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1. Introduction. Let S be a topological semigroup (i.e. a semigroup with a

hausdorff topology such that for each a e S, the mappings 5 -> as and s -» sa,

s e S are continuous from 5 into S); let m(S) [C(S)] be the space of bounded

[bounded continuous] real functions on S. \ffem(S), a e S, denote by |/||

= supsss |/(s)| (sup norm), pa(f)=f(a), laf(s) = af(s)=f(as), raf(s)=fa(s)=f(sa)

forseS, then pa is the point measure on m(S) at a and each element in Co {pa ; a e S)

is called a finite mean on m(S) (where Co A denotes the convex hull of a subset A

of a linear space).

Let A' be a translation invariant normed closed subalgebra of m(S) containing

constants (i.e. „/,/„ e X whenever/e X, a e S), X* the conjugate space of X and

La: X* -* X* such that (Lacp)(f) = <p(af) for 9 e X*, a e S and fie X. An element

9 in X* is a mean if <p(ls)= 1 and <p(F)^0 for/ä0 (ls is the constant one function

on S); <p is multiplicative if <p(fg) = <p(f)cp(g) for all fige X; cp is a left invariant

mean (LIM) on X if <p is a mean and Ls<p = <p for all ieS. A function fie C(S) is

left uniformly continuous if whenever sa -*■ s0, sa, s0 e S, fl.,,/—So/ll ""** 0- Denote by

LUC(S) the space of left uniformly continuous functions on 5 (Namioka [17,

p. 64]), A(S) the set of multiplicative means on LUC(S).

The main purpose of this paper is to study and characterize topological semi-

groups S such that (*) LUC(S) has a LIM in Co A(5). We show in §4 that any

such semigroup can be decomposed as finite disjoint union of open and closed

subsets of S, one of which is a subsemigroup, T, of S. LUC(F) contains a subalgebra,

PLUC(S), which admits a multiplicative LIM and the set of LIM on PLUC(S)

can be mapped one-one onto the set of LIM on LUC(S) by a linear transformation.

Furthermore, we show that a topological semigroup S satisfies (*) iff for some

finite subset {ax, ■ ■ -, an}^S, the ideal in LUC(S) generated by {2?=i U,(f—sf)',

seS,fe LUCÍS)} is not uniformly dense in LUC(S).
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Combinatorial properties for topological semigroups satisfying (*) are also

obtained (§6). We show in §3 that there exist many topological semigroups 5 for

which LUC(S) has a LIM in Co A(S) and yet m(S) does not have a LIM.

When S is discrete, m(S) = LVC(S) and A(S) = ßS, the Stone-Cech compactifi-

cation of S. The idea in considering discrete semigroups satisfying (*) is due to

J. Sorenson, who has shown in [19, Theorem 3.3.6] among other things the follow-

ing interesting result: m(S) has a LIM in Co ßS iff S/(r) is a finite group (S/(r) is

the factor semigroup defined by the equivalence relation (r): a(r)b iff ac = bc for

some c e S). In §5, we show how some of the results of Granirer [4], [5] and

Mitchell [14] on semigroups S admitting a LIM in ßS can be generalised to semi-

groups 5 admitting a LIM in Co ßS. We show in particular that a discrete semi-

group 5 admits a LIM in Co ßS o (a) for some fixed n, and each finite subset

o^S, there exists Fa^S, cardinality of F„ = n, and aFa = F„ for all a e o o (b) for

some fixed m, there exists a net of finite means pa = (l/m) 2,1 Pal such that

\\Lapa — pa\\ -> 0 for all a e S.

Finally, if S is a topological semigroup, we raise in this paper the following

problems:

(1) If S satisfies (*), is every extreme point of the set of LIM on LUC(S) in

CoA(S)?

(2) If for some fixed n and for each fe LUC(S), the pointwise closure of

{(!/") 2"=i rai(f); at e S} has a constant function, does S satisfy (*)?

(3) If Sa, a e I are topological semigroups satisfying (*) and LUC(Sa) has a

multiplicative LIM for all but a finite number of a in /, does the full direct product

ttaeiSa with the product topology satisfy (*)? (Day, [1, p. 517].)

The answer to (1) is affirmative for S discrete (Sorenson [19, Theorem 3.3.6])

and the answer to (2) is also affirmative for n = 1 (Granirer and Lau [9, Theorem 2]).

In this paper, we given an answer to (2) and (3) (Theorem 5.6 and Proposition 6.7)

for discrete semigroups. But for the general case, all the three problems, to our

best knowledge, are still open.

Several authors have recently studied topological semigroups S for which the

space LUC(S) admits a LIM. Namioka in [17] studies topological semigroups 5

for which LUC(5) has a LIM and Mitchell(2) [16] recently considers a certain

fixed point property on topological semigroups S for which LUC(5) has a multi-

plicative LIM.

2. Some notations.    For any set A, we shall denote by \A\, the cardinality of A.

If A is a subset of a semigroup S, ae S, then a~1A={s e S; as e S}, and lA

e m(S) such that

lA(s) =1    if JE A,

= 0   if s i A.

(2) The author is grateful to Professor T. Mitchell in providing him with a preprint of his

paper [16].
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Let S and T be topological semigroups, then SxT will denote the product

topological semigroup with coordinatewise multiplication and product topology.

Let S be a semigroup, X a translation invariant normed closed subalgebra of

m(S) containing constants. Then y e X* is a point measure [finite mean] if <p is

the restriction of some point measure [finite mean] on m(S). It is well known that

the set of finite means [point measure] on X is w*-dense (i.e. o(X*, X)) in the set

of means [multiplicative means] on X.

X is left amenable (LA) if X has a LIM and X is extremely left amenable (ELA)

if X has a multiplicative LIM. S is LA [ELA] iff m(S) is LA [ELA]. (See Day [1],

Granirer [4].)

