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MEASURE-PRESERVING TRANSFORMATIONS
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Abstract.   Let T be an ergodic measure-preserving transformation of a Lebesgue

measure space with entropy h(T). We prove that T has a generator of size k where

1. Introduction. In this paper we are concerned with ergodic invertible measure-

preserving transformations of a Lebesgue measure space {E, 93, p). By a partition

{An : n e 0} of E we shall mean a finite or countably infinite collection of disjoint

sets An e 33 of positive measure such that

E =  U An.
nee

We call a partition {An : n e 0} a generator of an i.m.p.t. T of {E, 93, p) if 93 is

generated by

Ü   {T'An:ned}.
i= -00

For the theory of entropy and generators of i.m.p.t. we refer to [1], [4], [5] and [6].

It was proved by V. A. Rohlin that every aperiodic i.m.p.t. with finite entropy

has a generator with finite entropy [6, 10.7]. We shall prove in §2 that every ergodic

i.m.p.t. with finite entropy has a finite generator, thereby solving a problem that

was posed by V. A. Rohlin [6, p. 30].

Throughout most of this paper we shall be given a finite or countably infinite

state space Q. For finite Q we shall prove in §3 an approximation theorem for

probability measures on Q.z that are invariant under the shift S,

{Sx)i = xi+1,       ieZ,       x = (x,)," _„„ e Q.z.

This theorem will enable us to derive in §4 from the work of A. H. Zaslavskil [7]

a formula for the minimal number of elements that a generator of an ergodic i.m.p.t.

can contain. Denote this number by A(r). If the entropy h{T) of T is infinite then

ACT) is also infinite, if h{T) < oo, then A(T) ̂  eh(T\ Our result is

A(D è eÄ(r)-r-l.
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This answers for the ergodic case another question raised by Rohlin [6, p. 30].

In particular it follows that every ergodic i.m.p.t. with entropy zero has a generator

with two elements. This was known before in the case of the quasi-discrete spectrum

[3, p. 187].

2. The existence of finite generators.

(2.1) Theorem. Every ergodic i.m.p.t. with finite entropy has a finite generator.

Proof. 1. Let {An :neN} be a partition  of (E,%$,p) with finite entropy.

Then there exists a mapping n-+ Kne N (ne N) and a 1-1 mapping

r.N^ (j {1,2,3}*
fc = l

where <p(«) e {1, 2, 3}K*, ne N, such that

(1) 2 K»p(A*) < °°-
n=l

For a proof of this let p(An)^p(An+1), ne N, and let /(«), « 6 N, be nonnegative

integers such that

(2) -logp(An)- 1 < /(«) í -logp(An),       « £ TV.

Let further

«! = 1,       nm = min{« > nm_1 : l(n) > l(nm_-¡)},       m > 1.

Then

2   (»m+l-«m)3-«».»>  =    2   3",<n)'
m=1 n=1

and we see from (2) that

CO

2   («m+l-«m)3-,<n-'  S  e.
m=l

Consequently, for some m0 e N,

(3) «m+i-«m < W,       m ^ m0.

We set Kn = l(n), n ä nmo. By (3) it is possible to assign to every n ^ «mo an element

<p(«) of {1, 2, 3}K" such that « -> <p(«), n^nmo, is 1-1. The inequality (3) also shows

that it is possible to define the <p(n) e 1J^= i {1, 2, 3}fc, 1 ̂  « < «mo, in such a way that

9:N^ Q 0,2,3}*
fc=i

is 1-1. In order to show that (1) holds it suffices to show that

oo

2   Knp(An) < oo,
n = nmQ
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and this follows from the finiteness of the entropy of {An : ne N} and from (2) :

oo CO oo

2   Knp{An) Ú  2 Kn)p{An) =g  2   -p{An) log p{An) < oo.
it« nmo n = 1 n= 1

2. Let O be a finite set containing more than two elements. Let aeû, C e N,

and let

X=ix {{x^à^-.e^^y :

xu ^ ">, 1 ^ 7 < A, -^i.D, = üj, - oo < /' < oo U

and

Xc =   ñ    Ü {* = ((*,.,)?= X-« e * :  T (Dm-C) £ o).
k = - oo ¡ = i i „rrv.

We are going to construct a 1-1 Borel mapping U: XC^{QF)Z that commutes

with the shifts.

