
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 149, June 1970

ON A LEMMA OF MILUTIN

CONCERNING AVERAGING OPERATORS IN
CONTINUOUS FUNCTION SPACES

BY

SEYMOUR Z. DITOR(1)

Abstract. We show that any infinite compact Hausdorff space S is the continuous

image of a totally disconnected compact Hausdorff space S', having the same topol-

ogical weight as S, by a map 95 which admits a regular linear operator of averaging, i.e.,

a projection of norm one of C(S') onto <p°C(S), where <p°: C(S) -*■ C(S') is the iso-

metric embedding which takes fe C(S) into/« ¡p. A corollary of this theorem is that

if 5 is an absolute extensor for totally disconnected spaces, the space S' can be taken

to be the Cantor space {0,1}'", where m is the topological weight of S. This generalizes

a result due to Milutin and Pelczynski. In addition, we show that for compact metric

spaces S and 7"and any continuous surjection <p'- S -> T, the operator u: C(iS)—>• C(T)

is a regular averaging operator for y if and only if « has a representation /#/(/)

= Jo/(0('. *)) dx for a suitable function fl: Tx [0, 1] -> S.

1. Introduction. In his proof that for uncountable compact metric spaces 5, all

Banach spaces C(S) of continuous (scalar-valued) functions on S with the sup

norm are linearly homeomorphic, Milutin [5], [6] establishes the following result:

Milutin's Lemma. There is a continuous map <p of the Cantor set K onto the

unit interval I for which there exists a projection of norm one ofC(K) onto <p°C(I),

where <p°: C(I)^ C(K) is the isometric embedding which takes fe C(I) into its

composition with <p, <p°(f) =fy.

An equivalent formulation of the above is that there is a linear operator u of

norm one from C(K) to C(I) with the property that u{fy)=fîor all fe C(I), i.e.

w<p° = idC(7). Following Pelczynski [7], we call such an operator u a regular linear

operator of averaging for (p. Using this crucial lemma, Pelczynski [7, Theorem 5.6]

has shown that the same result holds if the unit interval is replaced by any compact
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metric space. In fact, Pelczyriski shows that even if S is the product of m > X0

compact metric spaces, there is a continuous map of the Cantor space Dm onto

S which admits a regular linear operator of averaging, where D is the two-point

space {0, 1}. Such a space 5 which is the continuous image of some Cantor space

Dm by a map which admits a regular averaging operator is called a Milutin space

(S, as for all topological spaces mentioned here, is assumed to be compact

Hausdorff).

Here we shall prove the following generalization of Milutin's Lemma:

Theorem 1. Any infinite compact Hausdorff space is the continuous image of a

totally disconnected perfect compact Hausdorff space of the same topological weight

by a map which admits a regular linear operator of averaging.

By the topological weight (or simply, weight) of a space 5 we mean, as usual, the

smallest cardinal number which is the cardinality of a base for the topology of S.

That Theorem 1 generalizes Milutin's Lemma (and Pelczynski's extension to

compact metric spaces) follows from the well-known characterization (cf. [2, p. 99])

of the Cantor set as a totally disconnected perfect compact metric space and the

fact that a compact Hausdorff space is metrizable if and only if its weight is ^ X0-

If S is an absolute extensor for totally disconnected spaces (i.e., if for any totally

disconnected space X and closed subspace A, any continuous map from A to S

can be extended to a continuous map from X to S), then an easy corollary of

Theorem 1 is that S is a Milutin space. Since Michael [4] has shown that any

compact metric space, and therefore any product of compact metric spaces, is an

absolute extensor for totally disconnected spaces, this corollary includes the above

mentioned result of Pelczyriski.

The proof of Theorem 1 is in a sense almost "natural" and in the metric case

provides a new proof of Milutin's Lemma. The proof of the lemma which is due

to Milutin (cf. [7, Lemma 5.5]) depends on an ingenious construction of a map

<p: K-> /for which the regular averaging operator u: C(K) -*■ C(I) can be defined

by a formula, uf{t)=¡\f(d{t,x))dx, for feC(K), tel, where 6: IxI^K is a

Lebesgue measurable function whose definition is tied to that for <p. In Theorem 2

we show that every regular averaging operator u: C(S) -> C(T), for compact

metric spaces S and T, has a representation uf(t)=$l f(d(t, x)) dx for a suitable

function 6: Txl-^- S, and conversely, every such representation defines a regular

averaging operator.