Let S be a topological semigroup, then LUC(S) is a translation invariant

normed closed subalgebra of m(S) containing constants. Furthermore, if <p e

LUC(S)*,/e LUC(S), then the function h(s)=<p(sf) is in LUC(S) (Namioka [17,

p. 68]). Hence if <p, p.e LUC(S)*, we may define cpQ pe LUC(S)* the Arens

product of 99 and p. by (<p O /f)(/) = 9>(A), where h(s) = p(sh) for fie LUC(S) (Day

[1, p. 540]). The Arens product renders the set of means on LUC(S) and A(5)

into a semigroup. Furthermore, if w*-lim <pa = <po, fa, 9o e LUC(S)*, then

(1) w*-lim (<pa ö p) = f0ö p for all p. e LUC(S)*,

(2) w*-lim (Laqja)=La<p0 for all ae S.

For other properties of Arens product, we refer our reader to Day [1].

3. N-extreme amenability. For any topological semigroup S, LUC(S) is

n-extremely left amenable (n-ELA) if there exists a subset HQ of A(S), \H0\=n,

which is minimal with respect to the property: LaH0 = H0 for all ae S.

Remarks 3.1. (a) It is important to note that if Hy is another finite subset of

A(S) which is minimal with respect to the property: LaHx = Hy for all ae S, then

\H0\ = \Hy\. In fact if q>0 e H0 is fixed, then by continuity of Arens product in the

first variable (Day [1, p. 529]) Hy Q <pQGH0. Let F0={La</j0; a e S}, where i/i0e

Hy O <Po- Then F0G.HX O fo^Ho, and LaF0=F0 for all a e S since the restriction

of {La; ae S} to H0 is a finite group. Hence F0 = Hy Q <p0 = H0 by minimality of

H0, and \Hy\ ̂  \H0\. Interchanging Hy and H0 in the above argument, we obtain

\Hy\S\H0\.

(b) If H0 = {<px,..., <pn}, it is easy to see that (1/n) 2ï <Pt e Co A(S) is a LIM on

LUC(S). Conversely if LUC(S) has a LIM in Co A(S), then LUC(S) is m-ELA

for some m, since as known, finite subsets of A(S) are linearly independent; hence

if /a = 2ï A¡<p¡, 9>i distinct elements in A(S), is a LIM on LUC(S), then LaF=F

for all ae S, £={<?>i,..., <pn}. Then £0 = {Laç)1; a e S}^F is minimal with respect

to the property £a£0 = £0 for all a e S since the restriction of {La ; a e S} to £ is a

finite group.

(c) It has been shown by Granirer and Lau in [9, Theorem 3] that if G is a

locally compact topological group, S a subsemigroup of G, LUC(S) has a LIM in

Co A(5) iff S is a finite subgroup of G. Consequently the only subsemigroups S

of G for which LUC(S) is n-ELA are the finite subgroups of G of order n.
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A semigroup S is n-extremely left amenable (n-ELA) if S is a discrete semigroup,

LUC(S) = m(S) is n-ELA. For n = 1, this coincides with the class of ELA semigroups

which has been studied by Mitchell [14], and Granirer [4], [5] and [6].

Some examples of n-ELA semigroups are:

(1) Any finite group of order n is n-ELA.

(2) Any left amenable finite semigroup is n-ELA for some n.

(3) If 5 is any ELA semigroup, and G a group of order n, then Sx G is n-ELA

(Proposition 6.4).

(4) Let (F, o) be a semigroup, and (G, *) a group of order n such that G C^T

= 0. Let S=G u Fand define on 5 the following binary operations

tx-t2 = tx°t2        if tx,t2eT,

gi-g2= gi*g2      if gx,g2eG,

tg=gt = g   for all t e T and g e G.

Then S is n-ELA.

Remark. Consider the special case of (4) when F has just one element, and G

is a group of order n>2. Then 5 is an n-ELA semigroup which is not isomorphic

to a product semigroup S0 x G0, where S0 is an ELA semigroup and G0 is a group

of order n, for otherwise n +1 = \S\ = \S0xG0\=kn for some k, which is impossible

when n>2.

It is clear that if S is an n-ELA semigroup, then for any topology defined on S

which is compatible with the structure, LUC(S) is w-ELA for some m^n (and m

divides n, Proposition 6.1). The following example shows that for any n, there

exists a huge class of topological semigroup S, such that LUC(S) is n-ELA, but

S is not even left amenable as a discrete semigroup.

Main Example. E. Hewitt has constructed a hausdorff regular topological

space S0 such that the only continuous real functions on S0 are the constant

functions [11]. Define on S0 the binary operation ab = a for a, b e S. As shown by

Granirer [8, p. 108], S0 is a topological semigroup. Furthermore, LUC(S0)

= C(S0) is ELA (Mitchell [15, p. 123]). Let F0 be any n-ELA (discrete) semigroup

and T0 = S0xT0. Then LUC(F0) is n-ELA (Proposition 6.4) even though f0 is

not even left amenable as a discrete semigroup, since if a,bef0, a = (sx,tx),

b = (s2, t2) such that Sx¥=s2, then c7F0 n bf0= 0.

4. Structure theorems. In this section we shall prove our main results which

give the basic structure of a topological semigroup S for which LUC(5) is n-ELA.

An equivalence relation F on a semigroup 5 is two-sided stable if aEb implies

caEcb and acEbc for all c e S (Ljapin [12, p. 39]).

Let S be a topological semigroup and FfsA(S) such that LaH=H for all

aeS. Define on S the two-sided stable equivalence relation F: aEb iff Lacp = Lb<p

for all «p e H (Sorenson [19, Chapter 2]) and denote by S/H the factor semigroup

defined by this equivalence relation.
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Theorem 4.1 (Decomposition). If S is a topological semigroup such that LUC(S)

is n-ELA, then there exists a collection ¿F of n disjoint open and closed subsets

of S, with union S, such that lAeLUC(S) for all AeiF and J5" is the decompo-

sition of S by cosets of S/H for any finite subset H^à(S) satisfying LaH=H for

all aeS.

