A FUNDAMENTAL SOLUTION OF THE PARABOLIC EQUATION ON HILBERT SPACE. II: THE SEMIGROUP PROPERTY

BY M. ANN PIECH

Abstract. The existence of a family of solution operators $\{q_t: t>0\}$ corresponding to a fundamental solution of a second order infinite-dimensional differential equation of the form $\partial u/\partial t = Lu$ was previously established by the author. In the present paper, it is established that these operators are nonnegative, and satisfy the condition $q_sq_t=q_{s+t}$.

I. Introduction. This paper continues the study initiated in [12] of second order parabolic equations, with variable coefficients, on Hilbert space. In [12] we established a fundamental solution for the equation $\partial u/\partial t = Lu$, where L is a second order differential operator satisfying certain regularity hypotheses. This fundamental solution is given by a family of finite signed Borel measures $\{q_t(x, dy) : t > 0, x \in B\}$ on a Banach space B (B will be defined later) or, equivalently, by a family of operators $\{q_t : t > 0\}$ on the space of bounded Lip-1 functions on B. These operators were defined via infinite series, which made it difficult to determine either their nonnegativity or whether they satisfy a semigroup property $(q_sq_t=q_{t+s})$ for all s, t>0.

The technique developed in this paper for establishing both nonnegativity and the semigroup property is that of "semifinite" approximation. Basically, the differential operator L is approximated by a differential operator L^K acting in a finite-dimensional subspace K of our Hilbert space H plus the Laplacian Δ acting in K^{\perp} . Nonnegativity and the semigroup property are known for the fundamental solutions of $\partial u/\partial t = L^K u$ and $\partial u/\partial t = \Delta u$. Combining these fundamental solutions and passing to the limit as $K \to H$ in some suitable fashion, we obtain the desired properties for $\{q_t\}$.

II. **Preliminaries.** Most of the basic definitions and ideas necessary to the following work can be found in Gross [8], [9] and in the preliminaries of [12]. The notation is that of [12] to the extent to which that is possible.

Let H denote a real separable Hilbert space with norm | | | and inner product

Received by the editors November 10, 1969.

AMS Subject Classifications. Primary 2846, 4615, 4750; Secondary 3562.

Key Words and Phrases. Hilbert space, abstract Wiener space, Wiener measure, parabolic equation, fundamental solution, semigroups of operators.

(,). Gauss measure on H with variance parameter t is denoted by ν_t , and is defined for a cylinder set $S \subseteq H$ by

$$\nu_t(S) \equiv (2\pi t)^{-n/2} \int_E \exp[-|x|^2/2t] dx$$

where $S=P^{-1}(E)$, P being an n-dimensional projection on H and E a Borel set in the range of P.

Let $\|\cdot\|$ denote a particular measurable norm on H, and let B be the completion of H with respect to $\|\cdot\|$. The triple (H, B, i), where i is the natural injection of H into B, is called an abstract Wiener space. Gauss measure ν_t on H induces a Borel measure p_t on B which is such that

$$p_t\{x \in B/(\langle y_1, x \rangle, \ldots, \langle y_n, x \rangle) \in E\} = \nu_t\{x \in H/(\langle y_1, x \rangle, \ldots, \langle y_n, x \rangle) \in E\}$$

for all finite subsets y_1, \ldots, y_n of B^* and Borel sets $E \subseteq R^n$. (Here we identify B^* with a subset of H^* .) p_t is called Wiener measure on B with variance parameter t.

Certain functions f defined on H determine measurable functions on B. The manner in which this takes place is described in Gross [7] for tame functions on H and for functions which are uniformly continuous near zero in H_m (u.c.n. 0 in H_m), where H_m denotes H with the topology determined by the measurable seminorms. The measurable function on B determined in this fashion by f is denoted by f. We will generally omit the tilde whenever it is obvious that we are working on B—e.g. $\int_B f(y)p_t(dy)$. In this paper we assume that $\|y\|$ in is $L^p(p_t(dy))$ for all $1 \le p < \infty$ and for all t > 0.

Let W be any Banach space. If f is a W-valued function defined in a neighborhood of a point x of B, we will write Df(x) for the Fréchet derivative of f at x, and will call f B-differentiable at x if Df(x) exists. We may also regard f as a function g defined on a neighborhood of the origin of H by restricting f to the coset x + H of B and defining $g(h) \equiv f(x+h)$. The Fréchet derivative of g at 0 is denoted by f'(x), and we say that f is H-differentiable at x if f'(x) exists. We write ||Df(x)|| and |f'(x)| for the L(B, W) and L(H, W) norms respectively.

We will now briefly sketch the results of [12]. Let $A(x) \equiv I - B(x)$, where $B(\cdot)$ is a map from B to the space of symmetric trace class operators on H. For a real-valued measurable function f(x, t) on $B \times (0, \infty)$ we define

$$L_{x,t}f(x,t) \equiv \operatorname{trace} \left[A(x)f''(x,t) \right] - (\partial/\partial t)f(x,t) \qquad (0 < t < \infty)$$

whenever the right-hand side exists—that is, whenever $(\partial/\partial t) f(x, t)$ and f''(x, t) exist and [A(x)f''(x, t)] is trace class. When there is no danger of confusion, we will omit the subscripts on L. We assume that B(x) satisfies the following hypotheses:

- (a-1) $x \to B(x)$ is a bounded Lip-1 function from B to the space of symmetric trace class operators on H, with the trace class norm.
 - (a-2) There exists $\epsilon_0 > 0$ such that $B(x) \le (1 \epsilon_0)I$ for all $x \in B$.
 - (a-3) There exists a symmetric Hilbert-Schmidt class operator E on H and a

family of operators $B_0(x) \in L(H, H)$ such that for all $x \in B$, $B(x) = EB_0(x)E$ and $|B_0(x)| \le 1$.

- (a-4) $D^2B_0(x)$ exists and is a Lip-1 function from B to $L(B \to L(B \to L(H, H)))$.
- (a-5) $||DB_0(x)||$, $||D^2B_0(x)||$ are uniformly bounded for all $x \in B$.
- (a-6) There exists a constant c such that for any orthonormal basis $\{e_i : i=1, 2, \ldots\}$ of H we have $\sum_{i=1}^{\infty} |DB_0(x)e_i|^2 < c$, independently of $x \in B$.

REMARKS. (1) Without loss of generality we may assume that $\varepsilon_0 < 1$.

(2) (a-6) is always satisfied if B is the completion of H with respect to a measurable norm of the form ||y|| = |Sy| for all $y \in H$, where S is a Hilbert-Schmidt operator on H. For then $\sum_{i=1}^{\infty} |DB_0(x)e_i|^2$ is dominated for all x by a constant times $\sum_{i=1}^{\infty} ||e_i||^2$ (by (a-5)), and we have

$$\sum_{i=1}^{\infty} \|e_i\|^2 = \sum_{i=1}^{\infty} |Se_i|^2 = \text{(the Hilbert-Schmidt norm of } S)^2.$$

(3) The argument given on p. 107 of [12] for the operator denoted there as $(C'(x)(\cdot)(\cdot), y)$ to be of trace class is incorrect. (a-6) is a sufficient, but by no means necessary, condition for this operator to be of trace class. We will show this in detail in the proof of (c-11) of §V.

Under the preceding hypotheses on B(x) (and therefore on A(x)), there exists a family of finite real-valued signed Borel measures $\{q_t(x, dy) : 0 < t < \infty, x \in B\}$ on B such that if $q_t f(x) \equiv \int_B f(y) q_t(x, dy)$ then for each bounded Lip-1 function f from B to the reals we have $L_{x,t}q_t f(x) = 0$ (for all $0 < t < \infty, x \in B$) and $\lim_{t\to 0} q_t f(x) = f(x)$ uniformly in x.

III. The semifinite approximation. Consider a finite-dimensional subspace K of B of the following form: Let y_1, \ldots, y_n be a set of orthonormal vectors in H^* which also lie in B^* . Let $K \equiv \text{span}(y_1, \ldots, y_n)$. Then if P is the continuous extension to B of the orthogonal projection of H onto K, we have

$$Px = \sum_{i=1}^{n} \langle y_i, x \rangle y_i, \quad (x \in B)$$

and P is a projection on B.

In order to carry out our approximations, we must make three further assumptions. They are as follows:

- (a-7) There exists a sequence $\{P_n\}$ of commuting finite-dimensional projections on B, of the above form, such that $\{P_n\}$ converges strongly to the identity operator on B.
 - (a-8) E (see (a-3)) commutes with each P_n .
 - (a-9) For each $x \in B$ and P_n from (a-7), there exists a constant c_{x,P_n} such that

$$\sum_{i=1}^{\infty} |[DB_0(P_n x) - DB_0(x)]e_i|^2 < c_{x,P_n}$$

for every orthonormal basis $\{e_i\}$ of H, and $c_{x,P_n} \to 0$ as $n \to \infty$.

REMARKS. (1) By considering pairwise least upper bounds, we may assume, without loss of generality, that $P_{n+1} \supseteq P_n$.

- (2) All projections which occur in this paper will be selected from this sequence, and the subscripts will be omitted—so that P will denote an arbitrary member of this sequence, corresponding to projection on the finite-dimensional subspace K (where we may consider K as a subspace of B^* or of B or of H).
- (3) (a-7) is valid in the case of Wiener space. Let B be the space of real continuous functions on [0, 1] which vanish at zero and let H be that subset of B consisting of the absolutely continuous functions which have square integrable first derivatives. The inner product on H is given by

$$(x, y) \equiv \int_0^1 x'(t) y'(t) dt,$$

where ' denotes the first derivative with respect to t. B is the completion of H with respect to the sup norm $(\|\cdot\|_{\infty})$. We first construct a basis for H^* consisting of elements of B^* . For this purpose we use the Haar functions $\{\chi_n(t)\}$, which are defined by

$$\chi_1(t) \equiv 1$$
 $t \in [0, 1],$

$$\chi_{2^n + k}(t) \equiv \sqrt{2^n} \qquad t \in [(k-1)/2^n, (k-\frac{1}{2})/2^n),$$

$$\equiv -\sqrt{2^n} \qquad t \in ((k-\frac{1}{2})/2^n, k/2^n],$$

$$\equiv 0 \qquad \text{otherwise in } [0, 1],$$

for $n=0, 1, 2, ..., k=1, 2, ..., 2^n$. It is well known that $\{\chi_n(t)\}$ forms a complete orthonormal set in $L^2[0, 1]$ (using Lebesgue measure) ([15, p. 338]). Let $y_n(t) \equiv \int_0^t \chi_n(s) ds$. It is obvious that $\{y_n\}$ forms a complete orthonormal set in H^* . For $x \in H$, we have the formulas

$$\langle y_1, x \rangle = \int_0^1 x'(t) dt = x(1),$$

$$\langle y_{2^n + k}, x \rangle = \int_0^1 \chi_{2^n + k}(t) x'(t) dt$$

$$= \int_{(k-1)/2^n}^{(k-1/2)/2^n} \sqrt{2^n x'(t)} dt - \int_{(k-1/2)/2^n}^{k/2^n} \sqrt{2^n x'(t)} dt$$

$$= \sqrt{2^n \left[2x \left(\frac{k - \frac{1}{2}}{2^n} \right) - x \left(\frac{k - 1}{2^n} \right) - x \left(\frac{k}{2^n} \right) \right]}.$$

We may now use these formulas to define $\langle y_n, x \rangle$ for all $x \in B$. $y_n \in B^*$ since $|\langle y_n, x \rangle| \le 4\sqrt{2^n} \|x\|_{\infty}$. Moreover, for each $x \in B$,

$$x(t) = \sum_{n=1}^{\infty} \langle y_n, x \rangle y_n(t),$$

the convergence being uniform in t [1, Theorem 3]. If we now define

$$P_n x \equiv \sum_{i=1}^n \langle y_i, x \rangle y_i$$

we have a sequence satisfying (a-7).