2. Preliminaries. We need two technical lemmas. One of these (Lemma 1)

appears in [7] but not quite in the form we require. However, as the proof given in

[7] (a partition of unity argument) carries over verbatim to the more general

formulation, we shall state this lemma without proof. As for the other result

(Lemma 2), although half of it appears in [7] (cf. [8] also) we shall for the sake of

completeness give the entire proof. Since both lemmas have application in a more
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general situation and no further effort is required, we shall introduce Pelczyñski's

idea of a linear exave and state the lemmas in this more general setting.

Definition. Let S, T be compact Hausdorff spaces and 95: 5-^-Ta continuous

map. A bounded linear operator u: C(5)-> C{T) is called a linear exave for <p

if <p°u<p° = (p0. If 95 is onto (resp. one-to-one), then u is called a linear operator of

averaging (resp. extension) for <p. u is called regular if ||w|| = 1 and u(ls)= \T (where

ljc is the constant function on X everywhere equal to one).

Note that if 99 is onto (resp. one-to-one), then 99o is one-to-one (resp. onto) and

<P°u(p° = <p° reduces to utp° = iàcm (resp. <p°u=idC(S)). If S<=T and <p is the inclusion

map, then <p°: C{T) -*■ C(S) is the restriction operator, q>°{g)=g\S, and for each

fe C(S), u(f) is indeed an extension of/to all of T, i.e. u{f)\S=(p°u{f)=f

The connection with projections is immediate (cf. [7, §2]): averaging operators

correspond to bounded projections onto closed selfadjoint subalgebras (y admits

a linear operator of averaging if and only if there is a bounded projection of C(S)

onto <p°C(T)); extension operators correspond to bounded projections onto closed

ideals (9 admits a linear operator of extension if and only if there is a bounded

projection of C{T) onto the null space of 95o, i.e., the ideal of functions which

vanish on q>(S)).

Lemma 1. Given a continuous map 93 : S->T, where S, T are compact Hausdorff

spaces, suppose that {Ta}aeA is a family of closed subsets ofT, that {Ua}aeA is a family

of open subsets of T which cover ¡p{S), and that Uac Tafor all a e A. Suppose further

that {Sa}aeA is a family of closed subsets of S such that for all a e A, Uar\ y{S)

^(f^S^^Ta, and that each <p\Sa: Sa —> Ta admits a {regular) linear exave. Then 95

admits a {regular) linear exave.

In what follows we require the idea of an inverse limit system. The basic facts

we use can be found in [1, pp. 212-220].

Lemma 2. Let {{Se}, {tt%}) and {{Te}, {Of}) be inverse limit systems of compact

Hausdorff spaces and continuous maps over the directed set A with each irBa onto. Let

{S, WHinv lim {{Se}, {77g}) and {T, {da}) = im lim {{Tß}, {(?£}).

(i) If for every ae A, ua: C{Sa) -*■ C{Ta) is a bounded linear operator such that

U0Ba=^aUafor a^ß and sup {||Ka||}aei4<oo, then there is a unique linear operator

w = dir lim ua: C{S) ^ C{T) such that UTr° = 0°ua for all aeA and \\u\\S

sup {||wa||}asá; if each ua is regular, then so is u.

(ii) If for every ae A,q>a: Sa^Tais continuous with fa-nBa=QBa<f>ßfor a^ß and the

u^s in (i) are linear exaves for the y^s, then u = dir lim ua is a linear exave for

<P = inv lim <pa : S -> T. If each ua is an operator of averaging {resp. extension),

then so is u.

