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THE CONTINUITY OF FUNCTIONS ON
CARTESIAN PRODUCTS
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N. NOBLEO

Introduction. A function/is sequentially continuous if the restriction off to

each convergent sequence (including its limit) is continuous, and/is/c-continuous

if its restriction to each compact subspace is continuous. If each sequentially

continuous (resp. real valued sequentially continuous) function with domain X is

continuous, A' is a sequential space (resp. jH-space); /V-spaces and /cB-spaces are

defined analogously.

In this paper we are concerned with determining conditions under which se-

quentially continuous or /c-continuous functions on a product space X= \~\asA Xa

will be continuous. Concerning sequentially continuous functions, our result in-

cludes conditions necessary and sufficient that a product of first countable spaces

be a sequential space or an sB-space. Concerning Ac-continuous functions, we

show that if each Xa is either first countable or locally compact, then each k-

continuous function on X with regular range is continuous, and that products of

locally pseudocompact /cB-spaces are /cB-spaces. We also consider sequentially

continuous and /V-continuous group homomorphisms, and show, for instance, that

the property "each /c-continuous homomorphism with T0 range is continuous" is

preserved under arbitrary products.

All of these results are given in §5. §1 presents three fairly general conditions

which can be combined to force the continuity of functions on product spaces,

and these conditions are studied in §§2, 3 and 4. As incidental results we answer

negatively a pair of questions : " Is the Hewitt-Nachbin realcompactification of a

Fréchet space a /c-space ?" and " If X and Y are normal /V-spaces, is the /c-extension

of Xx Y completely regular?" raised by W. W. Comfort and E. A. Michael

respectively (§2); answer a question posed by Keisler and Tarski in [10] by showing

that a certain condition on cardinals is equivalent to measurability (§3); and prove

an analogue of Tychonoff's Theorem by showing that k-compactness (introduced

in [4]) is preserved under arbitrary products (§4).

1. Conditions forcing continuity. Recall that a subspace of X= \~[aeA Xa is called

a H-subspace if it has the form {x e X: 8(x, y) is countable} for some fixed y in X,
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where 8(x,y)={a : xa^ya}. (Such subspaces have been studied in [3].) Call a

2-subspace a S°-subspace if in fact each 8(x, y) is finite, and call a function defined

on a product space S-continuous (resp. X°-continuous) if its restriction to each

S-subspace (resp. S°-subspace) is continuous. Also, call a function 2-continuous

if it is continuous when restricted to each subspace of the form TJaeA Ya where

for each a, 1 ̂  card ( Ya) g 2.

1.1 Theorem. Let Z be regular. If f : \~[aeA Xa-+Z is 2°'-continuous and 2-

continuous, then fis continuous.

Proof. Let U be an open subset of Z, let x be a point in f'^U) and let V be an

open neighborhood of x such that cl Kç U. Let Y be the S°-subspace which con-

tains x; since/_1(K) n Y is open in Y, there exists a finite subset F of A and

neighborhoods Va of x« such that for W=\~iaeF VaxYlaeA\F Xa, W n Yçfi'^V).

Now suppose there exists a point yin W such that f(y) <£ U, set Y' = ELeA {xa, ya}

and note that, since / is 2-continuous, there exists a finite F' such that for

W' = Ua,r{ya}^Ua,A\r{xa,ya}, W'^f-\X\cl V). Since W n W is clearly not

empty, this is impossible, so fi(W)<=^ U and hence /is continuous.

Call / S-semicontinuous (resp. 2°-semicontinuous) if whenever U is open and

x efi- \U), there exists a finite Fs A such that EF(*) =f~ \U) (resp. 2£(x) £/- x(t/))

where ~EF(X)={y : S(x, >>) is countable and disjoint from F}, and Ti°F(X) =

{y : 8(x, y) is finite and disjoint from F}. Recall that a map is closed if it carries

closed sets to closed sets, and let nB denote the projection : YlaeA Xa —*■ ELes Xa-

1.2 Theorem. Let Z be regular. If fi: \~[aeA Xa^-Z is 2-continuous and S°-

semicontinuous, and if tf °/_1 is closed for each finite F^A, then fis continuous.