(4) If B is itself a Hilbert space, with inner product $[\ ,\]$, then $x,y \to [x,y]$ is a bilinear functional on H. Since $|[x,y]| \le ||x|| \cdot ||y|| \le c|x| \cdot |y|$ for some constant c, this bilinear form is bounded. Thus there exists a positive definite operator N on H such that (Nx,y)=[x,y]. \sqrt{N} is completely continuous, since $|\sqrt{N}x|=[x,x]^{1/2}=||x||$ and the injection mapping from $H \to B$ is completely continuous [8]. Let $\{y_i\}$ be an orthonormal basis for H consisting of eigenvectors of \sqrt{N} , with $\{\lambda_i\}$ the corresponding sequence of eigenvalues. Each $\lambda_i > 0$ and $\lambda_i \to 0$. $\{\lambda_i^{-1}y_i\}$ forms an orthonormal basis for B. Considering y_i to be in H^* , we have

$$\langle y_i, x \rangle = (y_i, x) = (N(\lambda_i^{-2}y_i), x) = \lambda_i^{-1}[\lambda_i^{-1}y_i, x]$$
 for all $x \in H$.

This formula makes sense for all $x \in B$, and so defines the unique extension of y_i to an element of B^* . Now for $x \in B$,

$$\sum_{i=1}^{n} \langle y_i, x \rangle y_i = \sum_{i=1}^{n} [\lambda_i^{-1} y_i, x] \lambda_i^{-1} y_i \to x$$

in the *B*-norm. Defining $P_n x \equiv \sum_{i=1}^n \langle y_i, x \rangle y_i$, we see that (a-7) is thus satisfied whenever *B* is a Hilbert space.

(5) (a-9) is satisfied whenever B is of the form defined in Remark (2) following (a-6), since in this case (a-5) gives

$$|[DB_0(Px) - DB_0(x)]y| \le \operatorname{constant} \cdot ||Px - x|| \cdot ||y||$$

for each $y \in H$.

Define

$$A^{K}(x) \equiv I - PB(Px)P$$
 $(x \in B)$
= $(I - P) + (P - PB(Px)P)$
 $\equiv Q + A^{P}(x)$, say, where $PH = K$ as stated before.

Considering $K \subset B^*$, denote by K^{\perp} the annihilator of K in B. Then if ν'_t denotes Gauss measure on K, and p''_t denotes Wiener measure on K^{\perp} , we have [9, p. 131, Remark 2.2] $p_t = \nu'_t \times p''_t$ and thus $p_t(x_{\bar{\imath}}, dy) = \nu'_t(x', dy') \times p''_t(x'', dy'')$ (for all $x \in B$, t > 0), where x = x' + x'', y = y' + y'', x' and $y' \in K$, x'' and $y'' \in K^{\perp}$.

NOTATION. If $\omega_t(x, dy)$ is a finite real-valued signed Borel measure on a space W, then for a Borel function f on W we define

$$(\omega_t f)(x) \equiv \int_{\mathbf{W}} f(y) \, \omega_t(x, \, dy),$$

when this integral exists. (A finite Borel measure is one such that $|\omega_t(x, E)| < \infty$ for all Borel sets $E \subset W$. For a real-valued measure, finiteness is equivalent to bounded variation, by the Hahn Decomposition Theorem.)

If f(x, t) is a real-valued Borel measurable function on $K \times (0, \infty)$, define

(1)
$$L_{x,t}^{P}f(x,t) \equiv \operatorname{trace}_{K} \left[A^{P}(x) f_{xx}(x,t) \right] - \partial/\partial t f(x,t)$$

for all t > 0, $x \in K$, whenever the right-hand side exists. Here $f_{xx}(x, t)$ denotes the second Fréchet derivative of f with respect to x. $L_{x,t}^{p}$ is a parabolic operator in K. By the finite-dimensional theory [2], [3], [4], [5], [10], [11] there exists a family of functions $\{q'(t, x, y)\}$, where t > 0, x and $y \in K$, which satisfies

- (i) q'(t, x, y) is jointly continuous in t, x, and y;
- (ii) $q'_{xx}(t, x, y)$ and $\partial/\partial t q'(t, x, y)$ exist and $L^p_{x,t}q'(t, x, y) = 0$ on $(0, \infty) \times K \times K$;
- (iii) if f(x) is bounded and continuous on K, then

$$\lim_{t \to 0} \int_K f(y) q'(t, x, y) dy = f(x) \qquad (x \in K)$$

where the convergence is uniform on compact subsets of K;

(iv) for any ε and $t_0 > 0$, q'(t, x, y) is bounded on the set

$$\{t+|x-y| \ge \varepsilon, 0 < t \le t_0\}.$$

Moreover, q'(t, x, y) is unique among functions which satisfy (i)–(iv).

It is not difficult [3], [4], [5], [11] to show that the construction of a fundamental solution for the equation $L_{x,t}^P = 0$ described in [12] (in this case K is the Hilbert space under consideration) produces a family of finite signed Borel measures $\{q_i'(x, dy)\}$ on K which are of the form $q_i'(x, dy) = q'(t, x, y) dy$ where q'(t, x, y) satisfies properties (i)-(iv). (In q'(t, x, y) dy, the dy refers to Lebesgue measure on K.) It now follows from Dynkin [4, Chapter V] that the family $\{q_i': t>0\}$ forms a contraction semigroup of positive operators acting on the space $\mathcal{B}(K)$ of bounded Borel functions on K. Moreover,

$$q'(t, x, y) > 0$$
 $(t > 0, x \text{ and } y \in K),$

and

$$\int_{K} q'(t, x, y) \, dy = 1 \qquad (t > 0, x \in K).$$

(The last property is found in [11].)

We define a family of finite Borel measures $\{q_t^K(x, dy)\}\$ on B by

$$q_t^K(x, dy) \equiv q_t'(x', dy') \times p_{2t}''(x'', dy'') \qquad (t > 0, x \in B).$$

REMARK. The family $\{p_t''(x, dy) : t > 0, x \in K^{\perp}\}$ is a fundamental solution of the heat equation $\partial/\partial t f(x, t) = \frac{1}{2} \operatorname{trace}_{K^{\perp}} [f''(x, t)]$ in K^{\perp} (see Gross [4, Theorem 3]). A straightforward change of variables shows that the factor of $\frac{1}{2}$ in the heat equation may be removed by considering the family $\{p_{2t}''(x, dy)\}$.

PROPOSITION 1. $\{q_t^K : t>0\}$ is a contraction semigroup of positive operators acting in the space $\mathcal{B}(B)$ of bounded Borel functions on B with the sup norm $\|\cdot\|_{\infty}$.

Proof. If E is a Borel set in B, of the form $E = E' \times E''$ where $E' \subseteq K$ and $E'' \subseteq K^{\perp}$, then

$$(q_t^K \chi_E)(x) = \{(q_t' \chi_{E'})(x')\} \{(p_{2t}'' \chi_{E'})(x'')\},$$

and each function on the right-hand side is a Borel function of x. The set $\mathscr S$ of all Borel sets E such that $q_t^K\chi_E$ is measurable is clearly closed under finite disjoint unions, and so contains the field generated by sets E of the above form $E'\times E''$. Since $\mathscr S$ is closed under monotone limits, it follows that $\mathscr S$ coincides with the σ -field of Borel sets. The set of all f for which $q_t^K f$ is a Borel function contains the characteristic functions of the Borel sets and is closed under bounded monotone limits, and thus contains all $f \in \mathscr B(B)$. Since $q_t^K(x, dy)$ is a probability measure for each $x \in B$ and t > 0, we have $\|q_t^K f\|_{\infty} \le \|f\|_{\infty}$.

To prove the semigroup property, we note that for E of the above form

$$\int_{B;(z)} \int_{B;(y)} \chi_{E}(y) \cdot q_{t}^{K}(z, dy) \cdot q_{s}^{K}(x, dz)
= \int_{B} q_{t}'(z', E') \cdot p_{2t}''(z'', E'') \cdot q_{s}^{K}(x, dz)
= \left\{ \int_{K} q_{t}'(z', E') \cdot q_{s}'(x', dz') \right\} \cdot \left\{ \int_{K^{\perp}} p_{2t}''(z'', E'') \cdot p_{2s}''(x'', dz'') \right\}
= q_{s+t}'(x', E') \cdot p_{2(s+t)}''(x'', E'')
= q_{s+t}^{K}(x, E)
= \int_{B} \chi_{E}(y) q_{s+t}^{K}(x, dy).$$

The set of all f for which

$$\int_{B_{s}(z)} \int_{B_{s}(y)} f(y) \cdot q_{t}^{K}(z, dy) \cdot q_{s}^{K}(x, dz) = \int_{B} f(y) \, q_{s+t}^{K}(x, dy)$$

is closed under finite linear combinations and under bounded monotone limits, and so by the preceding argument contains all $f \in \mathcal{B}(B)$. Thus we have established that $q_s^K(q_t^K)f = q_{s+t}^K f$ for all $f \in \mathcal{B}(B)$.

We next establish some notation and define some properties of measures. For any metric space W with metric d, let $\mathscr{B}(W)$ denote the space of all bounded real-valued Borel functions with the sup norm $\|\cdot\|_{\infty}$ and let $\mathscr{A}(W)$ be the space of all real bounded Lip-1 functions on W with norm $\|\cdot\|_1$ defined by

$$||f||_1 \equiv ||f||_{\infty} + \inf\{c : |f(x) - f(y)| \le c \cdot d(x, y) \text{ for all } x, y \in W\}.$$

For a family $\{\omega_t(x, dy) : x \in W, t > 0\}$ of finite real-valued signed Borel measures on W, we define the following properties:

(b-1) There exists a constant c, independent of t and x, such that

$$\int_{\mathbb{R}^n} |\omega_t|(x, dy) \le ct^{-1/2} \quad \text{for all } x \in W, t > 0.$$

(Here $|\omega_t|(x, E)$ denotes the variation of $\omega_t(x, dy)$ over E for each Borel set E in W.) (b-1(a)) Given $0 < t_0 < \infty$, there exists a constant c_{t_0} , independent of t and x, such that

$$\int_{W} |\omega_{t}|(x, dy) \le c_{t_{0}} t^{-1/2} \quad \text{for all } x \in W, \ 0 < t \le t_{0}.$$

(b-2) The map $f \to \omega_t f$ defined by $(\omega_t f)(x) \equiv \int_W f(y) \omega_t(x, dy)$ is a bounded linear operator on $\mathcal{B}(W)$ for each t > 0.

(b-3) (b-1) holds and $f \to \omega_t f$ is a bounded linear operator on $\mathcal{A}(W)$, with

$$\|\omega_t f\|_1 \le ct^{-1/2} \|f\|_1$$
 for all $t > 0$,

where c is given by (b-1).

(b-3(a)) (b-1(a)) holds and $f \to \omega_t f$ is a bounded linear operator on $\mathscr{A}(W)$, with

$$\|\omega_t f\|_1 \le c_{t_0} t^{-1/2} \|f\|_1$$
 for all $0 < t \le t_0$,

where c_{t_0} is given by (b-1(a)).

(b-4) Given $0 < \delta \le t_0 < \infty$, there exists a constant c_{δ,t_0} , independent of f and x, such that for $\delta \le t_1$, $t_2 \le t_0$ we have

$$|(\omega_{t_1}f)(x) - (\omega_{t_2}f)(x)| \leq c_{\delta,t_0}|t_1 - t_2| \cdot ||f||_1$$

for all $f \in \mathcal{A}(W)$ and $x \in W$.

It is a consequence of [13, Propositions 4 and 5] that if the family $\{\omega_t(x, dy)\}$ satisfies (b-3) or (b-3(a)), then it must satisfy (b-2).

Define the family $\{m_t^K(x, dy): t>0, x \in B\}$ of finite Borel measures on B by

(2)
$$m_t^K(x, dy) = \exp \left[-(C^K(x)(x-y), x-y)/4t\right]^{-p_{2t}}(x, dy)$$

where $C^K(x) = [A^K(x)]^{-1} - I = [I - PB(Px)P]^{-1}PB(Px)P$. On K^{\perp} , $C^K(x)$ acts as the zero operator. K is invariant under $C^K(x)$, and, if we define

$$C^{P}(x) \equiv [P - PB(Px)P]^{-1}PB(Px)P \in L(K, K)$$

then $C^{K}(x) = C^{P}(x)$ on K. Thus we can write

$$m_t^K(x, dy) = \exp\left[-(C^P(x')(x'-y'), x'-y')/4t\right]\nu_{2t}'(x', dy') \times p_{2t}''(x'', dy'')$$

$$\equiv m_t^P(x', dy') \times p_{2t}''(x'', dy'')$$

where x = x' + x'', y = y' + y'', x' and $y' \in K$, x'' and $y'' \in K^{\perp}$. We may also define

$$\hat{m}_{t}^{K}(x, dy) \equiv [\det A^{K}(y)]^{-1/2} m_{t}^{K}(x, dy)$$

$$= [\det A^{P}(Py)]^{-1/2} m_{t}^{K}(x, dy)$$

$$= [\det A^{P}(y')]^{-1/2} m_{t}^{P}(x', dy') \times p_{2t}''(x'', dy'')$$

$$\equiv \hat{m}_{t}^{P}(x', dy') \times p_{2t}''(x'', dy'').$$

All the measures which we have defined are finite Borel measures on the appropriate spaces.