Proof, (i) Let M={J {n°C{Sa)}^A- If «^y, then 7ra = 7r>v and t^COS^

iT°yTTya°C{Sa)<^TT°C{Sy). Since A is directed it follows easily that M is a selfadjoint

subalgebra of C{S) which contains the identity. Moreover, if x^y in S, then
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ira(x) / na(y) for some a e A and hence, for some h e C(Sa), hna(x)¥:hTra(y), i.e.,

TT°a(h)(x)^TT°a(h){y). Therefore M separates the points of S so that, by the Stone-

Weierstrass theorem, M is dense in C(S) and it suffices to define u on M. Since

each 77^ is onto it follows that each -na is onto so that the tt°'s are isometric embeddings.

Our requirement that u-n-°a = 6°ua for all a e A then dictates that we define « on M

by setting u(f) = 6°aua(ir°¿)~\f) for/e n°C(Sa). It is clear that, providing our defini-

tion makes sense, the unique extension of this u to all of C(S) is the one and only

operator which satisfies all our requirements. Suppose then iha.tf=Trl(g)=TT°ß(h),

where g e C(Sa), h e C(Sß). Then for y ̂  both a and ß,

*>¡°(g) = <{g) = ne(h) = n°ynl°(h)

so that 7Tl°{g) = 7Tl\h). Hence

= e°uyß°{h) = 9Maut{h) = «S««-m

which shows that u is well-defined.

(ii) We must show that <p°u<p° = <p° and since \J {OlC(Ta)}aeA is dense in C(T),

it suffices to verify that cp0u<p°d°a=(p°9°a for all a e A. But

<p°8°a   =   (da(p)°   =   (<paTTa)°   =   77°Ç>°

so that

o,,    o/io o„    o    o Où0..      ° o    °..       ° O    O O/IO
(p U(p Va = 9 W7ra<pa = 93 0a«a<pœ = TTa<paUa(pa = 7Ta<pa = 99 tfa.

The last assertion in (ii) merely says that inv lim <pa is onto (resp. one-to-one)

whenever each q>a is onto (resp. one-to-one).

Corollary 1. Let A={a : 0 ^ a < Q.} be an interval of ordinals and let ({Sß}, {rr6.})

be an inverse limit system of compact Hausdorff spaces and continuous maps over A,

where each 7rg +1 is onto and admits a regular linear operator of averaging. Suppose

further that for every limit ordinal y < Q, (Sy, {7r£}) = inv limi<r ({Sß}, M}). Then, if

(Sn, {7rJ) = inv lim„<n ({Sß}, {ni}), the map tt0: Sn^- S0 is onto and admits a regular

averaging operator.

Proof. Let Ta = S0, 6>g = idSo, <pa = ^ for 0<a^ß and let uaa + 1 be a regular

averaging operator for tt% + 1. Inductively define ua: C(Sa) -> C(Ta) for 0<a<Q

by: Mi = Mo, "a=wa-iw"-i if a is not a limit ordinal, and ua = divlimß<a(uß) if a

is a limit ordinal. We note that

(a) if a is a limit ordinal we may identify (S0, {idSo}) = (Ty, {01}) with

inv limß<y({Tß}, {9ea}) and then 7^ = inv limfl<y (<pfl),

(b) the composition of regular averaging operators of a finite sequence of maps

is a regular averaging operator of the composition of the maps,

(c)if

(*) uß is well-defined and ußTrBa° = 6s,°u„ = ua   for a g ß < y,
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then if y is a limit ordinal, Lemma 2 implies that (*) holds for ß^y, whereas if y

is not a limit ordinal, then for a<y,

so that again (*) holds for ßuy.

It is clear then that the resulting system is well-defined and satisfies the hypoth-

eses of Lemma 2 so that ua = dir lim ua is a regular averaging operator for

inv lim 99a=770.

