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ON ENTROPY AND GENERATORS OF
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Abstract. Let T be an ergodic measure-preserving transformation of a Lebesgue
measure space with entropy A(T). We prove that T has a generator of size k where
eh(T)é k §eh(T)+ l.

1. Introduction. In this paper we are concerned with ergodic invertible measure-
preserving transformations of a Lebesgue measure space (E, B, p). By a partition
{4, : ne 6} of E we shall mean a finite or countably infinite collection of disjoint
sets A, € B of positive measure such that

E= U 4,
neo
We call a partition {4, : n€ 6} a generator of an i.m.p.t. T of (E, B, p) if B is
generated by
C) {T'4, :neo).
f=— o

For the theory of entropy and generators of i.m.p.t. we refer to [1], [4], [5] and [6].
It was proved by V. A. Rohlin that every aperiodic i.m.p.t. with finite entropy
has a generator with finite entropy [6, 10.7]. We shall prove in §2 that every ergodic
i.m.p.t. with finite entropy has a finite generator, thereby solving a problem that
was posed by V. A. Rohlin [6, p. 30].

Throughout most of this paper we shall be given a finite or countably infinite
state space Q. For finite Q we shall prove in §3 an approximation theorem for
probability measures on QZ that are invariant under the shift S,

(Sx) = X141, ieZ, x = (X)X _ o € QZ.

This theorem will enable us to derive in §4 from the work of A. H. Zaslavskii [7]
a formula for the minimal number of elements that a generator of an ergodic i.m.p.t.
can contain. Denote this number by A(T). If the entropy A(T) of T is infinite then
A(T) is also infinite, if A(T) <00, then A(T) 2 ™™, Our result is

AT) € e +1.
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This answers for the ergodic case another question raised by Rohlin [6, p. 30].
In particular it follows that every ergodic i.m.p.t. with entropy zero has a generator
with two elements. This was known before in the case of the quasi-discrete spectrum
[3, p. 187].

2. The existence of finite generators.
(2.1) THEOREM. Every ergodic i.m.p.t. with finite entropy has a finite generator.
Proof. 1. Let {4, : ne N} be a partition of (E, B, p) with finite entropy.
Then there exists a mapping n — K, € N (n € N) and a 1-1 mapping
#: N-> 0 {1,2,3)
=1

where @(n) €{1, 2, 3}¥s, n € N, such that
) > Kup(4,) < .
n=1

For a proof of this let p(4,) 2 p(A,.1), n € N, and let /(n), n € N, be nonnegative
integers such that

2) —log p(4,)—1 < I(n) = —log p(4,), neN.
Let further

n =1, N, =min{n > n,_, : I(n) > l(n,_,)}, m > 1.
Then

@ L
Z (g1 — )3~ 100 = z 3-im,
m=1 n=1

and we see from (2) that

J

Z (nm+ 1 _nm)3 i Se

m=1
Consequently, for some m, € N,
3 M1 — Ny < 310, m 2 m,.
We set K, =1I(n), nZn,,. By (3) it is possible to assign to every n2n,, an element

@(n) of {1, 2, 3}¥~ such that n — @(n), nZn,,, is 1-1. The inequality (3) also shows
that it is possible to define the ¢(n) € -, {1, 2, 3}*, 1 Sn<n,,, in such a way that

p:N— U {1,2, 3}
k=1

is 1-1. In order to show that (1) holds it suffices to show that

0

> Kup(4,) < oo,

n=nmg
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and this follows from the finiteness of the entropy of {4, : n e N} and from (2):

00 0

S K4y < 21(n)p(A,,) < S -4 logp(4,) < .

n="nm, n=1

2. Let Q be a finite set containing more than two elements. Let w € Q, Ce N,
and let

@

X=1x=(x)t)2-w€ ('U Qk)z

k=2

x‘.,¢w,1§j<D‘,xi'D‘=w, —00<i<00},

and

8

Xc= O

k=-o 1

k+1
| { = G x: 3 (a=0) 50,

We are going to construct a 1-1 Borel mapping U: X; — (Q€)Z that commutes
with the shifts.

