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1. Introduction. Let S be a topological semigroup (i.e. a semigroup with a
hausdorff topology such that for each a € S, the mappings s — as and s — sa,
s €S are continuous from S into S); let m(S) [C(S)] be the space of bounded
[bounded continuous] real functions on S. If fem(S), ae S, denote by |f]|
= SUPses If(s)l (sup norm), plf)=f(a), l.f(s)=uf(s) =f(as), rof(s)=fu(s)=f(sa)
for s € S, then p, is the point measure on m(S) at a and each element in Co {p,;ae S}
is called a finite mean on m(S) (where Co A4 denotes the convex hull of a subset 4
of a linear space).

Let X be a translation invariant normed closed subalgebra of m(S) containing
constants (i.e. . f, f, € X whenever fe X, a€ S), X* the conjugate space of X and
L,: X* — X* such that (L,@)(f)=¢(.f) for p € X* ae S and fc X. An element
@in X*is a mean if (15)=1 and ¢(f) 20 for f=0 (15 is the constant one function
on S); ¢ is multiplicative if o(fg)=¢(f)p(g) for all f,ge X; ¢ is a left invariant
mean (LIM) on X if ¢ is a mean and Lgp=9 for all se S. A function fe C(S) is
left uniformly continuous if whenever s, — o, Sq, S0 € S, ||s,f— 5, /|| = 0. Denote by
LUC(S) the space of left uniformly continuous functions on S (Namioka [17,
p. 64]), A(S) the set of multiplicative means on LUC(S).

The main purpose of this paper is to study and characterize topological semi-
groups S such that (*) LUC(S) has a LIM in Co A(S). We show in §4 that any
such semigroup can be decomposed as finite disjoint union of open and closed
subsets of S, one of which is a subsemigroup, T, of S. LUC(T) contains a subalgebra,
PLUC(S), which admits a multiplicative LIM and the set of LIM on PLUC(S)
can be mapped one-one onto the set of LIM on LUC(S) by a linear transformation.
Furthermore, we show that a topological semigroup S satisfies (*) iff for some
finite subset {ay, ..., a,}< S, the ideal in LUC(S) generated by {37_, I, (f—.f);
s €S, fe LUC(S)} is not uniformly dense in LUC(S).
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Combinatorial properties for topological semigroups satisfying (*) are also
obtained (§6). We show in §3 that there exist many topological semigroups S for
which LUC(S) has a LIM in Co A(S) and yet m(S) does not have a LIM.

When S is discrete, m(S)=LUC(S) and A(S)=8S, the Stone-Cech compactifi-
cation of S. The idea in considering discrete semigroups satisfying (*) is due to
J. Sorenson, who has shown in [19, Theorem 3.3.6] among other things the follow-
ing interesting result: m(S) has a LIM in Co BS iff S/(r) is a finite group (S/(r) is
the factor semigroup defined by the equivalence relation (r): a(r)b iff ac=bc for
some c € S). In §5, we show how some of the results of Granirer [4], [5] and
Mitchell [14] on semigroups S admitting a LIM in BS can be generalised to semi-
groups S admitting a LIM in Co 8S. We show in particular that a discrete semi-
group S admits a LIM in Co BS < (a) for some fixed n, and each finite subset
o< S, there exists F,= S, cardinality of F,=n, and aF,=F, for all a € o < () for
some fixed m, there exists a net of finite means p,=(1/m)>7 p,s such that
[Lopte—po] — 0 for allae S.

Finally, if S is a topological semigroup, we raise in this paper the following
problems:

(1) If S satisfies (*), is every extreme point of the set of LIM on LUC(S) in
Co A(S)?

(2) If for some fixed n and for each fe LUC(S), the pointwise closure of
{(1/n) 27~ 1 r. (f); a; € S} has a constant function, does S satisfy (*)?

(3) If S., « €I are topological semigroups satisfying (¥) and LUC(S,) has a
multiplicative LIM for all but a finite number of « in 7, does the full direct product
merS, With the product topology satisfy (*)? (Day, [1, p. 517].)

The answer to (1) is affirmative for S discrete (Sorenson [19, Theorem 3.3.6])
and the answer to (2) is also affirmative for n=1 (Granirer and Lau [9, Theorem 2J).
In this paper, we given an answer to (2) and (3) (Theorem 5.6 and Proposition 6.7)
for discrete semigroups. But for the general case, all the three problems, to our
best knowledge, are still open.

Several authors have recently studied topological semigroups S for which the
space LUC(S) admits a LIM. Namioka in [17] studies topological semigroups S
for which LUC(S) has a LIM and Mitchell(?) [16] recently considers a certain
fixed point property on topological semigroups S for which LUC(S) has a multi-
plicative LIM.

2. Some notations. For any set 4, we shall denote by | 4|, the cardinality of 4.
If 4 is a subset of a semigroup S, a€ S, then a *A={s€ S; ase S}, and 1,
€ m(S) such that
lus)=1 ifseA,
=0 ifs¢A.

(2) The author is grateful to Professor T. Mitchell in providing him with a preprint of his
paper [16].
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Let S and T be topological semigroups, then Sx T will denote the product
topological semigroup with coordinatewise multiplication and product topology.

Let S be a semigroup, X a translation invariant normed closed subalgebra of
m(S) containing constants. Then ¢ € X* is a point measure [finite mean] if ¢ is
the restriction of some point measure [finite mean] on m(S). It is well known that
the set of finite means [point measure] on X is w*-dense (i.e. o(X*, X)) in the set
of means [multiplicative means] on X.

X is left amenable (LA) if X has a LIM and X is extremely left amenable (ELA)
if X has a multiplicative LIM. S is LA [ELA] iff m(S) is LA [ELA]. (See Day [1],
Granirer [4].)

