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ON THE STRUCTURE OF CERTAIN

IDEMPOTENT SEMIGROUPS

BY

AHMAD SHAFAAT

Abstract. Some general theorems concerning residual finiteness of algebras are

given that are applied to show that every idempotent semigroup satisfying xyzx = xzyx

identically is a subcartesian product of certain simple semigroups of order two and

three.

Introduction. In this paper we present a technique involving a special type of

infinitely long sentence which seems of fairly general applicability in the study of

structure of bands (idempotent semigroups). The technique is applied to a special

type of band, namely normal bands to obtain a rather complete picture of their

structure. Some partial structural results on normal bands were obtained earlier

by Kimura [4]. Normal bands are also considered in [8] and [2].

For a more meaningful introduction to the paper we need some definitions. A

semigroup equation in a set X of variables is a formula V0 = Vx, where V0, Vy are

semigroup words in X, that is, finite sequences of variables chosen from X. A

semigroup identity or law is a statement of the form Vxi,..., xn(e), where £ is a

semigroup equation. Let Rx, R2 be two systems of semigroup equations in X and

let VX(RX -> B2) denote the statement that every solution of the system Rx in the

variables of X is also a solution of the system R2. A statement of the form

VX(RX —> B2) is called (cf. [5]) an identical semigroup implication. The length of

VX(RX -> B2) by definition is the cardinal number of Rx. Identities can be regarded

as implications of any given length by taking Bi to be a big enough set of equations

of the form V= V. Now a class Jf of semigroups is called [6] implicationally

defined if Jf can be defined by a set of identical semigroup implications. If 3t

can be defined by implications of finite length it is called a quasivariety. If Jf can

be defined by implications of length one we call it a semivariety. Finally, if Jf is

definable by implications of length zero then JT is called a variety. All these

concepts are special cases of the more general concept of a quasiprimitive class.

Our arbitrary class Jf is called quasiprimitive if it is closed under the formation of

isomorphs, subsemigroups and cartesian products of its semigroups. Let ß(JQ

denote the class of those semigroups that are embeddable in cartesian products of
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semigroups in $C. Then Q(J^) is the smallest quasiprimitive class containing Jf;

we call Q(ff) the quasiprimitive class generated by Jf?

The name quasiprimitive class is borrowed from [3], where a categorical charac-

terization of such classes is given. Implicationally defined classes are introduced in

[6], where they are characterized as uniform quasiprimitive classes. (A class Jf of

algebras is called uniform [6] if there exists a cardinal X such that an algebra A

is in Jf if and only if every subalgebra of A generated by S elements is in XI)

Quasivarieties are well known [1] and they are precisely [6] quasiprimitive classes

closed under the formation of direct limits. Varieties are also known as equational

classes and are the best known of the concepts defined above. G. Birkhoff's well-

known [1] result characterizes varieties as quasiprimitive classes closed under the

formation of homomorphic images. Semivarieties are introduced and characterized

in [7J. Apart from the characterization of implicationally defined classes we shall

not need the results mentioned in this paragraph.

The concepts of quasiprimitive classes, implicationally defined classes, quasi-

varieties, semivarieties and varieties become successively stronger as we go down

the list. I do not know of a quasiprimitive class which is not implicationally defined

although the existence of such a class is very likely. The concepts of implicationally

defined classes, quasivarieties, semivarieties and varieties can however be shown to

be distinct without great difficulty but we shall not concern ourselves with this here.

The last concept which we need to define for the time being is that of normal

bands. A band is merely a short name for an idempotent semigroup (that is, a

semigroup satisfying the identity x2=x) and a band is called normal if it satisfies

the identity xyzx = xzyx.

Our main result can now be stated as follows: Every quasiprimitive class of

normal bands is a semivariety and is generated by certain easily determined semi-

groups of order at most 3. This is stated later in more detail as Theorem 4 whose

proof occupies §2. Other results of the paper are collected in §1 and concern algebras

in general. The basic result (Theorem 1) of §1 is a straightforward generalization

of the following theorem of B. H. Neumann [5] : If every countable subgroup of a

group is residually finite (i.e., isomorphic to a subcartesian product of finite groups)

then so is the group itself. The technique used in the proof of Theorem 4 can be

outlined as follows : We first prove that all implicationally defined classes of normal

bands are semivarieties. Then we apply Theorem 3 (which is applicable to bands in

general) of §1 to conclude that all quasiprimitive classes of normal bands are also

semivarieties. Finally using the known description of the lattice of semivarieties

of normal bands we arrive at Theorem 4.

