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Introduction. A function f is sequentially continuous if the restriction of f to
each convergent sequence (including its limit) is continuous, and f is k-continuous
if its restriction to each compact subspace is continuous. If each sequentially
continuous (resp. real valued sequentially continuous) function with domain X is
continuous, X is a sequential space (resp. si-space); k-spaces and kg-spaces are
defined analogously.

In this paper we are concerned with determining conditions under which se-
quentially continuous or k-continuous functions on a product space X =1 [pes X,
will be continuous. Concerning sequentially continuous functions, our result in-
cludes conditions necessary and sufficient that a product of first countable spaces
be a sequential space or an sg-space. Concerning k-continuous functions, we
show that if each X, is either first countable or locally compact, then each k-
continuous function on X with regular range is continuous, and that products of
locally pseudocompact kgp-spaces are kz-spaces. We also consider sequentially
continuous and k-continuous group homomorphisms, and show, for instance, that
the property “each k-continuous homomorphism with T, range is continuous” is
preserved under arbitrary products.

All of these results are given in §5. §1 presents three fairly general conditions
which can be combined to force the continuity of functions on product spaces,
and these conditions are studied in §§2, 3 and 4. As incidental results we answer
negatively a pair of questions: “Is the Hewitt-Nachbin realcompactification of a
Fréchet space a k-space?”” and “If X and Y are normal k-spaces, is the k-extension
of Xx Y completely regular?” raised by W. W. Comfort and E. A. Michael
respectively (§2); answer a question posed by Keisler and Tarski in [10] by showing
that a certain condition on cardinals is equivalent to measurability (§3); and prove
an analogue of Tychonoff’s Theorem by showing that k-compactness (introduced
in [4]) is preserved under arbitrary products (§4).

1. Conditions forcing continuity. Recall that a subspace of X=]T,4 X, is called
a Z-subspace if it has the form {x € X: 8(x, y) is countable} for some fixed y in X,

Received by the editors January 8, 1969.

(*) This paper is an expanded version of the fourth chapter of the author’s doctoral
dissertation, which was written at the University of Rochester under the direction of W. W.
Comfort.

Copyright © 1970, American Mathematical Society

187



188 N. NOBLE [May

where 8(x, y)={a : x,#y,}. (Such subspaces have been studied in [3].) Call a
Z-subspace a X°-subspace if in fact each 8(x, y) is finite, and call a function defined
on a product space X-continuous (resp. X°-continuous) if its restriction to each
Z-subspace (resp. Z°-subspace) is continuous. Also, call a function 2-continuous
if it is continuous when restricted to each subspace of the form [],., Y, where
for each «, 1 Scard (Y,)<2.

1.1 THEOREM. Let Z be regular. If f: [lpen Xo — Z is Z°-continuous and 2-
continuous, then f is continuous.

Proof. Let U be an open subset of Z, let x be a point in f~*(U) and let ¥ be an
open neighborhood of x such that cl V< U. Let Y be the Z°-subspace which con-
tains x; since f~}(V) N Y is open in Y, there exists a finite subset F of 4 and
neighborhoods V, of x, such that for W=[Toer Vo X[ locarr Xo» WN YSfY(V).

Now suppose there exists a point y in W such that f(y) ¢ U, set Y’ =] Tues {Xs> Yo}
and note that, since f is 2-continuous, there exists a finite F’ such that for
W' =TTuer {¥a} X[ Taearr {Xe> Y}, W Sf (X \cl V). Since W' n W is clearly not
empty, this is impossible, so f(W)< U and hence f'is continuous.

Call f Z-semicontinuous (resp. Z°-semicontinuous) if whenever U is open and
x € f~}(U), there exists a finite F< 4 such that Zx(x) < f~}(U) (resp. 2¢(x) < f~X(U))
where Zp(X)={y : 8(x,y) is countable and disjoint from F}, and ZH(X)=
{y : 8(x, y) is finite and disjoint from F}. Recall that a map is closed if it carries
closed sets to closed sets, and let =5 denote the projection: [ [ges Xo —> [ laep Xo-

1.2 THEOREM. Let Z be regular. If f:1lses Xo — Z is 2-continuous and X°-
semicontinuous, and if wp o f 1 is closed for each finite F< A, then f is continuous.