Let S be a topological semigroup, then LUC(S) is a translation invariant
normed closed subalgebra of m(S) containing constants. Furthermore, if ¢ €
LUC(S)*, fe LUC(S), then the function A(s)=¢(,f) is in LUC(S) (Namioka [17,
p. 68]). Hence if ¢, p e LUC(S)*, we may define ¢ O p e LUC(S)* the Arens
product of ¢ and p by (p O p)(f)=e(h), where h(s)=pu(h) for fe LUC(S) (Day
[1, p. 540]). The Arens product renders.the set of means on LUC(S) and A(S)
into a semigroup. Furthermore, if w* —lim @, =gy, ,, p, € LUC(S)*, then

(1) w*=lim (g, O p)=po O p for all p € LUC(S)*,

(2) w*—lim (Lop,)=L,p, for all a € S.

For other properties of Arens product, we refer our reader to Day [1].

3. N-extreme amenability. For any topological semigroup S, LUC(S) is
n-extremely left amenable (n-ELA) if there exists a subset H, of A(S), |H,|=n,
which is minimal with respect to the property: L,Hy=H, for alla€ S.

REMARKS 3.1. (a) It is important to note that if H, is another finite subset of
A(S) which is minimal with respect to the property: L, H, = H, for all a € S, then
|Ho| = |H,|. In fact if ¢, € H, is fixed, then by continuity of Arens product in the
first variable (Day [1, p. 529]) H, © @, H,. Let Fo={Lyo; a€ S}, where ¢, €
H, © ¢o. Then Foc H, © ¢, H,, and L,Fy=F, for all a € S since the restriction
of {L,; ae S} to H, is a finite group. Hence Fo=H,; O ¢o=H, by minimality of
H,, and |H,| 2 |H,|. Interchanging H, and H, in the above argument, we obtain
|H,| < |H,.

(b) If Hy={gs, ..., pa}, it is easy to see that (1/n) >7 ¢, € Co A(S) is a LIM on
LUC(S). Conversely if LUC(S) has a LIM in Co A(S), then LUC(S) is m-ELA
for some m, since as known, finite subsets of A(S) are linearly independent; hence
if pu=37 Ao, @, distinct elements in A(S), is a LIM on LUC(S), then L,F=F
forall ae S, F={p,, ..., p,}. Then Fy={L.p,; a € S}<F is minimal with respect
to the property L, F,=F, for all a € S since the restriction of {L,;a€ S} to Fis a
finite group.

(c) It has been shown by Granirer and Lau in [9, Theorem 3] that if G is a
locally compact topological group, S a subsemigroup of G, LUC(S) has a LIM in
Co A(S) iff S is a finite subgroup of G. Consequently the only subsemigroups S
of G for which LUC(S) is n-ELA are the finite subgroups of G of order n.
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A semigroup S is n-extremely left amenable (n-ELA) if S is a discrete semigroup,
LUC(S)=m(S)is n-ELA. For n=1, this coincides with the class of ELA semigroups
which has been studied by Mitchell [14], and Granirer [4], [5] and [6].

Some examples of n-ELA semigroups are:

(1) Any finite group of order n is n-ELA.

(2) Any left amenable finite semigroup is n-ELA for some n.

(3) If Sis any ELA semigroup, and G a group of order n, then Sx G is n-ELA
(Proposition 6.4).

(4) Let (T, o) be a semigroup, and (G, %) a group of order n such that GN T
=¢g. Let S=G U T and define on S the following binary operations

ty 1y = tyoty ift,,t, €T,

8182 =81 %8 1fg,8:€GC,
tg=gt=g forallteTand geG.

Then S is n-ELA.

REMARK. Consider the special case of (4) when T has just one element, and G
is a group of order n>2. Then S is an n-ELA semigroup which is not isomorphic
to a product semigroup S, x Gy, where S, is an ELA semigroup and G, is a group
of order n, for otherwise n+ 1= |S|=|S, x Go| =kn for some k, which is impossible
when n>2.

It is clear that if S is an n-ELA semigroup, then for any topology defined on S
which is compatible with the structure, LUC(S) is m-ELA for some m=n (and m
divides n, Proposition 6.1). The following example shows that for any n, there
exists a huge class of topological semigroup S, such that LUC(S) is n-ELA, but
S is not even left amenable as a discrete semigroup.

MAIN ExampLe. E. Hewitt has constructed a hausdorff regular topological
space S, such that the only continuous real functions on S, are the constant
functions [11]. Define on S, the binary operation a-b=a for a, b € S. As shown by
Granirer [8, p. 108], S, is a topological semigroup. Furthermore, LUC(S,)
=C(S,) is ELA (Mitchell [15, p. 123]). Let T, be any n-ELA (discrete) semigroup
and T,=S,xT,. Then LUC(T,) is n-ELA (Proposition 6.4) even though Ty is
not even left amenable as a discrete semigroup, since if a,be To, a=(sy, 1),
b=(ss, t) such that s, #s,, then aTy N bTo=o.

4. Structure theorems. In this section we shall prove our main results which
give the basic structure of a topological semigroup S for which LUC(S) is n-ELA.

An equivalence relation E on a semigroup S is two-sided stable if aEb implies
caEcb and acEbc for all ¢ € S (Ljapin [12, p. 39)).

Let S be a topological semigroup and H<A(S) such that L,H=H for all
a e S. Define on S the two-sided stable equivalence relation E: aEb iff L,p=Lyp
for all ¢ € H (Sorenson [19, Chapter 2]) and denote by S/H the factor semigroup
defined by this equivalence relation.
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THEOREM 4.1 (DECOMPOSITION). If' S is a topological semigroup such that LUC(S)
is n-ELA, then there exists a collection F of n disjoint open and closed subsets
of S, with union S, such that 1,e€ LUC(S) for all A€ % and & is the decompo-
sition of S by cosets of S/H for any finite subset HS A(S) satisfying L,H=H for
all ae S.

