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CONVOLUTIONS WITH KERNELS HAVING
SINGULARITIES ON A SPHERE

BY

ROBERT S. STRICHARTZ

Abstract. We prove that convolution with (1 — |x|2)ï" and related convolutions

are bounded from V to L" for certain values of p and q. There is a unique choice of p

which maximizes the measure of smoothing l/p—l/q, in contrast with fractional

integration where l/p — l/q is constant. We apply the results to obtain a priori

estimates for solutions of the wave equation in which we sacrifice one derivative but

gain more smoothing than in Sobolev's inequality.

1. Introduction. For convolutions on Euclidean n-space En with homogeneous

kernels, the fractional integration theorem and the Calderón-Zygmund inequalities

[3] give essentially best possible results. Such kernels have singularities at 0 and oo.

In this paper we study the boundedness in various L" norms of the convolution

operator Tf(x) = jE f(x—y)K(y) dy for K having its singularities on the unit

sphere. The results are quite different in character from the case of homogeneous

K. Such operators arise naturally in the study of the wave equation, and our results

will give us new information about solutions of this equation.

More precisely, let Z denote the unit sphere in En, let x, y denote points in En

and x', y' denote points in S. Let dx' he Lebesgue measure on Ü normalized so

that \Enfi(x)dx=\™ \^fi(rx')dx' rn_1 dr. For each nonnegative integer and

/eQom we define

(1) Tk+1fi(x) = £ {^f(x-ry%_x dy'.

For 0 < a < 1 we define

(2) TJ(x)=  \       f(x-y)(l-\y\2)-«dy.

For a= 1 the integral (2) no longer makes sense as such because (1 — |j|2)_<r has a

nonintegrable singularity on S. However, we want to define Ta for nonintegral a

in the range 0<a^(n +1)/2 by interpreting (2) in a distribution sense. We do this
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by formally integrating by parts in the radial direction and neglect the boundary

terms. Thus, if k < a < k +1 we define

(3) T„f = i-\f ^^ Js fQ il-r*r-"(jr ïf^-Vix-ry')) dr dy'.

We can now state our main results :

Theorem 1. (a) \\Taf\\qSAa\\f\\p provided l<pS2^q<co and l/p-l/qè

in +1 - 2a)/2« for 0 < a S (« +1)/2.

(b) \\Taf\\p.SAa\\f\\pfior p = in + l)Hn+l-a), p' = in+l)la and 0<a^in+l)l2.

(c) \\TJ\\qSAa\\f\\vfor i = ag(«+l)/2 provided («+l)/(«+l-a)^/^2 and

njq = <x—ljp, or «/(« + ^ — a)^pSin+l)Jin+l — a) and ljq = a — njp'.

We remark that the amount of smoothing in (b) is 1 jp — 1 jp' = in +1 — 2a)/(« +1)

which is more than in (a) provided « ä 2. On the other hand (a) is applicable to a

wider range of/?'s. It is also possible to interpolate between these results in case

a<\. We leave the details to the interested reader.

In §2 we prove Theorem 1. In §3 we given applications to the wave equation.

In §4 we prove a similar result for spherical convolutions.

2. Proof of Theorem 1.    Let

Uy) = (\-\y\2Ya    ifbi<i,

= 0 if \y\ = 1.

If a < 1, <j>a e L1 so we can compute its Fourier transform. The result

(4) 1(0 = i2ir)-^2-°Til-a)\t\«-^Jnl2^i\m

is well known [1] or [8]. We thus have

(5) ufru) = i2n)-^2-"Yn-a)\t\«-»<vnl2_m)f(t)

for 0 = a< 1. But in fact (5) holds for all «^ 1, 2,... (the poles of T(l -a)). For the

right-hand side of (5) is a single-valued analytic function of a in the complex plane

minus the positive integers. On the other hand, the Fourier transform of the right-

hand side of (3), for fixed k, is also a single-valued analytic function of a in

Re (ce) < k +1 minus a = k, k-l, ..., I. These two functions agree for real a in

the interval 0< a< 1, hence by the principle of analytic continuation they are equal

for a ̂  1, 2,....

