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A FUNDAMENTAL SOLUTION OF THE
PARABOLIC EQUATION ON HILBERT SPACE. II:
THE SEMIGROUP PROPERTY

BY
M. ANN PIECH

Abstract. The existence of a family of solution operators {g, : > 0} corresponding
to a fundamental solution of a second order infinite-dimensional differential equation
of the form 0u/dt = Lu was previously established by the author. In the present paper,
it is established that these operators are nonnegative, and satisfy the condition
qds9t=qs+ .

I. Introduction. This paper continues the study initiated in [12] of second order
parabolic equations, with variable coefficients, on Hilbert space. In [12] we estab-
lished a fundamental solution for the equation du/ot=Lu, where L is a second order
differential operator satisfying certain regularity hypotheses. This fundamental
solution is given by a family of finite signed Borel measures {g,(x, dy) : t>0, x € B}
on a Banach space B (B will be defined later) or, equivalently, by a family of
operators {g; : ¢t> 0} on the space of bounded Lip-1 functions on B. These operators
were defined via infinite series, which made it difficult to determine either their
nonnegativity or whether they satisfy a semigroup property (¢.9:=¢;.s for all
s, t>0).

The technique developed in this paper for establishing both nonnegativity and
the semigroup property is that of *“semifinite”” approximation. Basically, the dif-
ferential operator L is approximated by a differential operator L¥ acting in a finite-
dimensional subspace K of our Hilbert space H plus the Laplacian A acting in K*.
Nonnegativity and the semigroup property are known for the fundamental solutions
of du/ot=L¥u and du/0t= Au. Combining these fundamental solutions and passing
to the limit as K — H in some suitable fashion, we obtain the desired properties
for {g:}.

II. Preliminaries. Most of the basic definitions and ideas necessary to the
following work can be found in Gross [8], [9] and in the preliminaries of [12]. The
notation is that of [12] to the extent to which that is possible.

Let H denote a real separable Hilbert space with norm |-| and inner product
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( , ). Gauss measure on H with variance parameter ¢ is denoted by v, and is
defined for a cylinder set S< H by

W(S) = (mt)=" L exp [— |x|?/21] dx

where S=P~!(E), P being an n-dimensional projection on H and E a Borel set in
the range of P.

Let |-|| denote a particular measurable norm on H, and let B be the com-
pletion of H with respect to || - |. The triple (H, B, i), where i is the natural injection
of H into B, is called an abstract Wiener space. Gauss measure v, on H induces a
Borel measure p, on B which is such that

pt{xEB/(<y19 x>, creey <)’m x>) EE} = vt{xe H/(<y1’ X>, ey <ym x>) EE}

for all finite subsets y,, ..., y, of B* and Borel sets E< R". (Here we identify B*
with a subset of H*.) p, is called Wiener measure on B with variance parameter f.

Certain functions f defined on H determine measurable functions on B. The
manner in which this takes place is described in Gross [7] for tame functions on
H and for functions which are uniformly continuous near zero in H,, (u.c.n. 0 in
H,), where H, denotes H with the topology determined by the measurable semi-
norms. The measurable function on B determined in this fashion by f is denoted
by /. We will generally omit the tilde whenever it is obvious that we are working
on B—e.g. [, f(»)p(dy). In this paper we assume that |y| in is L?(p(dy)) for all
1 £p<oo and for all ¢>0.

Let W be any Banach space. If fis a W-valued function defined in a neighborhood
of a point x of B, we will write Df(x) for the Fréchet derivative ot f at x, and will
call f B-differentiable at x if Df(x) exists. We may also regard f as a function g
defined on a neighborhood of the origin of H by restricting f to the coset x+ H of
B and defining g(h) =f(x+h). The Fréchet derivative of g at 0 is denoted by f'(x),
and we say that f is H-differentiable at x if f'(x) exists. We write | Df(x)| and
|f'(x)) for the L(B, W) and L(H, W) norms respectively.

We will now briefly sketch the results of [12]. Let A(x)=1I— B(x), where B(-) is
a map from B to the space of symmetric trace class operators on H. For a real-
valued measurable function f(x, ) on B x (0, c0) we define

L, .f(x,t) = trace [A(x)f"(x, t)]—(9/0t) f(x, t) (0<t<0)

whenever the right-hand side exists—that is, whenever (9/0t) f(x, t) and f"(x, t)
exist and [A(x)f"(x, t)] is trace class. When there is no danger of confusion, we will
omit the subscripts on L. We assume that B(x) satisfies the following hypotheses:

(a-1) x — B(x) is a bounded Lip-1 function from B to the space of symmetric
trace class operators on H, with the trace class norm.

(a-2) There exists ¢, >0 such that B(x) < (1 —¢,)I for all x € B.

(a-3) There exists a symmetric Hilbert-Schmidt class operator E on H and a
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family of operators By(x) € L(H, H) such that for all x € B, B(x)=EBy(x)E and
|Bo(x)| = 1.

(a-4) D2?B(x) exists and is a Lip-1 function from B to L(B — L(B — L(H, H))).

(a-5) || DBy(x)||, | D2Bo(x)| are uniformly bounded for all x € B.

(a-6) There exists a constant ¢ such that for any orthonormal basis {e; : i=1,
2,...} of H we have 32, | DBy(x)e;|2 < ¢, independently of x € B.

REMARKS. (1) Without loss of generality we may assume that ¢, < 1.

(2) (a-6) is always satisfied if B is the completion of H with respect to a measur-
able norm of the form | y|=|Sy| for all y € H, where S is a Hilbert-Schmidt
operator on H. For then 32, | DBy(x)e,|? is dominated for all x by a constant
times 3>, |le;|? (by (a-5)), and we have

Y

Z e = Z | Se;|? = (the Hilbert-Schmidt norm of ).
i=1

i=1

(3) The argument given on p. 107 of [12] for the operator denoted there as
(C'(x)(-)(+), ) to be of trace class is incorrect. (a-6) is a sufficient, but by no means
necessary, condition for this operator to be of trace class. We will show this in
detail in the proof of (c-11) of §V.

Under the preceding hypotheses on B(x) (and therefore on A(x)), there exists a
family of finite real-valued signed Borel measures {g,(x, dy) : 0<t< 0, x € B} on
B such that if g, /(x)= [ f(»)gi(x, dy) then for each bounded Lip-1 function f from
B to the reals we have L, ;q; f(x)=0(forall 0 <#< o0, x € B) and lim,_.¢ ¢,f(x) =f(x)
uniformly in x.

III. The semifinite approximation. Consider a finite-dimensional subspace K
of B of the following form: Let y,, ..., y, be a set of orthonormal vectors in H*
which also lie in B*. Let K=span (y, . . ., y,). Then if P is the continuous extension
to B of the orthogonal projection of H onto K, we have

Px = z <yh x>yb (xEB)
i=1

and P is a projection on B.

In order to carry out our approximations, we must make three further assump-
tions. They are as follows:

(a-7) There exists a sequence {P,} of commuting finite-dimensional projections
on B, of the above form, such that {P,} converges strongly to the identity operator
on B.