Proof. Let H,=A(S) such that |Hy|=n and L H,=H, for all ae S. Then
S/H, is a finite group of order m. Let T={s € S; Lp=¢ for all p € H}. Tis a closed
subsemigroup of S and if {a,,..., a,} is a coset representative of S/H,, ¥ =
{a;'T;i=1,..., m}, then S is the union of the m disjoint open and closed sets in
F.If m<n, let oo € Hy, Fo={Lo@o, - - ., Lo, Po}, then L Fo=F, for all ae S and
Fy| <|H,|, which is impossible. Hence m=n. We shall show that 1, € LUC(S)
and for each i=1, ..., m, there exists ¢; € H, such that ¢,(1,-17)=1. Consequently
m=n. Let s, — S, S, So € S. If 5o € a; T, then there exists o, such that s, € a; T
for all « 2 . Hence for all e 2 g, 55 ' T=55'T and |siT—s3T| =0i.e. 1, € LUC(S).
Let ¢, € H, be fixed, then 1 =gq(15) =21 @o(l,-17) which implies @o(1o-17)>0 for
some k. Since g, is multiplicative, ¢o(l,-17)=1. Hence for each i=1,..., m, if
@i =Ly, p0, Where a;b; € T, then ¢(1,-17)=1.

To complete the proof of the theorem, it suffices to show that for any two finite
subsets H, and H, of A(S) such that L.H;=H; for all s€ S, i=1, 2,ifa, be S,
then L,p=L,p for all p € H, iff Lyp=L,) for all y € H,. Assume that L,p=L,p
for all € H, and let ¢, € H, be fixed, p;, be a net of point measures on LUC(S)
such that w*—lim p, =¢,. If §, € H,, for each «, there exists §, € H, such that
Ps, O $o=Ls =1, By finiteness of H,, we may assume (by taking subnet if
necessary) that there exists o, and y, € H, such that $,=1v, for all «=«,. Hence
Ps. O vo=1o for all eZ«y and @y O yo=4, (Day [I, p. 529]). Consequently, L,

=L (po O $o)=(Lapo) O bo=(Lopo) O $o=Lyo. The converse follows from
interchanging H, and H,.

COROLLARY. For any connected topological semigroup S, if LUC(S) has a LIM
in Co A(S), then LUC(S) is ELA.

REMARK 4.2. Let S be a topological semigroup such that LUC(S) is n-ELA,
& the decomposition of S as obtained in Theorem 4.1. We have shown in the
proof of Theorem 4.1 that there exists an open and closed subsemigroup T € #
such that 1, € LUC(S) and if H is any finite subset of A(S), L,LH=H foralla€ S,
then T={se S; Lyp=¢ for all ¢ € H}. Furthermore, if {a;,...,a,} is a coset
representative of S/H,, then & ={a;'T;i=1, ..., n}. Consequently, ¢o(17)=1 for
some ¢, € H and p(1;)=1/n for all LIM g on LUC(S).

Let PLUC(S)={Pf; f€ LUC(S)}, where Pf(s)=f(s) if s € T. Then PLUC(S) is
a norm closed translation invariant subalgebra of LUC(T) containing 1; as readily
checked. Furthermore, if S satisfies one of the following conditions, then PLUC(S)
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=LUC(T), (however we do not know whether or not PLUC(S)=LUC(T) in
general)(®):

(a) S is discrete.

(b) F={aT;i=1,...,n} for some finite subset o={ay, ..., a,} .S (this would
be the case, for example, if S had no proper right ideal).

Condition (a) is trivial. To show (b), we first note that {a,, . . ., a,} is necessarily
a coset representative of S/H. Let fe LUC(S), if we can show that =f'e LUC(S),
where (7f)(s)=f(s) if s€ T and 0 otherwise, then f=P(xf), and PLUC(S)=LUC(T).
Let {s,} be a net in S, 5, — S;, 5o € S. Choose a, € o such that sea, € T. Then
S.a,, — Soay. Since T is open, there exists «, such that s.a, € T for all « = a,. Hence

sup |5, () = 5o )E)| = sup | f(sa1) —f(502)]

sup | f(saaxt) =f(soast)| = 0.

Consequently, =f e LUC(S).
LeEMMA 4.3. PLUC(S) has a multiplicative LIM.

Proof. By Remark 4.2, there exists @, € A(S) such that Lip,=¢, for all teT
and ¢o(17)=1. For fe LUC(S), define po(Pf)=eo(1zf). Then p, is a multiplicative
mean on PLUC(S), and if ¢ € T, then po((Pf))=po(P(:f)) =po(1:(:/)) = po(d(1zf))
=go(1f)=po(Pf) since t "1 T=T.

NotAaTION. For any topological semigroup S, if LUC(S) is n-ELA, then
PLUC(S)< LUC(T) will denote the algebra of functions as defined in Remark 4.2.

THEOREM 4.4. For any topological semigroup S, if LUC(S) is n-ELA, then there
exists a linear transformation mapping the set of LIM on PLUC(S) one-one onto
the set of LIM on LUC(S).

Proof. Let H be a finite subset of A(S) such that L,H=H for all ae S, T=
{s€S, Lyp=¢ for all pe H} and P: LUC(S) - LUC(T) where (Pf)(s)=f(s) if
s e T. For any coset representative o of S/H, define the mapping F,: [PLUC(S)]*
— LUC(S)* by F,(¢)=(1/n) s LoP*(p). We shall show that F,  is the required
linear transformation for o,, a fixed coset representative of S/H.

Choose ¢, € H such that @4(17)=1 (Remark 4.2) and {p, .} be a net of point
measures on LUC(S) such that w*—lim p, =@,. If ¢ is a LIM on PLUC(S)

() The following example from Mitchell [16] shows that if T is a subsemigroup of a
topological semigroup S, then the algebra A={Pf; fe LUC(S)}SLUC(S) where Pf(s)=f(s)
if s € S, need not coincide with LUC(T): let (T, +) be the semigroup of positive integers with
addition and S=T U {a}, where a ¢ T, be the one point compactification of T. Define on S the
binary operation s;-53=s;+53 if 51, 52 € T and sa=as=s for all s € S. Then S is a compact
topological semigroup. The function g(n)=sin (n) is in LUC(T)=m(T), but Pf#g for any
fe LUC(S).
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(Lemma 4.3), then p, © P*$=P*y for all t € T. Hence

®o O P*$ = w*—lim (p,, O P*§) = P*}
(Day [1, p. 529)). If a, b € S such that L,p=L,p for all ¢ € H, then

LoP* = Lo(po O P*$) = (Lagpo) O P* = (Lopo) O P*¢
= Ly(po O P*y) = L,P*y.