Let x=((x; )2 -w € X; and let T'={ie Z: D;>C}. We define for ieT,
C<j=D,

e)) I(i, /) = min {1 >i:j-C+ D (Dp—C) < o},
©) Jij) =j+ 2 (Da—C).
i<m=13,5)

It follows that

Dy, <JG,j)=C, iel, C<j< D,
The mapping

G~ UG, JG))  (el,C<js D)
is 1-1. Indeed, had we i, i’ e ', C<j< D,, C<j'< D;,

(IG, ),IG ) = UG, 7, TG, J),
and say i<i’, then we could infer from (5) that

j+ 2 Dn=JG)+G)-D)C,
i<msId,5)

Dy 2 J(i, j)+UG, ))—i)C,

'=m=I34,7)

and therefore that
j+ D Dn=(i'-0)C,

i<m<i’

in contradiction to j> C or to (4). We define now

Ux = ((31,)5- )2 - 0 € (Q9)%
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by setting
Yig = Xip ifieZ, 1=<j< min(C, D),
Yia.nJdan = Xi5 ifiel, C<j= D,

and by setting y, ;=«, @ € Q, a#w, elsewhere. U is Borel and it commutes with the
shifts. We prove now that it is 1-1 by showing that the D;, i € I, can be computed
from Ux.

Denote

Iw(l) = I(l9 D;), Jw(l) = J(la Di), ie F’
and

C
No) = D 8on,, I€Z
i=1

We have fori,i'e T

© i <i' < I(i) = L") = 1),
@) i< L)< L@G)=>i<i,
@® i<i'y L) = 13" = J,(i) > Jo(i")

From these relations and since i — (I,,(i), J,,(i)) (i € I') is 1-1 we have

Jo)
No(m)+ z sw.wma).i
f<m<Iyi) Jj=1

=[i'eZ-T:i< i’ S LAY+’ el i< L") < L)}
) +|{i' e T : I,(i") = 1,(i), Jo(i") < J,(i)}|+1
=[{i'eZ-T:i<i' SLG}+|[{i'el i< i < LG} +1
= I,(i)—i+]1, iel.
And we have from (7)

> Num)=|{{i'eZ-T:i<i' 2 L}|+|{i'eT :i < L") S L}

{<msL
(10) =[{i'eZ-T:i<i' sL}|+|{i'eT:i<i <L}
< L-i, iel, i< L < L.

Now we see from (9) and (10) that

1) I(i) = min {L >i: > Nim)> L—i}, iel
{<mSL
and that
J,(i) = min {1 <I£C: 3 Num)
f<m<Ip(l)
(12) !
+ D Somngwy = 1,,,(i)-i+1}, iel.
j=1
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Next we observe that

13) D, = J()+U()—i)C— > Dy i€l
i<msIy()

We know from (6) that

(14) i <i' < L@) = LiY—i < L@{)—i, i,i'el.

It follows that if i, € I" is such that

L(ip)— iy = min {I,(i)—i: iel}
then i, <i<I,(iy) = i€ Z—-T and we see from (13) that D, can be computed
from the y; ;, 1 £j<C, i€ Z. Finally (14) implies also that (13) can be used as a
recursion formula to compute all the D,, i € T, from Ux.

3. By Rohlin’s result [6, 10.7] every ergodic i.m.p.t. is isomorphic to the shift
on NZ together with an invariant probability measure p such that the partition

{(ni)f:—oo eNZ thy = m}’ MGN,

has finite entropy. By part 1 of the proof there is a C € N and a 1-1 mapping
n'_>(xn,1’-~-a xmK,.)e O {l, 2, 3}k (nEN)
k=1

such that
(15) 2, Kntl{(n)i2 - w € N? 1o = m}) < C—1.
m=1

We use this mapping to build a 1-1 mapping
V : (nt)tm= - > ((xng.l’ BEEY xn‘,K,.p w))io:- -0 € X ((nt)ia; -0 € NZ)

that commutes with the shifts, where we can set Q={, 2, 3, w}. The individual
ergodic theorem and (15) yield
L

lim 1 Z (K, +1-C) < 0, for p-a.a. ()2 _ . € NZ.