3. Proof of Theorem 1. Let 5 be a compact Hausdorff space of weight m ^ X0.

Choose a neighborhood base of the diagonal in Sx S having cardinality m and

consisting of open symmetric sets (see [3, Chapter 6] for the terminology and nota-

tion of this paragraph). Suppose B0, Bu B2, ■ ■ . is a well-ordering of this base

where we may assume that the index set A consists of all ordinals < D, the first

ordinal of cardinality m. Each member Ba of the base gives rise to an open cover

{Ba{s)}ses of S, where Ba{s)={s' e S : {s,s')eBa}. For each a choose a finite

subcover %tt oí {Ba{s)}seS- The collection {^a} has the following property: if s1^s2

in S, then for some a the closure of no member of <?/a contains both s1 and s2',

for we can find Bai with {slt s2) $ Bai and then choose Ba so that Ba ° Ba o Ba ° Ba

<= Bai, from which the assumption that for some se S both s, and s2 are in {Ba{s))~

c(ßa o Ba){s) gives that (il5 s) and {s, s2) are in Ba ° Ba, hence that {su s2) is in

Bai, a contradiction.

We proceed by induction to define an inverse limit system {{Sß}, {nßa}) over A

satisfying the hypotheses of Corollary 1.

Define "f~n for 0 ^ n < w as follows :

n = {U~ : Ue%},       rn = {(UnV)~ : Ue<&n, Fe^.J,       n ^ 1.

We note that

(i) each "Vn is a finite cover of S by closed sets whose interiors cover S,

(ii) yn+1 refines yn, and

(iii) each member V of T^ is a union of members of ^+1 whose interiors in the

relative topology of V cover V.

Now set S0 = S and for 0á«<cü let Cn be the collection of all chains c:Vn

c Fj^c • • • c K0, where V^e^, i=0, 1,...,«. Given such a chain ceC„ let

K(c)= Vn and for «^ 1 let c* e Cn_! be the chain Vn_!<=••• c K0. For each chain

c e C„, let Sn+liC= V{c) x {c}, the topological product of V{c) (as a subspace of 5)

and the one-point space {c}. Let Sn+1 be the topological sum (or union) of all the

spaces 5n+1>c for c e Cn. Then each Sn+1 is a compact Hausdorff space of weight

^rtt and the sets 5n+1>c are both closed and open (clopen) in Sn+1.

Define tt¿: SV ->■ S"0 by ttJ(x, c)=x, and for «>0,7rj;+1: Sn+1 -> Sn by tt% + 1{x, c)

={x, c*). (Note that if {x, c) e Sn+Uc then x e V{c)<= V{c*) so that {x, c*) e V{c*)

x{c*} = S„tC>.) It is easily seen that each K*1, n^O, is a continuous surjection
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which by Lemma 1 admits a regular averaging operator (using (i), (ii), (iii) above

and the fact that each 7rJ+l|Sn+1,c is a homeomorphism onto its image).

Now let (5u,K})=invlimn<w({Sn},K}), where K = nkk + 1-■-K'-K^. Con-

tinue by applying the same process to Sa as was applied to S, using now the

sequence of open covers (Tro)'\(^a+rd, « = 0,1,2,..., and get Sa+1 = (Sa)1

Sa+2 = (Sa)2,-.. with maps < + 1, <î ?,.... Then define (Sa2, K2}) =

inv lim^j <a2 ({Sß}, {tt%}) and continue in the obvious manner.

It is clear that this process gives us a system satisfying the hypotheses of Corollary

1. Hence if we let (Sn,{TTa}) = mvlimß<n({Sß}, {*%}), then tt0: Sa -> S0 = S is a

continuous surjection which admits a regular averaging operator. Since the con-

tinuous image of a compact Hausdorff space has weight á the weight of the space

and since the product of m spaces of weight ^ m has weight ^ m for m ^ S0, it is

clear that Sa has weight m. We show Sa is totally disconnected by showing that

any two distinct points x, y in Sa can be separated by clopen sets :

Case 1. TTo(x)=TT0(y). Since x^y, there is an a<Q such that xa^ya (where we

write xa for -rra(x)) and we may suppose that a is the first ordinal for which this

is the case. Then a is not a limit ordinal (for a limit ordinal a, Sa is by definition

inv limÄ<a (Sß), so that xß=yß for all ß<a implies that xa=ya). Hence a=ß+n,

where ß is either a limit ordinal or 0 and n is an integer ^ 1. It follows then that xa

and ya are in different (5i)n>c's in Sa = (Sß)n, for ■nl_1 is one-to-one on each (Sß)niC

so that, if xa and ya were in the same (Ss)n¡c, we would have ■T^-i(xa)^TT%_1(ya),

i.e. xcc_1^ya-1, which contradicts our choice of a if a>l and contradicts n0(x)