Hence for any coset representative o,, o, of S/H, F, (})=F,,(). Consequently,
if fe LUC(S), s€ S, then F, ($)(sf) = Fsoo)(f) = F, () f) i.e. F,3p is a LIM on
LUC(S).

Conversely if p is a LIM on LUC(S), then u(17)=1/n (Remark 4.2). Define
on PLUC(S) by #(g)=n-u(15f) if g=Pf If teT, fe LUC(S), then ((Pf))
=P(P(S)=np(:(f)=n w(1rf)=n u(1of)=4(Pf) since ¢t 'T=T. Hence § is
a LIM on PLUC(S). Furthermore, F, () =p since if fe LUC(S), oy={a, . . ., a,}
and b; € S such that b,a; € T, then

P ) = 5 3 1) = 1 3 ol oa)

— %ié:ln-'u(lb‘—lrf) = .“'(f)

To see that F, is one-one, we first observe that if ¢ is a LIM on PLUC(S),
S€ LUC(S), then F, ()(10f)=(1/n)p(P(1.f)). Hence if ¢, and ¢, are LIM on
PLUC(S), fe LUC(S) such that $,(Pf)#¥s(Pf), then $1(P(17/))#4o(P(1f))
and hence F, (,) # F, (2).

REMARK 4.5. Let S be a topological semigroup such that LUC(S) is n-ELA,
H a finite subset of A(S) such that L,LH=H for all ae S, T={se S; Lyp=¢ for
all p € H}. We have shown in Theorem 4.4 that if ¢, is a multiplicative LIM on
PLUC(S) (Lemma 4.3), then (1/n) 34cs, Lo(P*po) € Co A(S) is a LIM on LUC(S)
for any coset representative o, of S/H, and (Pf)(t)=f(t) for te T.

It has been proved by Granirer [5, Theorem 6] that if S is ELA then every
extreme point of the set of LIM on m(S) is multiplicative. Theorem 4.4 yields the

following generalization of Granirer’s result which is due to Sorenson [19, Theorem
3.3.6]:

COROLLARY (SORENSON). If' S is an n-ELA (discrete) semigroup, then every
extreme point of the set of LIM on m(S) is of the form (1/n) 3% v, y; € BS.

Proof. PLUC(S)=m(T) for some ELA subsemigroup T of S (Remark 4.2,
Lemma 4.3). Hence every extreme point of the set of LIM on PLUC(S) is multi-
plicative (Granirer [5, Theorem 6}). The assertion now follows from Theorem 4.4
and Remark 4.5.

REMARK 4.6. In view of Sorenson’s result, it is natural for us to ask the following
question: if S is a topological semigroup such that LUC(S) is n-ELA, then does
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every extreme point of the set of LIM on LUC(S) have the form (1/n) >7 y; ,where
y; € A(S)? We do not know the answer even for n = 1.

LemmA 4.7. For any topological semigroup S, if LUC(S) has a LIM of the form
(1/n) 3% @i, where @, € A(S) (not necessarily distinct), then LUC(S) is m-ELA for
some m=n, m divides n.

Proof. LUC(S) is m-ELA for some m (Remark 3.1). If H is a finite subset of
A(S) such that L,H=H for all a € S, then S/H is a group of order m (Theorem
4.1). Let = be the natural homomorphism from S onto S/H, then =n(s,) — 7(s,)
whenever s, — 5o, 54, 5o € S. Hence fome LUC(S) for fe m(S/H). Define §(f)
=@(fo ) for all fe m(S/H). Then (1/n) 31 ¢; is a LIM on S/H,. By uniqueness
of LIM on a finite group, we have m<n, and m divides n.

Let S be a topological semigroup for any finite subset o,< .S, denote by

J(op) = ideal in LUC(S) generated by { Z L(f—f); fe LUC(S), s € S}~
aeag
THEOREM 4.8. For any topological semigroup S, if LUC(S) is n-ELA, then for
some 0, S, |oo| =n, J(ay) is not uniformly dense in LUC(S). Conversely, if there
exists 0o= S, |oo| =n such that J(o,) is not uniformly dense in LUC(S), then LUC(S)
is m-ELA for some m<n, m divides n.

Proof. If LUC(S) is n-ELA, by Remark 4.5, there is some 0,< S, |o,| =n and
yo € A(S) such that pw=(1/n) 24cs, Layo is @ LIM on LUC(S). Hence if h=
8 (Zaeoo Il f—s/)), f, 8 e LUC(S), s € S, then u(h)=0. Since u(l5)=1, J(o,) is not
uniformly dense in LUC(S). Conversely, if J(o,) is not uniformly dense in LUC(S),
then there exists @, € A(S) such that ¢y(J(0,))=0 (see proof of Lemma 3 [5,
p. 99]). Hence, (1/n) >cs, Lago is @ LIM on LUC(S). Now apply Lemma 4.7.

REMARK. It follows from Theorem 2 of Granirer [5] that LUC(S) has a multi-
plicative LIM iff the ideal in LUC(S) generated by {f—,f;fe LUC(S), s € S} is
not uniformly dense in LUC(S). Theorem 4.8 partially generalises this result.

5. N-extremely amenable semigroups. In this section we begin our investigation
for the class of n-ELA semigroups and obtain results which generalise those of
Mitchell [14] and Granirer [4], [5] for the class of ELA semigroups.