We may now "apply" $L_{x,t}^K$ to $\hat{m}_t^K(x, dy)$ as in [12, Proposition 2], obtaining a family $\{M_t^K(x, dy)\}$ of Borel measures on B satisfying (b-1)-(b-3). We observe from equation (19) of [12] that we may write

$$M_t^K(x, dy) = M_t^P(x', dy') \times p_{2t}''(x'', dy'')$$

where $M_t^P(x', dy')$ acts in K and is given by

$$M_{t}^{P}(x, dy) \equiv [\det A^{P}(y)]^{-1/2} \{ \operatorname{trace}_{K} [A^{P}(x)] [-4(t)^{-1}(C^{P''}(x)(\cdot)(\cdot)(x-y), x-y) \\ -t^{-1}(C^{P'}(x)(\cdot)(\cdot), x-y) \\ +(16t^{2})^{-1}(C^{P'}(x)(\cdot)(x-y), x-y) \\ \otimes (C^{P'}(x)(\cdot)(x-y), x-y)] \\ +(4t)^{-1}(C^{P'}(x)(x-y)(x-y), x-y) \} \\ \cdot \exp [-(C^{P}(x)(x-y), x-y)/4t] \cdot \nu_{2t}(x, dy)$$

for all t > 0, x and $y \in K$. The symmetric operator $T \in L(K, K)$ which is denoted by $(C^{p'}(x)(\cdot), x-y)$ is defined by

$$(Tk_1, k_2) \equiv \frac{1}{2}[(C^{P'}(x)k_1k_2, x-y) + (C^{P'}(x)k_2k_1, x-y)]$$
 for all $k_1, k_2 \in K$.

If we replace P by I and ν_{2t} by p_{2t} in (4) $(A^I(y) \equiv A(y), C^I(x) \equiv C(x))$, then we obtain the measures $\{M_t(x, dy)\}$ of [12]. We may also replace P by I in (2) and (3), obtaining $\{m_t(x, dy)\}$ and $\{\hat{m}_t(x, dy)\}$.

PROPOSITION 2. The family $\{q_t^K(x, dy) : t > 0, x \in B\}$ coincides with the fundamental solution of

(5)
$$L_{x,t}^{K}f(x,t) \equiv \operatorname{trace}_{H} \left[A^{K}(x)f''(x,t) \right] - \partial/\partial t f(x,t) = 0$$

obtained by the method of [12].

LEMMA 2.1. If $\{M_t: t>0\}$ is any family of operators on $\mathcal{B}(B)$ which satisfies an inequality of the form $\|M_t f\|_{\infty} \leq Qt^{-1/2}\|f\|_{\infty}$ for some constant Q independent of t>0 and of $f\in\mathcal{B}(B)$, then any family $\{r_t(x,dy): t>0, x\in B\}$ of real-valued signed Borel measures on B which satisfies

(6)
$$r_t f(x) = M_t f(x) + \int_0^t M_{t-u}[r_u f](x) du$$

for all $f \in \mathcal{B}(B)$ and property (b-1(a)) is unique.

Proof. Assume that $\{r_t(x, dy)\}$ and $\{\bar{r}_t(x, dy)\}$ each satisfy (6) and (b-1(a)). Without loss of generality we may assume that the constants c_{t_0} of (b-1(a)) are the same for both families. Then for $f \in \mathcal{B}(B)$

$$r_t f(x) - \bar{r}_t f(x) = \int_0^t M_{t-u} [r_u f - \bar{r}_u f](x) du.$$

Now

$$||M_{t-u}[r_u f - \bar{r}_u f]||_{\infty} \le Q(t-u)^{-1/2} ||r_u f - \bar{r}_u f||_{\infty}$$
 for all $0 < u < t < \infty$.

Thus for all $0 < t \le t_0$ we have

$$||r_t f - \bar{r}_t f||_{\infty} \le Q \int_0^t (t - u)^{-1/2} ||r_u f - \bar{r}_u f||_{\infty} du$$

$$\le 2c_{t_0} ||f||_{\infty} Q \int_0^t (t - u)^{-1/2} u^{-1/2} du$$

$$= 2c_{t_0} ||f||_{\infty} Q \pi^{2/2} t^{2/2 - 1} (\Gamma(2/2))^{-1}.$$

Iterating, we get

$$||r_t f - \bar{r}_t f||_{\infty} \leq 2c_{t_0} ||f||_{\infty} Q^2 \pi^{2/2} (\Gamma(2/2))^{-1} \int_0^t (t-u)^{-1/2} u^{2/2-1} du$$

$$= 2c_{t_0} ||f||_{\infty} Q^2 \pi^{3/2} t^{3/2-1} (\Gamma(3/2))^{-1},$$

and eventually obtain

$$||r_t f - \bar{r}_t f||_{\infty} \le 2c_{t_0} ||f||_{\infty} Q^{n-1} \pi^{n/2} t^{n/2-1} (\Gamma(n/2))^{-1}$$

for each $n=2, 3, \ldots$ But $Q^{n-1}\pi^{n/2}t^{n/2-1}(\Gamma(n/2))^{-1}$ goes to zero as $n \to \infty$, for each t>0. Therefore $||r_tf-\bar{r}_tf||_{\infty}=0$ for all t>0, and so $r_tf=\bar{r}_tf$ for all $f\in \mathcal{B}(B)$ and in particular $r_t(x, E)=\bar{r}_t(x, E)$ for all Borel sets $E\subseteq B$.

Proof of Proposition 2. From the construction of $\{q'_t(x, dy)\}$ described in [12], we have the existence of a family $\{r'_t(x, dy)\}$ of measures on K satisfying properties (b-2), (b-3(a)) and (b-4) and also

$$r'_t f(x) = M_t^p f(x) + \int_0^t M_{t-u}^p [r'_u f](x) du \quad \text{for all } f \in \mathcal{B}(K), x \in K.$$

Define $r_t^K(x, dy) \equiv r_t'(x', dy') \times p_{2t}''(x'', dy'')$. We will show that

(7)
$$r_t^{R}f(x) = M_t^{R}f(x) + \int_0^t M_{t-u}^{R}[r_u^{R}f](x) du$$

for all $f \in \mathcal{B}(B)$, $x \in B$.

If $f = \chi_E$, where $E = E' \times E''$, $E' \subseteq K$, $E'' \subseteq K^{\perp}$, then

$$M_{t}^{P}(x', E') \cdot p_{2t}^{"}(x'', E'') + \int_{0}^{t} \left\{ \int_{K} r_{u}^{'}(y', E') \cdot M_{t-u}^{P}(x', dy') \right\}$$

$$\cdot \left\{ \int_{K^{\perp}} p_{2u}^{"}(y'', E'') \cdot p_{2(t-u)}^{"}(x'', dy'') \right\} du$$

$$= \left\{ M_{t}^{P}(x', E') + \int_{0}^{t} \int_{K} r_{u}^{'}(y', E') \cdot M_{t-u}^{P}(x', dy') du \right\} \cdot p_{2t}^{"}(x'', E'')$$

$$= r_{t}^{'}(x', E') \cdot p_{2t}^{"}(x'', E'')$$

$$= r_{t}^{K} \chi_{E}(x).$$

Since the set of all $f \in \mathcal{B}(B)$ which satisfies (7) is closed under finite linear combinations and under bounded monotone limits, it follows as in the proof of Proposition 1 that this set is exactly $\mathcal{B}(B)$. Moreover

$$\int_{B} |r_t^K|(x, dy) \le \int_{K} |r_t^P|(x, dy),$$

and since $\{r_t^P(x, dy)\}$ satisfies (b-1(a)), we conclude that $\{r_t^R(x, dy)\}$ satisfies (b-1(a)). Thus, by Lemma 2.1, $\{r_t^R(x, dy)\}$ coincides with the family of measures constructed via the technique of the proof of Proposition 3 of [12] during the construction of the fundamental solution of (5).

To complete the proof of the proposition, we need only establish that q_t^K satisfies

(8)
$$q_t^K f(x) = \hat{m}_t^K f(x) + \int_0^t \hat{m}_{t-u}^K [r_u^K f](x) \, du$$

for all $f \in \mathcal{B}(B)$, $x \in B$. If E is a Borel set in B of the form $E' \times E''$ with $E' \subseteq K$ and $E'' \subseteq K^{\perp}$, then

$$\begin{split} \hat{m}_{t}^{K}\chi_{E}(x) &+ \int_{0}^{t} \hat{m}_{t-u}^{K}[(r'_{u} \times p''_{2u})\chi_{E}](x) du \\ &= \hat{m}_{t}^{P}(x', E') \cdot p''_{2t}(x'', E'') + \int_{0}^{t} \int_{B} r'_{u}(y', E') \cdot p''_{2u}(y'', E'') \cdot \hat{m}_{t-u}^{K}(x, dy) \cdot du \\ &= \hat{m}_{t}^{P}(x', E') \cdot p''_{2t}(x'', E'') \\ &+ \int_{0}^{t} \left\{ \int_{K} r'_{u}(y', E') \cdot \hat{m}_{t-u}^{P}(x', dy') \right\} \cdot \left\{ \int_{K^{\perp}} p''_{2u}(y'', E'') \cdot p''_{2(t-u)}(x'', dy'') \right\} du \\ &= \hat{m}_{t}^{P}(x', E') \cdot p''_{2t}(x'', E'') \\ &+ \left\{ \int_{0}^{t} \int_{K} r'_{u}(y', E') \cdot \hat{m}_{t}^{P}(x', dy') \cdot du \right\} \cdot p''_{2t}(x'', E'') \\ &= q'_{t}\chi_{E'}(x') \cdot p''_{2t}\chi_{E''}(x'') \\ &= q'_{t}\chi_{E}(x). \end{split}$$

Since the set of all $f \in \mathcal{B}(B)$ which satisfies (8) is closed under finite linear combinations and under bounded monotone limits, it again follows that this set is exactly $\mathcal{B}(B)$. This concludes the proof of Proposition 2.

IV. Convergence of $\{\hat{m}_t^K(x, dy)\}$. In the work that follows we will use c to represent a general constant whose dependence may only be on the coefficient operators $A(\cdot)$ and on the relationship of the space B to the space H. That is, c will always be independent of t for any t>0, independent of any space variables x, y, etc., and independent of P. All estimates and all formulas will be valid for the case P=I with the obvious modifications.

LEMMA 3.1. Let ω be a finite positive measure on a space W, and $\{f_n\}$ be a sequence of real-valued functions on W which converge almost everywhere (a.e.) to f. If f_n and f belong to $L^{1+\lambda}(\omega)$ for some $\lambda > 0$, with $\|f_n\|_{1+\lambda}$ uniformly bounded, then $f_n \to f(L^1)$.

Proof. Define

$$g_n(x) \equiv \frac{f_n(x) - f(x)}{|f_n(x)| + |f(x)|} \quad \text{if } |f_n(x)| + |f(x)| \neq 0,$$

$$\equiv 0 \quad \text{otherwise,}$$

$$\int_{\mathbf{W}} |f_n - f| \ d\omega = \int_{\mathbf{W}} |g_n| (|f_n| + |f|) \ d\omega \le \|g_n\|_{t} \cdot \| \ |f_n| + |f| \ \|_{1+\lambda}$$

where $(\tau)^{-1}+(1+\lambda)^{-1}=1$. Since $|g_n(x)| \le 1$ for all $x \in W$ and for all n, and since ω is a finite measure, $g_n \in L^\tau \cdot g_n \to 0$ a.e., and so, by Lebesgue's Dominated Convergence Theorem, $\|g_n\|_{\tau} \to 0$. $\||f_n|+|f||_{1+\lambda} \le \|f_n\|_{1+\lambda} + \|f\|_{1+\lambda} \le c$ (independent of n). Thus $\int_W |f_n-f| d\omega \to 0$.