Proof. Let H0^A(S) such that \H0\=n and LaH0 = H0 for all aeS. Then

S/H0 is a finite group of order m. Let T={s e S;Lscp = cpfor all <p e H0}. Fis a closed

subsemigroup of 5 and if {al5..., am} is a coset representative of S/H0, !F =

{<3i~1F; /= 1,..., m), then S is the union of the m disjoint open and closed sets in

&. If m<n, let cp0 e H0, F0 = {Lacp0,..., Lamcp0}, then LaF0 = F0 for all a e S and

|F0|<|//0|, which is impossible. Hence m^n. We shall show that lreLUC(S)

and for each i=l,..., m, there exists <p¡ e H0 such that cpi(la-iT) = 1. Consequently

m = n. Let sa—>s0, sa, s0 e S. If s0 e akxT, then there exists a0 such that sa e ak1T

for all a^oi0. Hence for all o¡^a0,«;-1r=í0-1F and |¡4F-5¿F|| =0i.e. lreLUC(S).

Let <p0 e H0 be fixed, then 1 = <p0( 1 s) = 2ï «PoOo--1!-) which implies <poGaf1r)>0 f°r

some k. Since <p0 is multiplicative, <p0(la-iT)=l. Hence for each i=l,..., m, if

9i=Lblak<Po, where afi, e T, then 9>,(lai-ir)=l.

To complete the proof of the theorem, it suffices to show that for any two finite

subsets Hx and H2 of A(S) such that LsHi = Hx for all s e S, /'= 1, 2, if a, be S,

then La<p=Lbcp for all 9 e Hx iff L¿p = Lb'/s for all cb e H2. Assume that La<p = Lb<p

for all cpe Hx and let <p0 e Hx be fixed, ps¡¡ be a net of point measures on LUC(S)

such that w* — l\m pSa = cp0. If </>0 e H2, for each a, there exists i/jaeH2 such that

Psa O xi1a = LsJ'a = >l>o. By finiteness of //0, we may assume (by taking subnet if

necessary) that there exists a0 and y0 e H2 such that <j>a = ya for all a^.a0. Hence

PSa O y0 = ,Ao for all a^«0 and cp0 O y0 = ,Ao (Day [1, p. 529]). Consequently, La</r0

=La(<Po O </-o) = (FaÇPo) O >/>o = (Lbtp0) O 4>a = Lb</>0. The converse follows from

interchanging //t and //2.

Corollary. For any connected topological semigroup S, if LUC(S) has a LIM

in Co A(S), then LUC(S) is ELA.

Remark 4.2. Let S be a topological semigroup such that LUCÍS) is n-ELA,

J5" the decomposition of S as obtained in Theorem 4.1. We have shown in the

proof of Theorem 4.1 that there exists an open and closed subsemigroup Te J5"

such that lT e LUC(S) and if H is any finite subset of A(5), LaH=H for all a e S,

then T={s e S; Lscp = cp for all cpeH). Furthermore, if {ax,...,an} is a coset

representative of S/H0, then Jr={af1F; i= 1,..., n}. Consequently, <poOr)= 1 for

some <pa e H and p(lT)= l/n for all LIM p on LUC(S).

Let PLUC(5) = {F/;/eLUC(S)}, where Pf(s) =f(s) ifseT. Then PLUC(S) is

a norm closed translation invariant subalgebra of LUC(F) containing 1T as readily

checked. Furthermore, if 5 satisfies one of the following conditions, then PLUC(S)
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= LUC(£), (however we do not know whether or not PLUC(5) = LUC(£) in

general)(3) :

(a) S is discrete.

(b) Jr={ai£; /= 1,..., n} for some finite subset o = {ay,..., an}=S (this would

be the case, for example, if S had no proper right ideal).

Condition (a) is trivial. To show (b), we first note that {a1;..., an} is necessarily

a coset representative of S/H. Let fie LUC(S), if we can show that -nfe LUC^),

where (tt/)(j)=/(s) if se Tand 0 otherwise, thenf=P(nf), and PLUC(S)=LUC(r).

Let {sa} be a net in 5, sa -*■ s0, s0 e S. Choose ake o such that s0ak e T. Then

saak ~> soak- Since T is open, there exists a0 such that saak e T for all a ^ a0. Hence

sup |,>/)(0-,0(w/)(OI = SUP \Äs«t)-f(s0t)\
tes teSk

= sup \f(saakt)-f(s0akt)\ ->0.

Consequently, nfe LUC(S).

Lemma 4.3. PLUC(S) has a multiplicative LIM.

Proof. By Remark 4.2, there exists <p0 e A(S) such that Ltf0 = <p0 for all t e T

and 9>o(lr) = 1. For fie LUC(S), define po(Pf)=<po(lTf)- Then p.0 is a multiplicative

mean on PLUC(S), and if teT, then p.o(t(Pf))=H-o(P(tf)) = <Po(ÍT(tf)) = <Po(t(lTf))

= <Po(iTf) = ßo(Pf) since t~1T=T.

Notation. For any topological semigroup S, if LUCOS1) is n-ELA, then

PLUC(S)ÇLUQT) will denote the algebra of functions as defined in Remark 4.2.

Theorem 4.4. For any topological semigroup S, if LUC (S) is n-ELA, then there

exists a linear transformation mapping the set of LIM on PLUC(S) one-one onto

the set of LIM on LUC(S).

Proof. Let H be a finite subset of A(S) such that LaH=H for all a e S, T=

{seS, Ls9 = <p for all 9 e H} and P: LUC(S) -> LUC(£) where (Pf)(s)=fi(s) if

s e T. For any coset representative a of S/H, define the mapping F„: [PLUC(S)]*

-> LUC(S)* by F0(<p) = (l/n) 2aea LaP*(<p). We shall show that F„0 is the required

linear transformation for o0, a fixed coset representative of S/H.

Choose <pae H such that <p0(lr)=l (Remark 4.2) and {pta} be a net of point

measures on LUC(.S) such that w*-lim/?(ii = <po. If 0 is a LIM on PLUC(S)

(3) The following example from Mitchell [16] shows that if T is a subsemigroup of a

topological semigroup S, then the algebra A ={Pf;fe LUC(5)}çLUC(5) where Pf's)=f(s)

if í e 5, need not coincide with LUC(T): let (T, +) be the semigroup of positive integers with

addition and S = T^J {a}, where a i T, be the one point compactification of T. Define on S the

binary operation iii2 = -Si+-S2 if *t, s2^T and sa = as = s for all s e S. Then 5 is a compact

topological semigroup. The function ^(«) = sin(«) is in LUC(7") = m(7"), but Pf^g for any

fe LUC(S).
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(Lemma 4.3), then pt Q £*</.=£*</. for all t e T. Hence

9o O P*>P = w*-l¡m (pla O P*</>) = P*4<
a

(Day [1, p. 529]). If a, be S such that La<p = Lb<p for all <p e H, then

£a£*<A = La(<p0 O £*</<) = (La9o) QP*>/> = (Lb9o) QP*<P

= L„(<p0 O P*M = L0P*t.

