1 Theorem. The Foldy-Wouthuysen representation takes place in the Hilbert

space L2{R3, C4) of square-integrable functions on ordinary Cartesian 3-space,

whose values are A-component complex column vectors. Let the Cartesian coordinates

in R3 bepi,p2,p3 and let E={m2+p2+p2+p2)112. Then the skew-adjoint operators

corresponding to the ten infinitesimal Poincaré transformations (4.26) are

(9.2) -ißE,    ipi,    ip2,    ip3

(9.3) i^kmykYm-^kmPk{8l8pm)

-ß[E{8,8Pi)+pij2E+y^±^}

(9.4) .

Y3iy'Pi+y2P2)-ß[E{8j8p
3)+/J3/2£+- 2{m + E)

Here the /S's and y's are exactly those defined in [13, p. 69, equations (24), (26),

(27)]. The first operator in 9.11 is of course the one calculated by Foldy-Wouthuy-

sen, by the method explained in [13]. There is a minor difference: we prefer to
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deal with skew-adjoint operators, because in either convention, commutators are

skew-adjoint and thus we need no patching up with ;"s. There is also a difference in

sign when 9.2 is compared with [13, p. 93, equation (183)], but that is merely

because 77' is the negative of the generator of time translations. The calculations

resulting in 9.3 begin with the observation of [13, p. 78, (80)]. They are very tedious

and hence are omitted here, as are those resulting in 9.13 which have their beginning

in [13, p. 78, (82)]. In every case one takes the appropriate operator for the Dirac

representation and performs eiS- ■ -e~'s as directed by Foldy-Wouthuysen.

Actually, [13] is concerned with functions of four variables and 9.1 talks about

functions on R3. The connection is that a function of four variables, presumably a

solution of Dirac's equation is associated with its restriction to the three-space / = 0.

This association does not help us with //we-reversal. Accordingly we do not

presume to assert what the F.-W. representation does about that.

Let us write down 9.2-9.4 for the subspace of functions (0, 0, >p3, i/r4) where ß

is — 1. Calculations give

/£,    />i,..., ip3,    - h,j2- e,kmpk{djdpm),

(9.5)    E{8j8Pi) +Plj2E- i{p2o3 -p3a2)j2{m + £),..., E{8jdp3)

+p3j2E- i{pxa2 -p2o1)j2{m + £).

When space inversion is represented by the choice made as in [13, 107], the

transform e's- ■ -e~iS yields (apart from a factor i which is of no consequence for

projective representations)

9.6 space inversion sends >ji to ±ß^i{—p).

10. Quantizing a classical system. By a classical system {K, A) we will mean a

completely Hamiltonian system (3.2-3.24) where K is in fact £,(0 where Q is a

finite dimensional manifold. This terminology is justified because such systems are

the usual point of departure when a quantum system is to be constructed. When a

quantum alternative to the given system is proposed, it invariably contains a positive

parameter ft (the exact value of which is left perhaps to experimental determination).

When it is argued that a quantum system (77, 0) has a classical system {K, A) as

its correspondent, the argument usually involves letting the ft tend to zero. It is

thus reasonable only to define when a sequence or one-parameter family of quantum

systems corresponds to a given classical system.

Let (77, 0) be a one-parameter family of quantum systems (the parameter ft

being not expressly indicated) where 77 consists of only one Hubert space which is

(for every value of ft) the intrinsic Hubert space M'q of some manifold Q which is

the configuration space for a classical system {K, A). Thus (for each value of ft)

and each pair of coordinators z, y, 0£ is unitary or antiunitary in 3^Q. We suppose

that, for 5 near the identity in the space-time group, the operator t/(5) (see 2.5)

is in fact unitary and that, moreover,
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10.1 for each continuous one-parameter group T{s) there is a skew-adjoint operator

0J-.Z in -%e, sucb that for <p in the domain of that operator,

This is simply a more precise form of what we have already required in 2.63

for every dynamical system.

Given the quantum system (77, 0) we can construct a new system (77, 0) where

each dynamorphism 0X is U{it) ° 0X ° U{it). We have met this construction before,

in passing from 8.71 to 8.73. The infinitesimal dynamorphisms 0' figure in 10.21

below.

We will assume that each complex valued function 93 on g which is infinitely

differentiable and compactly supported is in the domain of each 0rz.

The classical system {K, A) also has a time-reversed variant {K, A). We will say

that

10.2 the one-parameter family (77, A) is a quantization of the classical system

{K, A) if the following is true.

Let z be a coordinator and £a one-parameter subgroup of the space-time group.