REMARK. Rather than assume that $f_n \to f$ a.e., it suffices to assume that $g_n \to 0$ in measure (defining g_n as in the above proof). For since $|g_n|^{\tau} \le 1$, it is a standard measure-theoretic result that again we have $||g_n||_{\tau} \to 0$ for each $1 \le \tau < \infty$.

PROPOSITION 3. As P converges to the identity operator on B, $\hat{m}_t^{\mathbb{K}}(x, dy) \rightarrow \hat{m}_t(x, dy)$ in variation, for each $x \in B$, t > 0.

Proof. We must show that

(i)
$$\equiv \int_{B} |[\det A^{K}(y)]^{-1/2} \exp[-(C^{K}(x)(x-y), x-y)/4t]$$

 $-[\det A(y)]^{-1/2} \exp[-(C(x)(x-y), x-y)/4t]| p_{2t}(dy)$

converges to zero as $P \rightarrow I$.

(i)
$$\leq \int_{B} [\det A^{R}(y)]^{-1/2} |\exp [-(C^{R}(x)(x-y), x-y)/4t]$$

 $-\exp [-(C(x)(x-y), x-y)/4t] |p_{2t}(x, dy)$
 $+ \int_{B} |[\det A^{R}(y)]^{-1/2} - [\det A(y)]^{-1/2} |\exp [(C(x)(x-y), x-y)/4t] \cdot p_{2t}(x, dy)$
 $\equiv (ii) + (iii), \quad \text{say.}$

Treating (iii) first, we recall that $A^{\kappa}(y) = I - PB(Py)P$. PB(Py)P is uniformly (in P and y) bounded in trace norm. $A^{\kappa}(y)$ is uniformly (in P and y) bounded away from zero in L(H, H) norm. (Note that $A^{\kappa}(y) \ge e_0 I$ for all P and y, where e_0 is defined in (a-2).) Applying Lemma 4.1 of Gross [6] and noting the Remark on p. 98 of [12], we find that $\{\det A^{\kappa}(y)\}$ is uniformly bounded both above and away from zero, and

(9)
$$| [\det A^{\mathbb{K}}(y)] - [\det A(y)] | \leq c ||PB(Py)P - B(y)||_{\text{tr}}.$$

(If $T \in L(H, H)$, then $||T||_{tr} \equiv \text{trace } [(T^*T)^{1/2}]$.) Since $x^{-1/2}$ is Lip-1 on subsets of $(0, \infty)$ which are both bounded above and bounded away from zero, we have

(10)
$$|[\det A^{K}(y)]^{-1/2} - [\det A(y)]^{-1/2}| \le c |[\det A^{K}(y)] - [\det A(y)]|.$$

Now if we let $\|\cdot\|_{H-S}$ denote the Hilbert-Schmidt norm, we have

$$\begin{aligned} \|PB(Py)P - B(y)\|_{\mathrm{tr}} &\leq \|PB(Py)P - B(Py)\|_{\mathrm{tr}} + \|B(Py) - B(y)\|_{\mathrm{tr}} \\ &= \|(P - I)B(Py)P + B(Py)(P - I)\|_{\mathrm{tr}} + \|B(Py) - B(y)\|_{\mathrm{tr}} \\ &\leq \|QEB_0(Py)EP\|_{\mathrm{tr}} + \|EB_0(Py)EQ\|_{\mathrm{tr}} + \|B(Py) - B(y)\|_{\mathrm{tr}} \\ &\leq c\|QE\|_{\mathrm{H-S}}\|E\|_{\mathrm{H-S}} + \|B(Py) - B(y)\|_{\mathrm{tr}}. \end{aligned}$$

Since E is Hilbert-Schmidt, $\|QE\|_{H-S} \to 0$ as $P \to I$. Since $B(\cdot)$ is Lip-1, $\|B(Py) - B(y)\|_{tr} \le c \|Py - y\|_B \to 0$ pointwise in y as $P \to I$. Thus

(11)
$$||PB(Py)P - B(y)||_{tr} \to 0$$

as $P \rightarrow I$, the convergence being pointwise in y. Combining (9), (10) and (11), we conclude that

(12)
$$|[\det A^{K}(y)]^{-1/2} - [\det A(y)]^{-1/2}| \to 0$$

as $P \rightarrow I$, the convergence being pointwise in y. It is shown in [12, p. 99] that

$$\exp \left[-(C(x)(x-y), x-y)/4t \right] \in L^{1+\lambda}(p_{2t}(x, \cdot))$$

for all positive λ which are sufficiently close to zero. For such a λ , the $L^{1+\lambda}$ -norm is uniformly bounded with respect to x and t. Thus

(iii)
$$\leq c \left\{ \int_{B} |[\det A^{R}(y)]^{-1/2} - \det [A(y)]^{-1/2}|^{(1+\lambda)/\lambda} \cdot p_{2t}(x, dy) \right\}^{\lambda/(1+\lambda)}$$

The preceding integrand is uniformly (in P and y) bounded above, and converges pointwise in y to zero as $P \rightarrow I$. Thus, by Lebesgue's Dominated Convergence Theorem, (iii) $\rightarrow 0$ as $P \rightarrow I$. We note that the convergence is not necessarily uniform in x nor in t.

Turning now to (ii), we make the change of variables $y \to x + 2\sqrt{ty}$ and note that the determinant term is uniformly (in P, x and t) bounded above, obtaining

(ii)
$$\leq c \int_{B} |\exp[-(C^{\kappa}(x)y, y)] - \exp[-(C(x)y, y)]| p_{1/2}(dy).$$

Now

$$||C^{K}(x) - C(x)||_{tr} \leq ||[(I - PB(Px)P)^{-1} - (I - B(x))^{-1}]B(x)||_{tr} + ||(I - PB(Px)P)^{-1}[PB(Px)P - B(x)]||_{tr}$$

$$\equiv (iv) + (v), \quad \text{say}.$$

 $(I-PB(Px)P)^{-1}$ is uniformly (in P and x) bounded in L(H, H) norm. It now follows from (11) that $(v) \to 0$ as $P \to I$, pointwise in x. Writing

$$(I-PB(Px)P)^{-1} - (I-B(x))^{-1}$$

$$= (I-PB(Px)P)^{-1}(I-B(x))(I-B(x))^{-1}$$

$$- (I-PB(Px)P)^{-1}(I-PB(Px)P)(I-B(x))^{-1}$$

$$= (I-PB(Px)P)^{-1}[(I-B(x)) - (I-PB(Px)P)](I-B(x))^{-1}$$

$$= (I-PB(Px)P)^{-1}[PB(Px)P - B(x)](I-B(x))^{-1},$$

we find that

(iv)
$$\leq c \| [PB(Px)P - B(x)]C(x) \|_{tr}$$

 $\leq c \| PB(Px)P - B(x) \|_{tr} |C(x)|_{L(H,H)}$
 $\leq c \| PB(Px)P - B(x) \|_{tr},$

and the right-hand side of this inequality converges pointwise to zero as $P \to I$. Thus $\|C^{R}(x) - C(x)\|_{tr} \to 0$ as $P \to I$, pointwise in x. We use [6, Lemma 1.2] to evaluate

$$\int_{B} |(C^{R}(x)y, y) - (C(x)y, y)| p_{1/2}(dy)$$

$$\leq \int_{B} ||C^{R}(x) - C(x)|^{1/2}y|^{2}p_{1/2}(dy)$$

$$= \frac{1}{2}(\text{Hilbert-Schmidt norm of } |C^{R}(x) - C(x)|^{1/2})^{2}$$

$$= \frac{1}{2}||C^{R}(x) - C(x)||_{\text{tr}}^{2}.$$

Thus $(C^{\mathbb{R}}(x)y, y)^{\sim} \to (C(x)y, y)^{\sim}$ in mean $(p_{1/2})$. Since we are in a finite measure space we also have convergence in probability $(p_{1/2})$. Now for any two real numbers a and b,

$$\left| \frac{e^a - e^b}{e^a + e^b} \right| = \left| \frac{e^d}{e^a + e^b} \right| \cdot |a - b| \quad \text{for some } d \text{ between } a \text{ and } b$$

$$\leq |a - b|.$$

Therefore if $|(e^a-e^b)/(e^a+e^b)| > \varepsilon$, then $|a-b| > \varepsilon$. Consequently,

$$p_{1/2} \left\{ \left| \frac{\exp\left[-(C^{K}(x)y, y) \right] - \exp\left[-(C(x)y, y) \right]}{\exp\left[-(C^{K}(x)y, y) \right] + \exp\left[-(C(x)y, y) \right]} \right|^{\sim} > \varepsilon \right\}$$

$$\leq p_{1/2} \left\{ \left| (C^{K}(x)y, y)^{\sim} - (C(x)y, y)^{\sim} \right| > \varepsilon \right\},$$

showing that

$$\left| \frac{\exp \left[-(C^{K}(x)y, y) \right] - \exp \left[-(C(x)y, y) \right]}{\exp \left[-(C^{K}(x)y, y) \right] + \exp \left[-(C(x)y, y) \right]} \right|^{\sim}$$

converges to zero in probability for each $x \in B$. Since

$$\|\exp [-(C^{K}(x)y, y)]\|_{1+\lambda} = \det [(I+(1+\lambda)C^{K}(x))^{-1/2}]$$

for λ sufficiently small and positive, the calculation on p. 99 of [12] shows that $\{\|\exp[-(C^K(x)y, y)]\|_{1+\lambda}\}$ is uniformly bounded with respect to P and x. By Lemma 3.1 and the remark which follows it, we conclude that (ii) $\to 0$ as $P \to I$, the convergence being independent of t but not necessarily of x. This concludes the proof of Proposition 3.

- V. Estimates on the coefficients. We again note that unless specified otherwise all estimates will be valid for the case P = I(K = H) with the obvious modifications.
- (c-1) There exists a symmetric Hilbert-Schmidt class operator F on H and a family of operators $C_0^K(x) \in L(H, H)$ such that for all $x \in B$, $C^K(x) = FC_0^K(x)F$ and $|C_0^K(x)| \le 1$. F is independent of P (i.e. of K).

We follow the proof of c-2) of [12]. Since the operator E of (a-3) commutes with P it is easy to see that such an F exists for each P. However, to see that F can be chosen independently of P, we will go through the necessary calculations.

If P' is chosen from our special family of projections, and if $Q' \equiv I - P'$, then

$$I - PB(Px)P = I - (P' + Q')PB(Px)P(P' + Q')$$

= $[I - P'PB(Px)PP'] - [P'PB(Px)PQ' + Q'PB(Px)P].$

Since $|P'PB(Px)PQ' + Q'PB(Px)P| \le c|EQ'|$, we may choose P' to satisfy

$$|P'PB(Px)PQ' + Q'PB(Px)P| \leq (1 - \varepsilon_0)\varepsilon_0.$$

The ε_0 used above is the ε_0 of hypothesis (a-2). Factoring out [I-P'PB(Px)PP'], we obtain