(a-8) E (see (a-3)) commutes with each P,.

(a-9) For each x € B and P, from (a-7), there exists a constant Cx,p, sSuch that

Ns

I[DBO(P %) — DBo(x)]e;|% < Cx,P,

i

1

for every orthonormal basis {e;} of H, and ¢, », — 0 as n — .




260 M. A. PIECH [July

ReEMARKS. (1) By considering pairwise least upper bounds, we may assume,
without loss of generality, that P,,,2P,.

(2) All projections which occur in this paper will be selected from this sequence,
and the subscripts will be omitted—so that P will denote an arbitrary member of
this sequence, corresponding to projection on the finite-dimensional subspace K
(where we may consider K as a subspace of B* or of B or of H).

(3) (a-7) is valid in the case of Wiener space. Let B be the space of real con-
tinuous functions on [0, 1] which vanish at zero and let H be that subset of B
consisting of the absolutely continuous functions which have square integrable
first derivatives. The inner product on H is given by

@ = [ xoyod,

where ’ denotes the first derivative with respect to ¢. B is the completion of H with
respect to the sup norm (|- ||). We first construct a basis for H* consisting of
elements of B*. For this purpose we use the Haar functions {x,(¢)}, which are
defined by

xi(®H) =1 te [0, 1],
V2" te [(k—1)/2", (k—$)/2"),
= —v2"  te((k—3)/2" k2",

=0 otherwise in [0, 1],

x2"+i(t)

forn=0,1,2,..., k=1,2,...,2" It is well known that {x,(¢)} forms a complete
orthonormal set in L2[0, 1] (using Lebesgue measure) ([15, p. 338]). Let y,(¢)=
{4 xx(s) ds. It is obvious that {y,} forms a complete orthonormal set in H*. For
Xx € H, we have the formulas

<mw=fxmw=mx
1
(Yarpps X) = J; xzr+ (1) X'(2) dt

k—1/2)/2n fe/2n
- f V20 (¢) di— f V() dt
[¢

k—-1)/2" (k-1/2)/2"

_ . k—1% k—1 k

- v2[=(5) () ()}
We may now use these formulas to define {y,, x) for all x € B. y, € B¥ since
[<¥n» x>| £44/2" x| . Moreover, for each x € B,

x(t) = 2 I XOYa(2),
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the convergence being uniform in ¢ [1, Theorem 3]. If we now define

Px = z i XO
i=1

we have a sequence satisfying (a-7).

(4) If Bis itself a Hilbert space, with inner product [ , ], then x, y — [x, y]is a
bilinear functional on H. Since |[x, ¥]| < ||x||- | ¥] S¢|x]|-|y| for some constant c,
this bilinear form is bounded. Thus there exists a positive definite operator N on
H such that (Nx, y)=[x, y]. +/N is completely continuous, since |/ Nx| =[x, x]*2=
|x|| and the injection mapping from H — B is completely continuous [8]. Let {y;}
be an orthonormal basis for H consisting of eigenvectors of 4/N, with {A} the
corresponding sequence of eigenvalues. Each ;>0 and A, — 0. {A\71y;} forms an
orthonormal basis for B. Considering y; to be in H*, we have

o x> =y %) = (N7 %), x) = A7 [A 7y, x] forall x e H.

This formula makes sense for all x € B, and so defines the unique extension of yi
to an element of B*. Now for x € B,

n n
> Doy = > Ny, XNy > x
i=1 i=1

in the B-norm. Defining P,x=>7_, {y;, x>y;, we see that (a-7) is thus satisfied
whenever B is a Hilbert space.

(5) (a-9) is satisfied whenever B is of the form defined in Remark (2) following
(a-6), since in this case (a-5) gives

|[DBy(Px)— DBy(x)]y| < constant- |Px—x]-| y|

for each y € H.
Define

A¥(x) = I-PB(Px)P (xe B)
= (I-P)+(P—PB(Px)P)
= Q+A%(x), say, where PH = K as stated before.

Considering K< B*, denote by K* the annihilator of K in B. Then if v; denotes
Gauss measure on K, and p; denotes Wiener measure on K*, we have [9, p. 131,
Remark 2.2] p,=v; x p; and -thus pi(x; dp) =vi(x’, dy’) x p{(x", dy") (for all x € B,
t>0), where x=x"+x", y=y'+y", x' and y' € K, x" and y" € K*.

NoTATION. If w,(x, dy) is a finite real-valued signed Borel measure on a space
W, then for a Borel function f on W we define

@)@ = [ 10w, ),
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when this integral exists. (A finite Borel measure is one such that |w,(x, E)| <o0
for all Borel sets E< W. For a real-valued measure, finiteness is equivalent to
bounded variation, by the Hahn Decomposition Theorem.)

If f(x, t) is a real-valued Borel measurable function on Kx (0, o), define

(1) le’.tf(xs t) = traceg [Ap(x)fxx(x9 t)] - a/atf(x’ t)

for all t>0, x € K, whenever the right-hand side exists. Here f,.(x, ) denotes the
second Fréchet derivative of f with respect to x. L, is a parabolic operator in K.
By the finite-dimensional theory [2], [3], [4], [5], [10], [11] there exists a family of
functions {g'(¢, x, y)}, where >0, x and y € K, which satisfies
(i) ¢'(¢, x, y) is jointly continuous in ¢, x, and y;
(i) g%(t, x, ) and 0/0t q'(t, x, y) exist and LE ,q'(¢, x, y)=0 on (0, ) x Kx K;
(iii) if f(x) is bounded and continuous on K, then

lim [ SO0 2D =10 K

where the convergence is uniform on compact subsets of K;
(iv) for any ¢ and #,>0, ¢'(¢, x, y) is bounded on the set

{t+|x—y| =2 &0 <t =t}

Moreover, ¢'(t, x, y) is unique among functions which satisfy (i)—(iv).

It is not difficult [3], [4], [5], [11] to show that the construction of a fundamental
solution for the equation L% ,f=0 described in [12] (in this case K is the Hilbert
space under consideration) produces a family of finite signed Borel measures
{qi(x, dy)} on K which are of the form g;(x, dy)=q'(t, x, y) dy where q'(t, x, y)
satisfies properties (i)~(iv). (In ¢'(¢, x, y) dy, the dy refers to Lebesgue measure on
K.) It now follows from Dynkin [4, Chapter V] that the family {g; : >0} forms a
contraction semigroup of positive operators acting on the space #(K) of bounded
Borel functions on K. Moreover,

q@ x,y)>0 (¢t > 0, x and y € K),
and

f q'(t: x,y) dy =1 (t > 0, xeK).
K

(The last property is found in [11].)
We define a family of finite Borel measures {g¥(x, dy)} on B by

gf(x, dy) = gi(x’, dy') x pa(x", dy") (1 > 0, x€ B).

