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THE TENSION FIELD OF THE GAUSS MAP

BY

ERNST A. RUHO AND JAAK VILMS

Abstract. In this paper it is shown that the tension field of the Gauss map can be

identified with the covariant derivative of the mean curvature vector field. Since a

map with vanishing tension field is called harmonic the following theorem is obtained

as a corollary. The Gauss map of a minimal submanifold is harmonic.

1. Introduction. The study of 2-dimensional minimal surfaces in Euclidean

(2 +/j)-space is greatly simplified by the fact that the Gauss map is antiholo-

morphic [1]. In this paper we will show that a weaker property holds for higher

dimensions ; namely that the Gauss map of a minimal submanifold of arbitrary

codimension is harmonic.

A map of Riemannian manifolds is called harmonic if its tension field t(/)

vanishes [2]; equivalently,/is an extremal of the energy integral E(f) that genera-

lizes the classical Dirichlet integral (see §3 below). An immersion of a line as a

geodesic, or more generally an immersion of a manifold as a minimal submanifold,

is an example of a harmonic map.

In the case of a minimal submanifold in Euclidean space, we now have two

harmonic maps, the immersion and the Gauss map. The harmonicity of the im-

mersion has long been used to study minimal submanifolds. In [4] it has been

shown that the harmonicity of the Gauss map has applications as well.

2. The Gauss map. In this section we review some of the properties of the

Gauss map. Let /': M-> Rn+P denote an immersion of an «-dimensional manifold

into Euclidean (« +/>)-space. The Gauss map associated to this immersion is the

map g: M->G(n,p), where G = G(n,p) denotes the Grassman manifold of «-

planes in Euclidean (« +/?)-space, and the image g(x) of a point x e M is defined

to be the tangent «-plane to i(M) at i(x). As usual, the Riemannian structure on

G(n,p) is defined by identifying G(n,p) with the symmetric space 0(n+p)/0(n)

x O(p), where 0(n +p) denotes the orthogonal group operating on the Euclidean

space Rn+P.

The pull back under g of the tangent bundle T(G) to a bundle over M is denoted

by g~xT(G). In the following proposition, T(M) and N(M) will denote the tangent

bundle and the normal bundle of M in Rn+P respectively.
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Proposition. The bundle g 1T{G) is isometric to the tensor product T{M)*

<g> N{M).

Proof. The isometry of the two fibres over a point x e M is defined to be the

composition of the following three isometries.

TgM{G) -+ 9ft, P) -> L{R\ Rp) -+ TX{M)* ® NX{M).

The first arrow represents the standard identification of the tangent space of G

at g{x) with the subspace g(«, p) of the Lie algebra of 0{n +p). A basis of g(«, p)

is given by the set ft(* ® en+j-e$+i <g> e;, /= 1,..., «; 7= 1,.. .,p), where els...,

en+p is an orthogonal basis in Rn+P and ef,..., e*+p is its dual basis. The second

arrow represents the linear map that sends the basis element ef <S> en+j — e*+í ® e,

into ef ® en+¡, which is an element of the standard basis in the space of linear

maps L{Rn, RP). The third arrow is obtained by choosing the basis eu ..., en+P

mentioned above to represent the point g(x) e G{n,p), i.e., by choosing e1;..., en

in i*Tx{M) and en+1,..., en+p in NX{M).

The main theorem will involve the mean curvature vector field H, a cross-section

in the normal bundle N{M). By definition His the trace of the second fundamental

form (see [3]), which is a cross-section in T{M)* <g> T{M)* <g> N{M). When we

identify this bundle with T{M)* <g> g~xT{G) using the above proposition, the

second fundamental form is identified with the tangent map g* of the Gauss map g.

Thus //=Tr g* is the trace of g* with respect to the Riemannian metric in T{M).

The immersion i: M-> Rn+P induces a covariant derivative, V, in N{M). Using

the above proposition again, V//can be identified with a cross-section in g_1J(G).

3. Harmonic maps. For the discussion of harmonic maps we will follow Eells

and Sampson [2] closely. Let us consider a map /: Mx -> M2 of Riemannian

manifolds {Mi a manifold possibly with boundary dMJ, and define the following

energy integral:

E{f) = \ f   Tr </*,/*> ¿a,

where /* denotes the differential of /, < , > denotes the metric on M2, and Tr

denotes the trace of the quadratic form X\-> (f*X,f*Xy with respect to the metric

in Mi.

Now we want to recall a formula for the derivative of E{f) with respect to a

vector field along /. A vector field v along f is by definition a cross-section with

compact support in the interior of Mu of the bundle f~1T{M2). To compute the

derivative we embed / in a one-parameter family of maps /( : Mx -> M2, where

f{x) is the endpoint of a geodesic segment starting at /ft) determined in length

and direction by v{x). If the derivative of E{ft) with respect to / at t=0 is denoted

by £"(/), then the following formula holds.