Let x = {{xUj)f±1)¡°=_xeXc and let T={ieZ: A>C}. We define for ieT,

C<jïDt,

(4) /ft/) = min íl> i: j- C+   2   (A»- Q ^ o),
L i<mSl J

(5) JQJ)=J+    2    (A.-C).
i<mS«i,))

It follows that

A«.» < AU) ^c,     i e r,   c < y < A-

The mapping

ft/) -► (/ft y), /ft /))     (i g r, c < y ̂  A)

is 1-1. Indeed, had we i, i' e F, C<j^D¡, C</'< A'.

{I{i,j),J{i,j)) = (/(/', y), /(i',;")),

and say í < /", then we could infer from (5) that

/+     2      T)m = J{i,j) + {I{i,j)-i)C,

2 An ̂  J{i,j) + {I{i,j)-i')C,
i'SmSKU)

and therefore that

/+ 2 ^ = o"-oc,
i<m<¡'

in contradiction to/> C or to (4). We define now

Ux = {{yiJC=1)?=_0Oe{W)z
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by setting

ytJ = xu,       if i 6 Z,    \ <t] £ min (C, A).

ym.n.j»,n = xu,       if / e T,    C <j è A.

and by setting yu = a, a e Í2, <x ̂ tu, elsewhere. £/ is Borel and it commutes with the

shifts. We prove now that it is 1-1 by showing that the D¡, i e F, can be computed

from Ux.

Denote

4(0 = At A),  4(0 = /ft A),     ¿er,
and

c

Auo = 2 s<».»u'    'e z-

We have for /, i' eT

(6) / < i' < 4(0 => 40") ̂  4(0.

(7) i < 40") < 4(0 =» * < «'.
(8) / < i',   4(0 = 40") => 4(0 > 40").

From these relations and since i-+ (4(0> 4(0) 0'e T) is 1-1 we have

/«to
2      i\ro(m)+ 2 S».w.<„.,

K»<W) i=l

= |{/' e z- r : i < i' s 4(0}| +10" e r : i < 40") < 4(0)1

(9) + \{ï e r : 40") = 4(0,40") < 4(0)1 +1
= |{i' eZ-T:i<i' g 4(0)1 +10" 6 r : / < /' < 4(0)1 +1
= 4(0-i+i.     ter.'

And we have from (7)

2   Njm) = |0" 6Z-r : i < i' ^ ¿}| +10" 6 r : i < 40") ^ ¿}|
KmSI

(10) = |0" eZ-r : i < i' á L}| +10" 6 r : i < j' < L}|

Ú L-i,      ieT,   i < L < 40).

Now we see from (9) and (10) that

(11) 4(0 = minil, > i :    2   W»(m) > £-'}'       'e r

and that

(12)

4(0 = min jl < / ^ C :     2    N«^
I i<m< /„,(()

í=i ;
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Next we observe that

(13) A =/»(O+iUO-OC-    2     A».      ieT-

We know from (6) that

(14) i < i' < IJf) => 40")-'" < 4(0-1,       », i" e r.

It follows that if z'o e T is such that

4('o)-'o = min {/„O')-' : 'e r)

then i'0<i'^40o) =*■ ieZ—T and we see from (13) that A0 can be computed

from the yu, 1 SjèC, ie Z. Finally (14) implies also that (13) can be used as a

recursion formula to compute all the A. ' e r» from Ux.

3. By Rohlin's result [6, 10.7] every ergodic i.m.p.t. is isomorphic to the shift

on Nz together with an invariant probability measure n such that the partition

{(«,)£ -meNz :n0 = m),       meN,

has finite entropy. By part 1 of the proof there is a C e N and a 1-1 mapping

n -► (xn>1,..., xn,Kn) e Q {1, 2, 3}"       ft e N)
fe=i

such that

(15) 2 ^mK{("i)r= -*eNz:n0 = m})<C-l.
m=l

We use this mapping to build a 1-1 mapping

V : («Of. _ oo -> ((*„,.!> • • •, *»„*„,, «>))<- - oo e *       ((«,)£ _ . e AP)

that commutes with the shifts, where we can set &={1, 2, 3, tu}. The individual

ergodic theorem and (15) yield

1    L
lim - 2 {Kni + l-C) < 0,       for /x-a.a. («Oil-« eNz.

L->oo   L, j^J

Hence/i(K-1Zc)=l.