Proof. Given x ef~\U) with U open, choose V open with xe V and cl Kç U

and let FçA be finite such that 2J(x)s/-1(l/). Let X' = irF(X), X" = ttAf(X) and

x' = irF(x) and note that, as in the proof of 1.1, x' x Ar"£/~1(t7). Thus x' is not

in the closed set S=nF of~\Z\U), so x e(X'\S)x X"^fi-1(U). Therefore / is

continuous.

Note that the proof actually shows: If/: Yla Xa->Z is £°-semicontinuous and

for each S°-subspace Y of \~[a Xa, ttf\y °/|y1 is closed for each finite subset F of

A, then / is 2°-continuous. By the obvious adaptation of our proof, the corre-

sponding result for S-semicontinuous functions and 2-subspaces holds.

For conditions under which -nF °f~1 will be closed, see [6], [9], [16] or [17].

Where G=Yla Ga with each Ga a topological group, we consider subproducts

of G to be embedded in G in the natural way (i.e., \~\aeB Ga = \~laeB Ga x YJaeA\B {ea}

where ea is the identity of C7a). A subgroup H of Gis invariant under projections if

iTB(H)^Hfor each B^A. Note that the S°-subgroup ( = the direct sum of the Ga),

the 2-subgroup, and of course G, are invariant under projections.

1.3 Theorem. Let G=YJa Ga where each Ga is a topological group, let H be a

subgroup of G which is invariant under projections, and let \\i be a homomorphism
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on H with T0 range. If >p is separately continuous icontinuous on each factor) and

YP-semicontinuous iresp. ~L-semicontinuous) then 4> is ~£P-continuous iresp. ^-continu-

ous).

Proof. Let us first note that, like any separately continuous homomorphism

(since for </<x) e V and VnzU, <f>(Tlî=x>l>~1(V) n G)sU), <b is continuous on

finite products. For xef~xiU) and F such that V2sUlet F^A be finite such that

X^x)^"1^) and let V'=+-\V) n T\aeF Xa. By the comment above, V

is open; since ^(K^E°(x))ç0(FO^(2£(x))ç V2çU, this shows that </< is 2°-

continuous. The obvious adaptation proves the remaining statement.

2. 2-subspaces. A space X is called a Fréchet space if whenever x is in the

closure of Sç X, S contains a sequence which converges to x. Each Fréchet

space is sequential and each subspace of a Fréchet space is a Fréchet space—indeed,

a space is hereditarily sequential if and only if it is a Fréchet space. Our first result

generalizes the relevant portions of [12, Theorem II] and [5, Theorem 3].

2.1 Theorem. Each H-subspace of a product of first countable spaces is a Fréchet

space.

Proof. Let Y be a S-subspace of Y\a<¡A Xa where each Xa is first countable, let

Sç Y and let x be any point in the closure of S. For each a let {US : « = 1,2,...}

be a nested base for the neighborhoods of xa. Choose y' in S and, inductively,

choose yne S n T\BeBW U} x YlB^A\Bin) X„ where £(«)={o:J : 1 á»',/<«} and the a)

are determined by index S(x, y') as {a) : /= 1, 2,...}. Such points yn can always be

chosen since neighborhoods of x must meet S.

We complete the proof by showing that {yn} converges to x. Let U be any neigh-

borhood of x and, without loss of generality, suppose U= i\~laeF U£ x YJaeA\F Xa)

n Y for some integer m and some finite subset F of A. Since £is finite and {\Bri)}

are increasing, there exists an integer /70 such that £ n £„£(/?) s £(/70)- Since for

a <£ UnBiri), y I = xa, yn is in U whenever n > max {7?0, tti}, so {yn} converges to x.

2.2 Corollary. Each sequentially continuous function on \~[a Xa is ^-semi-

continuous.

Proof. Retopologize each X« to be discrete and apply 2.1.