Proof. Given x € f~*(U) with U open, choose V open with x € ¥V and cl ¥ U
and let F< A be finite such that ZX(x)<=f (V). Let X' =7x(X), X"=m4x(X) and
x'=mg(x) and note that, as in the proof of 1.1, x’x X" <f~*(U). Thus x" is not
in the closed set S=mzof~YZ\U), so x € (X'\S)x X"<f~}(U). Therefore f is
continuous.

Note that the proof actually shows: If f: ], X, — Z is X°-semicontinuous and
for each X°%-subspace Y of [ [, X,, 7x|y of|7* is closed for each finite subset F of
A, then f is Z%continuous. By the obvious adaptation of our proof, the corre-
sponding result for Z-semicontinuous functions and Z-subspaces holds.

For conditions under which 7 o £~ will be closed, see [6], [9], [16] or [17].

Where G=[], G, with each G, a topological group, we consider subproducts
of G to be embedded in G in the natural way (i.e., [ [oep Go=1 laes Go X [ lacais {€a}
where e, is the identity of G,). A subgroup H of G is invariant under projections if
m5(H) < H for each B< A. Note that the Z°-subgroup (=the direct sum of the G,),
the X-subgroup, and of course G, are invariant under projections.

1.3 THEOREM. Let G=T], G, where each G, is a topological group, let H be a
subgroup of G which is invariant under projections, and let 4 be a homomorphism
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on H with T, range. If  is separately continuous (continuous on each factor) and
XO0-semicontinuous (resp. Z-semicontinuous) then  is Z°-continuous (resp. Z-continu-
ous).

Proof. Let us first note that, like any separately continuous homomorphism
(since for P(x)e V and V' U, y(J[f-1 ¢ (V) N G)<U), ¢ is continuous on
finite products. For x € f ~(U) and V¥ such that V2< U let F< A be finite such that
2Ux)sy~Y(V) and let V'=¢ (V)N [leer X.. By the comment above, V'
is open; since Y(V'-ZUx))<=yp(V') - $(Z2(x))< V2= U, this shows that ¢ is °-
continuous. The obvious adaptation proves the remaining statement.

2. X-subspaces. A space X is called a Fréchet space if whenever x is in the
closure of Sc X, S contains a sequence which converges to x. Each Fréchet
space is sequential and each subspace of a Fréchet space is a Fréchet space—indeed,
a space is hereditarily sequential if and only if it is a Fréchet space. Our first result
generalizes the relevant portions of [12, Theorem II] and [5, Theorem 3].

2.1 THEOREM. Each Z-subspace of a product of first countable spaces is a Fréchet
space.

Proof. Let Y be a Z-subspace of [ [,c4 X, Where each X, is first countable, let
S< Y and let x be any point in the closure of S. For each « let {U? : n=1,2,...}
be a nested base for the neighborhoods of x,. Choose y’ in S and, inductively,
choose y" € 8 N [1sepmy U X [ Tsearnm X5 Where B(n)={e} : 1 =i, j<n} and the «}
are determined by index 8(x, y¥) as {e} : i=1, 2,...}. Such points y" can always be
chosen since neighborhoods of x must meet S.

We complete the proof by showing that {y"} converges to x. Let U be any neigh-
borhood of x and, without loss of generality, suppose U=([Tser UM X [ Tacarr Xz)
N Y for some integer m and some finite subset F of A. Since Fis finite and {(Bn)}
are increasing, there exists an integer n, such that F N U,B(n)< B(n,). Since for
o ¢ U,B(n), yr=x,, y" is in U whenever n>max {n,, m}, so {y™} converges to x.