By part 2 of the proof there is a 1-1 Borel mapping

U: Xc -> Q*

that commutes with the shifts. If we set for a Borel set Fc Qz,

v{F) = ^V-W^F),

then we find that {Nz, n, S) is isomorphic to (Dz, v, S). (If a finite Borel measure

on a polish space is transported via a 1-1 Borel mapping to another polish space

then the Borel mapping becomes an isomorphism between the measure space
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given by /x and the measure space that is given by the transported measure. This

can be seen from the fact that every analytic subset of a polish space is measurable

with respect to every finite Borel measure (see e.g. [2, §6, n°9]).    Q.E.D.

3. An approximation theorem for shift-invariant measures. Let Q be a state

space containing a finite number n of elements, « ̂  2. We define for a probability

measure p. on Q.1, IeN, such that p.(a) > 0 for all aeQ.'

Ä60 = -       2     ^ l08 v   ((n M(a) „-7V

We denote by W,, IeN, the set of all probability measures p, on Q' such that

p.(a) > 0, a e Q', and

p.({b e £2' : a = (¿()/.i}) = K{b e Q> : a = (6i+Xi)).

1 á m S I-1,   aeQ1,    \ ^ I < I.

Further we set

Za = {xeQz :a = (x¡)í=1},       aeQ.1,   IeN.

For p. e SDÎ,, IeN, we define a shift-invariant probability measure ß on Oz by

fi(Za) = p,(a),       a e Q',

«2»^.,) =-tt$-\i'        (ai)i=ie ü .   / > 7-

We note that (see [6, 5.10]) h(fi.) = h(p.), p. e 9JÎ,, IeN, and that the fi are ergodic.

Indeed, the systems (fi, S1), p. e Wl,, arise from indecomposable Markov chains.

For probability measures p., v on Q', IeN, we use the metric

l/x, v\ =  max \pL(a) — v(a)\.
aen'

Let I, N e N, I<N. We define for x e QN+/_1 a probability measure A^' on Q' by

A«>(a) = JV-1 2 W.-.x'-i»       ^il'.

We set also

^(7, (i, 8, N) = {xe QN+'~1 : |A<?, p| < 8},       /» e 2K„    8 > 0.

(3.1) Lemma. Let p. e 50í7, IeN and let e, 8 > 0. TAe« there is an L>I such that

\A(I, p., 8,N)\> exp [(Ä0*) - OAT],       JV ̂  L.

Proof. The mean ergodic theorem and the Shannon-McMillan theorem [1, p.

129] show that there is an L e N such that for all N^L

¿({xeQ*: |A«>^v-i,H < 8}

n{xeQ* : |ArMog/KZ(je,ftV-i)+ÄGi)| < «}) > e"6.
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We infer from this that

\A{I, fi, 8, 7V)| > exp [{h{lx)-e)N-e],       N ä L. Q.E.D.

We say that an ae Q', leN, is a coding sequence if

{at)T=i ¥= (a,-m+í)?=i,       \ Ú m < I.

We say that an a e Q} is an a-coding sequence of length / if a( = a, l¿i<l and

at = ß^a. We set for I,NeN,I<N,ne 90Í, and 8 > 0,

Ba{I, p., 8, N) = {xe A{I, M, 8, N) : (xm+l){. ,^,0 5«^-/+]-/}.

(3.2) Lemma. Let peWl,, IeN, and let 8, e>0. Then there   exists a KeN

with the following property: For all a-coding sequences a of length L^K

\Ba{I, p, 8,N)\> exp [(/¡Oz)-£)/V],       N ï L.

Proof. By (3.1) we can find an M e N such that

(1) \A{I, m, 8/2, N)\ > exp [ftft)-£)/V],       N ^ M.

We claim that any KeN such that

(2) K > 4(M+/)e-18-1n

has the property that is stated in the lemma. Indeed, if a is an a-coding sequence

of length L then with ß^a

Ba{I, (., 8, N) s .4(7, m, 8, N)

n{xeiF-'+1 : xWL_2) = ß, 1 ¿ k á (7V+/-1XL-2)-1}.

If L^K, then L-2-I>M. Hence, by (1), (2) and (3),

|2?0(/, fi, 8, 7V)| > exp [(/¡ft)-<0(l -eÀft)"1)^]

> exp [(Äft)-2£)/V]. Q.E.D.