Hence for any coset representative ay, a2 of S/H, Fa¡(i/>) = FC2(il¡). Consequently,

if fe LUC(S), s e S, then F„0(M./) = F„0(M/) = FaoMf) ie- ^ ¡s a LIM on
LUC(S).

Conversely if p is a LIM on LUC(5), then p.(lT)=l/n (Remark 4.2). Define </>

on PLUC(S) by >Kg) = np(lTf) if g = Pfi If t eT, fieLVC(S), then 0(((£/))

= ^G/)) = «Klr(i/)) = «K«(lr/)) = nKlT/) = ^(£/) since r1!*-!*. Hence 0 is

a LIM on PLUC(S). Furthermore, £„0(<A) = /x since if/e LUC(S), <r0 = {a1, ■ • •. «n>

and ¿i e 5 such that 6^ g T, then

F*Mf) = J 2 «KM«,/)) = I I n-Kai(lbrlTf))
" i = 1 " i = 1

1 i
= -¿"-p^K^f) = iïf)-

To see that £„0 is one-one, we first observe that if 0 is a LIM on PLUC(S),

/e LUCÍS), then Fa0(i/>)(lTf) = (I/n)</>(P(ITf)). Hence if fo and 02 are LIM on

PLUC(S), fe LUC(S) such that <l>x(Pf)*MPf), then ty(P(hfi))¿MP(hf))
and hence £<,0(</<i) # £„o0/<2).

Remark 4.5. Let S be a topological semigroup such that LUC(S) is n-ELA,

H a finite subset of A(S) such that LaH=H for all ae S, T={s e S; Ls<p = <p for

all <p e H}. We have shown in Theorem 4.4 that if <p0 is a multiplicative LIM on

PLUC(S) (Lemma 4.3), then (1/n) 2aea0 La(P*<p0) e Co A(5) is a LIM on LUC(S)

for any coset representative a0 of S/H, and (Pf)(t)=f(t) for t e T.

It has been proved by Granirer [5, Theorem 6] that if 5 is ELA then every

extreme point of the set of LIM on m(S) is multiplicative. Theorem 4.4 yields the

following generalization of Granirer's result which is due to Sorenson [19, Theorem

3.3.6]:

Corollary (Sorenson). If S is an n-ELA (discrete) semigroup, then every

extreme point of the set of LIM on m(S) is of the form (1/n) 2" Yt, Y\ 6 ßS-

Proof. PL\JC(S) = m(T) for some ELA subsemigroup £ of S (Remark 4.2,

Lemma 4.3). Hence every extreme point of the set of LIM on PLUC(S) is multi-

plicative (Granirer [5, Theorem 6]). The assertion now follows from Theorem 4.4

and Remark 4.5.

Remark 4.6. In view of Sorenson's result, it is natural for us to ask the following

question: if S is a topological semigroup such that LUC(S) is n-ELA, then does
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every extreme point of the set of LIM on LUC(S) have the form (1/n) 2ï y.,where

y¡ e A(S)? We do not know the answer even for n = 1.

Lemma 4.7. For any topological semigroup S, ifLUC(S) has a LIM of the form

(l/n) 2ï <Pi> where <pt e A(S) (not necessarily distinct), then LUC(S) is m-ELA for

some m^n, m divides n.

Proof. LUC(S) is m-ELA for some m (Remark 3.1). If H is a finite subset of

&(S) such that LaH=H for all a e S, then S/H is a group of order m (Theorem

4.1). Let 77 be the natural homomorphism from S onto S/H, then ir(sa) -> ir(s0)

whenever sa -*■ s0, sa, s0 e S. Hence f° it e LUC(S) for fe m(S/H). Define 4i(f)

= <Pi(f° t) for all/e m(S/H). Then (1/n) 2" 0¡ is a LIM on S/H0. By uniqueness

of LIM on a finite group, we have m^n, and m divides n.

Let S be a topological semigroup for any finite subset a0çS, denote by

/(*<,) = ideal in LUC(S) generated by { £ U(f-,f);fe LUC(S), ses\-

Theorem 4.8. For any topological semigroup S, if LUC(S) is n-ELA, then for

some o0^S, \a0\=n, /(<t0) is not uniformly dense in LUC(S). Conversely, if there

exists ct0<=S, |a0| =n such that J(o0) is not uniformly dense inLUC(S), then LUC(S)

is m-ELA for some mSn, m divides n.

Proof. If LUC(S) is n-ELA, by Remark 4.5, there is some <j0^S, [<70|=n and

y0eA(S) such that p = (l/n)^aeaoLay0 is a LIM on LUC(S). Hence if h =

g(IaS„0 la(f-J))J, g e LUCOS), s e S, then p(h) = 0. Since p(ls)=l, J(o0) is not

uniformly dense in LUC(S). Conversely, if /(o-0) is not uniformly dense in LUC(S),

then there exists cp0 e &(S) such that <po(J(^o)) = 0 (see proof of Lemma 3 [5,

p. 99]). Hence, (1/n) 2ae<»o La9o is a LIM on LUCCS). Now apply Lemma 4.7.

Remark. It follows from Theorem 2 of Granirer [5] that LUC(S) has a multi-

plicative LIM iff the ideal in LUCÍS) generated by {f-J;fe LUC(S), s e S} is

not uniformly dense in LUC(S). Theorem 4.8 partially generalises this result.

5. A'-extremely amenable semigroups. In this section we begin our investigation

for the class of n-ELA semigroups and obtain results which generalise those of

Mitchell [14] and Granirer [4], [5] for the class of ELA semigroups.