We can also compute £fc/^(i) for k=l,2,.... In fact £k/is the convolution of

/ with the distribution (c3/c3r)fccr, where o is Lebesgue measure on S, regarded as a

finite measure in £n, and djdr is radial differentiation. Now we have the well-

known formula [1]:

(6) âio = i2Tty*\^-^jnl2-xi\è\).
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Since d¡dr = (ll\x\)x-V and \x\ = 1 on the support of <x, we have

Using the recursion relations [9]

(7) (dldtXt-'J,(t)) = ~t-J.+x(t)

and

(8) Js+1(t) = (2slt)Js(t)-J$-x(t)

and the fact that

we easily obtain

(9) ((l)"T(f) = 2 dW-^m-M)

for certain constants c¡ depending on n and k. Thus we have

(io) 7vr(ö = 2 ciifi'-^z-ff-idíDAo.

We now define operators S1«, for a in the strip 0 á Re (a) ^ (n +1)/2, and/e C0om,

by

(11) S„/^(f) = \i\°-nl*J«,2-M)f(f)'

It clearly suffices to prove estimates (a) (b) and (c) for Sa in place of Ta.

We need the classical estimates on the size of the Bessel function [8, (11.10)

and (11.11)],

(12) |r-(o+'w/a+«,(0l Ú cae°W(l + t)-a-m

for 0 < t < co. This is usually proved for a > — \ but it actually holds for all a by (8).

This estimate is sufficient to establish part (a) of the theorem as a consequence of

the theorem of Hardy and Littlewood [3] that asserts that the operator

&~\*n(Ç)f(î)) is bounded from Lp to L" provided 1 <p^2^q<oo and

(13) |/n(f)| áclíl"1   for llp-llq = tin.

For Sa has this form with m(^)=\è\a'nl2Jnl2-a(\è\).

Thus (12) implies (13) for any r^n/2 — a+^ which proves (a).

To prove (b) we use the fact that Sa is an analytic function of a and the inter-

polation theorem of Stein [7] for such analytic families of operators. We note that

(12) restricts the growth of \\Saf\\2 in the strip O^Re (a)^(/i+l)/2 so that the

theorem is applicable. On the boundary Re (a)=(n + l)/2 we have  IJS^/Haa
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c exp (c Im (a))||/|2 by (12) and the Plancherel theorem. On the boundary Re (a)=0

we use (5) and the obvious estimate |£,r/||oo ^ ||/||i since |<^a(x)|ál. Since

\Til + ib)\ =itrblsinh b)112 we obtain ||Sa/|| «, = c exp (c Im (a))||/|i for Re (a)=0.

Stein's theorem now implies part (b). We obtain (c) from (a) and (b) immediately

by the M. Riesz interpolation theorem, if a>\. For a=\, we see that £1/2 maps

L1 to weak £2 since <f>ll2 is in weak £2. Applying the Marcinkiewicz interpolation

theorem [10] and a duality argument [3] we obtain (c).

Remarks. For 0 ^ a ^ 1 we can show that estimate (c) is sharp, in the sense that

if \TJ\qúM\f\p then 1/a ̂  (a-1 + 1//>)/«. For if we choose/to be <f>„ it is not

difficult to show that |£«^(x)| ^c\x\-ß-a + 1 for |x| £$.

It should be possible to prove similar results for kernels obtained by replacing

|x|2 by any nondegenerate quadratic form by using the computations of [1, Chapter

HI, §2].

3. The wave equation. The Cauchy problem for the wave equation in «-space

variables x and time variable t

(14) 82uix, t)/dt2 = Axui*, 0,

(15) uix, 0) = fix),       duix, 0)jdt = gix)

for fige Cc"m(£„) has a unique solution

(16) uix,t) = jr-^/ea cos t\i\+¿iOS-^^j.

Now we have

.   M     (2yi2sint (2y'2cost
Jm(t) = {-J     -JTJ2    and   J-ll2(t) = l^-j     -^

so that (16) becomes

(17) uix, t) = g)1" S(0S(n+1)/2 8(f-l)/+Q1/2/ S(i)S(n_1)/2 oit-i)g

where S(r) is the dilation operator

(18) 8(0/(x) = fiitx).

We define the /»-energy of u by

(19) £p(i)= f   i\^(x,t)p(t) = jE {| Yt (x, 0 |" +1 V,M(x, r)|p} dx.

Thus £p(0)=||g||p-l-||V/||p. The classical conservation of energy principle states

that £2(0 is a constant. Littman [5] has shown that there is no analogue of this

statement for/?^2; in fact there exist weak solutions with £p(0)<oo and £p(r)=oo

for all r#0.

Here we obtain estimates on the L" norm of w(x, i) for fixed r#0 in terms of the

/^-energy at time / = 0 for certain values of p and a.
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Theorem 2. Let u(x, t) be given by (16), nä2.