REeMARK. The family {p{(x, dy) : t>0, x € K*} is a fundamental solution of the
heat equation 9/t f(x, t)=4 traceg. [f"(x, )] in K* (see Gross [4, Theorem 3]).
A straightforward change of variables shows that the factor of 4 in the heat equa-
tion may be removed by considering the family {pz(x, dy)}.
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PROPOSITION 1. {g¥ : >0} is a contraction semigroup of positive operators acting
in the space #(B) of bounded Borel functions on B with the sup norm | || ..

Proof. If E is a Borel set in B, of the form E=E’' x E” where E‘’< Kand E"< K",
then

(@ x2)(®) = {(@ix=) D} {(P2exs ) (X"},

and each function on the right-hand side is a Borel function of x. The set & of all
Borel sets E such that g¥yz is measurable is clearly closed under finite disjoint
unions, and so contains the field generated by sets E of the above form E' x E”.
Since # is closed under monotone limits, it follows that % coincides with the
o-field of Borel sets. The set of all f for which ¢ff'is a Borel function contains the
characteristic functions of the Borel sets and is closed under bounded monotone
limits, and thus contains all f€ #(B). Since g¥(x, dy) is a probability measure for
each x € B and >0, we have |gff] o = | f]| -
To prove the semigroup property, we note that for E of the above form

f f xe(3)-aE(z, dy)-qE(x, dz)
B;(2) JB;(v)
- f 47, E')-piul", E")-q¥(x, d2)

~{[ ae. Erae. an}b{ [ rae, B pi, )

= gs+dx’, E') - Pac+n(x", E")
= q§+ t(xa E)

- j xe(9) 45 %, ).

The set of all f for which

[ [ forare dn g do) = [ £0) kv, dy)
Bi(2) JBi(v) B

is closed under finite linear combinations and under bounded monotone limits,
and so by the preceding argument contains all '€ #(B). Thus we have established
that ¢5(gf)/=gs' f for all f€ Z(B).

We next establish some notation and define some properties of measures. For
any metric space W with metric d, let Z(W) denote the space of all bounded real-
valued Borel functions with the sup norm |- ||, and let &(W) be the space of all
real bounded Lip-1 functions on W with norm |- ||, defined by

If1: = [flle+inf {c : [f(x)—f(»)] £ c-d(x, ) for all x, y € W}.

For a family {w(x, dy) : x € W, t>0} of finite real-valued signed Borel measures
on W, we define the following properties:
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(b-1) There exists a constant ¢, independent of ¢ and x, such that
f |w|(x, dy) < ct™¥% forallxe W, t > 0.
w

(Here |w,|(x, E) denotes the variation of wy(x, dy) over E for each Borel set Ein W.)
(b-1(a)) Given 0< t,< oo, there exists a constant c,,, independent of ¢ and x, such
that

f || (x, dy) £ ¢, 272 forallxe W,0 <t £ t,.
w

(b-2) The map f— w, f defined by (w,f)(x)= [y, f() w(x, dy) is a bounded linear
operator on #Z(W) for each ¢>0.
(b-3) (b-1) holds and f— w,f is a bounded linear operator on (W), with
lwflls £ ct=22|f||l, forallt > 0,
where c is given by (b-1).
(b-3(a)) (b-1(a)) holds and f — w,fis a bounded linear operator on /(W), with
leweflls £ et™ 2| f], forall0 < ¢ < 1o,

where ¢, is given by (b-1(a)).
(b-4) Given 0<8=1,<00, there exists a constant ¢, ,, independent of f and x,
such that for §<1¢,, t,<t, we have
(@i, /)() = (@6, NX)| S €sp0lts—ta] - | f 2
for all fe /(W) and x € W.
It is a consequence of [13, Propositions 4 and 5] that if the family {w,(x, dy)}
satisfies (b-3) or (b-3(a)), then it must satisfy (b-2).
Define the family {m¥(x, dy) : t>0, x € B} of finite Borel measures on B by
@) mf(x, dy) = exp [—(CH(x)(x—y), x—y)/4t]" pal(x, dy)
where CX(x)=[A%(x)]"*—I=[I—PB(Px)P] PB(Px)P. On K*, C¥(x) acts as the
zero operator. K is invariant under C¥(x), and, if we define
C¥®(x) = [P—PB(Px)P]"PB(Px)P € L(K, K)
then C¥(x)=CF(x) on K. Thus we can write
mE(x, dy) = exp [—(CP¥)(x' =), X = y)/4t] vl ) x P, dy")
= m{(x', dy’) x pu(x", dy")
where x=x'+x", y=y'+y", x’ and y' € K, x" and y" € K*. We may also define
i(x, dy) = [det AX(»)]™**mf (x, dy)
= [det AP(Py)]~*2mi(x, dy)
= [det AP(Y)]~2m{(x', dy') x pai(x”, dy")
= m{(x', dy’) x pafx”, dy”).

©)
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All the measures which we have defined are finite Borel measures on the appro-
priate spaces.

We may now “apply” LX, to m¥(x, dy) as in [12, Proposition 2], obtaining a
family {M¥(x, dy)} of Borel measures on B satisfying (b-1)—(b-3). We observe from
equation (19) of [12] that we may write

M{(x, dy) = M{(x', dy) x pz(x”, dy")
where MF(x’, dy’) acts in K and is given by

M{(x, dy) = [det A7(y)]~V*{tracex [A7(x)][—4() " H(CP"()()(-Nx—y), x—y)
—17HCP X)), x=Y)
+(16:%)"H(CT()(-Xx =), x—)
® (CT(x)()(x =), x—)]
+(4) " H(CF () (x = p)(x—y), x—y)}
-exp [—(CP(x)(x—y), x—y)[41]-vax, dy)
for all £>0, x and y € K. The symmetric operator T € L(K, K) which is denoted by
(CP'(x)(-)(+), x—y) is defined by
(Tky, kg) = 3(CT'(x)krks, x—y)+(CF (x)ksky, x—y)] for all ky, ks € K.
If we replace P by I and vy, by p,, in (4) (4(y)= A(y), C(x)=C(x)), then we obtain
the measures {M,(x, dy)} of [12]. We may also replace P by /in (2) and (3), obtaining
{mx, dy)} and {r(x, dy)}.
PROPOSITION 2. The family {qg¥(x, dy) : t>0, x € B} coincides with the fundamental
solution of
©) LE.S(x, 1) = tracey [4%COS"(x, )] = 0/ot f(x, 1) = O
obtained by the method of [12].
LemMA 2.1. If {M, : t>0} is any family of operators on %(B) which satisfies an
inequality of the form |M,f||» < Qt~Y2|f|~ for some constant Q independent of

t>0 and of f € #(B), then any family {r(x, dy) : t>0, x € B} of real-valued signed
Borel measures on B which satisfies

©) PSG) = Mf G+ [[ Myl 1)

@

Sor all f € %(B) and property (b-1(a)) is unique.