L L‘=1

Hence uw(V -1X.)=1.
By part 2 of the proof there is a 1-1 Borel mapping

U: Xo— QZ
that commutes with the shifts. If we set for a Borel set F< QZ,
WF) = W(V~1UF),

then we find that (VZ, p, S) is isomorphic to (QZ, v, S). (If a finite Borel measure
on a polish space is transported via a 1-1 Borel mapping to another polish space
then the Borel mapping becomes an isomorphism between the measure space
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given by p and the measure space that is given by the transported measure. This
can be seen from the fact that every analytic subset of a polish space is measurable
with respect to every finite Borel measure (see e.g. [2, §6, n°9]). Q.E.D.

3. An approximation theorem for shift-invariant measures. Let Q be a state
space containing a finite number n of elements, n=2. We define for a probability
measure p on QF, I € N, such that u(a)>0 for all a € Q!

w=- Ha)

w(a) log .
a=(apl_,eqQl agn F'((ah )]

We denote by M,, I € N, the set of all probability measures x4 on Q' such that
w@) >0, ae Q! and
p{beQ 1a=(b)i-1}) = p{beQ : a = (biyn)i-1}),

1EmsgI-l, aeQ, 121l<1I

Further we set

Z,={xeQ%:a=(x)-.}, ac Q! IeN.
For u € M,, I € N, we define a shift-invariant probability measure i on QZ by
MZ,) = Ma), aeQ,

;A p'(Z(a Y= )l:"(Z(a )”1)
MZaps.) = i 2=t (e €, J>I
(@py=1 .U'(Z(a,)f; %) ( J)j 1
We note that (see [6, 5.10]) A(3)=h(n), p € M, I€ N, and that the 4 are ergodic.
Indeed, the systems (i, S7), u € M,, arise from indecomposable Markov chains.

For probability measures u, v on Qf, I € N, we use the metric

lpsv| = max |u(@)—wa)|.
aeQ!

Let I, Ne N, I< N. We define for x € Q¥*7-1 a probability measure A{’ on Qf by

X(a)=N"1 5:1 8a (a1 D=1 ac Q.
i=
We set also
AL p, 8, N) = {x e QV*1-1 1 | XD, u| < 8}, peM;, &>0.
(3.1) LEMMA. Let pe M, I€ N and let ¢, >0. Then there is an L>1I such that
|AUI, u, 8, N)| > exp [(A(n)—e)N], N = L.

Proof. The mean ergodic theorem and the Shannon-McMillan theorem [1, p.
129] show that there is an L € N such that for all N2 L

A({x € Q% : |AQ+i-1, p| < 8}
N{xeQZ: [N~ log (Zuppsr-1)+h(p)| < &) > e~°.
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We infer from this that
|A(L, u, 8, N)| > exp [(A(p)—e)N—e), N = L. Q.E.D.
We say that an a € Q, / € N, is a coding sequence if
@)=y # @-medie1s lsm<l

We say that an a € Q' is an a-coding sequence of length / if a;=«, 1<i</ and
a,=P+#a. Wesetfor I, Ne N,I<N, peM;and § > 0,

B/, p, 8, N) = {xe AL, p, 3, N): (xm+i):=1 #a,0<m=s N-I+1-1}.

(3.2) LeMMA. Let peM;, I€ N, and let 8, ¢>0. Then there exists a KeN
with the following property: For all a-coding sequences a of length L= K

|Bo(, 1, 8, N)| > exp [(A(w)—)N], N z L.
Proof. By (3.1) we can find an M € N such that
(M |4, 1, 8/2, N)| > exp [(l(w)—e)N], Nz M.
We claim that any Ke N such that
2 K>4M+1e 18" 'n

has the property that is stated in the lemma. Indeed, if a is an «-coding sequence
of length L then with 8#«

(3) Ba(Is ) 8, N) > A(L [ad) 3, N)
N{xeQV 1 i xp0 =B, 1 Sk S (N+I-1)(L-2)""}
If Lz K, then L—2—1I> M. Hence, by (1), (2) and (3),
|BoL, 1, 8, N)| > exp [(A(s) —e)(1 — k() ~)N]
> exp [(A(x)—2¢)N]. Q.E.D.
We set for I, Ne N
R, N) = {k = (Ko)eea? €EZ™ : kg > 0,a€ Q, Z ky = N},
aeq!

and for k € R(I, N)
ﬁ(k) = ﬁ((N -lka)asn’)a
C(,N,k) = {xeQV+1-1: k, = NX{P(a), ac Q'}.