(14)
$$I - PB(Px)P = [I - P'PB(Px)PP'][I - D^{K}(x)]$$

where

$$D^{K}(x) \equiv [I - P'PB(Px)PP']^{-1}E[P'PB_{0}(Px)PO' + O'PB_{0}(Px)P]E.$$

$$|D^{K}(x)| \leq 1 - \varepsilon_0$$
. Also, for $y_1, y_2 \in H$,

$$|(D^{K}(x)y_{1}, y_{2})| \leq 2|Ey_{1}| \cdot |E[I-P'PB(Px)PP']^{-1}y_{2}|.$$

Now

$$|E[I-P'PB(Px)PP']^{-1}y_{2}|^{2}$$

$$= |E[I-P'PB(Px)PP']^{-1}P'y_{2} + E[I-P'PB(Px)PP']^{-1}Q'y_{2}|^{2}$$

$$\leq |E|^{2}\varepsilon_{0}^{-2}|P'y_{2}|^{2} + |EQ'y_{2}|^{2}$$

$$\leq |E_{1}y_{2}|^{2}$$

where $E_1 \equiv 2[|E|\epsilon_0^{-1}P' + EQ']$. Since E_1 is symmetric and of Hilbert-Schmidt class

and $2|Ey_1| \le |E_1y_1|$, it follows from [6, Lemma 4.2] that we may write $D^{\kappa}(x) = E_1 D_0^{\kappa}(x) E_1$, where $|D_0^{\kappa}| \le 1$. Expanding,

$$[I-D^{K}(x)]^{-1} = I + \lim_{n \to \infty} \sum_{i=1}^{n} [D^{K}(x)]^{i}$$

$$= I + E_{1} \left\{ D_{0}^{K}(x) + \lim_{n \to \infty} \sum_{i=0}^{n} D_{0}^{K}(x) E_{1} [D^{K}(x)]^{i} E_{1} D_{0}^{K}(x) \right\} E_{1}$$

$$= I + E_{1} D_{1}^{K}(x) E_{1}, \quad \text{say},$$

where $|D_1^K(x)| \le 1 + |E_1|^2 \varepsilon_0^{-1}$. Thus

$$\begin{aligned} |(C^{K}(x)y_{1}, y_{2})| &= |([I - D^{K}(x)]^{-1}[I - P'PB(Px)PP']^{-1}PB(Px)Py_{1}, y_{2})| \\ &\leq |(B_{0}(Px)PEy_{1}, PE[I - P'PB(Px)PP']^{-1}y_{2})| \\ &+ |(D_{1}^{K}(x)E_{1}[I - P'PB(Px)PP']^{-1}PEB_{0}(Px)PEy_{1}, E_{1}y_{2})| \\ &\leq |Ey_{1}| \cdot |E_{1}y_{2}| + [1 + |E_{1}|^{2}\varepsilon_{0}^{-1}] \cdot |E_{1}| \cdot \varepsilon_{0}^{-1} \cdot |E| \cdot |Ey_{1}| \cdot |E_{1}y_{2}| \\ &\leq |aEy_{1}| \cdot |E_{1}y_{2}| \end{aligned}$$

where $a = 1 + [1 + |E_1|^2 \varepsilon_0^{-1}] \cdot |E_1| \cdot \varepsilon_0^{-1} \cdot |E|$. (c-1) now follows on applying Lemma 4.2 of [6] together with the argument following b-5) of [12].

(c-2) There exist families of operators $C_1^K(x) \in L(B \to L(H, H))$ and $C_2^K(x) \in L(B \to L(B, H))$ such that for all $x, z, z_1, z_2 \in B$ we have $DC^K(x)z = FC_1^K(x)zF$ and $D^2C^K(x)z_1z_2 = FC_2^K(x)z_1z_2F$ with $||C_1^K(x)|| \le 1$ and $||C_2^K(x)|| \le 1$.

 $DC^{K}(x)z$ is given for all $x, z \in B$ by the formula

$$DC^{K}(x)z = [I - PB(Px)P]^{-1}P[DB(Px)z]P[I - PB(Px)P]^{-1}PB(Px)P$$

$$+ [I - PB(Px)P]^{-1}P[DB(Px)z]P$$

$$= [I - PB(Px)P]^{-1}P[DB(Px)z]P[(I - PB(Px)P]^{-1}.$$

We note for future reference that $DC^{\kappa}(x)z$ depends only on Pz, since B(Px) depends only on Px and so DB(Px)z=0 for all $z \in K^{\perp}$. Moreover, $DC^{\kappa}(x)z$ acts as the zero operator on K^{\perp} , and K is invariant under $DC^{\kappa}(x)z$. For each $y_1, y_2 \in H$ we have

$$|(DC^{K}(x)zy_{1}, y_{2})| \leq |DB_{0}(Px)z| \cdot |E[I-PB(Px)P]^{-1}y_{1}| \cdot |E[I-PB(Px)P]^{-1}y_{2}|.$$

From (14) and (16) we obtain

$$E[I-PB(Px)P]^{-1} = E[I-D^{K}(x)]^{-1}[I-P'PB(Px)PP']^{-1}$$

= $E[I-P'PB(Px)PP']^{-1} + EE_{1}D_{1}^{K}(x)E_{1}[I-P'PB(Px)PP']^{-1}.$

It now follows from (15) and from a similar estimate for $|E_1[I-P'PB(Px)PP']^{-1}y|$ that there exists a symmetric Hilbert-Schmidt class operator F_1 on H such that

$$|(DC^{\kappa}(x)zy_1, y_2)| \leq |F_1y_1| \cdot |F_1y_2| \cdot ||z||.$$

Without loss of generality we may assume that $F_1 = F$. Lemma 4.2 of [6] now gives the desired result for $DC^{R}(x)z$.

The calculations for $D^2C^K(x)$ follow without difficulty from the above estimates.

(c-3) As $P \to I$, $|[I - PB(Px)P]^{-1} - [I - B(x)]^{-1}| \to 0$ pointwise for all $x \in B$. From (13) we have

$$[I-PB(Px)P]^{-1}-[I-B(x)]^{-1}=[I-PB(Px)P]^{-1}[PB(Px)P-B(x)][I-B(x)]^{-1}.$$

Since $|[I-PB(Px)P]^{-1}|$ is uniformly (in x and P) bounded, we have

$$|[I-PB(Px)P]^{-1} - [I-B(x)]^{-1}| \le c|PB(Px)P - B(x)|$$

$$\le c|PB(Px)P - B(x)|_{tr}$$

and the right-hand side of the previous inequality converges to zero as $P \rightarrow I$, by (11).

(c-4) As $P \to I$, $|P[DB(Px)z]P - DB(x)z| \to 0$ pointwise for $x \in B$ and uniformly for z varying over a bounded set in B.

Let
$$Q \equiv I - P$$
. Then

$$|P[DB(Px)z]P - DB(x)z|$$

$$\leq |P[DB(Px)z]P - DB(Px)z| + |DB(Px)z - DB(x)z|$$

$$= |[P-I][DB(Px)z]P + [DB(Px)z][P-I]| + |E[DB_0(Px)z - DB_0(x)z]E|$$

$$\leq |QE[DB_0(Px)z]EP| + |E[DB_0(Px)z]EQ| + c||DB_0(Px) - DB_0(x)|| \cdot ||z||$$

$$\leq c||z|| \cdot |EQ| + c||Px - x|| \cdot ||z||$$

by (a-5), and the right-hand side of the above inequality converges to zero as $P \to I$, the convergence being pointwise in x and uniform on bounded sets of ||z||.

(c-5) As $P \to I$, $|DC^K(x)z - DC(x)z| \to 0$ pointwise for $x \in B$ and uniformly for z varying over a bounded set in B.

Noting that

$$|DC^{K}(x)z - DC(x)z| = |[I - PB(Px)P]^{-1}P[DB(Px)z]P[I - PB(Px)P]^{-1} - [I - B(x)]^{-1}DB(x)z[I - B(x)]^{-1}|,$$

the result follows immediately from (c-3) and (c-4).

(c-6) As $P \to I$, $|P[D^2B(Px)z_1z_2]P - D^2B(x)z_1z_2| \to 0$ pointwise for $x \in B$ and uniformly for z_1 and z_2 varying over bounded sets in B.

Setting $Q \equiv I - P$, we have

$$\begin{split} |P[D^2B(Px)z_1z_2]P - D^2B(x)z_1z_2| \\ & \leq |[P-I][D^2B(Px)z_1z_2]P + [D^2B(Px)z_1z_2][P-I]| \\ & + |D^2B(Px)z_1z_2 - D^2B(x)z_1z_2| \\ & \leq |QE[D^2B_0(Px)z_1z_2]EP| + |E[D^2B_0(Px)z_1z_2]EQ| \\ & + |E[D^2B_0(Px) - D^2B_0(x)]z_1z_2E| \\ & \leq c|QE| \cdot ||z_1|| \cdot ||z_2|| + c||D^2B_0(Px) - D^2B_0(x)|| \cdot ||z_1|| \cdot ||z_2|| \\ & \leq c||z_1|| \cdot ||z_2|| \cdot [|QE| + ||Px - x||]. \end{split}$$

 $|QE| \rightarrow 0$ as $P \rightarrow I$, and $||Px - x|| \rightarrow 0$, pointwise in x, as $P \rightarrow I$.

(c-7) As $P \to I$, $|D^2C^K(x)z_1z_2 - D^2C(x)z_1z_2| \to 0$ pointwise for $x \in B$ and uniformly for z_1 and z_2 varying over bounded sets in B.

We have the formula

$$\begin{split} D^2C^K(x)z_1z_2 - D^2C(x)z_1z_2 &= [I-PB(Px)P]^{-1} \\ &\cdot \{P[DB(Px)z_2]P[I-PB(Px)P]^{-1}P[DB(Px)z_1]P \\ &\quad + P[D^2B(Px)z_1z_2]P \\ &\quad + P[DB(Px)z_1]P[I-PB(Px)P]^{-1}P[DB(Px)z_2]P\} [I-PB(Px)P]^{-1} \\ &\quad - [I-B(x)]^{-1}\{[DB(x)z_2][I-B(x)]^{-1}[DB(x)z_1] + [D^2B(x)z_1z_2] \\ &\quad + [DB(x)z_1][I-B(x)]^{-1}[DB(x)z_2]\}[I-B(x)]^{-1}. \end{split}$$

(c-7) now follows on using estimates (c-3), (c-4) and (c-6).

The next set of estimates that we shall make will be integral estimates. The measurability of most of the functions which we will use follows from either [12, Lemma 1] or else from the following lemma.

LEMMA 4.1. Let M be a normed linear space with norm $|\cdot|_M$ and let $H^{(N)} \equiv H \times H \times \cdots \times H$ (N times). Let $f(y_1, \ldots, y_N) \colon H^{(N)} \to M$ be linear in each y_i . If $|f(y_1, \ldots, y_N)|_M \le c|y_1|_1 \cdot |y_2|_2 \cdot \cdots \cdot |y_N|_N$ where $|\cdot|_i$ is a measurable seminorm on H $(i=1,\ldots,N)$, then $G(y) \equiv |f(y,\ldots,y)|_M$ is u.c.n. 0 in H_m .

The proof of this lemma is similar to that of Lemma 1 of [12], once we observe that

$$|G(y)-G(z)| \leq |f(y, y, ..., y)-f(z, z, ..., z)|_{M}$$

(c-8) As $P \to I$, $\int_B |([C^K'(x) - C'(x)]yy, y)|p_{2t}(dy) \to 0$ pointwise for $x \in B$ and t > 0.

Set $Q \equiv I - P$ and write

$$(C'(x)yy, y) = ([C'(x)](Py)(Py), Py) + ([C'(x)](Py)(Py), Qy) + ([C'(x)](Py)(Qy), y) + ([C'(x)](Qy)y, y),$$

valid for each $y \in H$. Noting that $(C^{K'}(x)yy, y)^{\sim} = ([C^{K'}(x)](Py)(Py), Py)$ for a.e. $y \in B$, we have

$$\int_{B} |([C^{K'}(x) - C'(x)]yy, y)| p_{2t}(dy)
\leq \int_{PH} |([C^{K'}(x) - C'(x)](Py)(Py), Py)| \nu_{2t}(dy)
+ \int_{B} (||Py|| \cdot |FPy| \cdot |FQy| + ||Py|| \cdot |FQy| \cdot |Fy|) p_{2t}(dy)
+ \int_{B} ||Qy|| \cdot |Fy|^{2} \cdot p_{2t}(dy)
\equiv (i) + (ii) + (iii), say.$$

The integrand of (iii) is bounded by $c||y|| \cdot |Fy|^{2^{-}}$ for a.e. $y \in B$ and moreover it converges to zero a.e. on B as $P \to I$. Thus (iii) $\to 0$ as $P \to I$ by Dominated Convergence.