Let gT.z=g be the generator (3.22) corresponding to £, z in the time-reversed

system (A, A). Let ©r,z = 0 be the infinitesimal dynamorphism assured by 10.1

for the system (77, 0). Then for 93, </f, and w any infinitely differentiable functions

on Q with compact support, and w being real, the limit

(10.21) lim (-/ft0[exp {-iwjh)<p]; exp {-iwjh)>¡>)
h->0

exists and has the value ([g o dw]<p; f). The small circle here means substitution.

We present first a very simple example.

Schrödinger's equation has the form ih{8cpj8t) = E<p. Let us take Q= R. For such

system, 0a,g!>x is(xl) —Ejih, as pointed out at the end of §8. Now suppose £ is a

polynomial, with real coefficients, in the operator —ih{8j8x). It will suffice to treat

the case £=( — ih{8j8x))n ïor n = 0, 1, 2,.... For the time-reversed system we clearly

have 0 = (/ft)-1(/ft(a/Sx))n.

Expression 10.21 requires us to calculate

-{-{hji)8j8x)n[exn i-iwjh)cp\.

It is evident that the only term of this which does not tend to 0 as ft -> 0 is

-{w')nexp{-iwjh)<p. Thus the limit 10.21 is {-{wT<p; $). Let g be the (real!)

function on the phase space £i(£) defined by — pn where p as usual is the function

for whichp{bdx) = b. Then g{dw{a)) = - [p{dw{a))]n = [p{w'{a)dx)]n = - [w'{a)]n. Thus

g ° dw = — {w')n. Now g is presumably the generator of time translation for the

js Ux{T{s)){9)

(n) We will abbreviate this to 0.
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system {f{R), A). Thus the generator of time translations for (£i(£), A) is — g=pn-

We thus see that if the Schrödinger equation is

h8<p    [1 /ft 8\2    ,,1

then the Hamiltonian of the classical limit is \p2-+ V.

Spatial dynamorphisms have also to be examined. For all such simple quantum

systems the (skew-adjoint) generator for translation in the positive x direction is

8j8x, independent of the dynamics. Thus 0 and 0 are 8j8x. For the classical

systems (£i(£), A) and {f{R), A) the generating function is given by 3.7 and is — p

in each case, of course. The truth of 10.21 is easily verified.

The criterion 10.2 suggests a way of proceeding from a classical system (£^0), A)

to a (one-parameter) quantum system {JfQ, 0) which frequently does have {f{Q), A)

as its limit. The rule is as follows.

10.3 Corresponding to a basis for the Lie algebra of the space-time group, write

down the list of generating functions for the given system.

10.31 Modify these appropriately to serve for the time-reversed {still classical)

system.

10.32 Replace each p, in the expressions of 10.31 by ih{8j8x') and arrange these

to form formally self-adjoint operators.

10.33 Divide these operators by —ih, and use them to define infinitesimal

dynamorphisms for a quantum system {^CQ, 0).

10.34 Define time-reversal for {J#%, 0) by cp -> cp.

10.35 Conjugate the dynamorphisms of {3^fQ, 0) with time-reversal to produce the

desired system {Ji?Q, 0).

This rule (10.3 etc.) preserves bracket relations to a considerable extent, although

of course(12) not perfectly. The carrying out of step 10.32 involves so much guessing

that a mathematical, analytic, rather than formal, check such as 10.2 provides is

surely indispensable.

We will apply our rule (10.3 etc.) to the system 4.3. We first define a Hermitean

operator 5 (cf. 6.4).

10.4 50 is the positive square root of 1 — 8h2{Xi ° X1+ • • • + X3 ° X3) ; and S is

the positive square root of S2 — h2[{8j8xi)2 + ■ ■ ■ +(3/r3x3)2].

The precise mathematical specification of these operators, and those given below

is to be along the lines of 6.4, the operators of which are the generators of certain

one-parameter groups whose existence was proved in §6.

(12) See [3]. In [3] the classical bracket is defined in the original way (Enzyklopädie der

Math. Wiss., Band II, 1. Teil, 1. Haelfte; S. 333 (63)), which is the negative of the "modern"

way followed in the present paper. The original way is, as a matter of fact, more elegant. It

would avoid the minus sign in 3.7, thus allowing P=p in 4.5; and avoid prefixing opposite

signs to the two occurrences of ih in 10.32 and 10.33.
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The application of 10.3 (etc.) to 4.3 leads to the following formulae for the

infinitesimal dynamorphisms to be assigned to the infinitesimal Poincaré trans-

formations in the list (except for a change of indices i toy) 4.26, and in the order

listed.