We set for/, JVe/V

<R(/, TV) = ik = fta)aen* eZ"':ia>0,fl£ Q',   2   *. = A
I aen' J

and for k e m{I, N)

h{k) = ¿(Ov-^W),

C(/, JV, A:) = {x e Ci»*''1 : ka = N\f{a), a e Í2'}.

(3.3) Lemma. For all k e m{I, N)

,_.   /\[\1I2

\C{I,N,k)\ <exp(Äft);V)n   F     •
aefjí VW



460 WOLFGANG KRIEGER [June

Proof. It is

I Z. k(a.0,-1,0))!

\C(I,N,k)\ g«'"1 fi  TTT-r
oen'-i   11   «(oi.a,-i,a)-

OEQ

=«'-n (i**.üi(nw)"'
oe£5'-l\ae£2 /      \6en' /

The lemma follows from this by an application of Stirling's formula.   Q.E.D.

Denote

Xa = {x e Qz : Slx eZa, S~'xe Za, for infinitely many i, j e N},   aeQ1, IeN.

(3.4) Theorem. Let p. be an ergodic shift-invariant probability measure on Qz

such that

p.(Za)>0,       aeQ',   IeN,

and let v e 9JI,, IeN, h(v) ̂  h(p). Let e>0. Then there exist coding sequences b and

c and a homeomorphism U: Xb -► Xc that commutes with the shift, such that

|Mt/_1Z0)-Ka)| < e,       aeQ'.

Proof. We remark first that we can restrict attention to the case h(p.)<h(v).

Indeed, if h(p) = log n, then

p.(Za) = v(a),       a e Q',

and if h(p) = h"(v) < log «, then there is a v e W¡ such that

h(p) < h(v),

and \v'(a)-v(a)\ <e¡2, a e Q'.

Let therefore

4£ = h(v)~h(n) > 0.

We choose an I' ^I such that Uy)-h(p!) < Ç, where p.'(a)=p.(Za), a e Q''. Let

(4) 6e' = n'-''e.

Let also

v\a) = î(Za),       a e Q'\

We set 28 = minaenr p.(Za) and

FN = {xe &*r-i ; h(XP)-h(p) < 2Ç, min XP(d) > s),       N > /'.

As a consequence of the individual ergodic theorem there is an M e N such that

(5) J     fi      {x e Qz : (x^m» e FM._M^r+2}) > 1 -e'.
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By (3.2) we can also find an L e N, L^n, such that for all y-coding sequences c

of length L'^L

(6) \BC{F, ,', e', N)\ > exp [ftft)- QN],       N Z U.

Let further / e /V, /> £_1, be such that

(7) /-"''8<n'''2)exp(/0 > 1.

We choose now a K^L and au ..., aK e Q. such that

(8) {I' + M+J+K)n-K < e',

and

(9) KZwFml) < »-*.

Let b e Q2K+1 be the coding sequence that is given by

bk = ak, if 1 á k £ K,

= «l3 if Ä: = a:+i,

= y*ax, if K+l < k g 2K+Sl,

and set

2K + 1

y=üz- u s%.

We have from (8) and (9)

(10) piY)>\-2e'.

We define for x e Y

i+{x) = min{i ^ 0 : S'xeZ,,},       /-(*) = min{i ^ 0 : J-'-^-'eZ»}.

(3.3) together with (6) and (7) implies that for a y-cotung sequence c of length

2K+1

\Bc{I',v',e',N)\ \Fz\~1 > exp[(Äft)-0^]^-n''3(n''/2)exp[-ftft)+2f)iV]

= Ar-n''8(n''/2) exp (¿W) > 1,       N ^ J+2K+1.

We see now that there are mappings <pN, N e N, of Q" onto itself such that

<pN+r-i{{aeFN : {at)\±2* * b, 1 £ I £ N+F-2K}) c BC{I', v', e', N),

NZJ+2K+1,

and such that

^({a e £2» : (¿¿{if* ¥> b, 1 S / Sí AT-2A3)

= {flen": ftOít?* /c.lglá #-2*},       TV ̂ 2/M-1.
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We define now a homeomorphism U: Xb -> Xc, that commutes with S by

setting for x eZ„ r\ Xb, Ux=y, where

yt = c„        l èi â 2K+1

(yÙi= -i~(x) = 9>i'(.x)+l(X¡)i=-i-(x).