(ii)
$$\leq c \int_{B} ||y|| \cdot |Fy| \cdot |FQy| \cdot p_{2t}(dy)$$

 $\leq c \left\{ \int_{B} (||y|| \cdot |Fy|)^{2} p_{2t}(dy) \right\}^{1/2} \left\{ \int_{B} |FQy|^{2} p_{2t}(dy) \right\}^{1/2}$
 $\leq c \left\{ \text{trace } [(I-P)F]^{2} \right\}^{1/2}$
 $\to 0 \text{ as } P \to I.$

Let S_n denote the sphere in H with center at the origin and with radius n. We have

$$\begin{split} \int_{PH/PS_{n}} |([C^{K'}(x) - C'(x)](Py)(Py), Py)| \, \nu_{2t}(dy) \\ & \leq c \int_{PH/PS_{n}} \|Py\| \cdot |FPy|^{2} \cdot \nu_{2t}(dy) \\ & \leq c \left\{ \int_{PH} \|Py\|^{2} \nu_{2t}(dy) \right\}^{1/2} \left\{ \int_{PH/PS_{n}} |FPy|^{4} \nu_{2t}(dy) \right\}^{1/2} \\ & = c \left\{ \int_{B} \|Py\|^{2} p_{2t}(dy) \right\}^{1/2} \left\{ \int_{PH/PS_{n}} |FPy|^{4} \nu_{2t}(dy) \right\}^{1/2} \\ & \leq c \left\{ \int_{B} \|y\|^{2} p_{2t}(dy) \right\}^{1/2} \left\{ \int_{PH/PS_{n}} |FPy|^{4} \nu_{2t}(dy) \right\}^{1/2} \\ & \leq c \left\{ \int_{PH/PS_{n}} |FPy|^{4} \nu_{2t}(dy) \right\}^{1/2} . \end{split}$$

We claim that the right-hand side of the previous inequality converges to zero as $n \to \infty$, the convergence being independent of P. Since PH is invariant under F (all P's commute with F), we can choose a basis $\{e_i : i=1,\ldots,m\}$ for PH consisting of eigenvectors of F. Let $\lambda_i \equiv Fe_i$ and $y \equiv \sum_{i=1}^m y_i e_i$. Then

$$\int_{PH/PS_n} |FPy|^4 \nu_{2t}(dy)$$

$$= \frac{1}{(4\pi t)^{m/2}} \int_{PH/PS_n} \left(\sum_{i=1}^m \lambda_i^2 y_1^2 \right)^2 \exp\left(-\sum_{i=1}^m y_i^2 / 4t \right) dy_1 \cdots dy_m$$

$$= (4\pi t)^{-m/2} \int_{PH/PS_n} \left(\sum_{i,j=1}^m \lambda_i^2 \lambda_j^2 y_i^2 y_j^2 \right) \exp\left(-\sum_{i=1}^m y_i^2 / 4t \right) dy_1 \cdots dy_m.$$

Given $\varepsilon > 0$, for each $i = 1, \ldots, m$,

$$(4\pi t)^{-m/2} \int_{PH/PS_n} \lambda_i^4 y_i^4 \exp\left(-\sum_{j=1}^m y_j^2/4t\right) dy_1 \cdots dy_m$$

$$\leq (4\pi t)^{-1/2} \lambda_i^4 \int_{|y_i| \geq n} y^4 \exp\left(-y^2/4t\right) dy$$

and $\int_{|y|\geq n} y^2 \exp(-y^2/4t) dy$ can be made $\langle \varepsilon(4\pi t)^{1/2}$ for n sufficiently large. Similarly,

$$(4\pi t)^{-m/2} \int_{PH/PS_n} \lambda_i^2 \lambda_j^2 y_i^2 y_j^2 \exp\left(-\sum_{k=1}^m y_i^2/4t\right) dy_1 \cdots dy_m$$

$$\leq \lambda_i^2 \lambda_j^2 \left((4\pi t)^{-1/2} \int_{|y| \geq n} y^2 \exp\left(-y^2/4t\right) dy\right)^2$$

where $\int_{|y| \ge n} y^2 \exp(-y^2/4t) dy$ can be made $<(4\pi t\varepsilon)^{1/2}$ for *n* sufficiently large. Thus

$$\int_{PH/PS_n} |FPy|^4 \nu_{2t}(dy) \le \varepsilon \sum_{i,j=1}^m \lambda_i^2 \lambda_j^2$$

$$= \varepsilon \left(\sum_{i=1}^m \lambda_i^2 \right)^2 \le \varepsilon (\operatorname{trace} F^2)^2,$$

for all n sufficiently large and for all P.

Now for any fixed n we may make use of estimate (c-5) to choose P_0 so that $P \supseteq P_0$ implies that

$$|([C^{K'}(x)-C'(x)]yy,y)|<\varepsilon$$

for all $y \in S_n$. Then

$$\int_{PS_n} \left| ([C^{K'}(x) - C'(x)](Py)(Py), Py) \right| \nu_{2t}(dy) < \varepsilon$$

and so (i) \rightarrow 0 as $P \rightarrow I$, pointwise for $x \in B$. This concludes the proof of (c-8). (c-9) As $P \rightarrow I$,

$$\int_{B} \|([C^{K''}(x) - C''(x)](\cdot)(\cdot)y, y)\|_{\operatorname{tr}} p_{2t}(dy) \to 0$$

pointwise for $x \in B$ and t > 0.

Set $Q \equiv I - P$ and write

$$(C''(x)(\cdot)(\cdot)y,y) = (C''(x)(\cdot)(\cdot)(Py),Py) + (C''(x)(\cdot)(\cdot)(Py),Qy) + (C''(x)(\cdot)(\cdot)(Qy),y),$$

valid for each $y \in H$. Since

$$\|(C^{K''}(x)(\cdot)(\cdot)y,y)\|_{\mathrm{tr}}^{\sim} = \|(C^{K''}(x)(\cdot)(\cdot)(Py),Py)\|_{\mathrm{tr}}$$

for a.e. $y \in B$, we have

$$\int_{B} \|([C^{K''}(x) - C''(x)](\cdot)(\cdot)y, y)\|_{\operatorname{tr}} p_{2t}(dy)
\leq \int_{PH} \|([C^{K''}(x) - C''(x)](\cdot)(\cdot)(Py), Py)\|_{\operatorname{tr}} \nu_{2t}(dy)
+ \int_{B} (|FPy| \cdot |FQy| + |FQy| \cdot |Fy|) p_{2t}(dy)
\equiv (i) + (ii), \quad \text{say.}$$

(ii)
$$\leq c \int_{B} |Fy| \cdot |FQy| \cdot p_{2t}(dy)$$

 $\leq c \left\{ \int_{B} |Fy|^{2} p_{2t}(dy) \right\}^{1/2} \left\{ \int_{B} |FQy|^{2} p_{2t}(dy) \right\}^{1/2}$
 $\leq c \{ \text{trace } ((I-P)F)^{2} \}^{1/2}$
 $\to 0 \text{ as } P \to I.$

Let S_n denote the sphere in H with center at the origin and with radius n. We have

$$\int_{PS_n} \|([C^{K''}(x) - C''(x)](\cdot)(\cdot)(Py), Py)\|_{\operatorname{tr}} \nu_{2t}(dy)
\leq c \int_{PS_n} \|D^2(C^K(x) - C(x))\| \cdot n^2 \cdot \nu_{2t}(dy)
\leq c n^2 \sup_{\|z_1\|_{+} \|z_2\| \leq 1} |D^2(C^K(x) - C(x))z_1z_2|
\to 0 \text{ as } P \to I, \text{ by estimate (c-7).}$$

Now

$$\int_{PH/PS_n} \|([C^{K''}(x) - C''(x)](\cdot)(\cdot)(Py), Py)\|_{\operatorname{tr}} \nu_{2t}(dy) \leq c \int_{PH/PS_n} |FPy|^2 \nu_{2t}(dy).$$

As in the proof of (c-8) we can show that the right-hand side of the previous inequality converges to zero as $n \to \infty$, the convergence being independent of P. It follows that (i) $\to 0$ as $P \to I$.

(c-10) As
$$P \rightarrow I$$

$$\int_{R} \| (C^{R'}(x)(\cdot)y, y) \otimes (C^{R'}(x)(\cdot)y, y) - (C'(x)(\cdot)y, y) \otimes (C'(x)(\cdot)y, y) \|_{\mathrm{tr}} \, p_{2t}(dy)$$

converges to zero, pointwise for $x \in B$ and t > 0.

For $h \in H$ we will write h^2 for $h \otimes h$. $(C^{K'}(x)(\cdot)y, y)$ is, for each $x \in B$ and $y \in H$, a bounded linear functional on H. Thus it may be identified with an element $h \in H$ with $|h| \le c|Fy|^2$. Noting that the constant is independent of the choice of P and that $|h| \otimes h|_{tr} = |h|^2$ (see [14]), we obtain

$$\|(C^{R'}(x)(\cdot)y, y)^2 - (C'(x)(\cdot)y, y)^2\|_{\mathrm{tr}} \le c|Fy|^4,$$

valid for each $y \in H$. This ensures that the integral in (c-10) exists, and also that the integrand arises from a function on H which is u.c.n. 0 in H_m .

Set $Q \equiv I - P$, and for $y \in H$ write

$$(C'(x)(\cdot)y, y) = (C'(x)(\cdot)(Py), Py) + (C'(x)(\cdot)(Py), Qy) + (C'(x)(\cdot)(Qy), y).$$

Noting that $(C^{K'}(x)(\cdot)y, y) = (C^{K'}(x)(\cdot)(Py), Py)$ for each $y \in H$, we have

$$\int_{B} \|(C^{K'}(x)(\cdot)y, y)^{2} - (C'(x)(\cdot)y, y)^{2}\|_{\operatorname{tr}} p_{2t}(dy) \\
\leq \int_{PH} \|(C^{K'}(x)(\cdot)(Py), Py)^{2} - (C'(x)(\cdot)(Py), Py)^{2}\|_{\operatorname{tr}} \nu_{2t}(dy) \\
+ \int_{B} \|(C'(x)(\cdot)(Py), Py) \otimes [(C'(x)(\cdot)(Py), Qy) + (C'(x)(\cdot)(Qy), y)] \\
+ [(C'(x)(\cdot)(Py), Qy) + (C'(x)(\cdot)(Qy), y)]^{2} \\
+ [(C'(x)(\cdot)(Py), Qy) + (C'(x)(\cdot)(Qy), y)] \\
\otimes (C'(x)(\cdot)(Py), Py)\|_{\operatorname{tr}} p_{2t}(dy)$$

 \equiv (i)+(ii), say.

Using the fact that $||h_1 \otimes h_2||_{tr} = |h_1| \cdot |h_2|$ for each $h_1, h_2 \in H$, we obtain

(ii)
$$\leq c \int_{B} \{|FPy|^{2}[|FPy| \cdot |FQy| + |FQy| \cdot |Fy|] + [|FPy| \cdot |FQy| + |FQy| \cdot |Fy|]^{2} + [|FPy| \cdot |FQy| + |FQy| \cdot |Fy|]^{2} + [|FPy| \cdot |FQy| + |FQy| \cdot |Fy|] \cdot |FPy|^{2}\} p_{2t}(dy)$$

$$\leq c \int_{B} |Fy|^{3} |FQy| + |Fy|^{2} |FQy|^{2} p_{2t}(dy)$$

$$\leq c \int_{B} |Fy|^{3} |FQy| p_{2t}(dy)$$

$$\leq c \left\{ \int_{B} |Fy|^{6} p_{2t}(dy) \right\}^{1/2} \left\{ \int_{B} |FQy|^{2} p_{2t}(dy) \right\}^{1/2}$$

$$\leq c \left\{ \operatorname{trace} ((I-P)F)^{2} \right\}^{1/2}$$

$$\to 0 \text{ as } P \to I.$$

For $h_1, h_2 \in H$ we have

$$||h_1^2 - h_2^2||_{\mathrm{tr}} = ||(h_1 - h_2) \otimes h_1 + h_2 \otimes (h_1 - h_2)||_{\mathrm{tr}} \le (|h_1| + |h_2|) \cdot |h_1 - h_2|.$$

Thus

(i)
$$\leq c \int_{PH} |FPy|^2 \cdot \sup_{h \in H: |h| = 1} \{ [C^{K'}(x) - C'(x)]h(Py), Py) \} \cdot \nu_{2t}(dy).$$

Using (c-5) and proceeding in a manner similar to that used for (i) of (c-8) or (c-9), we find that (i) \rightarrow 0 as $P \rightarrow I$, the convergence being pointwise for $x \in B$. (c-11) As $P \rightarrow I$,

$$\int_{B} \|(C^{K'}(x)(\cdot)(\cdot), y) - (C'(x)(\cdot)(\cdot), y)\|_{\mathrm{tr}} p_{2t}(dy) \to 0,$$

pointwise for $x \in B$ and t > 0.