Let S be a semigroup with finite intersection property for right ideals (f.i.p.r.i.).

Denote by S/(r) the factor semigroup defined by the two-sided stable equivalence

relation (*•): for any a, b e S, a(r)b iff ac = bc for some ce S. As known, S/(r) is

right cancellative (see for example [3, p. 372]).

Remark 5.1. Let S be a semigroup with f.i.p.r.i., such that S/(r) is a group, and

S0 = {seS, homomorphic image of s in S/(r) is the identity}. Then, as readily

checked, for any a, b e S, a(r)b iff at = bt for some t e S0. Consequently S0 is an

ELA subsemigroup of S (Mitchell [14, Corollary 3). Furthermore, if S/(r) is

finite and a1; a2 are coset representatives of S/(r), then oxt = o2t for some t e S0.
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The following result, which follows from the proof of Theorem 3.3.6 in Sorenson

[19], shows an important relation between an n-ELA semigroup S and the factor

semigroup Sj(r). For the sake of completeness, we give a proof.

Theorem 5.2 (Sorenson). For any semigroup S, S is n-ELA iff S has f.i.p.r.i. and

S/(r) is a group of order n.

Proof. If 5 is n-ELA, let H he a finite subset of ßS such that LaH=H for all

a e S. We shall show that for any a, b e S, Lacp = Lbcp for all <p e H iff a(r)b; con-

sequently S/(r) is a group of order n by Theorem 4.1. If Lacp = Lbcp for all <p e H,

let s0e S such that as0, bs0 e T, where T={s e S; L$cp = cp for all <p e H} is an ELA

subsemigroup of S (Remark 4.2 and Lemma 4.3). Hence as0t0 = bs0t0 for some

t0eT (Granirer [4, Theorem 1]) i.e. a(r)b. If ac = bc for some c e S, then La(Lc<p)

= Lb(Lccp) for all cpe H, which implies Lacp = Lbcp for all ç? e H ( = LCH). Conversely,

if S/(r) is a group of n elements, and <p0 a multiplicative LIM on m(S0), where

S0 = {seS; homomorphic image of j in S/(r) is the identity}, define <p0eßS by

<Po(/) = 9>o(/)> where f(s)=f(s) if s e S0. If <r0 is a coset representative of S/(r),

then as readily checked, (1/n) Zae„0 Lacp0 is a LIM on m(S). Apply Lemma 4.7.

We now generalise a well-known result of Granirer [4, Theorem 1]: A semigroup

S is ELA iff any two elements has a common right zero.

Theorem 5.3. For any semigroup S and fixed n:

(a) If S is n-ELA and F0 is a coset representative of S/(r), then for each finite

subset a of S, there exists t„ e S, depending on o, such that aF0t„ = F0t„ for all

ae a.

(b) If for any finite subset a of S, there exists F^S, \F„\ =n, such that aF„ = Fa

for all ae S, then S is m-ELA for some m^n, m dividing n.

Proof, (a) For each aea, let ta e S0 such that aF0ta = F0ta, where S0 = {seS;

homomorphic image of s in S/(r) is the identity} is an ELA subsemigroup of S

(Remark 5.1). If taeS0 such that tja = ta for all aea [14, Theorem 1] then

aF0ta = F0ta for all aea.

(b) Let ÍF = {a : a finite subset of S} be directed by upward inclusion. If for each

aeSF, F„ = {aax- ■ ■ aQ, let c?¡ be a cluster point of pa°. Then, as readily checked,

(1/«) 2" «Pi is a LIM on m(S). The result now follows from Lemma 4.7.

Remark 5.4. In order for a semigroup S to be m-ELA for some m-¿n, n fixed,

it is sufficient that for each finite subset a^S, there exists Fa^S, |F„|^n and

aF„=F0 for all aecr: Clearly S has f.i.p.r.i. If a is a finite subset of S, |cr|>n,

then as0^Fa for s0eFa. Hence as0 = bs0 for some a, be a. Consequently S/(r)

has at most n elements.

For the class of n-ELA semigroups, Day's strong amenability theorem [1,

Theorem 1] assumes a much nicer form:

Theorem 5.5. For any semigroup S and fixed n:



7S A. T.-M. LAU [March

(a) If S is n-ELA and £0 is a coset representative of S/(r), then there exists a net

1fV = (l/n) IstF0 Psta such that \\LJ>a-</>a\\ ~>0 for all a e S.

(b) If there exists a net i/>a = (l/n) 2\Paï such that \\Lai/ja-i/ja\\ ->Ofor all ae S,

then S is m-ELA for some m S n, m divides n.

Proof, (a) Let p.a be a net of finite means on m(S) such that \\Lapa — p.a\\ -> 0

for all a e S [1, Theorem 1]. For each a, let tae S be such that aF0ta = F0ta for all

ae{seS; p-a(ls)>0} (Theorem 5.4), and '/'a = 0ln)2asF0Psta- Then for each a,

P-a O </>a = yPa and hence

II¿A-^M = \La(p.aQi/>a)-(paQx/>^\ S \Lapa-pa\ ||</v||^0

for all a e S (Day, [1, p. 528]).

(b) Let <p¡ be a cluster point of pa«. Then (1/n) 2ï <Pi is a LIM on m(S). The

result follows from Lemma 4.7.

Remark, (a) For n= 1, Theorem 5.5 is due to Granirer [4, Theorem 2].

(b) The following example shows that "man and m divides n" in Theorem 5.3

and Theorem 5.5 cannot be replaced by "w = n" in general: consider the ELA

semigroup S = {ex,..., e„} where el-ej = ej, i,j= 1 • • ■ n, £=5 and p0 = (l/n) 2î Pet-

Then aF= F and j| Lap0 — p0 \\ = 0 for all a e S.

It has been proved by Mitchell [13, Theorem 1] that a semigroup S has a LIM

iff for eachfe m(S), the pointwise closure of Co {raf; ae S} contains a constant

function. The following theorem, which generalises in part Theorem 1 of Granirer

[5], is an analogue of Mitchell's result:

Theorem 5.6. For any semigroup S and fixed n:

(a) If S is n-ELA, then for each coset representative F0 of S/(r), fe m(S), the

pointwise closure ofi{(l/n) 2aeF0 rat(f)', ' e S} has a constant function.