E'{f)=-[    <r{f),vydo,
JAÍ1
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where r{f), a cross-section in f~1T(M2), is called the tension field of/ In [2] it has

been shown that the above formula, required to hold for all smooth cross-sections

in f~1T(M2), characterizes r(f) uniquely. The equation t(/) = 0, a generalized

Laplace equation, is the Euler-Lagrange equation of the energy integral. Since

t(/)=0 defines a harmonic map, we see /is harmonic iff it is an extremal of E(f)

with respect to the variations v.

4. The main results. In this section, g: M ->• G(n,p) = G will denote the Gauss

map associated to an immersion i: M -> Rn+P. The tension field of g, r(g), a cross-

section of g'1T(G), has been defined in §3. The following theorem will also involve

the covariant derivative, VH, of the mean curvature vector field H. As explained

in §2, VH may be identified with a cross-section of g _1r(G).

Theorem. r(g) = VH.

Corollary I. If M is immersed with parallel mean curvature vector field H, then

the Gauss map g: M —> G is harmonic.

If the codimension of the immersion is one, then parallel mean curvature simply

means constant mean curvature. For this special case the above results have been

obtained in [4].

If the manifold M is immersed as a minimal submanifold, then the mean curva-

ture vector field H and its covariant derivative V// are zero. This observation

yields the following result mentioned in the introduction.

Corollary II. The Gauss map of a minimal n-dimensional submanifold in Rn+P

is harmonic.

5. Proof of the theorem. In this section we compute the tension field r(g) of

the Gauss map g. This will be done by computing the first variation E'(g) of the

energy integral E(g) in the direction of a vector field v along g and then comparing

the result with the defining equation for j(g).

For this purpose we will define a one-parameter family of maps/: M -* G(n,p)

associated to a vector field v along g. The representative of the coset/(x) is defined

to be the product (exp tv)g(x) in 0(n +p). The exponential exp tv makes sense if,

as explained in §2, the vector v(x) is identified with an element in ß(«, p). For

convenience g(x) is represented by the following element in the orthogonal group.

Let e1,...,en+p he the moving frame obtained by parallel translation along

geodesies in M of a frame at x0 e M. Now g(x) is represented by the linear map

that sends the frame at x0 into the frame at a nearby point xe M.

For the moment we think of/ as a map M -» GL (« +p, R). This will be useful

for the computation of E'(g). The differential /* is equal to (I+tv-{-)„g

+ (1+ tv-\-)g*. Evaluating/* at x0, where g is equal to the identity /, and neglect-

ing higher order terms in / we obtain fi* = tDv+git, where Dv is the derivative of
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v: M -> GL ft +p, R). The linear term in t of Tr </*,/*> is equal to 2i Tr (g*, Dv}.

Since the image under g* lies in g(«, p) the term Dv may be replaced by its pro-

jection to gft, p).

So far, the range of g*, the projection of Dv, and the metric < , > have

been objects related to the bundle g_1T{G). Now we use the proposition of §2 to

replace these objects by their counterparts related to T{M)* <g> N{M). Thus the

projection of Dv to gft, p) is replaced by Vu, the covariant derivative of the

cross-section v of T{M)* ® N{M). This is verified by observing that, due to

our choice of the moving frame eu ..., en+p made earlier, both the projection of

D{ef ® en+j — e^+i® e,) to gft,/») and the covariant derivative Vft,*®en+J) in

T{M)* ® N{M) are zero at x=x0.

The derivative of the energy integral for / = 0 can therefore be computed in

terms of the bundle T{M)* <g> N{M). In fact we obtain

E'{g) = f Tr <#*, Vt>> da.
Jm

In the next paragraph we perform integration by parts to give E'{g) a more useful

expression.

First, we observe that

Tr <g», V»> = Tr V<g», u>-Tr <Vg*, v}

because V< ,   >=0. Second, we observe that

Tr <£*, v} da = d * <g*, v),

where * is the star operator on exterior forms and d is the exterior derivative.

Third, Tr <Vg*, v) is shown to be equal to <V//, v} as follows. Under the identifi-

cation of the proposition of §2, g* is a cross-section in T{M)* ® T{M)* <8> N{M).

Vg„ therefore is a cross-section in T{M)* <g> T{M)* ® T{M)* <g> N{M). The

symmetry of g* with respect to the factors in T{M)*, together with the Codazzi

equation [3, p. 25, Proposition 4.3] implies that Vg% is symmetric in all three

factors T{M)*. We may therefore take the trace Tr Vg* with respect to any two

factors in T{M)*. Furthermore, since the operations Tr and V commute, we obtain

Tr Vg* = V//, where //=Tr g*, as explained in §2.

The above three observations imply that

£'(«?)= Í  d*<g*,v}-( <yH,v)do.
Jm Jm

The first integral, by Stokes' theorem, is zero because v is zero on the boundary

8M. Comparing the formula for E'{g) with the defining equation for r{g) of §3

we obtain r{g) = VH, which was to be shown.
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