We recall that for each $y \in H$ the operators $T^R \equiv (C^{R'}(\cdot)(\cdot), y)$ are defined for all $h_1, h_2 \in H$ by

$$(T^{K}h_{1}, h_{2}) = \frac{1}{2}[(C^{K'}(x)h_{1}h_{2}, y) + (C^{K'}(x)h_{2}h_{1}, y)].$$

Each T^K is symmetric and of Hilbert-Schmidt class. The symmetry is obvious from the definition; to demonstrate the Hilbert-Schmidt property we will show that T^K is a sum of two Hilbert-Schmidt class operators. If $\{e_i\}$ is any orthonormal basis for H, then

$$\sum_{i=1}^{\infty} \sup_{h \in H; |h|=1} |(C^{K'}(x)he_i, y)|^2 = \sum_{i=1}^{\infty} \sup_{h \in H; |h|=1} |(FC_1^{K}(x)hFe_i, y)|^2$$

$$\leq c|Fy|^2 \cdot \sum_{i=1}^{\infty} |Fe_i|^2 < \infty$$

and

$$\sum_{i=1}^{\infty} \sup_{h \in H; |h|=1} |(C^{K'}(x)e_{i}h, y)|^{2}$$

$$= \sum_{i=1}^{\infty} \sup_{h \in H; |h|=1} |([I-PB(Px)P]^{-1}PDB(Px)e_{i}P[I-B(Px)P]^{-1}h, y)|^{2}$$

$$\leq \sum_{i=1}^{\infty} |E[I-PB(Px)P]^{-1}y|^{2} \cdot |DB_{0}(Px)e_{i}|^{2} \cdot \sup_{h \in H; |h|=1} |E[I-PB(Px)P]^{-1}h|^{2}$$

$$\leq c_{y} \cdot \sum_{i=1}^{\infty} |DB_{0}(Px)e_{i}|^{2}$$

where c_y is a constant depending only on y. The last sum is finite, by hypothesis (a-6).

To show now that each T^{K} is of trace class, it now suffices to show that $\sum_{i=1}^{\infty} |(T^{K}e_{i}, e_{i})| < \infty$ for each $\{e_{i}\}$. We have

$$|(T^{K}(x)e_{i}, e_{i})| = |([I-PB(Px)P]^{-1}EP[DB_{0}(Px)e_{i}]PE[I-PB(Px)P]^{-1}e_{i}, y)|$$

$$\leq |DB_{0}(Px)e_{i}| \cdot |E[I-PB(Px)P]^{-1}e_{i}| \cdot |E[I-PB(Px)P]^{-1}y|$$

where

$$|E[I-PB(Px)P]^{-1}y| = |E[I-P'PB(Px)PP'][I-D^{K}(x)]y| \quad \text{by (14)}$$

$$\leq |E[I-P'PB(Px)PP']y| + c|D^{K}(x)y|$$

$$\leq |E_{1}y| + c|Ey|$$

by (15) and the definition of $D^{\mathbb{R}}(x)$. E_1 and c are independent of P, x and y, and both E_1 and E are of Hilbert-Schmidt class. Thus there exists a Hilbert-Schmidt

class operator $E_2 \in L(H, H)$ such that for all $y \in H$ we have $|E[I-PB(Px)P]^{-1}y| \le |E_2y|$. Then

$$\begin{split} \sum_{i=1}^{\infty} |(T^{K}(x)e_{i}, e_{i})| &\leq \sum_{i=1}^{\infty} |DB_{0}(Px)e_{i}| \cdot |E_{2}e_{i}| \cdot |E_{2}y| \\ &\leq |E_{2}y| \cdot \left\{ \sum_{i=1}^{\infty} |DB_{0}(Px)e_{i}|^{2} \right\}^{1/2} \cdot \left\{ \sum_{i=1}^{\infty} |E_{2}e_{i}|^{2} \right\}^{1/2} \\ &\leq c|E_{2}y| \end{split}$$

by (a-6). It follows that $||T^K(x)||_{tr} \le c|E_2y|$. This ensures that the integrand in (c-11) exists and that it arises from a function which is u.c.n. 0 in H_m .

We now estimate the integrand by

$$\begin{aligned} \|(C^{K'}(x)(\cdot)(\cdot), y) - (C'(x)(\cdot)(\cdot), y)\|_{\mathrm{tr}} &\leq \|(C^{K'}(x)(\cdot)(\cdot), Py) - (C'(x)(\cdot)(\cdot), Py)\|_{\mathrm{tr}} \\ &+ \|(C'(x)(\cdot)(\cdot), Qy)\|_{\mathrm{tr}} \\ &\equiv (i) + (ii), \quad \text{say}. \end{aligned}$$

If we can show that (i) $\to 0$ as $P \to I$, pointwise for each $x \in B$ and uniformly for y in a bounded set in H, then the techniques employed in proving (c-8)–(c-10) will give us (c-11). Note that for any orthonormal basis $\{e_i\}$ of H

$$\sum_{i=1}^{\infty} |(C^{K'}(x)e_{i}e_{i}, Py) - (C'(x)e_{i}e_{i}, Py)|$$

$$\leq |Py| \cdot \sum_{i=1}^{\infty} |[[I - PB(Px)P]^{-1}P[DB(Px)e_{i}]P[I - PB(Px)P]^{-1}$$

$$-[I - B(x)]^{-1}DB(x)e_{i}[I - B(x)]^{-1}]e_{i}|.$$

It suffices to show that the latter sum converges (for each $x \in B$) to zero as $P \to I$, and that the convergence is independent of the choice of basis $\{e_i\}$. This sum may be written as

$$\sum_{i=1}^{\infty} \left| \{ [I - PB(Px)P]^{-1} - [I - B(x)]^{-1} \} P [DB(Px)e_{i}] P [I - PB(Px)P]^{-1}e_{i} \right| \\
+ [I - B(x)]^{-1} \{ P [DB(Px)e_{i}] P - DB(x)e_{i} \} [I - PB(Px)P]^{-1}e_{i} \\
+ [I - B(x)]^{-1} DB(x)e_{i} \{ [I - PB(Px)P]^{-1} - [I - B(x)]^{-1} \} e_{i} \right| \\
\leq c \left| [I - PB(Px)P]^{-1} - [I - B(x)]^{-1} \right| \cdot \sum_{i=1}^{\infty} \left| DB_{0}(Px)e_{i} \right| \cdot \left| E [I - PB(Px)P]^{-1}e_{i} \right| \\
+ c \sum_{i=1}^{\infty} \left| [DB_{0}(Px) - DB_{0}(x)]e_{i} \right| \cdot \left| E [I - PB(Px)P]^{-1}e_{i} \right| \\
+ c \sum_{i=1}^{\infty} \left| DB_{0}(x)e_{i} \right| \cdot \left| E \{ [I - PB(Px)P]^{-1} - [I - B(x)]^{-1} \} e_{i} \right| \\
\equiv (iii) + (iv) + (v), \quad \text{say}.$$

(c-3), (a-6) and the fact that E is Hilbert-Schmidt give us the result that (iii) \rightarrow 0 as $P \rightarrow I$, independent of the choice of $\{e_i\}$; (a-9) gives us the same result for (iv); and (v) follows from (a-6) and the calculation

$$\left\{ \sum_{i=1}^{\infty} |E\{[I - PB(Px)P]^{-1} - [I - B(x)]^{-1}\}e_i|^2 \right\}^{1/2} \\
\leq |[I - PB(Px)P]^{-1} - [I - B(x)]^{-1}|_{L(H,H)} ||E||_{H-S} \\
\to 0 \quad \text{as } P \to I, \quad \text{by (c-3)}.$$

VI. Convergence of $\{M_t^K(x, dy)\}, \{r_t^K(x, dy)\}\$ and $\{q_t^K(x, dy)\}.$

PROPOSITION 4. As $P \to I$, $M_t^{\kappa}(x, dy) \to M_t(x, dy)$ in variation norm, for each $x \in B$, t > 0.

Proof. It follows from (4) that we may write

$$M_t^K(x, dy) = [\det A^K(x+y)]^{-1/2} \cdot \{\operatorname{trace} [A^K(x)] \cdot [(-4t)^{-1}(C^{K''}(x)(\cdot)(\cdot)y, y) + t^{-1}(C^{K'}(x)(\cdot)(\cdot), y) + (16t^2)^{-1}(C^{K'}(x)(\cdot)y, y)^2] + (-4t)^{-1}(C^{K'}(x)yy, y)\}^{\sim} \cdot \exp [-(C^K(x)y, y)/4t]^{\sim} \cdot p_{2t}(dy).$$

This formula, with the obvious modifications, also holds for P=I. To simplify the notation in this proof, we will fix x and t and write

$$a(y) \equiv [\det A(x+y)]^{-1/2}, \qquad b \equiv A(x),$$

$$d(y) \equiv (-4t)^{-1} (C''(x)(\cdot)(\cdot)y, y) + t^{-1} (C'(x)(\cdot)(\cdot), y) + (16t^2)^{-1} (C'(x)(\cdot)y, y)^2,$$

$$e(y) \equiv (-4t)^{-1} (C'(x)yy, y), \qquad f(y) \equiv \exp\left[-(C(x)y, y)/4t\right],$$

and a^K, \ldots, f^K for the above functions with A and C replaced by A^K and C^K respectively. We must show that

$$\int_{R} |a^{K}[\operatorname{trace}(b^{K}d^{K}) + e^{K}] f^{K} - a[\operatorname{trace}(bd) + e] f| p_{2t}(dy) \to 0$$

as $P \rightarrow I$. The integrand may be written as

$$\begin{aligned} |[a^{K}-a][\operatorname{trace}\ (bd)+e]f + a^{K}\{\operatorname{trace}\ [(b^{K}-b)d] + \operatorname{trace}\ [b^{K}(d^{K}-d)]\}f^{K} \\ &\quad + a^{K}(e^{K}-e)f^{K} + a^{K}[\operatorname{trace}\ (bd)+e][f^{K}-f]|^{\sim} \\ & \leq \{|a^{K}-a| \cdot |\operatorname{trace}\ (bd)+e| \cdot |f| + |a^{K}| \cdot |b^{K}-b|_{L(H,H)} \cdot ||d||_{\operatorname{tr}} \cdot |f^{K}| \\ &\quad + |a^{K}| \cdot |b^{K}|_{L(H,H)} \cdot ||d^{K}-d||_{\operatorname{tr}} \cdot |f^{K}| + |a^{K}| \cdot |e^{K}-e| \cdot |f^{K}-f|\}^{\sim}. \end{aligned}$$

From [12, pp. 98–99] we find that for any $\lambda > 0$

$$\int_{R} |f^{K}|^{1+\lambda} p_{2t}(dy) = \det \left[(I + (1+\lambda)C^{K}(x))^{-1/2} \right].$$

Moreover there exists an $\varepsilon_1 > 0$, independent of P and x, such that for $\lambda < \varepsilon_1$ we have $[I+(1+\lambda)C^K(x)] > 0$ and $|[I+(1+\lambda)C(x)]^{-1}|$ is uniformly bounded for all $x \in B$. Thus, by Lemma 4.1 of [6], for any fixed $\lambda < \varepsilon_1$, $\int_B |f^K|^{1+\lambda}p_{2t}(dy)$ is uniformly bounded for $x \in B$, for all P, and for all t > 0. For $\lambda < \varepsilon_1$ we claim that $|f^K - f| \to 0$ in $L^{1+\lambda}(p_{2t})$ as $P \to I$. This is equivalent to saying that $|g^K - g| \to 0$ in $L^{1+\lambda}(p_{1/2})$, where $g^K \equiv \exp\left[-(C^K(x)y, y)\right]$ and $g \equiv g^H$. To prove the latter, we write

$$\int_{B} |g^{K} - g|^{1+\lambda} p_{1/2}(dy)
= \int_{B} \left| \frac{g^{K} - g}{|g^{K}| + |g|} \right|^{1+\lambda} (|g^{K}| + |g|)^{1+\lambda} p_{1/2}(dy)
\leq \left\{ \int_{B} \left| \frac{g^{K} - g}{|g^{K}| + |g|} \right|^{(1+\lambda)t} p_{1/2}(dy) \right\}^{1/t} \left\{ \int_{B} (|g^{K}| + |g|)^{(1+\lambda)(1+\rho)} p_{1/2}(dy) \right\}^{1/(1+\rho)}$$

where $(\tau)^{-1}+(1+\rho)^{-1}=1$. $(|g^K|+|g|)\in L^{(1+\lambda)(1+\rho)}$ if $(1+\lambda)(1+\rho)<1+\varepsilon_1$. This condition is satisfied iff $\lambda+\rho(1+\lambda)<\varepsilon_1$ or, equivalently, iff $\rho<(\varepsilon_1-\lambda)(1+\lambda)^{-1}$. Since $(\varepsilon_1-\lambda)>0$, we can always find such a ρ . The result now follows once we observe that $|(g^K-g)/(|g^K|+|g|)|^{\sim}$ is bounded by 1 a.e. on B and converges to zero in probability by a previous calculation for the proof of Proposition 3.