(b) If for each fe m(S), the pointwise closure ofi{(l/n) 2?=i ra¡(f), a¡ e S} has a

constant function, then S/(r) is a left amenable torsion group such that the order of

each element divides n.

Proof, (a) As shown in the proof of Theorem 5.2, there exists <p0 e ßS such that

(1/n) 2aeF0 La<pQ is a LIM on m(S). Let {ptJ be a net of point measures on 5 such

that w* — hmapta = <p0. Then for each fe m(S),

n I rata(f)(t) = l- 2L*Ptl*f)
n aeF0 " aeF0

which converges to (1/n) 2a^0 Kfo(f) for all t e S.

(b) The condition implies that S is left amenable (Mitchell [13, Theorem 1])

and hence S/(r) is a right cancellative left amenable semigroup (Granirer [3,

p. 372]). Let A^:S/(r), A={s e S; se A}, where i is the homomorphic image of s

in S/(r), and c-1 a constant function in the pointwise closure of {(1/n) 2" ^Ua)'

a¡ e S}. Then c = k/n for some k = 0, 1,..., n. Let p. be a LIM on m(S) such that

ri(U) = ^/" [13, Theorem 1] and ß be a LIM on S/(r) defined by p(f) = p(foir),
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where fe m(S/(r)) and n is the natural homomorphism of S onto S/(r). Then

pi\A) = Kln. Hence we have shown that for any subset A^S/(r), there exists a

LIM p on S/(r) such that p(lÄ) = k/n for some k = 0, 1,..., n. Consequently, the

order of each element in S/(r) is finite, since if S/(r) has an element of infinite order,

then for each rational number OáAál, there exists a subset A^S/(r) such that

p(^ä) = ^ for all LIM p. on S/(r). (Granirer [4, p. 182]) which is impossible. If

S/(r) has an element of order p, then there exist A^S/(r) such that p(ln)=l/p for

all LIM pon S/(r) [4, p. 182]. Consequently, l/p = k/n and p divides n. By Lemma 4

Granirer [7], S/(r) is necessarily a group.

Remark. Let S be a topological semigroup such that LUC(S) is n-ELA, and H

a finite subset of A(S) such that LaH=H for all a 6 S; it is easy to see that (using

Remark 4.5) for each F0 coset representative of S/H, and fie LUC(S), the pointwise

closure of {(1/n) ~ZaeFo rat(f); t e S} has a constant function. In fact, using Lemma

3 of Granirer and Lau [9], even the tc closure of {(1/n) 2aeF0 rat(f)', t e S} has a

constant function (tc is the topology of uniform convergence on compacta). Con-

versely, if for each fe LUC(S), the pointwise closure of {(1/n) 2ï raIf); ax e S}

has a constant function, then, as known, LUC(S) has a LIM [9, Theorem 2]. But

is S m-ELA for some m^nl For n=l, the answer is affirmative as proved by

Granirer and Lau in [9]. However for n > 1, the problem still remains open even

when S is discrete.

The next series of results is concerned with the n-extreme amenability of certain

subsemigroups of n-ELA semigroups. Our proofs are algebraic using heavily

characterizations obtained in Theorem 5.2 and Theorem 5.4.

Mitchell shows that [13, Theorem 9] if F is a left thick subsemigroup of a semi-

group S (i.e. for each finite subset a of S, osa<^ T for some sa e S}, then F is LA iff

5 is LA. The following is an analogue of this result:

Proposition 5.7. If T is a left thick subsemigroup of a semigroup S, then T is

n-ELA iff S is n-ELA.

Proof. If T is n-ELA, F0 a coset representative of T/(r) and a a finite subset of

S, let t0 e T such that a^çF [13, p. 256] and t„eT such that bF0ta = F0to for all

b e at0 (Theorem 5.4). Consequently if Fr7 = t0F0tc, then aF„ = Fa for all a e a and

|F„|=n. By Theorem 5.4, S is m-ELA for some m-in. Furthermore \F0s\=n for

all s e S, since as = bs, a, b e F0 and s e S, then asc = bsc for some c e S such that

se e T, which is impossible. Hence m = n (Theorem 5.2). Conversely, if S is n-ELA

and F0 is a coset representative of S/(r), we may assume F0^T (for otherwise

replace F0 by F0s0, where s0e S such that F0i0^ F). If sa, pb e S such that aF0sa

= F0s„ and ta = sapa e T, then aF0ta = F0ta for all a e a (Theorem 5.4). Hence S is

m-ELA for some m^n (Theorem 5.4). Since \F0t\ =n for all t eT, m = n (Theorem

5.2).

With an observation that every left ideal of a semigroup and every right ideal of

a left amenable semigroup is left thick, we obtain the following generalisation of

Proposition 7 of Granirer [4] and a remark on p. 113 of [5]:
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Corollary. For any semigroup S:

(a) If I is a left ideal of S, then S is n-ELA iff I is n-ELA.
(b) If S is n-ELA, then every right ideal I of S is n-ELA.

Remark. Note that the converse of (b) is false even for n= 1 (see [5, p. 113]).

It has been proved by Day [1, Theorem 2] that if S is left amenable, and S0 is a

subsemigroup of S such that <p(l¿0) >0 for some LIM 93 on m(S), then S0 is left

amenable. The following proposition, which generalises [4, Proposition 3], is an

analogue of this result.

Proposition 5.8. Let S be an n-ELA semigroup, and S0 a subsemigroup of S.

If there exists a mean <p0 on S such that <p0(l s0) = <po(f' s0)>0 for all t e S, then S0 is

m-ELA for some mSn.

Proof. If <p is a LIM on m(S), then p = <p O <Po is also a LIM on m(S) and

/¿(lSo)>0. Let £ be a coset representative of S/(r) such that £n 50^ 0. If a is a

finite subset of S0, t„ e S such that aFta = Fta for all a e a (Theorem 5.4) and s„ e

taS n S0 (which is nonempty, since/i(lt(jS)= 1), thenFa = Fs„ n S0^ 0 and aFa=F„

for all a e a. Consequently, S is w-ELA for some mSn (Remark 5.3).