Proof. Assume that {r(x, dy)} and {F(x, dy)} each satisfy (6) and (b-1(a)).
Without loss of generality we may assume that the constants c,, of (b-1(a)) are the
same for both families. Then for fe %(B)

RSO =S = [ Mooalraf—Fuf ) du
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Now
I Me_ulruf—Fuflle £ Q(t—u) Y2||ruf—Fuf|w forall0 <u <t < co.

Thus for all 0 <t=t¢, we have
Inf=rfle 5 @ [ (=0 lrf—7f o du

< 2,0f122 [ (-1~
o
= 2¢,| fll « Q2221 (T(2/2)) .
Iterating, we get
lref—Fiflw £ 26| fll 0 Q22*2(1'(2/2)) 1 J: (t—u)~ 12221 gy
= 20| f]| » @Q*=®222 - HT'(3/2)) 1,

and eventually obtain

Iref=Fiflo = 2]/« @ ™22~} (T(n/2)) =

foreachn=2, 3,.... But 0" #"3t™2-(I'(n/2))~* goes to zero as n — o, for each
t>0. Therefore ||r,f—F.f| ~=0 for all >0, and so r,f=Ff for all fe #(B) and in
particular r,(x, E)=F(x, E) for all Borel sets E< B.

Proof of Proposition 2. From the construction of {g;(x, dy)} described in [12], we
have the existence of a family {ri(x, dy)} of measures on K satisfying properties
(b-2), (b-3(a)) and (b-4) and also

rif(x) = M{f(x) + f ME JJro f1(x) du for all fe B(K), x € K.
0
Define rf(x, dy)=rix’, dy’) x p3(x", dy"). We will show that
™ rE) = ME) + || ME PN d

for all fe #(B), xe€ B.
If f=xg, where E=E'x E", E'< K, E"<K*, then

e, )i, B+ [{ [ iy, B e, ay)

{[ P, BV b, d} d

= { ME(x', E ')+f j r,(y', E")- M,"; «(x', dy) du} -pax", E")
0 JK

= ri{x’, E")-pa(x", E")

= ri'xe(x).
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Since the set of all f'e #(B) which satisfies (7) is closed under finite linear com-
binations and under bounded monotone limits, it follows as in the proof of
Proposition 1 that this set is exactly Z(B). Moreover

[ irice @y = [ rtlcs, ),

and since {rf(x, dy)} satisfies (b-1(a)), we conclude that {r(x, dy)} satisfies (b-1(a)).
Thus, by Lemma 2.1, {rf(x, dy)} coincides with the family of measures constructed
via the technique of the proof of Proposition 3 of [12] during the construction of
the fundamental solution of (5).

To complete the proof of the proposition, we need only establish that g¥ satisfies

® arf(x) = mif(x) + J:rﬁ{‘-u[r.’ff](x) du

for all fe #(B), x € B. If E is a Borel set in B of the form E’ x E” with E’'< K and
E"< K", then

A xa(x) + f W[ % D)%) dt

= i (x', E')-palx", E ”)+J: L riy's E")-pau(y", E")- - (x, dy)-du
= m{(x', E)-pa/(x", E")
t

[ {[ o vt e, ) b{ [ | o, B ol dy) } d

= i (x', EY)-pix", E")
t

H{[[ [ s st dyy-dub-pii, £
= @ixe(x') Prixe(x")
= qfxx(x).

Since the set of all f€ #(B) which satisfies (8) is closed under finite linear com-

binations and under bounded monotone limits, it again follows that this set is
exactly #(B). This concludes the proof of Proposition 2.

IV. Convergence of {rif(x, dy)}. In the work that follows we will use ¢ to
represent a general constant whose dependence may only be on the coefficient
operators A(-) and on the relationship of the space B to the space H. That is, ¢
will always be independent of ¢ for any ¢>0, independent of any space variables
X, y, etc., and independent of P. All estimates and all formulas will be valid for
the case P=1 with the obvious modifications.

LeEMMA 3.1. Let w be a finite positive measure on a space W, and {f,} be a sequence
of real-valued functions on W which converge almost everywhere (a.e.) to f. If f, and
[f belong to L***(w) for some A>0, with || f, ||, + » uniformly bounded, then f, — f(L*).
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Proof. Define

= _Ju®)—f(x) .

=0 otherwise,

[, 1=t do = [ 1814170 do S Jgal |11+ o

where (7)"1+(1+2)~1=1. Since |g,(x)| £1 for all x e W and for all n, and since
w is a finite measure, g, € L*-g, — 0 a.e., and so, by Lebesgue’s Dominated Con-
vergence Theorem, |g,||; = 0. | | fal +|/] l1+2= [ falliea+ 1 f]l1+a=c (independent
of n). Thus {_ | fo—f| dw — 0.

ReEMARK. Rather than assume that f, — f a.e., it suffices to assume that g, — 0
in measure (defining g, as in the above proof). For since |g,|*<1, it is a standard
measure-theoretic result that again we have |g,|; — 0 for each 1 £ 7<oo0.

PROPOSITION 3. As P converges to the identity operator on B, mf(x, dy) —
my(x, dy) in variation, for each x € B, t>0.

Proof. We must show that
@)= _L [[det A¥(y)]~*2 exp [—(CX(x)(x—y), x—y)/4t]

— [det A(»)]~*2 exp [—(C(x)(x—Y), X —y)/4t]| pady)

converges to zero as P — I.

() 5 [ [det A%()174] exp [~ (CHx)x—), x—y)/di]
—exp [~ (CEI0r—) x=)/41]] palx, )
+ [ Itdet A% 2 [det A7 -exp (CENx =), x—3)/41]-pa, &)
= (ii)+Gii), say.

Treating (iii) first, we recall that A¥(y)=I—PB(Py)P. PB(Py)P is uniformly (in P
and y) bounded in trace norm. A%(y) is uniformly (in P and y) bounded away from
zero in L(H, H) norm. (Note that A¥(y)= e,/ for all P and y, where &, is defined
in (a-2).) Applying Lemma 4.1 of Gross [6] and noting the Remark on p. 98 of
[12], we find that {det AX(y)} is uniformly bounded both above and away from
zero, and

€) |[det A%(»)]— [det A(Y)]| = c|PB(Py)P—B()| -
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(If Te L(H, H), then |T|=trace [(T*T)*2].) Since x~*/2 is Lip-1 on subsets of
(0, o0) which are both bounded above and bounded away from zero, we have

(10) |[det A%(y)]~*/2—[det A(y)]~ V2| < c|[det A%(y)]—[det A(»)]|.
Now if we let ||-|gz_s denote the Hilbert-Schmidt norm, we have
|PB(Py)P—B(p)||ex < |PB(Py)P—B(Py)|wx+ | B(PY)— B
= [|(P—D)B(Py)P+ B(Py)(P—1)|c+ | B(PY) = B())ex

| QEBo( Py)EP||oc+ | EBo(PY)EQ e+ | B(PY) — B(Y) | ex
¢| QE|z-s| E|a-s + | B(PY) — B()) | ir-

Since E “is Hilbert-Schmidt, |QE|z.s—0 as P— I Since B(-) is Lip-l,
| B(Py)—B(»)|:x = c|Py—y| s — O pointwise in y as P — I. Thus

A IIA

1 |1PB(Py)P—B(p)||e: — O

as P — I, the convergence being pointwise in y. Combining (9), (10) and (11), we
conclude that

(12) |[det A%(y)]~ /2 —[det A(»)]~*"*| 0

as P — I, the convergence being pointwise in y. It is shown in [12, p. 99] that

exp [—(C(x)(x—y), x—y)/4t] € L' *N(par(x, -))

for all positive A which are sufficiently close to zero. For such a A, the L! **-norm
is uniformly bounded with respect to x and ¢. Thus

AL +A)

(i) = C{L |[det A%(y)] -2 —det [A(y)] 2|4+ P pa(x, dy)}

The preceding integrand is uniformly (in P and y) bounded above, and converges
pointwise in y to zero as P— I. Thus, by Lebesgue’s Dominated Convergence
Theorem, (iii) — 0 as P — I. We note that the convergence is not necessarily
uniform in x nor in ¢.