 $a^K \to a$ pointwise for all $y \in B$. Since $|a^K| \le c$, it follows that $|a^K - a| \to 0$ in $L^q(p_{2t})$ for all $1 \le q < \infty$ and for all t > 0. $b^K \to b$ in L(H, H) norm, $|b^K|_{L(H, H)}$ is uniformly bounded with respect to P, and thus, since b^K is independent of $y \in B$ we have $|b^K - b|_{L(H, H)} \to 0$ in $L^q(p_{2t})$ for all $1 \le q < \infty$ and for all t > 0.

 $\|d^K - d\|_{\mathrm{tr}} \to 0$ in $L^1(p_{2t})$ by (c-9), (c-10) and (c-11), and $|e^K - e| \to 0$ in $L^1(p_{2t})$ by (c-8). The L^1 convergence of these functions to zero implies their L^q convergence to zero for any $1 \le q < \infty$. For if we have a sequence of functions $\{g^K\}$, say, such that $|g^K|$ is dominated a.e. for each K by a function h which is in $L^q(p_{2t})$ for each $1 \le q < \infty$, then

$$\int_{\mathbb{R}} |g^K - g| p_{2t}(dy) \to 0$$

is equivalent to $|g^K - g| \to 0$ in probability (p_{2t}) which, in turn, is equivalent to $|g^K - g|^q \to 0$ in probability (p_{2t}) and this is equivalent to

$$\int_{B} |g^{K}-g|^{q} p_{2t}(dy) \to 0.$$

It remains to check that d^{κ} and e^{κ} are dominated by the correct type of function. This follows immediately from

$$||d^K||_{\mathrm{tr}} \le (4t)^{-1}|Fy|^2 + ct^{-1}|E_2y| + (16t^2)^{-1}|Fy|^4,$$

and

$$|e^K| \leq (4t)^{-1} ||y|| \cdot |Fy|^2.$$

Proposition 4 follows from the above estimates and several applications of Hölder's inequality.

PROPOSITION 5. As $P \to I$, $r_t^K(x, dy) \to r_t(x, dy)$ in variation norm, for each $x \in B$, t > 0.

Proof. We may write

$$r_t^K(x, dy) = \sum_{n=1}^{\infty} r_{t,n}^K(x, dy)$$

where $r_{t,1}^K(x, dy) \equiv M_t^K(x, dy)$ and $r_{t,n}^K(x, dy)$ is defined for $n \ge 2$ by

$$r_{t,n}^{K}(x, dy) \equiv \int_{0}^{t} \int_{B} \int_{B} f(z) \cdot r_{u,n-1}^{K}(y, dz) \cdot M_{t-u}^{K}(x, dy) \cdot du$$

for all $f \in \mathcal{B}(B)$, $x \in B$ and t > 0. From the estimates of [12] it is easy to see that there exists a constant Q, independent of P, x and t, such that

$$\int_{R} |M_t^K|(x, dy) \leq Qt^{-1/2}$$

and

(17)
$$\int_{R} |r_{t,n}^{K}|(x, dy) \leq Q^{n} \pi^{n/2} t^{n/2-1} / \Gamma(n/2).$$

Thus, given $\varepsilon > 0$, there exists an $N(\varepsilon)$, independent of P and x (but dependent on t) such that

(18)
$$\int_{B} |r_{t}^{K} - r_{t}|(x, dy) \leq \sum_{n=1}^{N(\varepsilon)} \int_{B} |r_{t,n}^{K} - r_{t,n}|(x, dy) + \varepsilon.$$

Now $r_{t,1}^K(x, dy) = M_t^K(x, dy)$, so $r_{t,1}^K(x, dy) \to r_{t,1}(x, dy)$ in variation by Proposition 4. If we assume that $r_{t,k}^K(x, dy) \to r_{t,k}(x, dy)$ in variation for all $k \le n-1$, $x \in B$ and t > 0, then

$$\int_{B} |r_{t,n}^{K} - r_{t,n}|(x, dy)
\leq \int_{0:(u)}^{t} \int_{B:(y)} \int_{B:(z)} |r_{u,n-1}^{K}(y, dz) \cdot M_{t-u}^{K}(x, dy) - r_{u,n-1}(y, dz) \cdot M_{t-u}(x, dy)| du
\leq \int_{0:(u)}^{t} \int_{B:(y)} \int_{B:(z)} |r_{u,n-1}^{K} - r_{u,n-1}|(y, dz) \cdot |M_{t-u}|(x, dy) \cdot du
+ \int_{0:(u)}^{t} \int_{B:(y)} \int_{B:(z)} |r_{u,n-1}^{K}|(y, dz) \cdot |M_{t-u}^{K} - M_{t-u}|(x, dy) \cdot du
\equiv (i) + (ii), \quad \text{say.}$$

We consider (i). $\int_B |r_{u,n-1}^K - r_{u,n-1}|(y, dz) \to 0$ as $P \to I$ for each u > 0 and $y \in B$. Moreover, by (17)

$$\int_{B} |r_{u,n-1}^{K} - r_{u,n-1}|(y, dz) \le 2 \frac{Q^{n-1} \pi^{(n-1)/2}}{\Gamma((n-1)/2)} u^{n/2-3/2}$$

for all P. Since

$$\int_0^t \int_B u^{n/2-3/2} \cdot |M_{t-u}|(x, dy) \cdot du \le Q \int_0^t u^{n/2-3/2} \cdot (t-u)^{-1/2} \cdot du$$

and the integral on the right-hand side exists, we conclude by Dominated Convergence that (i) \rightarrow 0 as $P \rightarrow I$.

We consider (ii).

(ii)
$$\leq \frac{Q^{n-1}\pi^{(n-1)/2}}{\Gamma((n-1)/2)} \int_0^t \int_B |M_{t-u}^K - M_{t-u}|(x, dy) \cdot u^{n/2-3/2} \cdot du.$$

Now $\int_{B} |M_{t-u}^{K} - M_{t-u}|(x, dy) \to 0$ for each u > 0 and moreover

$$\int_{R} |M_{t-u}^K - M_{t-u}|(x, dy)$$

is dominated (for all P and for all $x \in B$) by $2Q(t-u)^{-1/2}$, which is integrable from 0 to t with respect to $u^{(n-3)/2}$ du. Thus (ii) $\to 0$ as $P \to I$, and so $r_{t,k}^K(x, dy) \to r_{t,k}(x, dy)$ for each $k = 1, 2, \ldots$ The proposition now follows from (18).

PROPOSITION 6. As $P \to I$, $q_t^K(x, dy) \to q_t(x, dy)$ in variation norm, for each $x \in B$, t > 0.

Proof.

$$\int_{B} |q_{t}^{K} - q_{t}|(x, dy)
\leq \int_{B} |\hat{m}_{t}^{K} - \hat{m}_{t}|(x, dy)
+ \int_{0;(u)}^{t} \int_{B;(y)} \int_{B;(z)} |r_{u}^{K}(y, dz) \cdot \hat{m}_{t-u}^{K}(x, dy) - r_{u}(y, dz) \cdot \hat{m}_{t-u}(x, dy)| \cdot du
\equiv (i) + (ii), \quad \text{say.}$$

Now (i) \rightarrow 0 as $P \rightarrow I$ by Proposition 3, and

(ii)
$$\leq \int_{0;(u)}^{t} \int_{B;(y)} \int_{B;(z)} |r_{u}^{K} - r_{u}|(y, dz) \cdot |\hat{m}_{t-u}|(x, dy) \cdot du$$

 $+ \int_{0;(u)}^{t} \int_{B;(y)} \int_{B;(z)} |r_{u}^{K}|(y, dz) \cdot |\hat{m}_{t-u}^{K} - \hat{m}_{t-u}|(x, dy) \cdot du.$

From [12, Proposition 3], $\int_B |r_t^K|(x, dy) \le c_{t_0} t^{-1/2}$, where c_{t_0} is a constant independent of t and of x. c_{t_0} can easily be seen to be independent of P. Also $\int_B |\hat{m}_t^K|(x, dy)$ is dominated by a constant, independent of P, x and t. By an argument similar to that of Proposition 5 we may now establish that (ii) $\to 0$ as $P \to I$.

COROLLARY 6.1. For each t>0, $x \in B$, $q_t(x, dy)$ is a probability measure on B.

This is an immediate consequence of Proposition 6.

VII. The semigroup property.

THEOREM 1. For $f \in \mathcal{B}(B)$, s and t > 0, $q_t q_s f(x) = q_{t+s} f(x)$.

Proof. Let $f \in \mathcal{B}(B)$, and for a finite signed Borel measure μ on B let $\|\mu\|$ denote the total variation of μ . Denoting the measure $q_t(x, dy)$ by $q_{t,x}(dy)$ we have

$$|(q_tq_s-q_{t+s})f(x)| \leq |q_t(q_s-q_s^K)f(x)| + |(q_t-q_t^K)q_s^Kf(x)| + |(q_{t+s}^K-q_{t+s})f(x)|,$$

where

$$|q_t(q_s-q_s^K)f(x)| \leq ||f||_{\infty} \int_{B_s(y)} \int_{B_s(z)} |q_s-q_s^K|(y,dz) \cdot |q_t|(x,dy).$$

Now $\int_B |q_s - q_s^K|(y, dz)$ converges to 0 as $P \to I$ pointwise for $y \in B$. Moreover this term is dominated by 2. It now follows by Dominated Convergence that $|q_t(q_s - q_s^K)f(x)| \to 0$ as $P \to I$. Considering the two remaining terms, we have

$$|(q_t - q_t^K)q_s^K f(x)| \le ||q_{t,x} - q_{t,x}^K|| \cdot ||q_s^K f||_{\infty} \le ||q_{t,x} - q_{t,x}^K|| \cdot ||f||_{\infty}$$

and

$$|(q_{t+s}^K - q_{t+s})f(x)| \leq ||q_{t+s,x}^K - q_{t+s,x}|| \cdot ||f||_{\infty},$$

both of which converge to zero as $P \rightarrow I$ by Proposition 6.

BIBLIOGRAPHY

- 1. Z. Ciesielski, On Haar functions and on the Schauder basis of the space $C_{(0,1)}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 227-232. MR 24 #A1599.
- 2. F. G. Dressel, The fundamental solution of the parabolic equation, Duke Math. J. 7 (1940), 186-203. MR 2, 204.
- 3. —, The fundamental solution of the parabolic equation. II, Duke Math. J. 13 (1946), 61-70. MR 7, 450.
- 4. E. B. Dynkin, *Markov processes*, Fizmatgiz, Moscow, 1963; English transl., Vols. I, II, Academic Press, New York and Springer-Verlag, Berlin and New York, 1965. MR 33 #1886; 1887.
- 5. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J. 1964. MR 31 #6062.
- 6. L. Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404-440. MR 22 #2883.
- 7. ——, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 372-390. MR 26 #5121.
- 8. ——, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Prob. (Berkey, Calif., 1965/66), vol. II, part I, Univ. of California Press, Berkeley, 1967, pp. 31-42. MR 35 #3027.
- 9. ——, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181. MR 37 #3331.
- 10. A. M. Il'in, A. S. Kalašnikov and O. A. Olešnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 3-146 = Russian Math. Surveys 17 (1962), no. 3, 1-143. MR 25 #2328.

- 11. S. Itô, The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953), 75–92. MR 15, 36.
- 12. M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J. Functional Analysis 3 (1969), 85-114.
- 13. ——, Regularity properties for families of measures on a metric space, Proc. Amer. Math. Soc. 24 (1970), 307-311.
- 14. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186.
- 15. B. Sz.-Nagy, Introduction to real functions and orthogonal expansions, Oxford Univ. Press, New York, 1965. MR 31 #5938.

STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST, NEW YORK 14226