Incidentally, Theorem 2.1 provides examples answering questions raised by

W. W. Comfort and E. A. Michael in the context of [2] and [13] respectively.

Comfort asked if the Hewitt-Nachbin realcompactification v Y of a Fréchet space

Tis a /c-space; the answer is no since if Xis a product of uncountably many copies

of the reals, and Y is any S-subspace of X, then v Y= X [3, Theorem 2] but X is

not a /c-space [11, p. 240]. Michael's question was: "Is the Ac-extension of Xx Y

completely regular when Zand Tare /c-spaces and are (completely regular, normal,

paracompact, X0-spaces> ? We answer the first two : Let Y' be a product of un-

countably many copies of the unit interval, and let Y be a S-subspace of T'.

Since Y is not locally compact, there exists [14, Theorem 3.1] a paracompact
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Hausdorff (hence normal) A>space X such that Xx Y is not a A>space. Also, Y is

normal by [3, Theorem 1 ]. Since v Y = Y' is compact, Y is pseudocompact, so Xx Y

is a fcB-space [18, Theorem 4]. It follows that the /¿-extension of Xx Y (the smallest

topology onlx F which makes Xx Y a fc-space and coincides with the product

topology on compact sets) cannot be completely regular.

Note that (by Theorem 2.1) each S-subspace of TIaeA Xa will be a Fréchet space

if each Xa is itself a S-subproduct of a product of first countable spaces. One cannot,

however, allow the factors to be arbitrary Fréchet spaces: Let X0 denote the

quotient formed by identifying the limits of a countable collection of disjoint con-

vergent sequences. Then X0 is a Fréchet space, but (as in the proof of [20, Theorem

6.1 ]) X0 x Y is a Fréchet space, for Y any 7\ space, if and only if Y is discrete. It

follows that if X is an infinite product of 7\-spaces, one of whose factors contains

a copy of X0, then no S-subspace of X is a Fréchet space.

Of course we do not really need S-subspaces to be Fréchet spaces. To apply

Theorem 1.1 it suffices to know that certain functions on S-subspaces are continu-

ous. Where Y is any space, let #( Y) denote the collection of compact subsets of

Y which, as subsets, have countable neighborhood bases. (For K^ Y a neighbor-

hood base for K is a collection of open sets Ua such that for V—K and V open,

V^ Ua = K for some a.) Let c€*(Y)={Kee€(Y): as a space, K is first countable}.

A space Y is said to be of pointwise. countable type (we abbreviate this as " of

type <tf") if there is a subcollection ^0( Y) of ^( Y) such that for each y in Y, each

C in %>0 with y in C, and each neighborhood U of y, there exists a C in ^ with

yeC'^UnC. We say that Y is of type <?* if ^0(Y) can be chosen as a sub-

collection of <€*( Y).

Spaces of type 'tf were introduced and studied by Arhangel'skiï in [1 ] where it is

shown that locally compact T2 spaces and spaces complete in the sense of Cech

(absolute G ¿'s) and of course first countable spaces, are of this type. Arhangel'skiï

also proved the portion of the following proposition which applies to spaces of

type <£.

2.3 Proposition, (i) Each space of type >? is a k-space, and each space of type

If* is a sequential space.

(ii) Countable products of spaces of type 'if are of type # and countable products

of spaces of type <£* are of type cê*.

Proof, (i) Let Y be of type #, let t/ç Y be A>open (i.e. U n K is open in K for

each compact K) and let y e U. Choose C in ^0(Y) with y in C; since U n C

is open in C there exists an open U' such that If' n C = U n C and hence, by

the definition of spaces of type Í?, there exists a C in # with y e C£ U' n C £ U.

Now suppose U is not a neighborhood of y and let {Vn} be a base for the neighbor-

hoods of C. Then for each n, V"£U so there exists a point yn e Vn\U. Set

K= C u {yn : n = 1, 2,...}. Clearly K is compact, but since U n K=C is not open

in K, this yields a contradiction.
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Now let Y be of type 'tí*, and proceed as above when U is sequentially open.

Construct K as before and note that K is sequential so that U n K should be

(but is not) open.