= TT0(y) if a = l. Hence for some c, x and y are separated by the clopen set

""a 1(Sß)n.c-

Case 2. 7r0(x)^7r0(j). Choose ^a so that the closure of no member of fya

contains both 7r0(x) and 7r0(y). Then if a+1 =ß + n, where ß is either a limit ordinal

or 0 and n is an integer ^ 1, we must have xa+1 and ya+1 in different (S/On.c's in

Sa+1, for otherwise xß=Trß + 1(xa+i) and yß = TTß + 1(ya+i) would both belong to the

closure of some member of (Trg)-1^^ and hence tt0(x) = 7rg(xa) and Tr0(y) = n^(yß)

would both belong to the closure of some member of ^ia. Hence for some c, x and

y are separated by the clopen set 77,7+1 (^)n,c-

Finally, if K is the Cantor set, S' = SnxK is a totally disconnected perfect

compact Hausdorff space of weight m, and if 6: Sn -> 5" is any continuous section

of the projection map 7r: S' ->- Sn, so that 7r0 is the identity on Sn, then 6°: C(S')

-> C(Sn) is a regular averaging operator for 7r. Hence for any regular averaging

operator u for 7r0, ud° is a regular averaging operator for the continuous surjection

7t07t: S' -> S. This completes the proof.

Remark. In the metric case the above proof can be simplified by taking the

index set A to be the natural numbers and for each n in A taking °Un to be any

finite cover of S by open sets of diameter ^ l\n.

Let us note before proceeding that if X is totally disconnected and of weight m,

then X can be regarded as a closed subset of Dm. For we can find a base B for the
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topology of X which has cardinality m and consists entirely of clopen sets and,

letting ku be the characteristic function of U, the map from A'to DB=Dm which

takes x e X into {kv{x))UeB is an embedding.

Corollary 2. If S is an absolute extensor for totally disconnected spaces, then S

is a Milutin space.

Proof. Let S have weight m. Then by Theorem 1 and our remarks above, there

is a closed subset S" of Dm and a continuous surjection 9^: S" —> S which admits

a regular averaging operator w,. Let 99: Dm -*■ S be a continuous extension of 93,

and let 8: S' -> Dm be the inclusion map. Then <p1=cp6 and idC(S):=Ui<pl = u16°<p°

so that u = u16° is a regular averaging operator for <p.

4. A representation theorem for regular linear exaves. The theorem of this

section is motivated by the explicit construction given by Milutin in the proof of

his lemma. To give a general idea of what is involved we sketch this construction

here (see [7, Lemma 5.5] for details). First, since the Cantor set AT is homeomorphic

to Kx K (both are homeomorphic to D*0), KxK can be used instead of K. Now

let h be the Cantor map of K onto the unit interval /, i.e. A(2™=i 2f„3"n)

=2"-i £.2"", where (£„) e £>»o, and define r¡: /-> K by ■n{t) = min h~\t). The map

<f. KxK^> I is then defined by letting <p{i;, £) be the nonnegative root of the equa-

tion h{L) = \h{Ç) + \\\-h{Ç)) and the operator u: C{KxK)^C{I) is obtained

by setting uf{t)=¡\ f{B{t, x)) dx, where 6: Ixl^ KxK is given by 0{t, x) =

{y{*)> 7y(íx+í2(l -x))). <p and u are the required map and operator. The following

theorem shows that this kind of integral representation of m is a general

phenomenon.

Theorem 2. If S and T are compact metric spaces, a necessary and sufficient

condition that u: C{S)-^ C{T) be a regular linear exave for a continuous map

cp: S -> T is that for fe C{S), t e T,

uf{t) = JVW, *)) dx,

where 6: Txl-+ S is a function having the following properties:

(1) 0{t, x) e <p-\t)for all t e <p{S), xel.