Let S be a semigroup with finite intersection property for right ideals (f.i.p.r.i.).
Denote by S/(r) the factor semigroup defined by the two-sided stable equivalence
relation (r): for any a, b€ S, a(r)b iff ac=bc for some c € S. As known, S/(r) is
right cancellative (see for example [3, p. 372]).

REMARK 5.1. Let S be a semigroup with f.i.p.r.i., such that S/(r) is a group, and
So={s € S, homomorphic image of s in S/(r) is the identity}. Then, as readily
checked, for any a, b€ S, a(r)b iff at=bt for some ¢ € S,. Consequently S, is an
ELA subsemigroup of S (Mitchell [14, Corollary 3). Furthermore, if S/(r) is
finite and o,, o, are coset representatives of S/(r), then o,¢=o0,t for some ¢ € S,.
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The following result, which follows from the proof of Theorem 3.3.6 in Sorenson
[19], shows an important relation between an n-ELA semigroup S and the factor
semigroup S/(r). For the sake of completeness, we give a proof.

THEOREM 5.2 (SORENSON). For any semigroup S, S is n-ELA iff S has f.i.p.r.i. and
S/(r) is a group of order n.

Proof. If S is n-ELA, let H be a finite subset of BS such that L,H=H for all
a € S. We shall show that for any a, b€ S, Lop=L,p for all ¢ € H iff a(r)b; con-
sequently S/(r) is a group of order n by Theorem 4.1. If L,p=L,p for all p € H,
let s, € S such that as,, bs, € T, where T={s€ S; Ly =9 for all p e H} is an ELA
subsemigroup of S (Remark 4.2 and Lemma 4.3). Hence asyt,=bsot, for some
to € T (Granirer [4, Theorem 1]) i.e. a(r)b. If ac=bc for some ¢ € S, then L,(L.p)
=L,(L.p) for all ¢ € H, which implies L,p=L,p for all p € H (=L H). Conversely,
if S/(r) is a group of n elements, and ¢, a multiplicative LIM on m(S,), where
So={s € S; homomorphic image of s in S/(r) is the identity}, define ¢, € BS by
#o(f)=po(f), where f(s)=f(s) if s€ S,. If o, is a coset representative of S/(r),
then as readily checked, (1/n) >4cs, Loo is @ LIM on m(S). Apply Lemma 4.7.

We now generalise a well-known result of Granirer [4, Theorem 1]: A semigroup
S is ELA iff any two elements has a common right zero.

THEOREM 5.3. For any semigroup S and fixed n:

(@) If S is n-ELA and F, is a coset representative of S/(r), then for each finite
subset o of S, there exists t, € S, depending on o, such that aF,t,=Ft, for all
aeo.

(b) If for any finite subset o of S, there exists F,< S, |F,|=n, such that aF,=F,
for all ae S, then S is m-ELA for some m = n, m dividing n.

Proof. (a) For each a€ o, let t, € S, such that aFyt,=Fyt,, where Sy={s€ S;
homomorphic image of s in S/(r) is the identity} is an ELA subsemigroup of S
(Remark 5.1). If t,€ S, such that t,t,=t¢, for all aeo [14, Theorem 1] then
aFyt,=Fgt, for all a € o.

(b) Let # ={o:0 finite subset of S} be directed by upward inclusion. If for each
cge&F, F,={aj--- a3}, let ¢; be a cluster point of p,s. Then, as readily checked,
(1/n) 2% @ is a LIM on m(S). The result now follows from Lemma 4.7.

REMARK 5.4. In order for a semigroup S to be m-ELA for some m<n, n fixed,
it is sufficient that for each finite subset o< S, there exists F,=S, |F,|<n and
aF,=F, for all aeo: Clearly S has f.i.p.r.i. If o is a finite subset of S, |o]|>n,
then o5, F, for s, € F,. Hence as,=bs, for some a, b € 0. Consequently S/(r)
has at most n elements.

For the class of n-ELA semigroups, Day’s strong amenability theorem [I,
Theorem 1] assumes a much nicer form:

THEOREM 5.5. For any semigroup S and fixed n:
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(a) If S is n-ELA and F, is a coset representative of S/(r), then there exists a net
Ya=(1/n) Secr, Pst, Such that |Lope—.| —0 for all a€ S.

(b) If there exists a net Yo=(1/n) 3% pox such that |Lype—.| — O for all a€ S,
then S is m-ELA for some m<n, m divides n.

Proof. (a) Let u, be a net of finite means on m(S) such that |Lyp,—p,|| —0
for all ae S [1, Theorem 1]. For each «, let 7, € S be such that aFyt,= Fyt, for all
ac{seS; pl;)>0} (Theorem 5.4), and ,=(1/n) J4er, Pst,- Then for each «,
e O Yo=1, and hence

"Lu‘/‘a_‘/’a” = ”La(f"a O $a)— (ke O ‘»l'a)“ s "La:”'a_l"a“ "‘ﬁa“ -0

for all a € S (Day, [1, p. 528)).

(b) Let ¢; be a cluster point of p,e. Then (1/n) >} ¢; is a LIM on m(S). The
result follows from Lemma 4.7.

REMARK. (a) For n=1, Theorem 5.5 is due to Granirer [4, Theorem 2].

(b) The following example shows that ““m=<n and m divides n”” in Theorem 5.3
and Theorem 5.5 cannot be replaced by “m=n"" in general: consider the ELA
semigroup S={e,, ..., e,} where e;-¢;=e;, i, j=1---n, F=S and po=(1/n) 31 pe,.
Then aF=F and ||Lopo—pof| =0 for allae S.

It has been proved by Mitchell [13, Theorem 1] that a semigroup S has a LIM
iff for each fe m(S), the pointwise closure of Co {r,f; a € S} contains a constant
function. The following theorem, which generalises in part Theorem 1 of Granirer
[5], is an analogue of Mitchell’s result:

THEOREM 5.6. For any semigroup S and fixed n:

(@) If S is n-ELA, then for each coset representative F, of S/(r), f€ m(S), the
pointwise closure of {(1/n) Zeer, roal(f); t € S} has a constant function.