2.2 CorOLLARY. FEach sequentially continuous function on ], X, is Z-semi-
continuous.

Proof. Retopologize each X, to be discrete and apply 2.1.

Incidentally, Theorem 2.1 provides examples answering questions raised by
W. W. Comfort and E. A. Michael in the context of [2] and [13] respectively.
Comfort asked if the Hewitt-Nachbin realcompactification »Y of a Fréchet space
Y is a k-space; the answer is no since if X is a product of uncountably many copies
of the reals, and Y is any X-subspace of X, then vY=X [3, Theorem 2] but X is
not a k-space [11, p. 240]. Michael’s question was: “Is the k-extension of Xx Y
completely regular when X and Y are k-spaces and are (completely regular, normal,
paracompact, N,-spaces)? We answer the first two: Let Y’ be a product of un-
countably many copies of the unit interval, and let ¥ be a Z-subspace of Y.
Since Y is not locally compact, there exists [14, Theorem 3.1] a paracompact
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Hausdorff (hence normal) k-space X such that X' x Y is not a k-space. Also, Y is
normal by [3, Theorem 1]. Since v Y=Y’ is compact, Y is pseudocompact,so X x Y
is a kg-space [18, Theorem 4]. It follows that the k-extension of X x Y (the smallest
topology on X x Y which makes X x Y a k-space and coincides with the product
topology on compact sets) cannot be completely regular.

Note that (by Theorem 2.1) each Z-subspace of [ [,, X, will be a Fréchet space
if each X, is itself a Z-subproduct of a product of first countable spaces. One cannot,
however, allow the factors to be arbitrary Fréchet spaces: Let X, denote the
quotient formed by identifying the limits of a countable collection of disjoint con-
vergent sequences. Then X, is a Fréchet space, but (as in the proof of [20, Theorem
6.11) X, x Yis a Fréchet space, for Y any T; space, if and only if Y is discrete. It
follows that if X is an infinite product of T;-spaces, one of whose factors contains
a copy of X,, then no Z-subspace of X is a Fréchet space.

Of course we do not really need Z-subspaces to be Fréchet spaces. To apply
Theorem 1.1 it suffices to know that certain functions on Z-subspaces are continu-
ous. Where Y is any space, let €(Y) denote the collection of compact subsets of
Y which, as subsets, have countable neighborhood bases. (For K< Y a neighbor-
hood base for K is a collection of open sets U, such that for ¥=K and V open,
V2U,2K for some o.) Let €*(Y)={K e ¥(Y): as a space, K is first countable}.
A space Y is said to be of pointwise countable type (we abbreviate this as ““of
type €”’) if there is a subcollection €(Y) of €(Y) such that for each y in Y, each
C in %, with y in C, and each neighborhood U of y, there exists a C’ in €, with
yeC'cUnN C. We say that Y is of type €* if €4(Y) can be chosen as a sub-
collection of €*(Y).

Spaces of type € were introduced and studied by Arhangel’skii in [1] where it is
shown that locally compact T spaces and spaces complete in the sense of Cech
(absolute G,’s) and of course first countable spaces, are of this type. Arhangel’skii
also proved the portion of the following proposition which applies to spaces of
type %.

2.3 ProOPOSITION. (i) Each space of type € is a k-space, and each space of type
€* is a sequential space.

(ii) Countable products of spaces of type € are of type € and countable products
of spaces of type €* are of type €*.

Proof. (i) Let Y be of type %, let U< Y be k-open (i.e. U N K is open in K for
each compact K) and let y € U. Choose C' in €,(Y) with y in C’; since U N C’
is open in C’ there exists an open U’ such that U' N C'=U N C’ and hence, by
the definition of spaces of type %, there exists a C in € with ye CcU' N C'cU.
Now suppose U is not a neighborhood of y and let {}'*} be a base for the neighbor-
hoods of C. Then for each n, V"¢ U so there exists a point y*e F™\U. Set
K=Cu{y":n=1,2,...}. Clearly K is compact, but since U N K=C is not open
in K, this yields a contradiction.
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Now let Y be of type €*, and proceed as above when U is sequentially open.
Construct K as before and note that K is sequential so that U N K should be
(but is not) open.