(10.41) -S/ih,

(10.42) 8j8x>,

(10.43) Xi + eikmxm{8jdxk),

(10.44) - i{xiS+Sxi)l2h - ih{S+ 50) " leikmXm{8jdxk).

To allow a comparison with 6.4 we apply the partial Fourier transform, which

makes 8j8x -> ip and x -> i{8j8p). (We do not allow the parameter ft to play a

role in the definition of Fourier transform!)

This leads to

10.45    50 -*■ 50 but S -¥ the positive square root of S2 + ft2p • p.

For the operators 10.31-10.34 we obtain, respectively,

(10.46) iSjh,

(10.47) ip„

(10.48) Xj-e^p^jSpJ,

heikmpkXm

<'»■«> hH+w,s) S0 + S

This evidently agrees with 6.4 for ft=l. For ft^l we can still fall back on 6.4

to prove the existence of a system satisfying 10.46-10.49. We have only to make a

suitable change of variables.

It remains, however, to prove that 10.41-10.44 really does provide a quantization

of 4.3. The very complexity of the proof that it does, shows how inadequate is 10.3

(etc.) and how vital is 10.2.

We will limit the discussion to the operators 10.41 and 10.44, since 10.21 holds

for differential operators formed from polynomials in the/?'s by the rule 10.3 etc.

Moreover, the methods we will use for 10.44 can easily be seen to work for 10.41.

The first term of 10.49 is evidently the same as h-1S{8j8pj) + h{2S)-rpj. Here the

latter term is a bounded operator times ft and hence contributes 0 to the limit 10.21.

Therefore we may replace 10.44 by

(10.5) - ix}Sjh - ih{S+ S0) - Vcm(g/r3x'c) Xm.

(The operators Xm, 8j8xk, 50, and 5 commute with each other.) The Lorentz

transformation associated with 10.44, as well as the generating function K„ change

sign under time-reversal. The 0 to be inserted into 10.21 is the negative of the
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operator 10.5; and the g is — K¡. Let us, however, study only the second term of

10.5. If we define

(10.51) Ih{9) = -h2eikm{S+S0)-1Xtn{8j8xk)

and let g = e'kmpkwm{H+H0)~1, then it will suffice (for that second term) to prove

(10.52) lim (£[exp {-iwjh)<p\; exp {-iwjh)f) = {[g ° dw]q>; f).

We proceed to prove 10.52. Let Ph be the differential operator

¿kmb.A.'iv se
i 8xk i Am¿

which has obviously been obtained from g{H+H0)H6 by the process 10.32. Then

Ih = PhAh where v4il = (5+50)~15~6. The reason for the exponent 6 is that 6 is

even and large0nough to allow Ab to have the following integral representation.

10.6 Lemma. For each z in E{3), and each q> in £2(£(3)),

Ah{9){z) = ¡¡¡¡¡¡9 [exp (-As- W) exp {-ht-X)z]k{s, t) ds dt,

where each integration goes from — oo to +oo. Here

s = {si, s2, s3),        W = {8j8x\ 8j8x2, djdx3)

where these three are the part of the basis of the Lie algebra of E{3) corresponding to

the infinitesimal translations. For each Y in the Lie algebra, exp ( Y) is the element

ofE{3) generated by Y [14, 223]. Simifarly,tX=t1X1+ ■ ■ ■ + t3X3 where Xu X2, X3

are the generators (4.21). As to the kernel,

( 10.61) K{s, t) = Yr S'n T (277r<i /JífífCfcS*+<tbA(f ~f Í) d* dh

where ß=[{bi)2+---+{b3)2Y12,

( 10.62) \{j, c) = [H{j, c) + H{j, 0)]-*Wj, c)-6,

and H(J, c) = [1 +A2c-c + ft2o/(/4-1)]1'2.

Proof. The first thing to observe is that K is indeed absolutely integrable on 7?6,

This follows from the fact that the function A is essentially the reciprocal of the

7th power of the distance to the origin in R6.

We now observe that Ah commutes with right multiplication in £(3) and so does

the operator defined by the left side of the formula proposed. Hence it suffices to

prove it for z = the identity element of £(3).

Let Xi ij=0, 1/2, 1,...) be a character of the irreducible representation of 0(3)

which has degree 2j+l [13,25]. Let $ be any continuous function on £3 with
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compact support. Then >Pxi = 9ls a function defined on £(3) because of the presenta-

tion of £(3) as a product R3 x 0(3). Moreover, if 10.6 holds for all such products,

then it holds in general.