(ii) This follows by the obvious construction.

2.4 Theorem. Let X=\~[aeA Xa. If each Xa is of type <tí, then each k-continuous

function on X is ^-continuous. If each Xa is of type 'tí*, then each ^-subspace of X

is a sequential space iso each sequentially continuous function on X is ^-continuous).

Proof. Let / be a Ac-continuous function on X, let Y be a H-subspace of X, let

U be an open subset of the range off, and let y e Y r\f~\U). For each a choose

Ca e ^oi^a) with ya e Ca, and note that, since f~\U) O EL Ca must be relatively

open, we may suppose that n« Ca is contained in/" \U). Now suppose Tn/_1({/)

is not a neighborhood of y in T. Then, as in the proof of 2.1, we construct a sequence

{yn}^ Y\f~\U) which "converges" to JJ« Ca. Let Ka = Ca u {ya}; then by con-

struction each Ka must be compact, so {yn} £ Ii« Ka must have an accumulation

point. Again by the construction, such an accumulation point must lie in \~[a Ca,

but this is impossible since f~\U) n \~[a Ka is open.

Now suppose each Xa is of type 'tí*, let Y be a S-subspace of X, let i/çf be

sequentially open and let y in U. Choosing C in 'tí* with ya in Ca we may, by

Theorem 2.1, suppose that C=\~{a Ca n Tis contained in U. If Uis not a neighbor-

hood of y, then as before we construct {jn}£ Y\U which "converges" to EL C„,

hence to C Let K= cl (Ca u {ya}) and let £={«: Ka^Ca}; B is countable so

UaeB Ka is sequential by 2.3. Now iY\aEA\B Ca) n Tis sequential (by Theorem 2.1)

and contains no infinite closed discrete subspace (since YlaeA\B Ca is compact) so

by [18, Theorem 2], n« Ktt n T=(n«eB K,) * (TL^s Ca n Y) is sequential. But,

as before, U n (fl« £a n Y) is not sequentially open and we have the desired

contradiction.

Let us mention, although we do not wish to pursue it, that Theorems 2.3 and

2.4 remain true if, in the definition of spaces of type <€*, one replaces the require-

ment that members of 'tí be compact with the condition : Each countable subset

has compact closure, or any other condition which insures countable compactness

and is preserved under products.

3. Sequential cardinals. Theorems 2.1, 2.3 (and in fact 1.3) give conditions

under which sequentially continuous functions will be S-continuous. In this section

we investigate conditions under which a sequentially continuous function will be

2-continuous. As one would expect, such conditions involve only the cardinality

of the index set A.

Let A be a set; 2A denotes the set of subsets of A. For {5,n}s2'1, we use lim Sn=S

to mean that {Sn} converge to S in the set-theoretic sense, i.e.,

s = ñ 0 sn+m= 0 ñ sn+m.
n=lm=l n=lm=l
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(Although it is not relevant to our considerations, it is interesting to note that this

is actually convergence with respect to a standard topology, the Vietoris finite

topology, on 2A.) A function with domain 2A will be called sequentially continuous

if it preserves this type of sequential convergence.

Recall that the cardinal of A is measurable if there exists a nonzero (completely

additive) measure p:2A-*2 (as usual 2 denotes the set {0, 1} with the discrete

topology) which maps finite sets to zero. Temporarily, call a cardinal strongly

sequential if there exists a nonzero sequentially continuous function a: 2/1->2

mapping finite sets to zero. Although they are not given a name, strongly sequen-

tial cardinals are considered briefly in [10, p. 270] and our next result answers

one of the questions posed there.

3.1 Theorem. A cardinal is strongly sequential if and only if it is measurable.

Proof. Since each measure is sequentially continuous, each measurable cardinal

is strongly sequential. Suppose A has strongly sequential cardinality and let

a: 2A -> 2 be as above. We first note that there exists a subset A0 of A such that

a(A0) = l and whenever A0 = B<u C with B n C= 0, o(B) or o(C) is zero. (If not,

we can construct disjoint sets {An} with A = (JnAn and a(An) = l for each n.