Turning now to (ii), we make the change of variables y — x+24/fy and note
that the determinant term is uniformly (in P, x and ¢) bounded above, obtaining

(ii) < ¢ f lexp [—(CE(x)y, )] —exp [—(C(x)y, Y]] pualdy).

Now

[C*(x) = C)|lex = |[I—PB(Px)P)~* —(I—B(x))~*1B(x) s
+ |({—PB(Px)P)~*[PB(Px)P—B(x)] s
= (iv)+(v), say.
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(I—PB(Px)P)~1is uniformly (in P and x) bounded in L(H, H) norm. It now follows
from (11) that (v) — 0 as P — I, pointwise in x. Writing
(I—PB(Px)P)~*—(I—-B(x))~*

= (I-PB(Px)P)~*(I- B(x))({—B(x))~*
(13) —(I—PB(Px)P)~*(I—PB(Px)P)(I- B(x))~*

= (I-PB(Px)P)~'[(I- B(x))—(I—- PB(Px)P))(I— B(x))~*

= (I—PB(Px)P)~[PB(Px)P— B(x)KI— B(x))"%,
we find that

(iv) = ¢|[PB(Px)P—B(x)]C(x)| .

¢|PB(Px)P — B(x)||¢c| COX)| a1, 11y
¢ PB(Px)P— B(x) irs

IIANIA - TIA

and the right-hand side of this inequality converges pointwise to zero as P — I.
Thus ||C¥(x)—C(x)|,: — 0 as P — I, pointwise in x. We use [6, Lemma 1.2] to
evaluate

[ 1cxm, =@, patan

< [ 1Her - oo lpuata)
= J(Hilbert-Schmidt norm of |C¥(x) — C(x)|/2)?
= 3| C*(x) - C)|E-

Thus (CX(x)y, y)~ — (C(x)y, )~ in mean (p,,z). Since we are in a finite measure
space we also have convergence in probability (p;,;). Now for any two real numbers
aand b,

e*—eb el Bl f dbe db
) o] Bl P -la—b| for some tween @ an
< |a—b|.

Therefore if |(e® —e®)/(e®+€%)| > ¢, then |a—b| > e. Consequently,

pf SR Gl L (Cap ) -, )
Y2\ lexp [ (CE(x)y, »)1+exp [—(C(x)y, »)]
showing that

< puaof|(CEX)y, )~ —(C(x)y, y)~| > ¢},

exp [—(C*(x)y, Y] —exp [—(C(x)y, M]|~
exp [—(C¥(x)y, »]+exp [ (C(x)y, y)]

converges to zero in probability for each x € B. Since

lexp [—(C¥(X)y, M|1+a = det [I+(1+1)CK(x))~12]
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for A sufficiently small and positive, the calculation on p. 99 of [12] shows that
{llexp [—(CE(x)y, »)]ll1+2} is uniformly bounded with respect to P and x. By
Lemma 3.1 and the remark which follows it, we conclude that (ii) — 0 as P — I,
the convergence being independent of 7 but not necessarily of x. This concludes the
proof of Proposition 3.

V. Estimates on the coefficients. We again note that unless specified otherwise
all estimates will be valid for the case P=1 (K= H) with the obvious modifications.

(c-1) There exists a symmetric Hilbert-Schmidt class operator F on H and a
family of operators C¥(x) € L(H, H) such that for all x € B, CX¥(x)=FC§(x)F and
|CE(x)| £1. F is independent of P (i.e. of K).

We follow the proof of c-2) of [12]. Since the operator E of (a-3) commutes
with P it is easy to see that such an F exists for each P. However, to see that F can
be chosen independently of P, we will go through the necessary calculations.

If P’ is chosen from our special family of projections, and if Q'=7—P’, then

I—PB(Px)P = I—(P'+ Q")PB(Px)P(P'+ Q')
= [I—P'PB(Px)PP']—[P'PB(Px)PQ’ + Q'PB(Px)P).

Since |P'PB(Px)PQ’'+ Q'PB(Px)P| = c|EQ'|, we may choose P’ to satisfy
|P'PB(PX)PQ’ + Q'PB(PX)P| < (1 —e0)eo.

The &, used above is the &, of hypothesis (a-2). Factoring out [/—P'PB(Px)PP’'],
we obtain

(14) I-PB(Px)P = [I—P'PB(Px)PP'|[I—- D*(x)]
where
DX(x) = [I—P'PB(Px)PP']-*E[P'PBy(Px)PQ’ + Q'PBy(Px)P]E.
| DX(x)| £1—&,. Also, for y,, ys € H,
|(DX(X)y1, y2)| = 2|Eyy|-|E[I—P'PB(PX)PP']™"y,|.
Now
|E[I—P'PB(Px)PP']~1y,|?
= |E[I—P'PB(Px)PP']"*P'y,+ E[I—-P'PB(Px)PP']~*Q'y,|?

(15) < |E|%5%|P'y,|*+ |EQ'y,|?
|E1J’2|2

IA

where E, =2[|E|e5 1P’ + EQ’]). Since E, is symmetric and of Hilbert-Schmidt class
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and 2|Ey,| £|Eyy,|, it follows from [6, Lemma 4.2] that we may write D*(x)=
E, D¥(x)E,, where | D¥| = 1. Expanding,

- D*x)]™* = I+lim > [D¥(X)T

(16) - 1+ E{ D+ im 3> DECOELD*(VE: D9 |,

= I+ E,D{(x)E,, say,

where | D¥(x)| £ 1+ |E;|%4*. Thus
[(C*(xX)y1, ¥2)| = (= D¥(x)]~*[{—P"PB(Px)PP’)~*PB(Px)Py\, y,)|

< |(Bo(Px)PEy,, PE[I—P’'PB(Px)PP']"'y,)|
+|(D¥(x)E[I—P'PB(Px)PP']"*PEBy(PX)PEy,, E, ;)|
|Ey1| - |Erye| + 14| E1|%e5 ] |Er| -5 - |E| - | Ey1| - | E1 Yl
|aEy:|-|Eyysl
where a=1+[1+|E;|%5 ] |Ey|-e5*-|E]. (c-1) now follows on applying Lemma
4.2 of [6] together with the argument following b-5) of [12].