(a) For any r#0

where

y \u(x, oí-dxy9 mow,

«»—11--n+l
--7   /or 2—-r S/)S2

9       2      p' n + 3

and

1      n   n+l    -    .   » _ n + l
¿=¿-—   /0r2nT2=^ = 2nT3

(//> 1 i« case n = 2).

(b) For any r # 0 and any integer k = l

\\u(-,t):L^x\\ ^c(0(||g:F£_»|| + ||/:F£||)

for p and q related as above. Here the norm

v \ Up

lois™-(i\mr
Remarks. The inequalities remain valid for any/and g for which the right side

is finite. This follows by the usual limit argument.

The Sobolev inequalities imply

I/:I4_i|| Ú c\\f:Lpk\\   for 1/r = 1/p-l/n,       1 < p, r < co.

Since u(x, 0) =f(x) we may compare this with our results for t / 0. We find that

for the appropriate choice of p (in fact 2n\(n + 2)<p<2) we have q>r, i.e. u(x, t)

is better behaved at any time r#0 than at time r = 0.

We can use this remark to illustrate the phenomenon of focusing of singularities.

Let p=2(n+l)/(n + 3) so that q=2(n+l)¡(n-l). We then choose k so that

\/q — (k—l)/n<0 but l/p — k/n>0. We can then find an fie LI which is unbounded

in any open set. Forming u from/with say g=0, we find that u(-, t) for any r/0

is continuous and bounded by (b) and the Sobolev embedding theorem. Similarly

we can construct weak solutions u(x, t) which are continuously differentiable in

x for all r/0 but not differentiable for r = 0.

Proof of Theorem 2. We note that (b) follows from (a) since any space derivative

(d/dx)au(x, t) is again a solution of the wave equation with Cauchy data (d\dxff

and (8¡dx)ag.

To prove (a) we observe from (17) that it suffices to prove

(20) l|S<n-l„2gL  =  C\\g¡,

and

(21) l|S(n+W1L = c||V/||p.
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Now (20) is just a special case of Theorem 1, and (21) is equivalent to

(22) |jr-ip^/(0^gc|/||p.

Let if> be a function in C°(£*) which vanishes in a neighborhood of the origin

and is identically one for large f. Then the Hardy-Littlewood multiplier theorem

implies

(23) ^-Hi-m)c-^f(t) = 4
«

for the values of p and a given above since l</?á2^a<oo and II p — 1/aï: 1/«.

Thus we must study the operator ^"_1(i/i(^)(cos |£|/|f|)/(f))- We introduce

related analytic families defined by

(24)   £«(/) = p-Hmm'-^-^-a-AWm,   y = 1,...,»,
and imitate the proof of Theorem 1. Part (a) of Theorem 1 for U¡¡ñ follows by

exactly the same reasoning. To prove the analogue of (b) we must show for

Re (a)=0 that

^-H\^-ni2-HMVn,2-a-i(m

is in £OT and

(25) ||^-1(|f|i6-n,2-¥(í)^-/n,2-1-i6(|l|))|U Ú ce™.

To prove this we begin with formula (4) for a=ib and deduce, using (7) and (8),

that

ix^fii) = c(e)(d/0£.)(irn,2-ib^2+(í,(|¿|))

= c(¿o(£/|í|)Hrn,2-i%2+1+i>(|l|))

= c(¿o^|-'l'2-1-ivn/2_1+i&(|£f|)

-m\-n'2-2-iiJn,2^m)c(b)(n+2ib)

hence

^-iw^ií|-n/a-l-u,/»,2-i+«»(ifi)) = 4r^-Hm(x,4íbT)
(26) m

+^T2l£)3(£)Jr"^^l^2^-

Now ¡/r(£) is the Fourier-Stieltjes transform of a bounded measure so the first

term on the right is in £°°. The second term is in £°° because the multiplier operator

&'Hti\t\ " Vif)) (tne so-calledjth Riesz transform) is bounded on any £p, 1 <p<oo,

the operator &~H¥¿)\£| ~lf(0) sends £p to £°° for any p>n, and ^eL1 nL".

An examination of the various constants shows that the growth in b is at most

exponential.

Thus the same estimates hold for Ulf> as for Sa. In particular setting a = (« —1)/2

we obtain

(27) ||#-W)£y|£|-a cos \e\Rm\, Ú c\\fi\\p.
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Applying they'th Riesz transform and summing overj we obtain

(28) ||^-i(^)^il/(f))|^c|/IP

which, together with (23) gives the desired result.