1. Some general results and a simple application to lattices. The concepts defined

above for general semigroups can be generalized to algebras in general without

any difficulty. We shall use such generalizations without further mention.

Throughout this section JT will denote an arbitrary quasiprimitive class of algebras
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with finitely many finitary operations although many of our definitions hold more

generally.

Following [5] we shall say that Jfis of countable (local) character provided that

an arbitrary algebra A belongs to 3f if and only if every subalgebra of A which

is generated by a countable (finite) number of elements is in Jf. Here 'countable'

includes 'finite'. We can now state the following generalization of Neumann's

theorem referred to earlier.

Theorem 1. If $C is generated by its finite algebras then Jf is of countable

character.

We omit the proof as it follows lines of the proof of the main theorem in [5].

Our next theorem gives conditions which imply that Jf is of local character.

Theorem 2. If CtC is generated by its finite algebras and all implicationally defined

subclasses of ' JT are quasivarieties then $f is of local character.

Proof. By Theorem 1 the class Jf is of countable character. By Theorem 1 of

[6] Jf is implicationally defined. By assumption Jf" is a quasivariety. From the

form of sentences defining a quasivariety we see immediately that every quasi-

variety is of local character. This proves the theorem.

Theorem 2 can be used to obtain a method of fairly wide applicability in finding

implicationally defined subclasses of Jf" that are not quasivarieties. This method

consists in looking for locally finite algebras in Jf that are not residually finite.

(An algebra is called locally finite if all of its finitely generated subalgebras are

finite and is called residually finite if it is isomorphic to a subcartesian product of

finite algebras.) We illustrate the method by the example of lattices.

Corollary 1. There are implicationally defined classes of lattices other than

quasivarieties.

Proof. Let i£ be the class of all residually finite lattices. Then if is a quasi-

primitive class generated by its finite algebras. By Theorem 2, therefore, the

corollary will be proved if we show that 3? is not of local character. Consider then

the lattice L defined on an infinite set L=>{0, 1} as follows:

x A y = 0 for all x,yeL-{\),

x A 1 = x for all x e L,

x V v = 1 for all x, y e L-{0},

x V 0 = x for all x e L.

It can be easily seen that L is locally finite but not residually finitei1). This shows

that 3? is not of local character and the corollary is proved.

0) An example of a lattice with this property was first pointed out to me by G. Gratzer.

This particular example presented here, which is probably the simplest possible, arose in a

discussion with M. Sekanina.
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For our purpose the following theorem is the most useful result of this section.

Theorem 3. Let Cf be a quasivariety of locally finite algebras such that every

implicationally defined subclass of' Cf is a quasivariety. Then:

(i) Every algebra in Cf is residually finite.

(ii) Every quasiprimitive subclass of Cf is a quasivariety.

Proof. Let Cf be the class of residually finite algebras of cf. In view of local

finiteness of algebras in Cf, Theorem 2 shows that cf = cf'. This proves (i).

Let cf* be an arbitrary quasiprimitive subclass of Cf. Let Cf + be the quasi-

primitive class generated by the finitely generated, and hence finite, algebras of

cf*. As in the proof of Theorem 2 we see that Cf+ is implicationally defined. By

our assumption it follows that JT+ is a quasivariety. We prove (ii) by showing

Cf+=Cf*. Since Cf+ is the quasiprimitive class generated by a subclass of the

quasiprimitive class Cf* we see immediately that Jf + çcf*. Let A e cf*. Then

finitely generated subalgebras of A, being in Cf*, belong to Cf + by definition of

Cf + . As a quasivariety X + is of local character, A e Cf+ and therefore Jf*£Jf+ .

This proves the theorem.

2. Structure of normal bands. In this section we turn to the structure of normal

bands. Some preliminaries are needed first.

In writing implications we shall often omit the quantifier part and write

VX(Rx -*■ R2) simply as Rx -*■ R2. This will of course notationally confuse equations

with identities but there will not be any ambiguity and context will make our

meaning clear.

IfRi={V01=V11, V02=V12,. ..,V0m= Vlm,...} we may sometimes write Rx^R2

as V0x= Vxx a • • ■ A V0m = VlmA ■ • • -> R2, specially when Rx is finite. A similar

remark holds for R2. Clearly every implication Rx -> R2 is equivalent to a set of

implications of the form R -^ W0= Wx, one for each equation in R2.

For a set S of identical semigroup implications we shall often write [2] for the

class of all semigroups satisfying 2.