(ii) This follows by the obvious construction.

2.4 THEOREM. Let X =1 sca Xo. If each X, is of type €, then each k-continuous
function on X is Z-continuous. If each X, is of type €*, then each Z-subspace of X
is a sequential space (so each sequentially continuous function on X is Z-continuous).

Proof. Let f be a k-continuous function on X, let Y be a Z-subspace of X, let
U be an open subset of the range of £, and let y € Y N f~*(U). For each o« choose
C, € €,(X,) with y, € C,, and note that, since f~}(U) N [], C, must be relatively
open, we may suppose that [ ], C, is contained in f~*(U). Now suppose ¥ N f~1(U)
is not a neighborhood of yin Y. Then, as in the proof of 2.1, we construct a sequence
{y"} < Y\f~}(U) which “converges” to [], C,. Let K,=C, LU {y2}; then by con-
struction each K, must be compact, so {y"}<J]. K, must have an accumulation
point. Again by the construction, such an accumulation point must lie in [ [, C,,
but this is impossible since f~(U) N [, K, is open.

Now suppose each X, is of type €*, let Y be a Z-subspace of X, let Uc Y be
sequentially open and let y in U. Choosing C in €* with y, in C, we may, by
Theorem 2.1, suppose that C=]], C, N Yis contained in U. If U is not a neighbor-
hood of y, then as before we construct {y"}< Y\U which “converges” to [, C,,
hence to C. Let K=cl(C, U {y?}) and let B={a: K,#C,}; B is countable so
[ Taes K. is sequential by 2.3. Now ([ Tz C) N Y is sequential (by Theorem 2.1)
and contains no infinite closed discrete subspace (since [ [,eqs C, iS compact) so
by [18, Theorem 2], [ [, K; N Y=Tees Ko) X ([ Teearz C« N Y) is sequential. But,
as before, U N ([, K, N Y) is not sequentially open and we have the desired
contradiction.

Let us mention, although we do not wish to pursue it, that Theorems 2.3 and
2.4 remain true if, in the definition of spaces of type €*, one replaces the require-
ment that members of € be compact with the condition: Each countable subset
has compact closure, or any other condition which insures countable compactness
and is preserved under products.

3. Sequential cardinals. Theorems 2.1, 2.3 (and in fact 1.3) give conditions
under which sequentially continuous functions will be Z-continuous. In this section
we investigate conditions under which a sequentially continuous function will be
2-continuous. As one would expect, such conditions involve only the cardinality
of the index set A.

Let A4 be a set; 24 denotes the set of subsets of 4. For {S,} =24, we use lim S,=S
to mean that {S,} converge to S in the set-theoretic sense, i.e.,

- 0 ] L
S = O U Sn+m = nL=J m Sn+m-

n=1m=1 1m=1
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(Although it is not relevant to our considerations, it is interesting to note that this
is actually convergence with respect to a standard topology, the Vietoris finite
topology, on 24.) A function with domain 24 will be called sequentially continuous
if it preserves this type of sequential convergence.

Recall that the cardinal of A is measurable if there exists a nonzero (completely
additive) measure p: 24 — 2 (as usual 2 denotes the set {0, 1} with the discrete
topology) which maps finite sets to zero. Temporarily, call a cardinal strongly
sequential if there exists a nonzero sequentially continuous function ¢: 24 —2
mapping finite sets to zero. Although they are not given a name, strongly sequen-
tial cardinals are considered briefly in [10, p. 270] and our next result answers
one of the questions posed there.