The reader must verify that for z=xy, x in R3 and y in 0(3), we have (actually,

by definition of Ah\)

A{txi)ixy) = 0Vt3Xjo) J]Ja(/, cye-*¥(c) a

where T" is the Fourier transform of 4>- We now take x = 0, y= 1 and equate it to

the right-hand side of 10.6. To evaluate the latter, one must use the fact that

</.[exp(-ftsW)] = (2t7)~3 Ç((e-h*eW{c)dc

and that

sin ftrO'+i)
X3[exp(-ftt-x)]

sin ftr/2

where t= [(/i)2+ • ■ ■ +{t3)2}. This fact about y; results from the observation that x¡

is invariant under inner automorphisms and hence the rotation exp ( — ftt-x) might

as well be about the z-axis. The rest of the argument is routine Fourier-transform

theory.

It is rather obvious that Ah has a representation Ah{<p){z) = j cp{w'1z)K{w) dw

where this integration is over £(3). However, such a representation would not

allow us to see what happens as ft -> 0. (The reader should try to prove 10.52 on

the unit circle with 7„ = [1 —h2{8j8d)2]112 with such a representation!)

The six-fold integral in 10.61 is almost independent of ft. The only reason it is

not is that 77(J, c) does not quite depend on ft2/2 and ft2c2 alone. It is easy to see

that, as ft -^ 0, â%î, /) tends to a limiting function

K0{s, t ) = (2tt) -6 f      J" Í exp {is ■ a + it ■ b)/c(b, a) da db

where k{b, a) = [5(a, b) + 5(0, b)] " ̂ (a, b) -6 where 5(a, b) = ( 1 + a ■ a + 0b ■ b)1'2. The

limiting kernel K0 is also absolutely integrable and moreover, K0 and the K (for

sufficiently small b) are dominated by a summable function M.

The remainder of the proof of 10.52 uses merely this dominated convergence.

The presentation will be easier to follow if we give the argument for the case in

which the configuration space is the circle(13) group 50(2) rather than £(3). We

would then be knowing that

(10.63) Ah{f){z) =  P   9[exp{-htX)z]K{t)dt
J   — 00

(13) The circle group is more instructive than the case of the real line in that it is remarkable

that in the former case the integral in 10.63 is not extended over the group.
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where X is the infinitesimal rotation which makes exp { — htX) = e~m, \z\ = 1, and

K^- K0 under the domination of some summable function M. Moreover,

K0{t) = (277)-1 \eiask{a) da,

where Ah = k{{hji)8j8y), y being the angular coordinate in 50(2). Thus z = eiy\

Let 93, i/j, and w be functions qualified as in 10.2 and let us form (compare 10.52)

the inner product (7Jexp { — iwjh)q>]; exp ( —/r>/A)¡/»). This is the same as

(10.64) {Ah[exp {-isjh)cp];Ph[exp (-nv//#]).

Here Ph=p{ — {hji)8j8y) for some polynomial whose coefficients are real and

independent of ft. Clearly,

Ph[exp ( - ;w/ft)i/>] = exp ( - iwjh)[p{8wj8y)^> + coh]

where coh is a linear combination of continuous functions (with compact support)

with coefficients that vanish for « = 0.

Expression 10.64 is therefore a linear combination of several integrals of the

form
r-271

(10.65) e-iwlhAh[exp {-iwjh)<p{eiy)]f{y) dy

with coefficients that vanish when ft does, except for one term whose coefficient is

1, in which

f{y) = p{w')Wy~)-

The expression Ah[- ••] in 10.65 is, according to 10.63,

exp \-^w{eiy-iht)]cp{eiy-m)K{t)dt.

Consequently 10.65 takes the form of a double integral

»2ji   fao jn: exp ■{ -t [w{eiy~m)-w{eiy)] }-<p{eiy~m)K{t)f{y) dt dy.

The entire integrand is dominated by BM{t)\f{y)\ where B is an upper bound for

\<p\. The integrand has a limit as ft -> 0, namely

exp {it{8wj8t){eiy)}9{eiy)K0{t)f{y) dt dy.

Carrying out first the integration over / we see that the limit of 10.65 exists and

equals

Hence the limit of 10.64 is

/•2JI

k{- w')<p{ëy)p{w')4,{ëy) dy.
Jo

Recall that Ih = k{{hji)8j8y)p{-{hji)8j8y). Thus 10.52 is proved.
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10.7 Theorem. The quantum system 10.41-10.44 is a quantization of the classical

system 4.3.

We close with a remark about observables.