But then {jn(\mAn+m= 0 =(\n(JmAn+m so a( 0 ) = limn o(An) = 1 contrary to

the assumption that o maps finite sets to zero.) Now define p;2A<>^>-2 by the

rule : p(B) = max {o(B') : B'^B};a straightforward computation shows that p is a

measure, so AQ and hence A has measurable cardinal.

Since the term is available, we call a cardinal squential if there exists a nonzero

real valued sequentially continuous function o: 2A ->■ R which maps finite sets to

zero. It is shown in [12] that each cardinal less than the first weakly inaccessible

cardinal is not sequential. Let II denote the space {0, 1} with topology {0, {0,1}, {1}},

and let R denote the real line.

3.2 Theorem. Let X=Y\aeA Xa where each Xa is not indiscrete and, for a space

Z, let P(Z) denote the assertion: Each sequentially continuous function f: X->Z

is 2-continuous. Then :

(i) P(II) if and only if A is countable;

(ii) P(R) if and only if card A is not sequential;

(iii) P(2) if and only if card A is not measurable.

Proof, (i) If A is uncountable, choose proper closed Ya^Xa and define/(x) = 0

iff {a : xa $ Ya} is countable. Then/_1(0) is proper, dense, and sequentially closed,

so /is sequentially continuous but not continuous. The converse is trivial.

(ii) Suppose card A is sequential and suppose o;2A->R is nontrivial and

sequentially continuous. Define /: Y\a Xa -»■ R by the rule f(x)=a({a : xa $ Ya})

where Ya are as in (i). It is easily verified that/is sequentially continuous but not

continuous.

Now suppose card A is not sequential, let  Ya^Xtt with 1 ̂ card (Ya)^2 for
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each a, choose x e \~[a Ya and let /: Y\a Ya -»■ £ be sequentially continuous. By

Theorem 2.1, the restriction of fito the S-subspace Y containing x is continuous, so

by for instance [5, Theorem 1] fi\Y extends to a continuous function/*: J~[a T«->£.

Choose any point y in YlaeA Ya and define a: 2A ̂ - R by the rule a(£)=/(x£y)

—f*ixBy) where xBy is the point with coordinates ya for a in £ and xa otherwise.

Since/and/* coincide on T, o maps finite (indeed countable) sets to zero, and o is

easily seen to be sequentially continuous. Since card A is not sequential, it follows

that o is identically zero, hence that 0 = o(Ä)=fixAy)—f*ixAy)=fiy)—f*iy).

Since y was arbitrary, /=/* and is therefore continuous.

It should be mentioned that the proofs of this section are based on refinements

of techniques introduced by Mazur in [12] and Varopoulos in [19]. Also, the

statement in (ii) holds with £ replaced by any regular Hausdorff space Z for which

either each point of Z, or the diagonal of Z x Z, is a sequential G6, by essentially

the same proof. This yields a corresponding improvement of Theorems 5.1 and

5.2. For results concerning ranges which are not regular, see [12] and [5].

4. Products of Ac-compact spaces. Where Y is any space, let Ac Y (resp. kR Y)

denote the set underlying Y endowed with the smallest topology making each

Ac-continuous (resp., real valued Ac-continuous) function on Y continuous. Define

s Y and sR Y analogously, using sequentially continuous functions instead of Ac-

continuous functions. Note that Y is a Ac-space (resp. sequential space) if and only

if T=acT (resp. Y=sY); we call a completely regular space Y a AcB-space (resp.

5B-space) if AcB T= Y (resp. sR Y= Y).

In contrast to §§2 and 3, whose results will yield applications of Theorem 1.1,

the results of this section will yield applications of Theorem 1.2. What we will need

are conditions under which Ac(A') or siX) will be countably compact, and conditions

under which /cB(X) and sRiX) will be pseudocompact, where X is a product space

riae.4 Xa- We begin with a result for more general spaces. Call a subset U of X

AcB-open, sB-open, etc., if it is open in kRX, sRX, etc.