To conclude the proof of the theorem we use (5), (8), (9) and (10) to get

p.({xeY:i+(x) + i-(x) ^ J+2K, i+(x) ^ I'-l, (x^Víi-^ eF(+(w+t-(JC)_r+a})

> p.({xe Y: /+(x), i~(x) ^ I' + M+J+K})-e'

> l-2(r + M+J+K)n-K-3e'

> l-5e'.

We infer from this by applying the individual ergodic theorem that

(v\a) -e'Xl - 5«') < p.(U~XZ¿ < v'(fl) + 6e',       a e Qr.

Finally by (4)

\p.(U-1Za)-v(a)\ < e,       aeQ'. Q.E.D.

We want to point out the following consequence of (3.4). Let

x= ñ n, *.,
7=1 oe£2'

and let Wh be the set of shift-invariant ergodic probability measures p. on Qz

such that p.(Za) >0, aeQ', IeN, and /n( JT) = 1, h(p) = h, 0 g « á In «.

The SDiÄ with the weak topology are polish spaces. The group © of homeo-

morphisms of X that commute with the shift acts on 9Rh by p. -> i/ii, /x e 9Jfft,

£/ e ©, where

tWZo) = M U - xZa),       aeQ',   IeN.

The homeomorphism that we have constructed in the proof of (3.4) maps X onto

X. It follows therefore from (3.4) that the transformation groups (@, 9)1,,) are

minimal, 0^/zaln «.

4. An estimate for A.

(4.1) Lemma. For every ergodic shift-invariant probability measure p. on Qz

there exists a shift-invariant probability measure v on Qz such that for all a e Q',

IeN, v(Za) > 0, and such that the systems (Qz, p., S) and (Qz, v, S) are isomorphic.

Proof. If there is a de (Jf=i &', sucn that tt(^d)=0, then we can assign in a 1-1

manner to every a e (J/°= i &' a coding sequence b(a) that contains a as a subse-

quence such that /x(Z(,(a)) = 0. Let L(a) be the length of b(a). We can find Borel

sets Aa<= Qz such that for all a, a' e IJ/= i &'

p.(SlAa n S'',4a) = 0,       0 á /,   /' û 2L(a),



1970] MEASURE-PRESERVING TRANSFORMATIONS 463

and

ll2.Ua) \ /2Ua') \\

Choose c{a) e Q1Co) such that /x(Zc(a) n 4a)>0.

A Borel mapping U: Qz->- Qz that commutes with the shift can be defined by

(£/*), = x„       if S'x £ U   U   (Zc<a) n ¿J,
7=1  aefi'

and

t/x e Zc(0),       if x e Zc(0) n 4a,   a e Í27,   / e /Y.

Setting for a Borel set Fe Q.z, v{F)=fj.{U'1F) proves the lemma.   Q.E.D.

(4.2) Lemma. Let T be an ergodic i.m.p.t. of{E, 93, p) with a generator

{A0,...,Am},       m > 1,

such that

p{A0) > p{A1) + 2p{A2).

ThenA{T)Sm.

Proof. This lemma follows from a slightly generalized version of a theorem of

A. H. Zaslavskil [7, p. 295].   Q.E.D.

(4.3) Theorem. Let Tbe an ergodic i.m.p.t. Then A{T)^ehm+\.

Proof. By (2.1) there exist a state space Q={0,..., m}, meN, and a shift-

invariant probability measure ¡j. on Qz such that T is isomorphic to the system

(Qz, fi, S). By (4.1) we can assume here that ¿n(Za)>0, aeD.', IeN. If now

m>ehm, then we can find a q, 0<q<(2m)~1 such that

A((Afc)¡?=0) > KT),

where

A0 = n'1+q, Ai = n'1 — 2q, A2 = q, Xk = n'1,       2 < k S m.

From (3.4) we see now that there is a shift-invariant probability measure v on Qz

such that (fíz, ¡x, S) is isomorphic to (Qz, v, S) and such that

\<Zik))-Xk\ < q¡4,       lSigm.

It is then

V(Z(0))   >  v(^(l)) + 2l'(Z(2))

and the theorem follows by means of (4.2).   Q.E.D.

(4.4) Corollary. Let T be the cartesian product of the n-shift with entropy

In n, «2:2, and an ergodic i.m.p.t. with entropy zero. Then A{T) = n+ 1.
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