3.1 THEOREM. A cardinal is strongly sequential if and only if it is measurable.

Proof. Since each measure is sequentially continuous, each measurable cardinal
is strongly sequential. Suppose A has strongly sequential cardinality and let
a: 24— 2 be as above. We first note that there exists a subset 4, of 4 such that
a(A4,)=1 and whenever 4,=B U C with BN C= @, o(B) or o(C) is zero. (If not,
we can construct disjoint sets {4,} with A=\, 4, and o(4,)=1 for each n.
But then U, N 4nsm= 2 =NnUmn Anim s0 o(@)=Ilim, o(4,)=1 contrary to
the assumption that ¢ maps finite sets to zero.) Now define u: 24 — 2 by the
rule: u(B)=max {o(B’): B'< B}; a straightforward computation shows that x is a
measure, so A, and hence 4 has measurable cardinal.

Since the term is available, we call a cardinal squential if there exists a nonzero
real valued sequentially continuous function ¢: 24 — R which maps finite sets to
zero. It is shown in [12] that each cardinal less than the first weakly inaccessible
cardinal is not sequential. Let II denote the space {0, 1} with topology{ &, {0, 1}, {1}},
and let R denote the real line.

3.2 THEOREM. Let X =]],., X, where each X, is not indiscrete and, for a space
Z, let P(Z) denote the assertion: Each sequentially eontinuous function - X —~Z
is 2-continuous. Then:

(1) P(11) if and only if A is countable;
(ii) P(R) if and only if card A is not sequential
(iii) P(2) if and only if card A is not measurable.

Proof. (i) If A is uncountable, choose proper closed Y,<= X, and define f(x)=0
iff {o : x, ¢ Y,}is countable. Then f~(0) is proper, dense, and sequentially closed,
so f'is sequentially continuous but not continuous. The converse is trivial.

(ii) Suppose card 4 is sequential and suppose o: 24— R is nontrivial and
sequentially continuous. Define f: [, X, — R by the rule f(x)=0({c : x, ¢ Y.})
where Y, are as in (i). It is easily verified that f is sequentially continuous but not
continuous.

Now suppose card 4 is not sequential, let Y,< X, with 1=card (Y,)=2 for
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each «, choose xe[], Y, and let f: [ ], Y, — R be sequentially continuous. By
Theorem 2.1, the restriction of fto the Z-subspace Y containing x is continuous, so
by for instance [5, Theorem 1] f|y extends to a continuous function f*: [], ¥, — R.
Choose any point y in [],c4 Y, and define o: 24 — R by the rule o(B)=f(xBy)
—f*(xBy) where xBy is the point with coordinates y, for « in B and x, otherwise.
Since f'and f* coincide on Y, o maps finite (indeed countable) sets to zero, and o is
easily seen to be sequentially continuous. Since card A4 is not sequential, it follows
that o is identically zero, hence that 0=0(4)=f(xAy)—f*(xAy)=f(y)—f*().
Since y was arbitrary, f=f* and is therefore continuous.

It should be mentioned that the proofs of this section are based on refinements
of techniques introduced by Mazur in [12] and Varopoulos in [19]. Also, the
statement in (ii) holds with R replaced by any regular Hausdorff space Z for which
either each point of Z, or the diagonal of Zx Z, is a sequential G;, by essentially
the same proof. This yields a corresponding improvement of Theorems 5.1 and
5.2. For results concerning ranges which are not regular, see [12] and [5].

4. Products of k-compact spaces. Where Y is any space, let kY (resp. kgY)
denote the set underlying Y endowed with the smallest topology making each
k-continuous (resp., real valued k-éontinuous) function on Y continuous. Define
sY and s;Y analogously, using sequentially continuous functions instead of k-
continuous functions. Note that Y is a k-space (resp. sequential space) if and only
if Y=kY (resp. Y=sY); we call a completely regular space Y a kg-space (resp.
sp-space) if kY=Y (resp. s;Y=7Y).

In contrast to §§2 and 3, whose results will yield applications of Theorem 1.1,
the results of this section will yield applications of Theorem 1.2. What we will need
are conditions under which k(X) or s(X) will be countably compact, and conditions
under which kz(X) and sx(X) will be pseudocompact, where X is a product space
T 1eea Xo. We begin with a result for more general spaces. Call a subset U of X
kg-open, sg-open, etc., if it is open in kX, sz X, etc.