4.1 Theorem. Let X be any Tx space,

if) kX is countably compact if and only if whenever S^ X is infinite, there exists

a compact subset K of X such that K n S is infinite.

(ii) sX is countably compact if and only if X is sequentially compact.

(iii) If X is completely regular, kRX is pseudocompact if and only if for each

infinite family of nonempty disjoint kR-open sets {Un}, there exists a compact set

£ç X such that K n Un^= 0 for infinitely many n.

(iv) Ifi X is completely regular, sRXis pseudocompact if and only if for each infinite

family of nonempty disjoint sR-open sets {£"}, there exists a convergent sequence

££ X such that S n Un=¿ 0 for infinitely many n.

Proof. For (i) and (ii) recall that a Tx space is countably compact if and only if

each closed discrete subset is finite. A subset of kX which meets each compact

subset in a finite set, or a subset of sX which meets each convergent sequence in a
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finite set, is closed and discrete. For (ii) and (iii), use complete regularity to con-

struct a function/: X-+R such that/(A'\Un Un) = {0}, while /_1(.>»})£ Un and

/| u" is continuous, n= 1,2,.... If each compact set (resp. each convergent sequence)

meets only finitely many of the Un,fis /¿-continuous (resp. squentially continuous).

The converse direction is obvious.

We might mention that (i) and (iii) were proved (and used) in [15]. Suppose

now that X=\~JaEA Xa. As examples in [8] show, the assumption that k(Xa) is

countably compact for each a does not insure that X, much less kX, will be count-

ably compact. However, if each Xa is strongly countably compact (each countable

subset has compact closure) then X is strongly countably compact, and therefore

kX is (strongly) countably compact. Regarding (ii), recall that X=Y\a<¡A Xa is

sequentially compact if and only if A is countable and each factor is sequentially

compact.

A space Y such that kR Y is pseudocompact is said to be /¿-compact. This term

was introduced in [4] where it is shown that /¿-compact spaces can, in the context

of function spaces, serve as a satisfactory substitute for compact spaces. Neverthe-

less, the following analogue of Tychonoff's Theorem is surprising.

4.2 Theorem. Each product of completely regular k-compact spaces is k-compact.

Proof. Let X=\~[aeA Xa with each Xa /¿-compact and suppose X is not k-

compact. Then there exists a countably infinite family, {£/"}, of nonempty disjoint

/¿■¡-open subsets of X which has no cluster point. Choose x" e Un and kR-open

Vn with xn e Vn such that the /¿„-closure of Vn is contained in Un. Then by Corollary

2.2 there exist finite FnQA such that SfB(xB)s Vn where SB(x) denotes the set of

points y in the S-subspace containing x such that ya = xa for each a in B. Thus the

/¿«-closure of each Y.Fn(xn) is contained in Un so (as in the proof of Theorem 1.1)

TJaeF„ {xâ} x Tla=A\F„ Xa is contained in U". Choose x' e Y\aeA\c Xa where

C=\JnFn and set X' = Uaec Xax{x'}. Then each Un meets X', so X' is not

/¿-compact. Thus we may, without loss of generality, suppose that A is countable,

say X=nieN Xi-

For each n, choose kR-open sets Vxn-Xh 1 ̂ /^n, such that

n ^n o?}=vn-
1=1 f>n

This is possible since/¿B(n?= i ^) = n"=i kRXby [18, Theorem 4]. Now by Theorem

4.1, if U is any infinite family of nonempty disjoint kR-open subsets of Xt, then there

exists a compact subset S of X{ and an infinite subfamily U' of U such that each

member of U' meets S. Thus, inductively, we may choose infinite sets JV,ç

{n : n^i} and compact subsets K¡ of X, such that NxçNi-x and, for each n e Nt,

K[ n K"# 0. Choose nt e Nx, note that {n,} is infinite, and set

Ki = K¡u{(x"i)¡:j< i}.
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Then each £¡ is compact, so £=rii K¡ is a compact subset of X. To complete the

proof (that is, to contradict the assumption that {£/"} has no cluster point) it

suffices to show that K n £/"/# 0 for each / For a fixed index j, define y1 as

follows: For i>j, (y')t = ixni\; for i£j iyj\ e K¡ n V?i (this intersection is not

empty since n¡e N¡^N). Now y'e K since, by the construction of £¡, (y)¡

= (x"/)ieA'i for j<i. Finally, /ei/»<, in fact, / e Fifi 1 *?' x fu > ny {(*"'),},

sincey'ç77, (because t7;- e N¡^{n : n^j}).