Implications will usually be denoted by a, ß, y, a etc., variables by x, y, z, xu yx, Zi

etc., words by U, V, W, Ult Vu Wx etc., and sets of variables by X, Y, Z, Xlf Yx, Zx

etc.

If W=Xx- ■ -xn is a semigroup word we write H(W) = Xx, H*(W) = xn,

E(W)={xx,...,xn).

We define a left (right) normal band to be a band satisfying the law xyz=xzy

(xyz=yxz). A left (right) normal band is a normal band.

The next two lemmas are aimed at showing that all implicationally defined

classes of normal bands are semivarieties.

Lemma 1. All implicationally defined classes of left (right) normal bands are

semivarieties.
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Proof. We shall prove the lemma only for the left normal bands, the proof for

the other case being similar. All assertions in this proof are relevant only to left

normal bands. Thus if we assert that two sentences are equivalent we mean that

they are equivalent for left normal bands.

To prove the lemma it is enough to show that every implication of the form

(a) VX(R -> W0 = Wx)

is equivalent to one of length one. To this end we first recall Lemma 5.2 of [2]

which states that a quasiprimitive class of left normal bands is either a variety or

contains both Lvy=;c] and [xj=jx]. Using this we shall assume that [a]2[^=j],

[xy=yx] so that a is deducible from xy = x as well as xy=yx. Now observe that a

is equivalent to the three implications : R -> W0 = H(W0) Wx, R-+W0WX=WX W0,

R -> H(WX)W0= Wy. This shows that we have to consider only two cases accord-

ing as a satisfies (I) H(W0) = H(WX) or (II) H(W0)¥=H(WX) and E(W0) = E(WX).

Since a is deducible from xy=yx in Case I a proof of a from xy=yx can be easily

modified to obtain a proof of a from xyz = xzy (cf. proof of Lemma 4.10 in [2])

so that a is equivalent to the law x=x. This leaves us with Case II.

Assume then that a satisfies H(W0)^H(WX) and E(W0) = E(WX). Let H(W0)

=x0, H(Wx)=xx. Since a is assumed to be deducible from the law xy=x it is

easily seen that we can deduce from R an equation of the form x0V0=xxVx. We

complete the proof of the lemma by showing that « is equivalent to x=x or to

03) Xov0 = xxVx-^Wo=Wx.

That ß implies a is immediate since R implies x0V0=xxVx. To go in the other direc-

tion let Z be the set of variables xeX such that W0= V is deducible from R for

some V involving x. Let Zx denote the set of z e Z such that a relation of the form

Wx=zW0 is deducible from R. Consider the substitution s of the variables of X

defined as follows:

s(x) = WXW0, if xeZx,

= W0, if xeZ-Zy,

= WoVoViWo,       if xeX-Z.

We prove that if the equation x0 V0=Xy Vy holds then the equations of R hold under

the substitution s. In other words we want to prove that if U0 = Ux is in R then

s(U0)=s(Uy) is deducible from x0V0=xxVx, where for every word Uin X we write

s(U) for the result of replacing xeE(U) by s(x). First observe that E(U0)^Z

if and only if E(Ux)çZ. This shows that E(s(U0))=E(s(Ux)). If H(s(UQ))=H(s(Ux))

we clearly have s(U0)=s(Ux) without even using x0V0=xxVx. Let H(s(U0))

¿H(s(Ux)). From the definition of s it is clear that {H(s(U0)), H(s(Ux))}^{x0, xx}.

Without loss of generality we can suppose that H(s(U0))=x0, H(s(U1))=x1. If

one of the sets E(U0), E(UX) contains a variable from X-Z then so does the other
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and s(U0)=s(Ux) is equivalent to W0V0Vx= WxVQVx which can be deduced from

x0V0 = x1V1. Hence we can assume that E(U0), E(Ux)^Z. In view of the definition

of s we must clearly have H(Ux) eZx. Hence we can deduce from R the equation

H(Ux)rV0= Wx. As E(Ux)^Z we can easily deduce W0Ux=W0 from R which im-

plies the deducibility from R of H(Ux)UxW0= Wx and hence that of H(U0)U0W0

= Wx, since R implies U0=Ux. We conclude H(U0)eZx which contradicts our

assumption that H(s(U0))¥: H(s(Ux)). We have thus shown that a and x0V0=XxVx

imply s(W0)=s(Wx). If xQ$Z, then s(W0)=s(Wx) is equivalent to the equation

W0= Wx and the equivalence of a and ß is proved. If x0 eZx we can, by the defini-

tion of Zi, deduce x0W0= Wx or W0= Wx from R which implies that a is equivalent

to the law x=x. The proof of the lemma is complete.