Granirer [4, Proposition la] has proved that any countable subsemigroup of

an ELA semigroup S can be embedded in a countable ELA subsemigroup of S.

His proof can be adopted, with easy modification, to yield the following result;

we omit the proof.

Proposition 5.9. If S is an n-ELA semigroup, then every countable subsemigroup

of S can be embedded in a countable n-ELA subsemigroup of S.

6. Direct products. We list in this section some basic combinatorial properties

of topological semigroups S for which LUC(S) is n-ELA. For analogue results in

discrete amenable groups, locally compact amenable groups and ELA discrete

semigroups, we refer the reader to Day [1], Rickert [18] and Granirer [4].

Proposition 6.1. Let S and T be topological semigroups, n a continuous homo-

morphisms of S onto T. If LUC(S) is n-ELA, then LUC(T) is m-ELA for some

mSn, m divides n.

Proof. If fe LUCÍS), then fie ire LUC(S). Let p = (\/n) 2" <p¡, fi e A(S) be a

LIM on LUCÍS), then ß = (l/n)2ni<Pi where ^(/) = ^(/o77) for/eLUQT) is a

LIM on LUQT). The result now follows from Lemma 4.7.

Proposition 6.2. Let S be a topological semigroup, {Sa; ae 1} subsemigroups of

S with the induced topology such that [Ja£l Sa = S and for each a, ß e I, there exists

y el such that Sy 2 Sa u Sß. If for each ae I, LUC(Sa) is ka-ELA for some ka S n,

ka divides n, then LUC(S) is k-ELA for some kSn, k divides n.

Proof. Partially order / by a^ß iff Sa^Se. ^ renders /into a directed set. For

fie LUC(S), «e/, define (Paf)(s) =f(s) if s e Sa. One readily checks that (Paf)
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e LUC(Sa) and s(Paf)=Pa(sf) for s e Su. For a e I, let pa = (l/n) 2ï <p? be a LIM

on LUC(Sa), cpf e A(Sa) (<pf is not necessarily distinct). Define ßa = (l/n) 2ï <pf

where fxi(f) = cpï(Paf),fe LUC(S). By compactness of A(S) and taking subnets if

necessary, we may assume >v* — lima cpf = </i¡ for some </>t e A(S) and each /= 1,..., n.

Then (1/n) 2" <Ai is a LIM on LUC(S) since if s e Sao, Lsßa = pa for all a^a0. Now

apply Lemma 4.7.

For any semigroups S and F, <p e m(S)* and p e m(T)*, define cpxpe m(Sx T)*

by (cpxp)(f) = p(h) where h(t) = cp(7rtf), fem(S), (irtf)(s)=f(s, t) for all seS,

(el

It is easy to see that if <p and p are means on m(S) and m(F) respectively, then

cpxp is a mean on m(SxT). Furthermore, if cpeßS, and peßT, then cpxpe

ß(SxT).

Lemma 6.3. For any topological semigroups S,T,aeS,be T and fie LUC(S x F) :

(a) Ifit0 e T, then nbto(f) e LUC(S).

(b) If cp is a mean on m(S), h(t) = cp(¿nt(f)), then hb eLUC(T).

Proof, (a) Let S>0, s0eS. Choose U, V neighborhoods of s0, b respectively

such that ||(U,i,)/-(So,i,)/|| <cf for all (u, v) e Ux V. Then for all u e U

I|b(t«o(/))-.o(^(/))II = ¡(«.«/-(...»/II < '■

(b) Let cf >0, t0e S, U, V he neighborhoods of a and t0 respectively such that

II (u.v)fi- (a,t0)/ll <ê for all (u, v)eUxV. Then for all v e V

IIA-tcAl   =   ll(a.7.)/-(a,to)/l   <  S-

Proposition 6.4. For any topological semigroup S, T and n fixed. LUC(SxT)

is n-ELA iff LUC(S) is k-ELA and LUC(T) is m-ELA for some k, m such that

km = n.

Proof. Let cp=(l/k) 2Ï <Pi and i?=(l/m) 2T Vi be LIM on LUC(S) and LUC(F)

respectively, where <pt e A(S), r;; e A(T). If <pt e ßS and f¡¡ e ßT are multiplicative

extensions of <p¡ and i?, respectively, cp = (l/k) 2Ï 9i, •? = (l/m) 2? Vj, '¡, = (l/k) 2Ï ít>

where ili=Lacpie ßS for some fixed a e 5, and y = (l/m) 2i"7/> where yf(f) =

VÂfb) f°r all/em(F) and some fixed ¿be/, we shall show that p = >ftxy when

restricted to LUCÍS x T) is a LIM. Let (s0, t0) eSxTJe LUCÍS x T) be arbitrary

but fixed. Define k(t) = <jj(Trt(f)) = <p(a7Tt(f)). Then kb e LUC(F) and for each t e T,

■v/e LUC(S) (Lemma 6.3). Hence fe((So.ío)/)) = <p(Soa7r(oí(/)) = cp(a7rto((F)) = íoA:(í)

and p((So,t0)f) = fi(t0kb) = rj(kb)=p(f) since <p coincide with cp on LUC(S) and 17

coincide with r» on LUC(F). Now since p = (l/km) 2f;v™ 1 Äxy;. and <A¡xy; are

multiplicative, LUC(Sx F) is n-ELA for some nSkm (Lemma 4.7).