Other applications of these ideas to the wave equation will be given elsewhere.

4. Spherical convolutions.   In analogy with (2) we define for n ̂  2

(29) TJ(x') = jj(y')\x'-y'\-"dy'

for 0<a< 1 and /defined on 2. Later we will discuss the extension to <*;> 1.

Theorem 3. (a) ||Fa/||Qá^a|/||p provided l<p^2^q<co and l¡p-l¡q =

(n-2a)/(2(n-l)).

(b) ||f„/||p. á^„||/||,/or/» = »/(»-«), p' = »/«.

(c) ||f«/||,ái4«||/L/or unprovided n/(n-a)^/>^2 and (n-l)¡q = a-l¡p',

or (n— l)/(n — \—a)^/>^n/(n — a) and llq=a — (n—l)lp'.

As one would expect, this is the direct analogue of Theorem 1 for Fn_1, since

fa is a spherical convolution with a kernel having a singularity on the n — 2 dimen-

sional equator of the n — 1 sphere. However, there seems to be no simple way to

deduce Theorem 3 from Theorem 1.

We shall give a proof which is quite different from the proof of Theorem 1.

We realize fa as the real part of an operator Sa derived from the Fourier transform,

and prove (a) and (b) for §a. We obtain (c) as before by interpolation.

We begin by deriving some properties of the Fourier transform.

Denote by Lp-co(En) the space of functions f(x) satisfying m{x : \f(x)\>s}

S:Mp¡sp for all s, 0<i<oo, and let \f\\*tX be the least such M. It follows from

Hunt's theorem [4] that the Fourier transform is a bounded operator from Fp,0°

to F"'-00 for l</><2and l/p+l¡p'=l.

Lemma 1. Let f(x) = il(x')\x\~nlp, l<p<ao. Then feLp-x if and only if
üeLp(Sn'1).

Proof. Note |/(*)| >s if and only if |x| <(\£l(x')\/s)pln so

m{x: \f(x)\ > s}= \ r^drdx'
Js"-1 Jo

= l(       (\3xlYdx'.
njs»-i\    s    J

Lemma 2. Let l<p<2, Qel^S1"-1) andf(x) = L\x')\x\-nlp. Then the Fourier

transform f({) = ib(£')11| " nlp' for some $ e Lp'(Sn' *), 1 \p +1 \p' = 1.
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Proof. By Lemma lfieLp-'° hence feLp'-'° by Hunt's theorem. Now

fii) =  (expiix-Of(x)dx =  fexp(;x'-£'|x| \£\)Q(x')\x\-*» dx

= \t\-nlp' ïexp(ix-OQLxJ)\x\-*»dx= \î\nlvf(î')

where f' = f/|f|. Thus / has the desired form. Applying Lemma 1 again shows

i/<e£p'.

Definition. Let Sp, l<p<2, denote the map Cl^tfi as in Lemma 2; Sp£2(£')

= J^(Û(x')|x|-n,p)(0-

As an immediate corollary of Lemma 2, we have

(30) ||SpQ||p' = ^p|fl||p   for all £i e£p,       1 < p < 2.

Lemma 3. Let l<p<2. Then

5,£i(n =  um   f Í2(x')|x|-n'pexp(/x-f)^
k-*°°  J\x\SNk

in the L2 norm, for any sequence Nk->co sufficiently rapidly.

Proof. Since/(x) = £2(x')|x|-n/pe£p-co and W^^L^+L2 we have

f        Q(x')|x| -n/p exp O'x- f) dx
J\x\SN

converging to/(f) in the £2 norm on the spherical shell £á |£| =2. It follows that

for subsequences Nk^-ao fast enough we must have convergence in £2 on some

sphere \£\=a for \--a = 2. By homogeneity we obtain convergence on the sphere

111 = 1 for the subsequences aN'k.

Lemma 4. Let 1 </?<«/(« —1) so r«ar 0 <«//?'< 1. £er a = «///. £«e«

£pQ(f ) =  f       Q(x')(ap + /Z>p sgn (x' ■ f))l*' ■ fI ~" dx'
Js"-1

where

ap = lim       ra_1 cos r dr   and   bp = lim       ra_1 sin r dr,
ÍÍ-.W   Jo iV-.co Jo

for all Q e L".