All assertions in the rest of this paper are to be considered in relation to normal

bands only.

Lemma 2. All implicationally defined classes of normal bands are semivarieties.

Proof. We have to prove that the implication

(a) VX(R -> W0 = Wx)

is equivalent to one with length one. By Lemma 4.18, Lemma (4.18)* of [2] and

Lemma 1 above we can suppose that a is implied by every one of the laws xy=x,

xy—y, xy=yx. Now it is easy to see that a is equivalent to the four implications

(«i) R-*W0 = H( W0) WxH*( W0),

(«a) R^H( Wx) WoH*( Wx) = Wx,

(«a) R-+W0WxW0= WxWo,

(«4) R->W0WxW0 = W0Wx.

It is therefore enough to show that every one of alt a2, a3, <x4 is equivalent to an

implication of length one. Since a is implied by xy=yx so is ax. From the form of

ai it is easy to see, as before, that a proof of ax from xy=yx can be modified to

yield a proof of ai from xy=yx. Hence o^ and similarly a2 are equivalent separately

to the law jc=jc. Next we consider o¡3. Since a is implied by xy=x so is a3. It fol-

lows, as in the previous proof, that 7? implies x0V0=XxVx for some V0, Vx, where

x0 = H(W0), Xx = H(Wx). We can suppose that x0, Xx are distinct, for otherwise a3

can be dealt with like o¡i and a2. Let y be the implication x0V0=xiV1 -*■ W0WxW0

= Wx W0. Then the proof of equivalence of a and ß in Lemma 1 can be repeated

without change to obtain a proof of equivalence of a3 and y. The case of a4 is

similar and the proof of the lemma is completely indicated.

Recall that Q(Cf) denotes the quasiprimitive class generated by cf. If cf =

{Ax, A2,..., An) we write Q(AU ..., An) for Q({At,..., An}). Recall also that for

any implication a the class of all bands satisfying a is denoted by [a].
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Let Sx be the semigroup on {0}. Let S2, S2, Si be the bands on {1,2} defined

respectively by: (-) 1-2=1, 2-1=2, (0) 1-2=2-1=2, (+) 1-2 = 2, 2-1 = 1. Let

S3, S3 denote the bands obtained by adding a zero 0 to S2 , S2 respectively.

Then we have

Theorem 4. All quasiprimitive classes (of normal bands) are semivarieties and are

precisely those given in the following list which also shows the implications defining

them:

(1) ß(Si)=[x=j],

(2) Q(S2) = [xy=x],

(3) Q(S$)=[xy=yx],

(4) Q(Si)=[xy=y],

(5) Q(S2, Sl) = [xz=yz -> xy=yx],

(6) Q(S2,S}) = [xyx=x],

(7) Q(S°2, Si) = [zx=zy^xy=yx],

(8) ß(52", Si, Si) = [xzy^yzx -> xy=yx],

(9) Q(S3) = [xyz=xzy],

(10) Q(St) = [xyz=yxz],

(11) Q(S3, Si) = [zx=zy -> xyx=xy),

(12) Q(Si,S2) = [xz=yz-^-xyx=yx],

(13) Q(S3,S3+) = [x=x].

Proof. First note that normal bands are locally finite. This follows from the

easily verifiable fact that under idempotency and normality every semigroup
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word in « variables is congruent to one of length at most « + 2. In view of local

finiteness of normal bands Theorem 3 and Lemma 2 immediately show that all

quasiprimitive classes of normal bands are semivarieties. Now the lattice of semi-

varieties of normal bands is known [2] and is described by Figure 1.

Now (1) is trivial and (2)-(7)(2) can be read immediately by Figure 1. To see

(8) first note that S3 is left normal band which does not satisfy xz=yz^-xy=yx

(take x= 1, y=2, z=0). Moreover S2, Si are embeddable in S3. Hence from (5)

[xz=yz^-xy=yx]<^Q(S3)^[xyz=xzy]. Figure 1 then immediately says that

[xyz = xzy] = Q(S3). Proofs of the equalities (9)-(13) are similar and are omitted.

We state parts of the above theorem in slightly different forms in the following

corollaries that are immediate from the fact that S2, S2 (Si, Si) are the only

nontrivial subsemigroups of S3 (S3).

Corollary 2. Every normal band is a subcartesian product of some of the bands

S2 , S2, S2 , S3, S3 .

Corollary 3. Every left (right) normal band is a subcartesian product of some of

the bands S2, Si, S3 (S¿, S°2, S3+).
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