We naturally call a space T i-compact if sB Y is pseudo-compact.

4.3 Theorem. Let X=J~\aeA Xa where each Xa is completely regular and s-

compact. If card iÂ) is not sequential, X is s-compact.

Proof. Since card iA) is not sequential, the reduction to the case with A countable

goes through as in the proof of Theorem 4.2. Paralleling that proof, one constructs

points x" in Un n £ where £is a product of countably many convergent sequences.

Since £ is compact and first countable, it is sequentially compact so {xn} have a

convergent subsequence, as desired.

For our applications we need results slightly stronger than 4.2 and 4.3. The

proofs of these two theorems easily generalize to yield:

4.4 Theorem. Let X= T\a Xa where each Xa is completely regular, let Ya s Xa

and let Y=\~\a Ya.

if) If each Ya is pseudocompact as a subspace of kRiXç), then Y is pseudocompact

as a subspace ofkRiX).

(ii) // card A is not sequential and each Ya is pseudocompact as a subspace of

Sñ(Xa), then Y is pseudocompact as a subspace ofsRiX).

5. Sequentially continuous and /-continuous functions on products. The problem

of determining when finite products of Ac-spaces, AcB-spaces, sequential spaces or

jB-spaces will retain these properties has been studied in [14], [18], [20], and the

papers referenced therein. In particular, the results of [18] show that for X0 as

in the discussion following 2.2 and, for «ä 1, Xn a copy of the integers, FI™=o -*n

is not a AcB-space even though each finite subproduct is sequential (and 11"= 1 %n

is first countable).

Turning to infinite products, we begin with some additional terminology. Call a

space Y a Ac3-space if each Ac-continuous function on Y with regular (or equiva-

lent^ £3) range is continuous, and an iN-space if each integer valued sequentially

continuous function on Y is continuous.

5.1 Theorem. Let X=Y\aeA Xa where each Xa is not indiscrete,

if) If X is sequential, then card iA) is countable.

(ii) If X is an sR-space, then card iA) is not sequential.

(iii) Ifi X is an sN-space, then card iA) is not measurable.

Furthermore, if each Xa is of type 'tí*, the converse of each of these statements is

true.
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Proof. Theorems 1.1, 2.3, 2.4 and 3.2.

5.2 Theorem. Let X=Y\a^A Xa where each Xa is a completely regular sR-space.

If all but one of the Xa are pseudocompact, then X is an sR-space if and only if

card (A) is not sequential.

Proof. Suppose that for a/a0, Xa is pseudocompact. Let/: A"-> R he sequenti-

ally continuous, and let F^A be finite. We will be applying Theorem 1.2, and an

examination of the proof of that theorem shows that we may suppose that a0 e F.

Now for X'=sR(YJasA\F Xa) and X" = Y[tteF Xa, X" is a sequential space by [18,

Theorem 4] and X' is pseudocompact by Theorem 4.3. Hence by [17, Corollary 1]

ttf: X' x X" -» X" maps zero sets to zero sets. Now by [18, Theorem 4], X' x X"

is itself an 5B-space, so /: X' x X" -> R is continuous. It follows that n> of'1 is

closed. Hence by Theorem 1.2, A'is an sB-space.

Theorem 5.2 is best in the sense that if infinitely many of the Xa are not pseudo-

compact, then there exists an ¿«-space Xao such that \~laeA^(a0} Xa is not an sB-space.

(This follows by [18, Theorem 4].) However, if we restrict every factor, a somewhat

sharper result is possible.