(b) If for each f e m(S), the pointwise closure of {(1/n) >t-1r.(f), a;€ S} has a
constant function, then S/(r) is a left amenable torsion group such that the order of
each element divides n.

Proof. (a) As shown in the proof of Theorem 5.2, there exists g, € 8S such that
(1/n) Jaery Lapo is a LIM on m(S). Let {p, } be a net of point measures on S such
that w* —lim, p, = g,. Then for each f'e m(S),

LS DO = 5 3 Lap )

aeFy aeFgy

which converges to (1/n) 2eeq, Lapo(f) for all t€ S.

(b) The condition implies that S is left amenable (Mitchell [13, Theorem 1])
and hence S/(r) is a right cancellative left amenable semigroup (Granirer [3,
p. 372]). Let A< S/(r), A={s€ S; § € A}, where § is the homomorphic image of s
in S/(r), and c¢-1 a constant function in the pointwise closure of {(1/n) 21 r,(14);
a;€ S}. Then c=k/n for some k=0, 1, ..., n. Let p be a LIM on m(S) such that
w(1)=k/n [13, Theorem 1] and & be a LIM on S/(r) defined by u(f)=u(f e m),
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where fe m(S/(r)) and = is the natural homomorphism of S onto S/(r). Then
@(17)=k/n. Hence we have shown that for any subset A< S/(r), there exists a
LIM @ on S/(r) such that a(1z)=k/n for some k=0, 1, ..., n. Consequently, the
order of each element in S/(r) is finite, since if S/(r) has an element of infinite order,
then for each rational number 0 A< 1, there exists a subset A< S/(r) such that
i(l1z)=A for all LIM & on S/(r). (Granirer [4, p. 182]) which is impossible. If
S/(r) has an element of order p, then there exist A< .S/(r) such that a(17)=1/p for
all LIM g on S/(r) [4, p. 182]. Consequently, 1/p=k/n and p divides n. By Lemma 4
Granirer [7], S/(r) is necessarily a group.

REMARK. Let S be a topological semigroup such that LUC(S) is n-ELA, and H
a finite subset of A(S) such that L,H= H for all a € S; it is easy to see that (using
Remark 4.5) for each F, coset representative of S/H, and f € LUC(S), the pointwise
closure of {(1/n) Zacr, ro(f); t € S} has a constant function. In fact, using Lemma
3 of Granirer and Lau [9], even the 7. closure of {(1/n) Z4cr, ral(f); t € S} has a
constant function (7. is the topology of uniform convergence on compacta). Con-
versely, if for each fe LUC(S), the pointwise closure of {(1/n) 21 r,(f); ai€ S}
has a constant function, then, as known, LUC(S) has a LIM [9, Theorem 2]. But
is S m-ELA for some m<n? For n=1, the answer is affirmative as proved by
Granirer and Lau in [9]. However for n> 1, the problem still remains open even
when S is discrete.

The next series of results is concerned with the n-extreme amenability of certain
subsemigroups of n-ELA semigroups. Our proofs are algebraic using heavily
characterizations obtained in Theorem 5.2 and Theorem 5.4.

Mitchell shows that [13, Theorem 9] if T is a left thick subsemigroup of a semi-
group S (i.e. for each finite subset o of S, os,= T for some s, € S}, then T is LA iff
S is LA. The following is an analogue of this result:

PRrOPOSITION 5.7. If T is a left thick subsemigroup of a semigroup S, then T is
n-ELA iff S is n-ELA.

Proof. If T is n-ELA, F, a coset representative of T/(r) and o a finite subset of
S, let 1, € T such that ot, =T [13, p. 256] and ¢, € T such that bFyt,=Fyt, for all
b € oty (Theorem 5.4). Consequently if F,=t,Fyt,, then aF,=F, for all a€ ¢ and
|F,|=n. By Theorem 5.4, S is m-ELA for some m<n. Furthermore |F,s|=n for
all s€ S, since as=bs, a, be F, and s € S, then asc=bsc for some ¢ € S such that
sc € T, which is impossible. Hence m=n (Theorem 5.2). Conversely, if S is n-ELA
and F, is a coset representative of S/(r), we may assume F,<=T (for otherwise
replace F, by Fyso, where s, € S such that Fos,<T). If s,, p, € S such that aFjs,
=Fys, and 1,=s,u, € T, then aFyt,= Fyt, for all a € ¢ (Theorem 5.4). Hence S is
m-ELA for some m <n (Theorem 5.4). Since |Fot|=n for all t € T, m=n (Theorem
5.2).

With an observation that every left ideal of a semigroup and every right ideal of
a left amenable semigroup is left thick, we obtain the following generalisation of
Proposition 7 of Granirer [4] and a remark on p. 113 of [5]:
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COROLLARY. For any semigroup S
(@) If Iis a left ideal of S, then S is n-ELA iff I is n-ELA.
(b) If S is n-ELA, then every right ideal I of S is n-ELA.

REMARK. Note that the converse of (b) is false even for n=1 (see [5, p. 113]).

It has been proved by Day [1, Theorem 2] that if S is left amenable, and S, is a
subsemigroup of S such that ¢(l5,)>0 for some LIM ¢ on m(S), then S, is left
amenable. The following proposition, which generalises [4, Proposition 3], is an
analogue of this result.

PROPOSITION 5.8. Let S be an n-ELA semigroup, and S, a subsemigroup of S.
If there exists a mean @, on S such that o(ls))=eo(:1s,)>0 for all t € S, then S, is
m-ELA for some m=<n.

Proof. If ¢ is a LIM on m(S), then p=¢ © ¢, is also a LIM on m(S) and
u(l5,)>0. Let F be a coset representative of S/(r) such that FN So# . Ifois a
finite subset of S,. 7, € S such that aFt,=Ft, for all a € o (Theorem 5.4) and s, €
1,8 N S, (which is nonempty, since u(l;,s)=1), then F,=Fs, N Sy # & and aF,=F,
for all a € 0. Consequently, S is m-ELA for some m <n (Remark 5.3).