(c-2) There exist families of operators C¥(x)e L(B— L(H, H)) and C¥(x)e
L(B— L(B— L(H, H))) such that for all x, z, z;, z,€ B we have DC¥(x)z=
FC¥(x)zF and D?*C¥(x)z,z5=FC¥(x)z,z,F with |C¥(x)| =1 and |C¥(x)| =1.

DCX(x)z is given for all x, z € B by the formula

DCX(x)z = [I—PB(Px)P]~'P[DB(Px)z)P[I— PB(Px)P]~*PB(Px)P
+[I—PB(Px)P]~'P[DB(Px)z]P
= [[—-PB(Px)P)~*P[DB(Px)z)P[(I- PB(Px)P]*.
We note for future reference that DC¥(x)z depends only on Pz, since B(Px) depends

only on Px and so DB(Px)z=0 for all z € K*. Moreover, DC¥(x)z acts as the zero
operator on K+, and K is invariant under DC*(x)z. For each y,, y, € H we have

|((DC¥(x)zy1, y2)| £ |DBo(Px)z|-|E[I—PB(Px)P]~*y,|-|E[I-PB(Px)P]™"y,|.
From (14) and (16) we obtain
E[I-PB(Px)P]~! = E[I- D¥(x)]"*[I—-P'PB(Px)PP']"!
= E[I—P'PB(Px)PP') '+ EE,D¥(x)E,[I—P'PB(Px)PP']"1.

A 1IA

It now follows from (15) and from a similar estimate for |E,[/—P'PB(Px)PP']~1y|
that there exists a symmetric Hilbert-Schmidt class operator F; on H such that

|(DCE(x)zy1, y2)| < |Fiys|-|F1yal|-|2].

Without loss of generality we may assume that F; = F. Lemma 4.2 of [6] now gives
the desired result for DC¥(x)z.
The calculations for D2C¥(x) follow without difficulty from the above estimates.
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(c-3) As P— I, |[I-PB(Px)P]~*—[I—B(x)]~*| — 0 pointwise for all x € B.
From (13) we have
[I—PB(Px)P] *—[I—B(x)]"' = [[-PB(Px)P] [PB(Px)P—B(x)][I—B(x)]*.
Since |[/—PB(Px)P]~!| is uniformly (in x and P) bounded, we have
|[/—PB(Px)P]~*—[I—B(x)]"} £ c|PB(Px)P—B(x)|
c||PB(Px)P— B(x)||+r
and the right-hand side of the previous inequality converges to zero as P — I,
by (11).
(c-4) As P — I, |P[DB(Px)z]P— DB(x)z| — 0 pointwise for x € B and uniformly
for z varying over a bounded set in B.
Let Q=I—P. Then
|P[DB(Px)z]P — DB(x)z|
< |P[DB(Px)z]P— DB(Px)z|+|DB(Px)z— DB(x)z|
= |[P—I][DB(Px)z]P+ [DB(Px)z][P—1I1| + |E[DBy(Px)z — DBy(x)z]E|
| QE[DBy(Px)z]EP| +|E[DBo(Px)z]EQ| +c| DBo(Px)— DBy(x)| - |||
c|z|-|EQ|+e|Px—x] - |z]

IIA

IIA A

by (a-5), and the right-hand side of the above inequality converges to zero as
P — I, the convergence being pointwise in x and uniform on bounded sets of |z|.
(c-5) As P — I, | DC¥(x)z— DC(x)z| — 0 pointwise for x € B and uniformly for
z varying over a bounded set in B.
Noting that
| DC¥(x)z— DC(x)z| = |[I—PB(Px)P]~*P[DB(Px)z]P[I—PB(Px)P]*
—[I=B(x)]"*DB(x)z[I-B(x)]~*|,
the result follows immediately from (c-3) and (c-4).
(c-6) As P — I, |P[D2B(Px)z,25]P— D?B(x)z,25| — 0 pointwise for x € B and
uniformly for z; and z, varying over bounded sets in B.
Setting Q=7— P, we have
|P[D2B(Px)2122]P—D2B(x)2122|
< |[P—I[D%B(Px)z,z,]P+ [ D?B(Px)z,z,][P—1]|
+ | D2B(Px)z125— D?B(X)z,2,]

S |QE[D?Bo(Px)z125] EP| + | E[ D*By( Px)z,25]EQ)|

+ | E[D2By(Px)— D?By(x)]z,z,E|
< ¢|QE|- |z - |zo| +¢| D2Bo(Px) — D*Bo(x) | - |11 | - | 2|
=<

clzul- |zell - [|QE] + | Px—x]].

|QF| — 0 as P— I, and |Px—x| — O, pointwise in x, as P — I.
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(c-7) As P— 1, |D?C¥(x)z,z,— D?*C(x)z,z,| —~ 0 pointwise for xe€ B and
uniformly for z;, and z, varying over bounded sets in B.
We have the formula
D2C¥(x)zyz,— D?C(x)z,2z, = [I—PB(Px)P]?
-{P[DB(Px)z;)P[I— PB(Px)P]~*P[DB(Px)z,]P
+ P[D?B(Px)z,z,]P
+P[DB(Px)z,)P[I— PB(Px)P]~*P[DB(Px)z;)P} [[— PB(Px)P]~*
—[I—-B()]~ {[DB(x)z;][I— B(x)]~*[ DB(x)z,] + [ D?B(x)z.2,]
+[DB(x)z,)[I— B(x)] " [DB(x)zo]}[I — B(x)] ~*.
(c-7) now follows on using estimates (c-3), (c-4) and (c-6).
The next set of estimates that we shall make will be integral estimates. The

measurability of most of the functions which we will use follows from either
[12, Lemma 1] or else from the following lemma.

LEMMA 4.1. Let M be a normed linear space with norm |- |y and let H™ = H x
Hx-.-xH (N times). Let f(y1,...,¥5): H® — M be linear in each y,. If
|/, - v Sc|yilac|yelae: - -<|ynly where |-|, is a measurable seminorm on H
(i=1,...,N), then GOY)=|f(¥, ..., Y|y is u.cn. 0 in H,.

The proof of this lemma is similar to that of Lemma 1 of [12], once we observe
that

IG(y)—G(Z)I é |f(y, Vs y)_f(za Zy. 00 Z)IM-

(c-8) As P— I, [, |(IC*(x)—C'(x)1yy, y)|pa(dy) — O pointwise for x € B and
t>0.
Set Q=I—P and write

(C'xyy, ») = (C’X)NPy)Fy), Py)+([C'(x))(Py)(Py), Oy)
+(([C’DUPYN2y), ) +(C N2y, )

valid for each y € H. Noting that (C¥'(x)yy, ¥)~ =([C¥'(x)I(Py)(Py), Py) for a.e.
y € B, we have

J;KK' K'(x)— C' ()19, )| 2 dy)
= f,,,, |([CF'(x) = C'(x))(PY)(PY), Py)| vaddy)

+L (IPyll- |FPy|-|FQy|+ |Py| - |FQy|-|Fy|) pa(dy)

+ [ 1021 1Byl pate)

= (i)+(ii) +(ii), say.
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The integrand of (iii) is bounded by c|y|-|Fy|*~ for a.e. y € B and moreover it
converges to zero a.e. on B as P— I. Thus (iii) -~ 0 as P — I by Dominated
Convergence.