Let A be a (one-parameter family of) self-adjoint operator of the (one-parameter

family of) quantum system (77, 0). Let/be a differentiable function on f{Q), i.e.

an observable for the classical system. Then we will say

(10.8) A^f

if for 93, </r, and w as in 10.21,

(10.9) lim 04[exp {iwjh)<p]; exp {iwjh)4>) = ([/° dw]<p; </»).
A —0

It is easily verified for the simple example discussed above that { — ih{8j8x))n —¡-p".

If 0 is some infinitesimal dynamorphism, then —/ft© is a quantum observable.

One might be tempted therefore to suppose that if 0 -> g in the sense of 10.2, then

also —/ft© —^g in the sense just defined. This is true for infinitesimal motions of

the configuration space, but it breaks down for spatio-temporal transformations.

For the infinitesimal Poincaré transformation 8j8t-X-8j8x the discrepancy is not

merely an over-all change of sign.

11. Alternating structures: local theory. Let A be an alternating structure on a

manifold K. By v{A) we mean the linear space of all vector fields Xh (see 3.14).

Evidently (from 3.15) if Xu X2 belong to v{A), so does [Xu X2]. For each point £

of K, let v({A) be the linear space of vectors obtained from evaluating the fields of

v{A) at f. In the usual terminology (but not that of [14, 130]) we have here an

involutive distribution. Let us make the assumption

11.1 £fte dimension of v({A) is independent of tj.

11.12 Theorem. If 11.1 holds, then, given a point £ of K, there is a coordinate

system x1,. . ., xn defined in a neighborhood of £ such that

(fo\   ^L^_^^L^+^L^^^LÈs_+        df  gg   8f   8g
U'8>      Sx1 Sx2    ax2 Sx1    ax3 Sx4    8xi 8x3 Sx"-1 8x"    8x" Sx"-1

{and, obviously, p is even).

Suppose that dimension is p. Let f be a point of K. By Frobenius' theorem

[14, 132] there is a coordinate system x1,..., x" defined in a neighborhood of è,

such that v{A) is generated by Sjdx1,..., 8j8x". In terms of these coordinates

Ali = 0 if i or j is greater than p. On the other hand, the matrix {A'1 : 1 ̂ i,j¿p)

has rank p and hence is nonsingular. Let us define {B(j) as the inverse matrix and

extend the definition by making B¡j = 0 whenever i or j exceeds p. Now we assert

that the differential form Bu dxl a dx' = Q is closed.

To see this, observe that BmJA'k is constant (indeed, it equals S* for m,k^p
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and is 0 otherwise), whence BmjaA'k + BmjAik = 0 where the third suffix indicates a

partial derivative. From this one concludes that Aâk = AmeAkrBBya.

Now insert f=x', g = x'\ h = xk into 3.13. The result is SAiaAik = 0 where 5(- ■ •)

applied to any 3 index symbol, say C"'k, is C"'k + Ciki + Cki'. It follows that

S{AtaA"'AkyBeva) = 0. From this, AiaA'ßAkyS{Beya)=0 whence S{Bßya) = 0. This is

the condition that Q is closed. According to [14, 140] there is a coordinate system

y1,..., yn which gives to O. the form dy1 A dy2 + ■ ■ ■ + dy"'1 A dy". Let us call this

baß dy" A dyß. We have thus two ways to evaluate <fl; U, V) for vectors U and V.

Let U=8j8yy where y up- Then <0; U, V) is zero according to the former expres-

sion for Q, while according to the new one it is ± 8yyj8q. Thus 8yyj8x9 is 0 for

yi/)<w. In a similar manner, we compare the two evaluations for (fl;8j8yq,8j8xy'y.

This shows that 8xyj8yq is 0 for y¿p<q. It follows from this that we can replace

yp + 1,..., yn by xp + 1,..., x" and still have a coordinate system on some neighbor-

hood of ¿j. This does not change the new form of Q, so let us just say that y" = x"

for q>p.
Denote by aaB the components of A relative to y1,..., v\ From the previous

assertion about BmjAlk one can deduce that

mn h „er   s 8x'ôyy - *T   v 8xi8yy

(There is a sum on the left, too.) In the last sum here we can write 8yij8ya for

8xlj8y". Hence this last sum is 0 if a-¿p, whence baßaBy = 8ya if a-ip. This tells us

exactly what the aBy are for ß, yúp, namely the transpose of ft, as it happens.

It is also true that aaB = Aiii8yaj8xfdyBj8xi. If we take a>p then 8yajdxi = 8xaj8xi

= 0 whenever ¡-¿p while A" = 0 if i>p. Thus aaB = 0 for a or ß>p. Thus 11.2 is

essentially proved. To obtain the formula exactly, change the signs of all the

coordinates y1,..., yn and call them x1,..., xn.
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