Granirer [4, Proposition la] has proved that any countable subsemigroup of
an ELA semigroup S can be embedded in a countable ELA subsemigroup of S.
His proof can be adopted, with easy modification, to yield the following result;
we omit the proof.

PROPOSITION 5.9. If S is an n-ELA semigroup, then every countable subsemigroup
of S can be embedded in a countable n-ELA subsemigroup of S.

6. Direct products. We list in this section some basic combinatorial properties
of topological semigroups S for which LUC(S) is n-ELA. For analogue results in
discrete amenable groups, locally compact amenable groups and ELA discrete
semigroups, we refer the reader to Day [1], Rickert [18] and Granirer [4).

PROPOSITION 6.1. Let S and T be topological semigroups, = a continuous homo-
morphisms of S onto T. If LUC(S) is n-ELA, then LUC(T) is m-ELA for some
m=n, m divides n.

Proof. If fe LUC(S), then fcme LUC(S). Let u=(1/n) X% ¢;, @; € A(S) be a
LIM on LUC(S), then g=(1/n) > & where ¢(f)=¢i(fo =) for fe LUC(T) is a
LIM on LUC(T). The result now follows from Lemma 4.7.

PROPOSITION 6.2. Let S be a topological semigroup, {S;; « € I} subsemigroups of
S with the induced topology such that \ J.e; Se=S and for each o, B € I, there exists
y € I such that S,28, Y S;. If for each o € I, LUC(S,) is k,~ELA for some k,<n,
ke divides n, then LUC(S) is k-ELA for some k <n, k divides n.

Proof. Partially order / by « =8 iff S,2S5;. = renders [/ into a directed set. For

fe LUC(S), « €1, define (P f)(s)=f(s) if s€ S,. One readily checks that (P,f)
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e LUC(S,) and (P.f)=P,(f) for s€ S,. For a €I, let p,=(1/n) >3 ¢ be a LIM
on LUC(S,), ¢f € A(S,) (¢f is not necessarily distinct). Define g,=(1/n) >} ¢¢
where ¢¢(f)=¢%(P.f), f € LUC(S). By compactness of A(S) and taking subnets if
necessary, we may assume w* —lim, ¢¢ =1, for some ; € A(S) and each i=1, ..., n.
Then (1/n) 3} ; is a LIM on LUC(S) since if s € Sy, Lyji, = fi, for all @ = ey Now
apply Lemma 4.7.

For any semigroups S and T, ¢ € m(S)* and pu € m(T)*, define ¢ x u € m(S x T)*
by (pxp)(f)=p(h) where h(t)=¢(m.f), fe m(S), (mf)(s)=f(s, 1) for all seS,
teT.

It is easy to see that if ¢ and u are means on m(S) and m(T) respectively, then
expu is a mean on m(SxT). Furthermore, if ¢ €8S, and p € BT, then pxpe
B(SxT).

LEMMA 6.3. For any topological semigroups S, T,a€ S,be Tandfe LUC(SxT):
(a) Uto € T, then ﬂbto(f) € LUC(S).
(b) If ¢ is a mean on m(S), h(t)=o(,;7(f)), then h, € LUC(T).

Proof. (a) Let £>0, s, € S. Choose U, V neighborhoods of sy, b respectively
such that |, ., f— .0 f]| <& for all (u, v) € Ux V. Then for allue U

[uGmote(f)) = somote D] = Nwrf = o f < &.

(b) Let £>0, 1, € S, U, V be neighborhoods of a and ¢, respectively such that
[0 f— @i f1| <€ for all (u, v) € Ux V. Then for all ve V

[vhs=thtoll S @ f—@infl < €.

PROPOSITION 6.4. For any topological semigroup S, T and n fixed. LUC(Sx T)
is n-ELA iff LUC(S) is k-ELA and LUC(T) is m-ELA for some k, m such that
k-m=n.

Proof. Let p=(1/k) 5% ¢, and n=(1/m) 37 5, be LIM on LUC(S) and LUC(T)
respectively, where ¢; € A(S), n; € A(T). If ¢; € BS and 4j; € BT are multiplicative
extensions of g; and =, respectively, g=(1/k) 3 ¢;, 71=(1/m) 2T 7;, §=(1/k) 2} 4,
where §;=L,3 € BS for some fixed ae S, and y=(1/m) 37 7;, where 7(f)=
7,(f,) for all fe m(T) and some fixed b € T, we shall show that u=§ x7 when
restricted to LUC(S x T') is a LIM. Let (so, t,) € Sx T, f€ LUC(S x T) be arbitrary
but fixed. Define k(¢) = (7)) = $(om(f)). Then k, e LUC(T) and for each te T,
moef € LUC(S) (Lemma 6.3). Hence $(m((sg.t00/)) = Psoamotl 1)) = $lameoi( 1)) =1,k (2)
and plsy.10.f) =(.ks) =7i(kp) =p( f) since ¢ coincide with ¢ on LUC(S) and 7
coincide with % on LUC(T). Now since p=(1/km) Sk, J§;x7;, and §;x 7, are
multiplicative, LUC(S x T') is n-ELA for some n<k-m (Lemma 4.7).