Let #0={?>i,. •-,9fc}»F0={r?1, ...,-r/m}and^0={</>jxyJ; i=l,..., k,j=l,.. .,m],

where ^¡xy, is the restriction of <Ä,xy; to LUC(SxF). We shall show that the

factor semigroup (S x T)/K0 is isomorphic to S/H0 x T/F0 and hence n = km by

Theorem 4.1.
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If (sx, tx), (s2, t2)eSx Tsuch that LSl<p¡=LS2<p¡ and £tlij;=£(2^, 1 S iS k, 1 S jS m,

then (LsMf) = (Ljx)(f) and (Lhy,)(g) = (Ltiy,)(g) for all ISiSk, ISjSm,
/gLUC(S) and g e LUC(S). Furthermore, for any &xy,eJ5i, /e LUC(S),

hx(t) = 4>LMf))h2(t) = ¿G2M/))), we have nu, n2s 6 LUC(£) and nht(f) e LUC(S)

for all t e T (Lemma 6.3). Hence tM0 = USl"hlr)) = >J'i(s2"t1t(fi)) = tMt)> and

OAiXyiX^.d)/) = ^GA,,) = ^(í2«2„) = (if\xy/Xc.2.i2>/)-

Consequently, if <£: (s', t') -> (s, t)' for all (s, t)e SxT, where s', t ' and (s, t)'

are the homomorphic images of s, t and (y, /) in S/H0, T/F0 and S x T/A^ respec-

tively, then <f> is a homomorphism of S///0 x 77£0 onto Sx 77ÁV Further 0 is one-

one, since if Sy, s2 e S, s[¥=s2, let <pia e H0,fe LUC(S) such that LSl<pio(f)^LS2<pio(f).

Define fe LUC(Sx T) by f(s, t)=f(s) for all (s, t)eSxT. Then iTl(J)=f for all

t eT. Since (l/k) 2Ï & coincide with (l/k) 2ï 9>¡ on LUC(S), there exists $iu, say,

whose restriction to LUC(S) is <p(û. Hence

(<l>ioXYj)((Sl,»f)  = <Pio(syß  * <Pio(s2f)  = ("Aio X YiXlH.tJ)

for all í e Tand 1 SjSm, i.e. (sx, t)'ri(s2, t)' for all / e T. Similarly, we show that

if tx, t2 e T such that t[ ^ t2, then (s, ty)' + (s, t2)' for all seS. The converse of this

proposition follows from Proposition 6.1 and the observation that the mappings

(s, t) -»> í and (s, t) -»■ t are continuous homomorphisms of SxT onto S and T

respectively.

Let {Sa ; a g /} be semigroups and TraeISa be the set of all functions defined on /

with f(a) e Sa for all ae I. If fi g e Trae,Sa, define the product h =fig by h(a) =

f(a)g(a) for each ae I. The semigroup TraeISa is said to be the full direct product of

{Sa;ael}.

If for each a el, Sa has identity ea, let Tr™s,Sa, the weaA: ¿//reci product of {Sa;

ae/} be the subsemigroup of all fe Trae,Sa such that {ae I;f(a) = ea} is finite.

Furthermore, if each Sa is a topological semigroup, then ^/Sa with the pointwise

topology is also a topological semigroup.

Proposition 6.5. Let {Sa;ael} be topological semigroups with identity, S=

KztSa, n fixed. Then LUC(S) is n-ELA iffLUC(Sa) is ELA for all but finitely many

nai, ■ ■ -, nakfor which l<na¡Sn andn = nai ■ ■ ■ nttlc.

Proof. If LUC(SJ is na-ELA for each a el, let F={a:a finite subset of /}. Order

£ be upward inclusion. For each a = {ay • ■ ak}e F, Ta={feS;f(a) = ea, the

identity of Sa for a $ a} is homeomorphic and isomorphic to Sai x ■ ■ ■ x Sak and

hence LUC(7V) is ka-ELA, where kc = nai- ■ -naiiSn, k„ divides n (Proposition

6.4). Furthermore, {JaeF Ta = S. Hence LUC(S) is m-ELA for some m S n (Proposi-

tion 6.2). Choose {<*i ■ • • afc}£/ such that na¡ ■ ■ ■ nttk=n, then LUC(Sai x • • • x Sttk)

is n-ELA, nSm, since the mapping/-> (f(ay),.. .,f(ak)) is a continuous homo-

morphism of S onto Sai x • • ■ x S„k. Consequently n = m. Conversely, if LUC(S)

is n-ELA, then as shown above, for each ae I, LUC(Sa) is na-ELA, and for each
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finite subset cr = {ct1 • • • «*}£/, LUC(Sttl x • • ■ xSaic)iska-ELA, -where ka=nai- ■ -na¡í.

Consequently, na> 1 for only finitely many as, and if m = product {na; a e 1} then

LUC(S) is m-ELA by what we have proved. Hence m=n.

Remark. Day has given an example [1, p. 517] to show the full direct product

of left amenable semigroups need not be left amenable. However, it has been shown

by Granirer [4, Proposition 2] that the full direct product of ELA discrete semi-

groups is ELA. This leads us to consider the following problem: let {Sa:a e 1} be

topological semigroups, S=Trae,Sa with the product topology. It is easy to see that

if LUC(S) is n-ELA, then (*) LUC(Sa) is na-ELA for some na^n, na> 1 for finitely

many a's and n = product {na; ae I}, since for any finite subset o={«i • • • ak}çzl,

the mapping /->(/(«i),.. •,/(<**)) is a continuous homomorphism of S onto

Sai x ■ ■ ■ x Sak. But conversely, if (*) holds, is LUC(S) n-ELA? We do not have an

answer even for n= 1 except when / is finite (which follows from Proposition 6.4

by induction), or when Sa are discrete, for which we are going to prove.

Lemma 6.6. If {Sa,ael} are semigroups with f.i.p.r.i., then S = irae[Sa has

f.i.p.r.i. and S/(r) is isomorphic to -naelTa, where Ta = SJ(r).

Proof. Let /, g e S. For ae I, let hx(a) and n2(«) e Sa such that f(a)hx(a) =

g(a)h2(a). Then fhx=gh2 and S has f.i.p.r.i. Iff and f'(a) denote the homomorphic

images of/and/(a) in S and SJ(r) respectively, ae I, define a mapping: </>(f')(a)

=f(a)' for all fie S and ae I. One readily checks that <f> is an isomorphism of

S/(r) onto nae,Ta.

Lemma 6.6 and Theorem 4.2 together yield:

Proposition 6.7. Let {Sa; ae 1} be semigroups, S = naeISa and n fixed. Then S is

n-ELA iff Sa is ELA for all but finitely many nai,..., na¡cfor which 1 <na¡^n and

n = nai---naic.
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