) ¢ [ 151 1F51-1FQyI-patd)

s of [ - 1mipa@)} { [, 1Foipatan}

< cftrace [(I—P)FJ?}\/2
—>0asP— L

Let S, denote the sphere in H with center at the origin and with radius n. We
have

J.P i [(IC* ()= C ()NPY)(Py), Py)| valdy)
¢ [ oo 1PV B vai@)

o[ erimaan} {[irpyitaian}”
c{J‘B ||P)’||2P2:(dy)} { fpmps,. | FPy|#val( dy)}llz
([ itpatan} {[ o VB )"

1/2
o[ 1EPyIatan)}
PH|PS,

We claim that the right-hand side of the previous inequality converges to zero as
n — oo, the convergence being independent of P. Since PH is invariant under F
(all P’s commute with F), we can choose a basis {¢; : i=1, ..., m} for PH consisting
of eigenvectors of F. Let A;=Fe, and y=>T, y,e;. Then

IA

IIA

IA

IIA

[
PHIPS, "

= (47rtl)""2 fpmps,. (Z My ) exp (—:2 y?/4t) Do dym

i=1 =

= (4mt)~"2 f > «\?A%’y?y?) exp (— > y?/4t) dy;- - -dyp.
i=1

PH|PSp, (i,j= 1
Given ¢>0, for each i=1, ..., m,

oy |

PH|PS,

Myt exp ( ) 2/4t) dyy- - -dyn

§ 4‘77'[ —1/2A4f
(4mt) 7N 1wizn Y €Xp (—y%/4t) dy
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and [, ? exp (—)?/4t) dy can be made <e(4mt)'? for n sufficiently large.
Similarly,

.

PH|PS,

A exp (— > y?/4t) dyy- - -dy,
k=1

2
< g (Gn) e [ exp (310 dy)

where [,z y% exp (—y?/4t) dy can be made <(4nte)*’? for n sufficiently large.

Thus
m
R
i,7=1
m
- ( >
i=1
for all n sufficiently large and for all P.
Now for any fixed » we may make use of estimate (c-5) to choose P, so that
P2 P, implies that

f |FPy|*vady) <
PH/|PS,,

2
A?) < e(trace F2)?,

[([C*)=C'X)1yy, Y| < &
for all y € S,. Then

[ 1acx@-c@KesEn, Blvat@y) < ¢

and so (i) — 0 as P — I, pointwise for x € B. This concludes the proof of (c-8).
(c-9) As P—1,

[ 1676~ €I Plewpatds) 0

pointwise for x € B and ¢ > 0.
Set Q=I—P and write

(C"ICNDps p) = (C"@)C)C)(P), Py) + (Cx)()C)Py), Q)
+(C")C)(XN2Y), »),

valid for each y € H. Since

ICE ), s = ICEECCIPY), Py)ee

for a.e. y € B, we have
L ICC* )= C "GP e Pak(dy)
= .LH [(ACE )= C" (X)) )(Py), Py)|ewvaeldy)

+ f (IFPy|- |FQy|+|FQy|- |Fy]) paldy)

= ()+(i), say.
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@) < ¢ f |Fy|-|[FQY|-paddy)

< c{fB |Fy|2P2t(dy)}ll2{ L |F leﬁvzz(dy)}l/2

< cftrace (- P)F)3}/2

—~0asP—1I.

Let S, denote the sphere in H with center at the origin and with radius n. We
have

Ls I(CC ()= C" (NI )(PY), Py)l|ewvaddy)

= CLS | D*(CE(x) — C(x))|| - - va(dy)

S cn? sup |D*(CE(x)—C(x))zyz,|

llzyll, 221

—0 asP—1, by estimate (c-7).

Now

[ 1CF - C NP, P)lra@) S ¢ [ [FPyIvady)

As in the proof of (c-8) we can show that the right-hand side of the previous
inequality converges to zero as n — oo, the convergence being independent of P. It
follows that (i) —0 as P — L.

(c-10) AsP—1T

L ICCE X))y, ») & (CK X))y, )= (C' X))y, ¥) @ (C'(X)(-)Y; P)ex P2(dY)

converges to zero, pointwise for x € B and ¢>0.

For h € H we will write 42 for h ® h. (C¥'(x)(-)y, y) is, for each x e Band y € H,
a bounded linear functional on H. Thus it may be identified with an element
h € H with |h| £c|Fy|2. Noting that the constant is independent of the choice of P
and that |k ® h|,.=|h|? (see [14]), we obtain

ICE ()9, ¥ = (C'X)()p5 PP |lex = | FyI,

valid for each y € H. This ensures that the integral in (c-10) exists, and also that the
integrand arises from a function on H which is u.c.n. 0 in H,,.
Set Q=I1—P, and for y € H write

(C'X)(-)y, y) = (C'(x)(-)(Py), Py)+(C'(X)(:)(Py), @»)+(C'(X)(-X(2¥) »)-
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Noting that (C¥'(x)(-)y, »)=(C¥'(x)(-)(Py), Py) for each y € H, we have
f,, ICE X))y, 12 = (C' X)), 3) | cP2d)
s LH I(CEX)(-)(Py), Py)2—(C'(x)(-)(Py), PY)?||cxva(dy)

+ J; I(C" ) )(Py), Py) ® [(C'(X)(-)(Py), @¥)+(C'(x)(-)(2y), )]

+(C'X)()(Py), 2y)+(C'(X)(-)(2y), NP
+I(C' ) )(Py), @y)+(C'X)(-)2y), »)]
® (C'X)(-)(Py), Py)|expady)

= (i) + (i), say.
Using the fact that |h; & hg| .= |h:|- |hs| for each hy, hy € H, we obtain
(i) < ¢ f {|EPY|*[| FPy|-|FQy| +|FQy|- | Fy]
+[|FPy|-|FQy|+|FQy|-|Fy|1?
+[|FPy|-|FQy|+|FQy| - |Fy|1- |FPy|?} pady)

<ec j [|Fy[°|FQy| + | Fy|2| FQy|?]paidy)

<ec L | Fy|?| FQy|pady)

< o{ [ 15tmaan} { [ 1Foypa@)}

< c{trace (I—P)F)%}2
—QasP—L

For h,, h, € H we have
(A3 —h3llee = [(Ar—h2) @ hy+ha @ (hy—ho)|er S (s + |hal)- |hy—hal.
Thus
@) = cf |FPy|? - sup {[C*(x)—C'(x)]h(Py), Py)}-valdy).
PH heH;|h|=1

Using (c-5) and proceeding in a manner similar to that used for (i) of (c-8) or (c-9),
we find that (i) — 0 as P — I, the convergence being pointwise for x € B.
(c-11) AsP—1,

[ IEx@H D= (E N, Plpatd) >0,

pointwise for x € B and ¢>0.
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We recall that for each y € H the operators 75=(C%’(-)(-), y) are defined for all
hy, hy € H by

(T%hy, ko) = 3U(CF(X)h1hg, y)+(CX' (x)hohs, y)].