4.1 THEOREM. Let X be any T, space.

(i) kX is countably compact if and only if whenever S< X is infinite, there exists
a compact subset K of X such that K N S is infinite.

(ii) sX is countably compact if and only if X is sequentially compact.

(i) If X is completely regular, kX is pseudocompact if and only if for each
infinite family of nonempty disjoint kg-open sets {U™}, there exists a compact set
K< X such that K\ U™+ @ for infinitely many n.

(iv) If X is completely regular, sy X is pseudocompact if and only if for each infinite
Jamily of nonempty disjoint sg-open sets {U™}, there exists a convergent sequence
S< X such that S ~ U™+ @ for infinitely many n.

Proof. For (i) and (ii) recall that a T, space is countably compact if and only if
each closed discrete subset is finite. A subset of kX which meets each compact
subset in a finite set, or a subset of sX which meets each convergent sequence in a
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finite set, is closed and discrete. For (ii) and (iii), use complete regularity to con-
struct a function f: X — R such that f(X\UJ, U")={0}, while f~({n})= U™ and
f|unis continuous, n=1, 2, . . .. If each compact set (resp. each convergent sequence)
meets only finitely many of the U™, f'is k-continuous (resp. squentially continuous).
The converse direction is obvious.

We might mention that (i) and (iii) were proved (and used) in [15]. Suppose
now that X=[T,., X,. As examples in [8] show, the assumption that k(X,) is
countably compact for each « does not insure that X, much less kX, will be count-
ably compact. However, if each X, is strongly countably compact (each countable
subset has compact closure) then X is strongly countably compact, and therefore
kX is (strongly) countably compact. Regarding (ii), recall that X=]T,c4 X, is
sequentially compact if and only if 4 is countable and each factor is sequentially
compact.

A space Y such that kY is pseudocompact is said to be k-compact. This term
was introduced in [4] where it is shown that k-compact spaces can, in the context
of function spaces, serve as a satisfactory substitute for compact spaces. Neverthe-
less, the following analogue of Tychonoff’s Theorem is surprising.

4.2 THEOREM. Each product of completely regular k-compact spaces is k-compact.

Proof. Let X=T],., X, with each X, k-compact and suppose X is not k-
compact. Then there exists a countably infinite family, {U"}, of nonempty disjoint
kg-open subsets of X which has no cluster point. Choose x" € U™ and kg-open
V™ with x™ € V™ such that the kp-closure of V'™ is contained in U™ Then by Corollary
2.2 there exist finite F, <A such that Zp (x*)< V'™ where Z(x) denotes the set of
points y in the Z-subspace containing x such that y,=x, for each « in B. Thus the
kg-closure of each Zp (x") is contained in U™ so (as in the proof of Theorem 1.1)
[Teer, {x3} X Tzear, X. is contained in U". Choose x'€]]seac Xo Where
C=\, F, and set X'=]Tec Xox{x'}. Then each U™ meets X', so X' is not
k-compact. Thus we may, without loss of generality, suppose that A is countable.
say X=[lien Xi.

For each n, choose kgz-open sets V;*< X;, 1 £i=<n, such that

n

[Tvex]] &meun

i=1 i>n
This is possible since kg(T [P~ X;)=]17-1 kzX by [18, Theorem 4]. Now by Theorem
4.1, if U is any infinite family of nonempty disjoint kz-open subsets of X;, then there
exists a compact subset S of X; and an infinite subfamily U’ of U such that each
member of U’ meets S. Thus, inductively, we may choose infinite sets N,<
{n : n2i} and compact subsets K; of X; such that N;S N,_, and, for each ne N,,
K{ N V# @. Choose n; € N, note that {n;} is infinite, and set

K, = K, U{(x™), : j < i).
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Then each K; is compact, so K=[T; K; is a compact subset of X. To complete the
proof (that is, to contradict the assumption that {U"} has no cluster point) it
suffices to show that K N UM# @ for each j. For a fixed index j, define y’ as
follows: For i>j, (3);=(x"); for i<j (»’); € K; N V4 (this intersection is not
empty since n;€ N;=N;). Now »’€ K since, by the construction of Ki, (')
=(x); € K; for j<i. Finally, y?e€ U%, in fact, y'e[[iL; Vi xTTlisq {(x™),
since j<n; (because n; € N;={n : nzj}).
We naturally call a space Y s-compact if 55 Y is pseudo-compact.