5.3 Theorem. Let X—\~[aeA Xa where each Xa is a completely regular sR-space.

If each Xa is locally pseudocompact, then X is an sR-space if and only if card (A)

is not sequential.

Proof. Let /: X^-R be sequentially continuous, let U^R he open, let

x e/-1(i7) and let F be a neighborhood of/(x) such that cl V<=, U. For each a let

Sa be a closed pseudocompact neighborhood of xa. As in the proof of Theorem 5.2

(the necessary result on projections is given in [17, Theorem 2]) the restriction of

/to 5,=n<ieA Sa is continuous, so we may suppose that S is contained inf~\V).

For F-A let Y,F(S) = {x e X: for each a in F, xa e Sa, and xa $ Sa for only finitely

many a in A}. It suffices to show that ZF(S) is contained in/_1(cl V) for some

finite F (since then clSf.(5')ç:/"1(i7) is a neighborhood of X). Suppose not; then

we can construct a sequence {Vn) of /¿B-open sets such that

v»ç=Yisax n (xa\Sa)x n x«
aeA' aeF„ aeA"

where Ä={J"ÎZx Pi, A"=A\(A' u Fn) and Fn is finite and disjoint from A', such

that Vn nf~1(V)=0 for each n. Choose x" e Vn and set S'a = Sau {xn}. Each S'a

is pseudocompact (since S'a\Sa contains at most one point) so Yla «S'a = 5" is pseudo-

compact when topologized as a subspace of sR(X) (by Theorem 4.4). Hence

{Vn n S'} must have a /¿B-cluster point, and clearly that cluster point is in S.

This contradicts the fact that/-1(C0 is kR-open and completes the proof.

Recall that each T0 topological group is completely regular Hausdorff. Call a

group G an j-group (resp. /¿-group) if each sequentially continuous (resp. k-

continuous) homomorphism from G to a T0 group is continuous. By Theorems

1.3, 2.2, and 3.2 we have:
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5.4 Theorem. Let G = \~[asA Ga, let G0 = {xeG : card (8(x, e)) is not sequential}

iwhere e is the identity ofiG) and let H be any subgroup ofG0 which is invariant under

projections. Ifi each Ga is an s-group, then H is an s-group.

Note that (also by Theorems 1.3 and 3.2) the property "each sequentially con-

tinuous homomorphism whose range has a base at the identity consisting of open

subgroups is continuous " is preserved under products with nonmeasurably many

factors. The corresponding result for homomorphisms whose range contains no

small subgroups (for instance, any Lie group) also holds, by an easy adaptation

of the proof of [19, Lemma tt2]. For some much more interesting results concerning

sequentially continuous homomorphisms, see [19].

Turning now to Ac-continuous functions, note that by [7, Theorem 4.3] and

Theorem 4.1, countably compact Ac-spaces are preserved under countable products,

and by Proposition 2.3 spaces of type 'tí are preserved under countable products.

5.5 Proposition. Suppose each Xa is a Tx k-space. If \~[aeA Xa is a k-space,

then all but countably many of the Xa are countably compact, and the product of the

countably compact factors is pseudocompact.

Proof. A straightforward adaptation of the proof outlined in [11, p. 240]

shows that a product of uncountably many infinite discrete spaces is not a /c-space.

Since a Tj-space is countably compact if and only if it contains no infinite closed

discrete subspace, and since each closed subspace of a Ac-space is a Ac-space, it

follows that all but countably many of the factors are countably compact. Now a

product space is pseudocompact if each of its countable subproducts is pseudo-

compact, so the product of the countably compact factors is pseudocompact.

5.6 Theorem. Let X=\~[tteA Xa.

(i) Ifi each Xa is of type 'tí, then X is a k3-space.

(ii) If each Xa is a completely regular locally pseudocompact kR-space, then X

is a kB-space.

Proof, (i) Follows by Theorems 1.1 and 2.4, and (ii) follows by the obvious

adaptation of the proof of 5.3.

5.7 Theorem. If H is a subgroup of a product of k-groups and H is invariant

under projections, then H is a k-group.

Proof. Theorems 1.3 and 2.2.
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