Let Hy={®y, - . ., ¥} Fo={m1, - - > 1mt and Ko={g;xy;; i=1,..., k,j=1,...,m},
where ;X y; is the restriction of ¢; x; to LUC(Sx T). We shall show that the
factor semigroup (S x T)/K, is isomorphic to S/H,x T/F, and hence n=k-m by
Theorem 4.1.
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If(sl, tl)’ (S2, tz) € S X Tsuch that le‘Pi =L32¢i and Ltlnj=Lt27)j, ] é lék, 1 §i§m,
then (Lo d)()=(Ly)(f) and (L,7)(g)=(Ly7;)(g) for all 1Sisk, 15j<m,
fe LUC(S) and ge LUC(S). Furthermore, for any #;xy, € K,, fe LUC(S),
() =i, m A1) = il (mA 1)), we have hy,, by, € LUC(T) and m,,(f) € LUC(S)
for all t € T (Lemma 6.3). Hence (1) =¢(s, 7, ) = i(s,70,e( /) =1,h2(1), and

(¥ X'}’i)((sl.n)f ) = ﬁj(nh1b) = iifssh2,) = (&, ij)((sz.z2>f)-

Consequently, if ¢: (s’, t") — (s, t)’ for all (s, t) € Sx T, where s’, t' and (s, 1)’
are the homomorphic images of s, ¢ and (s, ¢) in S/H,, T/F, and S x T/K, respec-
tively, then ¢ is a homomorphism of S/H, x T/F, onto S x T/K,. Further ¢ is one-
one, since if 5, 55 € S, 51 # 53, let ;. € Hy, f € LUC(S) such that L, @; (f) # Ly, @i, (f)-
Define fe LUC(Sx T) by f(s, t)=£(s) for all (s, 1) € SxT. Then =(f)=f for all
t € T. Since (1/k) 3% §; coincide with (1/k) 3% ¢, on LUC(S), there exists ¢, say,
whose restriction to LUC(S) is ¢;,. Hence

(‘/‘io X Yj)((s,.t)f) = ?’io(s,f) # ‘Pio(s2f ) = (‘/‘io X )’J’)((sz.t)f )

forall te Tand 1<j<m,i.e. (s, 1) #(s2, t) for all t € T. Similarly, we show that
if 1, t, € T such that ¢; #1;, then (s, t,)" #(s, t)’ for all s € S. The converse of this
proposition follows from Proposition 6.1 and the observation that the mappings
(s, 1) — s and (s, t) — ¢ are continuous homomorphisms of SxT onto S and T
respectively.

Let {S,; « € I} be semigroups and =S, be the set of all functions defined on [/
with f(a) € S, for all ael. If f, g € m,;S,, define the product h=fg by h(«)=
f(e)g(e) for each o € I. The semigroup m,;S, is said to be the full direct product of
{Sq; 2 el}.

If for each « € I, S, has identity e,, let #%,S,, the weak direct product of {S,;
o €I} be the subsemigroup of all fe m,,S, such that {« € ; f(«)=e,} is finite.
Furthermore, if each S, is a topological semigroup, then =} ,S, with the pointwise
topology is also a topological semigroup.

PROPOSITION 6.5. Let {S,; a €I} be topological semigroups with identity, S=
721 Sy, n fixed. Then LUC(S) is n-ELA iff LUC(S,) is ELA for all but finitely many

Rays . . .y N, fOr which 1 <n, <nand n=ng, - - ng,.

Proof. If LUC(S,) is n,-ELA for each « € I, let F={o: o finite subset of I}. Order
F be upward inclusion. For each o={o; - -} € F, T,={f€S; f(«)=e,, the
identity of S, for « ¢ o} is homeomorphic and isomorphic to S,, x - - - x S,, and
hence LUC(T,) is k,-ELA, where k,=n,, - - n, <n, k, divides n (Proposition
6.4). Furthermore, | J,cr T, =S. Hence LUC(S) is m-ELA for some m < n (Proposi-
tion 6.2). Choose {e, - - - e, }< I such that n,, - - - n,, =n, then LUC(S,, X - - - X S;,)
is n-ELA, n<m, since the mapping f— (f(ey), . . ., f(«)) is a continuous homo-
morphism of S onto S,, x - - - x S,,. Consequently n=m. Conversely, if LUC(S)
is n-ELA, then as shown above, for each « € I, LUC(S,) is n,-ELA, and for each
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finite subset o ={e; - - - 04} S I, LUC(S,, x - - - X S,,)is k,-ELA, where k,=ng, - - - ng,.
Consequently, n, > 1 for only finitely many «’s, and if m=product {n,; « € I'} then
LUC(S) is m-ELA by what we have proved. Hence m=n.

REMARK. Day has given an example [1, p. 517] to show the full direct product
of left amenable semigroups need not be left amenable. However, it has been shown
by Granirer [4, Proposition 2] that the full direct product of ELA discrete semi-
groups is ELA. This leads us to consider the following problem: let {S,:c € I} be
topological semigroups, S=m,;S, with the product topology. It is easy to see that
if LUC(S) is n-ELA, then (*) LUC(S.,,) is n,-ELA for some n,<n, n,> 1 for finitely
many «’s and n=product {n,; « € I}, since for any finite subset o={a; - - - e} <1,
the mapping f— (f(«), ..., f(«)) is a continuous homomorphism of S onto
Sy X - -+ x.S,,. But conversely, if (*) holds, is LUC(S) n-ELA ? We do not have an
answer even for n=1 except when [ is finite (which follows from Proposition 6.4
by induction), or when S, are discrete, for which we are going to prove.

LEMMA 6.6. If {S,,c €I} are semigroups with fi.p.r.i., then S=m,,S, has
f.i.p.r.i. and S/(r) is isomorphic to mye;T,, where To=S,/(r).

Proof. Let f, g€ S. For a e, let hy(«) and hy(e) € S, such that f(«)h,(x)=
g(a)hy(e). Then fhy =gh, and S has f.i.p.r.i. If f* and f”() denote the homomorphic
images of f and f(«) in S and S,/(r) respectively, « € I, define a mapping: ¢(f")(«)
=f(«)' for all fe S and « € I. One readily checks that ¢ is an isomorphism of
S/(r) onto m,;T,.

Lemma 6.6 and Theorem 4.2 together yield:

PROPOSITION 6.7. Let {S,; « € I} be semigroups, S=my;S, and n fixed. Then S is
n-ELA iff S, is ELA for all but finitely many n,, . . ., n,, for which 1<n, <n and
n=ng, - ng.
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