(3.3) LeMMA. For all k € R(I, N)

[, N, k)| < exp (M [T (1)

aeq!
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Proof. It is

|C(I, N, k)l é n,_l I_[ (agn k(alv'“‘al—ha))! |

acQl -1 }—I k(al,.. .,d[-l,a)!

€Q
-1
—_ pl-1
=17 TT (3 korerasreso) ([T 6!)
aeQl -1\ geQ beQ!

The lemma follows from this by an application of Stirling’s formula. Q.E.D.
Denote

X,={xeQZ: S'xeZ, S~ 'xe€Z, for infinitely many i, je N}, ae Q) IeN.

(3.4) THEOREM. Let p be an ergodic shift-invariant probability measure on Q%
such that
wZ,) > 0, acQ!l, IeN,

and let ve M;, I € N, h(v) = h(i). Let £>0. Then there exist coding sequences b and
¢ and a homeomorphism U: X, — X, that commutes with the shift, such that

WU-Z)—wa)| <e, aeQl

Proof. We remark first that we can restrict attention to the case h(u)<#A().
Indeed, if A(n)=log n, then

mZ,) = va), ael,
and if h(u)=h(v) <log n, then there is a v € M, such that
h(p) < h('),

and |V'(a)—w(a)| <¢/2, a e Q.
Let therefore
4¢ = h(v)—h(p) > 0.

We choose an I’ = I such that A(v)—A(u') < £, where p'(@)=(Z,), a€ Q. Let
) 6e' = n'~Te.

Let also
vi(a) = 9(Z,), aeQl.

We set 26 =min, " p(Z,) and
Fy = {xe QY+ -1 BOY) — () < 2€, min A9a) > s}, N>
aeq!’

As a consequence of the individual ergodic theorem there is an M € N such that

©) w(, .., G G € Farosrryd)) > 1-¢
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By (3.2) we can also find an L € N, L=n, such that for all y-coding sequences ¢
of length L'>L

6) |BI',v', &', N)| > exp [(h(v)—é)N], NzL.
Let further Je N, J> £-1, be such that
) J M §mID exp (J€) > 1.

We choose now a K=L and «y, . . ., ax € Q such that

®) I'+M+J+Kn % < ¢,
and
©) WZ o) < nK.

Let b € Q%%+1 be the coding sequence that is given by

b, = o, ifl<k=K,
= 04, if k = K"‘l,
=y # o, if K+1 < k £ 2K+41,
and set
2K+1
Y=0z2- | S§'z,
i=1
We have from (8) and (9)
(10) w(Y) > 1-2¢.

We define for xe Y
i*x)=min{i 20: S'€Z,), i (x)=min{i=20:S5"""2("2¢Z,}.

(3.3) together with (6) and (7) implies that for a y-couing sequence ¢ of length
2K+1

|BLL', v, &, N)| |Fy|~* > exp [(A(x)— E)NIN =" 8™ exp [— (h(w) +26)N]
= N ™82 exp (EN) > 1, N z J+2K+1.
We see now that there are mappings @y, N € N, of Q¥ onto itself such that
onir-1({ae Fy : (@)iii® # b,1 =1 = N+I'-2K}) < B(I',v, ¢, N),
N 2 J+2K+1,
and such that