Proof. It follows by integration by parts not only that ap and bp exist and are

finite, but also

If" I CN
up        r"'1 cos r dr   = Ap < co   and   sup        ra~1sinro'r
N     I Jo N     I Jo

sup
N

for 0<a<l.

We compute

Bp < co

f        Q(x')|x|-n,p exp (ix-£')«•* =  Í       G(*')[f   expOrx'-f)'"''"1*] dx'.
J\X\<N Js"-1 iJo A



1970] CONVOLUTIONS WITH KERNELS 469

Now

exp (irx' ■ £')ra "x dr =       (cos rx' ■ f + i sin rx' • f)ra "1 dr
Jo Jo

= \x'-i'\'a (ra-1 cos r + isgn (x'-t')r"-1 sinr)dr
Jo

which converges to  \x' -i;'\~a(ap + ibp sgn (*'•£')) if *'-|V0. Now for almost

every f eS""1 we have |x'-£'|-a|£2(;c')| eFfS""1) so that the integrand

Q.(x') j" exp(irx'$')r"-1dr   á (Ap +Bp)\Q(x')\ \x'■£'{-"eL^S"'1).

Thus we may apply the dominated convergence theorem to conclude

lim   f        n(x')\x\-nlpexp(ix-Ç')dx
f-"°   J\x\iN

= f      Q.(x')(ap + ib„ sgn (x'-£'))\x'-t'\-adx'
Js"-1

for almost every y' e Sn~1.

Lemma 4 shows that TaQ = Re SPQ. for real valued Q. and a=n/p', 0<a<l.

Thus (30) established part (b) of Theorem 3. To establish part (a) we expand Q. in

spherical harmonics and compute Sp in terms of the expansion.

Let Yk(x) be any harmonic polynomial homogeneous of degree k. We use the

formula [2], [11]

(3i) ^(\x\"—^Yk(x)) = wu.y^oiii-*-.

where

(32) yk<a = TT-" + ni2ikY(a\2 + k\2)\Y(k\2 + n\2-*/2).

Thus if O = 2?= o Yk(x') we have

»^ n
(33) SPQ. =  2, Yk.c, Yk(x'),   where a = -,,

k = 0 P

and this uniquely determines Sp. We can study the properties of such a spherical

harmonic multiplier transform using a result of Marcinkiewicz and Zygmund [6].

Let Q. be any sufficiently regular function on S. Then Q. has a spherical harmonic

expansion ß = 2^= o «a. Fk(x') where the Yk are spherical harmonics of degree k

normalized so that Jj, | Yk(x')\2 dx=l. For different choices of Q we must choose

different Yk, but this will not matter. The system {Yk) is orthonormal and satisfies

(34) || Yk\n£ (dim Hk)112 = Mk(n-2)>\

where Hk is the space of all spherical harmonics of degree k. Thus by Theorems 1,

2, 3, 4 and the final remark of [6],

(co \ 1/r

2  k|r(l+£)(n'2-(n-1",I)r"1 for 2 Ú q < oo, q' ^ r = q,
k = 0 '
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and

,1/r

(36)
(<» \ 1/r

2 |afc|r(l+Â:)<n/2-<n-1)/p)r-1       S A\\Q.\\P   for 1 < p â 2, p ^ r g p'.
k = 0 !

Lemma 5. Let ck be any sequence of complex numbers satisfying \ck\ ̂ £(/c+1) B.

If SQix') = 2kC=0akckYkix') then \\SQ\\gS A2B\\0||p provided l<p^2^q<oo and

ljp-ljq=ßlin-l).

Proof. We imitate the proof of Hardy-Littlewood for Fourier series. Using (35)

and (36) with r=2, we have

||SQ||, Ú Ab(^ la^l^l+A:)-2^"-2^-1^-1)

= AB\ 2 |afc[2(l+rc)n-2<n-1"p-1        ^ ^42£||ü||p.
\fc = 0 /

It is now a simple matter to deduce part (a) of Theorem 3 for SnKn-a) in place of

Ta for 0 < a < «/2. For by (32) and Stirling's formula

(37) \ykA = cail+kf-'2

so Lemma 5 applies with ß=n/2 — a.

This completes the proof of Theorem 3. It is possible to extend definition (29)

to nonintegral a > 1 by formally integrating by parts along great circles through x'.

It is also possible to extend Lemma 4 to the range 0<a<«/2, a nonintegral, with

some slight modifications when « = 3 due to boundary terms. Theorem 3 will

continue to hold.
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