4.3 THEOREM. Let X=[Tsea X. where each X, is completely regular and s-
compact. If card (A) is not sequential, X is s-compact.

Proof. Since card (A4) is not sequential, the reduction to the case with A countable
goes through as in the proof of Theorem 4.2. Paralleling that proof, one constructs
points x™ in U™ N K where K is a product of countably many convergent sequences.
Since K is compact and first countable, it is sequentially compact so {x"} have a
convergent subsequence, as desired.

For our applications we need results slightly stronger than 4.2 and 4.3. The
proofs of these two theorems easily generalize to yield:

4.4 THEOREM. Let X=]1], X, where each X, is completely regular, let Y, < X,
and let Y=11, Y,.

(i) If each Y, is pseudocompact as a subspace of kg(X,), then Y is pseudocompact
as a subspace of kx(X).

(ii) If card A is not sequential and each Y, is pseudocompact as a subspace of
sr(X,), then Y is pseudocompact as a subspace of sp(X).

5. Sequentially continuous and k-continuous functions on products. The problem
of determining when finite products of k-spaces, kg-spaces, sequential spaces or
sg-spaces will retain these properties has been studied in [14], [18], [20], and the
papers referenced therein. In particular, the results of [18] show that for X, as
in the discussion following 2.2 and, for n2 1, X, a copy of the integers, [ [7-o X
is not a kz-space even though each finite subproduct is sequential (and [ 7, X,
is first countable).

Turning to infinite products, we begin with some additional terminology. Call a
space Y a ks-space if each A-continuous function on Y with regular (or equiva-
lently T3) range is continuous, and an sy-space if each integer valued sequentially
continuous function on Y is continuous.

5.1 THEOREM. Let X=][4ea X, where each X, is not indiscrete.
(i) If X is sequential, then card (A) is countable.
(i) If X is an sp-space, then card (A) is not sequential.
(iii) If X is an sy-space, then card (A) is not measurable.
Furthermore, if each X, is of type €*, the converse of each of these statements is
true.
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Proof. Theorems 1.1, 2.3, 2.4 and 3.2.

5.2 THEOREM. Let X=T],e4 X, where each X, is a completely regular sg-space.
If all but one of the X, are pseudocompact, then X is an sg-space if and only if
card (A) is not sequential.

Proof. Suppose that for a# o, X, is pseudocompact. Let 2 X — R be sequenti-
ally continuous, and let F< A4 be finite. We will be applying Theorem 1.2, and an
examination of the proof of that theorem shows that we may suppose that o, € F.
Now for X' =5z Tsear Xo) and X" =]T,er X,, X" is a sequential space by [18,
Theorem 4] and X' is pseudocompact by Theorem 4.3. Hence by [17, Corollary 1]
mr: X' X X" — X" maps zero sets to zero sets. Now by [18, Theorem 4], X' x X"
is itself an sg-space, so f: X' x X" — R is continuous. It follows that wp o f~1 is
closed. Hence by Theorem 1.2, X is an sg-space.

Theorem 5.2 is best in the sense that if infinitely many of the X, are not pseudo-
compact, then there exists an sg-space X, such that [ Jyeao(aq) X« IS NOt an sg-space.
(This follows by [18, Theorem 4].) However, if we restrict every factor, a somewhat
sharper result is possible.