on{ae QY : (a)it?* # b,1 <1< N-2K})
={aeQV:@)it¥* #£c¢,1 SIS N-2K}, Nz=2K+1.
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We define now a homeomorphism U: X, — X,, that commutes with S by
setting for x € Z, N X,, Ux=y, where
Yi= G, 1 =is2K+1
)= —im 0 = Pimo+1(X)0= —i- 0
To conclude the proof of the theorem we use (5), (8), (9) and (10) to get
p{xe Y i*()+i~(x) 2 J+2K, i*(x) 2 I' =1, (5)iZ9)- ) € Fit ori-o-1+2))
>p{xeY: it(x),i (x) 2 I'+M+J+K})—¢
> 12"+ M+J+Kn"¥-3¢
> 1-5¢.
We infer from this by applying the individual ergodic theorem that
(@) —e)1-5¢) < (U™ Z,) < v'(@)+6:, aeQr.
Finally by (4)
|W(U-1Z)—v(a)| <& acQl Q.E.D.
We want to point out the following consequence of (3.4). Let
X = IQ a(e)x’ Xa,

and let M, be the set of shift-invariant ergodic probability measures p on QZ
such that w(Z,)>0,ae€ Q!, Ie N, and w(X)=1, h(p)=h,0=h=<Inn.

The 9M, with the weak topology are polish spaces. The group & of homeo-
morphisms of X that commute with the shift acts on M, by u— Un, pe M,
U e &, where

Uu(Z,) = w(U~1Z,), ac Q! IeN.
The homeomorphism that we have constructed in the proof of (3.4) maps X onto

X. It follows therefore from (3.4) that the transformation groups (&, I,) are
minimal, 0SA=<Inn.

4. An estimate for A.

(4.1) LEMMA. For every ergodic shift-invariant probability measure p on QZ
there exists a shift-invariant probability measure v on QZ such that for all a € (',
Ie N,«Z,)>0, and such that the systems (QZ, u, S) and (Q%, v, S) are isomorphic.

Proof. If there is a d e U2, (O, such that u(Z;)=0, then we can assign in a 1-1
manner to every a € |, Q' a coding sequence b(a) that contains a as a subse-
quence such that u(Z,,,)=0. Let L(a) be the length of b(a). We can find Borel
sets A,< QZ such that for all @, a’ € U~ ; &

WS4, N SYA) =0, 0= I'<2L),
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and

2L(a) 2L(a’)
p.((U S’Aa) A ( 0 s*'Aa,)) -0
=0

1=0

Choose c(a) € QY@ such that u(Z., N A,)>0.
A Borel mapping U: Q% — QZ that commutes with the shift can be defined by

WD =x, i8¢ U U Zown 4,
and
Ux € Z, ), if xeZygyN A, acQ, IeN.
Setting for a Borel set F € QZ, y(F)=u(U ~'F) proves the lemma. Q.E.D.
(4.2) LeMMA. Let T be an ergodic i.m.p.t. of (E, B, p) with a generator

{do, ..., A}, m>1,
such that

P(Ao) > p(A1)+2p(Ay).
Then A(T)<m.

Proof. This lemma follows from a slightly generalized version of a theorem of
A. H. Zaslavskii [7, p. 295]. Q.E.D.

(4.3) THEOREM. Let T be an ergodic i.m.p.t. Then A(T)< e+ 1.

Proof. By (2.1) there exist a state space Q={0,...,m}, me N, and a shift-
invariant probability measure p on QZ such that T is isomorphic to the system
(QZ, u, S). By (4.1) we can assume here that u(Z,)>0, ae Q', Ie N. If now
m>eM™, then we can find a ¢, 0<g<(2m)~?! such that

h((AR=0) > W),
where
A =hn"14q, Ay =n"1=-2q, Ay =gq, A\, =n7?, 2<k=m

From (3.4) we see now that there is a shift-invariant probability measure » on Q%
such that (QZ, , S) is isomorphic to (QZ, v, S) and such that

M Za)— Al < q/4, 1sksm
It is then
UZy) > AZyy)+2UZ )
and the theorem follows by means of (4.2). Q.E.D.

(4.4) COROLLARY. Let T be the cartesian product of the n-shift with entropy
In n, n22, and an ergodic i.m.p.t. with entropy zero. Then A(T)=n+1.
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