(2) 6{t, ■): / —> S is continuous off a countable set Nt and is left continuous every-

where, for all teT.

(3) 0{-, x): T-> S is continuous at tfor x $ Nt,for all teT,

Proof, (a) If such a function 6 is given, then for any teT, 6{t, •) is Borel measur-

able and 6{ ■, x) is continuous at t for almost all x (with respect to Lebesgue

measure). Hence for any/e C{S) the function fO{t, ■) is integrable and the defini-

tion uf{t)=l\ fO{t, x) dx makes sense. Moreover, if the sequence tn^-t in T,

then 9{tn, x) -*■ 6{t, x) for almost all x so that/0(/n, •) -+f&{t, ■) almost everywhere
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and, by Lebesgue's dominated convergence theorem, it follows that uf{tn) -> uf{t).

Therefore ufe C{T). In addition, it is clear that u is linear, ||w|| á 1, and w(ls) = lr,

so that « is a regular linear operator. Finally, if g e C{T) and s e S, then, by (1),

930(99(5), x) = <p{s) for all x so that

<P°i"P°{g){s) = u{g<p){<p{s)) = J   g<P%(s)> x) dx

= Jo g<p(s) dx = <p°{g){s),

i.e. m is a linear exave for 99.

(b) To prove the converse we may assume that S=K, the Cantor set. For let us

suppose that the theorem has already been proved when the domain space is the

Cantor set and that we are given the map 99: S^T with regular linear exave

u: C{S) -> C{T). By Theorem 5.6 of [7] (or Theorem 1 above) there is a continuous

surjection q>1 : K-+ S which admits a regular averaging operator h, : C{K) -> C{S).

Since «j is an averaging operator, it follows easily (cf. Proposition 4.4 of [7]) that

uu1 is a regular linear exave for 999! : K —> T. Hence there exists a function

0i : fx/-> K satisfying the conditions

(1)' dx{t, x) e (9999,)"!(/) for all t e Wl{K) = cp{S), xel,

(2)' 01(r, •): /-> A- is continuous off a countable set Nt and is left continuous

everywhere, for all teT,

(3)' 0,(-, x): T"-* AT is continuous at t for x $ Nt, for all teT,

and uuí{h){t)=¡l /i0,(/, x) dx for all h e C{K), teT.li we now let

0 = (pA: TxI^S,

then the conditions (1)', (2)', (3)' imply that 0 satisfies (1), (2), and (3), and if

feC{S),teT,

f/0(r, x) dx =  ÇmW, x) dx = uux{f9i){t) = u{uycp°J){t) = uf{t).
Jo Jo

Therefore, we may assume that S=K and the problem is reduced to constructing

the function 0 for a continuous map y.K-+T with regular linear exave

u: C{K)^C{T).

For / e T, let ¡xt be the continuous linear functional on C{K) defined by ¡it{f)

= uf{t). By the Riesz representation theorem, ¡xt may be identified with a finite

regular Borel measure on K. Since u is a regular linear exave for 99, it follows that,

under this identification, ¡xt is a nonnegative measure of total variation one which

is concentrated on Ç9_1(0 if tey{K) (see [7, Proposition 4.1]). If tn -> t0 in T,

then for any fe C{K), ntn{f) -> /¿io(/) and, in particular, /iin(£) -* nh{E) if £ is a

clopen subset of K. In what follows we shall use the standard notation [ ], ( ],

etc. both for intervals in / and for intervals in K.
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Now, for / e T, let Kt denote the support of/¿( and let us define the functions

8t:Kt^I     by      8t(0 = p-tíO, i],

0t:I^Kt   by      6t(x) = inf Sf^x, 1], and

0: Txl-+K    by    0(t, x) = 8t(x).

Since A'jCçj-1^) for t e <p(K), 0 satisfies condition (1).

Since it( is a nonnegative regular Borel measure, it is clear that

(i) 8t is increasing and right continuous, for all t e T,

and, by the right continuity of S(, it follows that

(ii) 8t0t(x) ̂  x for all t e T, x e I.