5.3 THEOREM. Let X = ],cs X, where each X, is a completely regular sg-space.
If each X, is locally pseudocompact, then X is an sg-space if and only if card (4)
is not sequential.

Proof. Let f: X — R be sequentially continuous, let U< R be open, let
x €f~}(U) and let ¥ be a neighborhood of f(x) such that cl V< U. For each « let
S, be a closed pseudocompact neighborhood of x,. As in the proof of Theorem 5.2
(the necessary result on projections is given in [17, Theorem 2]) the restriction of
fto S=[Tuea S, is continuous, so we may suppose that S is contained in (V).
For F= A let 25(S)={x € X: for each « in F, x, € S,, and x, ¢ S, for only finitely
many « in A}. It suffices to show that X4(S) is contained in f~*(cl V) for some
finite F (since then cl Zx(S)<f~*(U) is a neighborhood of X). Suppose not; then
we can construct a sequence {¥'"} of kz-open sets such that

rre]Sex [] (\Sox [ ] Xa

acA’ a€Fn aeA”

where A'=\r-L F;, A”"=A\(4’ U F,) and F, is finite and disjoint from A’, such
that ¥* N f~1(V)= @ for each n. Choose x" € V'™ and set S, =S, U {x3}. Each S,
is pseudocompact (since S;\S, contains at most one point) so [ ], S,=S" is pseudo-
compact when topologized as a subspace of sg(X) (by Theorem 4.4). Hence
{V™» N S’} must have a kg-cluster point, and clearly that cluster point is in S.
This contradicts the fact that f~*(U) is kz-open and completes the proof.

Recall that each T, topological group is completely regular Hausdorff. Call a
group G an s-group (resp. k-group) if each sequentially continuous (resp. k-
continuous) homomorphism from G to a T, group is continuous. By Theorems
1.3, 2.2, and 3.2 we have:



1970] CONTINUITY OF FUNCTIONS ON CARTESIAN PRODUCTS 197

5.4 THEOREM. Let G=[Tea Go, let Go={x € G : card (8(x, e)) is not sequential}
(where e is the identity of G) and let H be any subgroup of G, which is invariant under
projections. If each G, is an s-group, then H is an s-group.

Note that (also by Theorems 1.3 and 3.2) the property “each sequentially con-
tinuous homomorphism whose range has a base at the identity consisting of open
subgroups is continuous” is preserved under products with nonmeasurably many
factors. The corresponding result for homomorphisms whose range contains no
small subgroups (for instance, any Lie group) also holds, by an easy adaptation
of the proof of [19, Lemma m,]. For some much more interesting results concerning
sequentially continuous homomorphisms, see [19].

Turning now to k-continuous functions, note that by [7, Theorem 4.3] and
Theorem 4.1, countably compact k-spaces are preserved under countable products,
and by Proposition 2.3 spaces of type € are preserved under countable products.

5.5 PROPOSITION. Suppose each X, is a T, k-space. If [lsea X. is a k-space,
then all but countably many of the X, are countably compact, and the product of the
countably compact factors is pseudocompact.

Proof. A straightforward adaptation of the proof outlined in [11, p. 240]
shows that a product of uncountably many infinite discrete spaces is not a k-space.
Since a T,-space is countably compact if and only if it contains no infinite closed
discrete subspace, and since each closed subspace of a k-space is a k-space, it
follows that all but countably many of the factors are countably compact. Now a
product space is pseudocompact if each of its countable subproducts is pseudo-
compact, so the product of the countably compact factors is pseudocompact.

5.6 THEOREM. Let X =] [qen Xo.

(i) If each X, is of type €, then X is a ks-space.

(i) If each X, is a completely regular locally pseudocompact kg-space, then X
is a kg-space.

Proof. (i) Follows by Theorems 1.1 and 2.4, and (ii) follows by the obvious
adaptation of the proof of 5.3.

5.7 THEOREM. If H is a subgroup of a product of k-groups and H is invariant
under projections, then H is a k-group.

Proof. Theorems 1.3 and 2.2.
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