Using (i) and (ii) we proceed to establish

(iii) 8t is increasing and left continuous, for all teT.

IfxjSx^thenSr1^!, lj^Sr1^, l]sothatöi(^i) = infsr1[^i, ll^infSr1^, 1]

= 6t{x2). Hence 8t is increasing. To show 6t is left continuous we must show that if

xn\x0, so that 0,(xn)tsome |0 e Kt, then f0 = öj(x0) = inf 8f-1[jf0, 1]. First, £0

áinf Sfifxo, 1], for if ^e8ï1[x0, 1], then for all«, x^Xo^S,^), i.e. fG 8,-lrxn, 1]>

so that 8t(xn)^£ for all « and hence f0^£- Therefore it suffices to show that

£0 e 8t_1[x0, 1] and this follows since, by (ii), xn^8t0t(xn) for all « and hence

x0 = limTlxnSlimn 8t0t(xn)^8t(io) (since 0t(xn) f £„ and 8t is increasing), i.e.

¿0 € S(_1[xo, 1]. This establishes (iii).

From (iii) it follows that 0 satisfies condition (2).

Before verifying that condition (3) is satisfied we prove

(iv) ifx>0, then 0t(x)^£ if and only if xaMi[0, £].

For, if pt[0, |]^x>0, then [0, $] n Kt+ 0. Letting |' = sup ([0, £] n Kt), we

have ^fetf(, 8((f) = ̂ [0, f ]=/*,[(), £]^x, and hence, 0((x) = inf Sf^x, 1]

gf^f Conversely, if 0t(x)^, then x¿8í0((x)=ít¡[O, 0((x)]^t[O, fl.

To prove that 0 satisfies condition (3), we must show that if /„ e 7* and x0 is a

point of continuity of 0(to, ) = 0¡o, then #(•, x0) is continuous at /0- By compact-

ness, it suffices to show that if tn^>t0 and 0tn(xo) -*■ £o> then £o = 0fo(*o)- By in-

cluding 0 and 1 in Nt, we can assume that x0/0 or 1.

Case 1. 0to(xo) > fo- Then there is a £ in AT such that f0 ^ £ < 0io(xo) and [0, f]

is clopen. Hence, for large «, 0tn(xo) ̂  £ so that

x0 ^ 8tn0tn(xo) = MiJ0, 0t„(xo)] ̂  mJO, í]->rt,[0, |]

and therefore x0 ̂ m¡0[0, £]. But, by (iv), this implies that 0io(xo) ̂  f, a contradiction.

Case 2. 0to(xo) < f 0. Then there is a f in K such that 0to(xo) = f < f 0 and [0, £]

is clopen. Since x0 is a point of continuity of 0to and xQ< 1, there is an x^Xn

such that o^ta) ^ Ç, and since 0(n(xo) -*■ f0> we eventually have f < 0tn(xo) which,

by (iv) gives p.tJ0, f] <x0. But this is impossible since we would then have

*i Ú 8»A(*i) = mJ0- fl = lim^¡n[0, fl g x0.
n

Therefore 0io(xo) = £o and 0 satisfies condition (3).
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We must now verify that for all/e C{K), t e T,

uf{t) = nt{f) = jje{t,x)dx.

However, the topology of K has a base consisting of clopen sets of the form

(£i> £2] and [0, £], and the subspace of C{K) generated by the characteristic func-

tions kv of such sets Kis dense in C{K). Since k(tl,i^=kí0,(2]-kl0tí¡], this subspace

is also generated by the characteristic functions of the clopen sets [0, f]. Moreover,

both u and the function /-> J"¿ f0( ■, x) dx are bounded linear transformations

from C{K) to C{T) (see part (a) of this proof). Hence it suflices to verify that for

teT,èeK,

r*,[0, fl = Jo kl0M{6{t, x)) dx.

But, if x>0 and we let A = [0, i]c^ and B=[0, ntA]cL then, by (iv) above, we

have kA6{t, x) = kB{x), so that

I   kA6{t, x)dx= [ kB{x) dx = ^[0, fl.
Jo Jo

This completes the proof.
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