Each T¥ is symmetric and of Hilbert-Schmidt class. The symmetry is obvious from
the definition; to demonstrate the Hilbert-Schmidt property we will show that T
is a sum of two Hilbert-Schmidt class operators. If {¢;} is any orthonormal basis
for H, then

0

2 sp I(CECOhe N = S sup  [(FCECOMFe, )

A

c|Fy|*-> |Fe|® <
i=1
and

3. ostp_ ICECIe )

heH; |h|=

0

=> s _, |(U—PB(Px)P]~*PDB(Px)e,P[I~ B(Px)P]*h, y)|?

i= 1heH|

< > |EU—PB(Px)P]~y|*-| DBy(Px)e|*- sup |E[I—PB(Px)P] ‘h|?
i=1 heH; |h|=1

< chl | DBy(Px)e,|*
{=

where ¢, is a constant depending only on y. The last sum is finite, by hypothesis
(a-6).

To show now that each T* is of trace class, it now suffices to show that
>21 [(T%ey, e,)| < oo for each {e;}. We have

|(T™(x)e, e)| = |([[—PB(Px)P]~*EP[DBo(Px)e,|PE[I—PB(Px)P] ‘e, y)|
< | DBy(Px)ei|-|E[I—-PB(Px)P]~%e,|-|E[I—PB(Px)P]~'y|

where

|E[I—PB(Px)P]-y| = |E[I-P'PB(PX)PP' - DX(x)]y| by (14)
< |E[I—-P'PB(Px)PP’]y| +c| DX(x)y|
< |Eyy|+c|Eyl

by (15) and the definition of D*(x). E, and c are independent of P, x and y, and
both E, and E are of Hilbert-Schmidt class. Thus there exists a Hilbert-Schmidt
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class operator E, € L(H, H) such that for all y € H we have |E[I—PB(Px)P]~y| =
|Esy|. Then

2 [(T*(x)ei, )| < 3 | DBo(Px)e-|Eser] - | Eny|
i=1 i=1

© U2 (o 12
IEzJ’l’{Z IDBO(Px)eilz} {z IEzeflz}
i=1 i=1

c|Ezy|

IIA

IIA

by (a-6). It follows that | 7%(x)| .. =< c¢|E;y|. This ensures that the integrand in (c-11)
exists and that it arises from a function which is u.c.n. 0 in H,,.
We now estimate the integrand by
ICE YD )= (C' X)) M S ICK ), Py)—(C ), Py) e
+ (€' ), D)o
= (i)+ (i), say.

If we can show that (i) — 0 as P — I, pointwise for each x € B and uniformly for
y in a bounded set in H, then the techniques employed in proving (c-8)—(c-10) will
give us (c-11). Note that for any orthonormal basis {e;} of H

Z (CE (e, Py)— (C'(X)ee PY)

< |Py| i |[LI— PB(Px)P]~*P[DB(Px)e]P[I— PB(Px)P]~}
—[I—B(x)]~*DB(x)e;[I— B(x)]~']ey].

It suffices to show that the latter sum converges (for each x € B) to zero as P — 1,

and that the convergence is independent of the choice of basis {e;}. This sum may
be written as

i
i=1

{lI—-PB(Px)P]~*—[I— B(x)]"*}P[DB(Px)e,]P[I—PB(Px)P] e

+ [I— B(x)]~{P[DB(Px)e,)P — DB(x)e;}[I— PB(Px)P] e

+[[—B(x)]"*DB(x)e{{I—PB(Px)P]~*—[I—B(x)] '}e;

IIA

c|lI—~PB(P)P] -1~ [[~B()]"*|->. | DBo(Px)e - |EU~PB(PX)P] e
+c i |[DBo(Px)— DBy(x)le;| - |E[I— PB(Px)P] e,
i=1

te 2 | DBy(x)ey| - | E{I — PB(Px)P]~*— [I— B(x)]~ }}ey|

= (iii) + (iv) +(v), - say.
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(c-3), (a-6) and the fact that E is Hilbert-Schmidt give us the result that (iii) — 0 as
P — I, independent of the choice of {e;}; (a-9) gives us the same result for (iv); and
(v) follows from (a-6) and the calculation

) 1/2
{i_zl IE{II—PB(PX)P]‘1—[I-B(x)]‘l}eil"’}

< |U—PB(Px)P]~*—[I—B(X)] | e, m| E| n-s
—0 asP—1, by (c-3).
VI. Convergence of {M*(x, dy)}, {rf(x, dy)} and {gf(x, dy)}.

PROPOSITION 4. As P — I, ME(x, dy) — M(x, dy) in variation norm, for each
x€B, t>0.

Proof. It follows from (4) that we may write
M{(x, dy) = [det A¥(x+y)]~*/2-{trace [4*(x)]- [(—41) " (C*'(X)(-)(-)y, ¥)
+17HCE (), »)
+(1622) " H(CE(X)(-)y, ¥)]
+(—41)"H(CE (x)yy, M}~
-exp [—(CX(x)y, y)/4¢]" - pai(dy).

This formula, with the obvious modifications, also holds for P=1. To simplify the
notation in this proof, we will fix x and ¢ and write

a(y) = [det A(x+y)]7*2, b = A(x),
d(y) = (—41)7HC"X)()( )y, »)+17HC X )(), ) +(162%) 7 HC (x)(-)y, ¥)?,
e(y) = (=4)"UC' Xy, »),  f(y) = exp [-(C(x)y, y)/41],

and d%,...,f¥ for the above functions with 4 and C replaced by A¥ and C¥
respectively. We must show that

f |a¥[trace (b¥d¥) + eX]f* —a[trace (bd) + elf| pa(dy) — O

as P — I. The integrand may be written as
|[a¥ —a][trace (bd) + e]f+ a*{trace [(b* —b)d ]+ trace [b*(d* —d)]}f*
+ a¥(eX —e)f¥ +a¥[trace (bd) +e][fX—f1|~
< {|a* —a]-|trace (bd) +e|- | f| +|a*| - |b* —b| e, my" || ee- | ]
+|a®| - |6 | L, iy A% —d| e | f%| + |@®| - [€X —e] - | f¥]
+ |a¥| - |trace (bd)+e|- |fX—f|}~.
From [12, pp. 98-99] we find that for any A>0

fB |FX|* +2po(dy) = det [(T+(1+X)CE(x))~2].
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Moreover there exists an & >0, independent of P and x, such that for A<e; we
have [I+(1+X)C¥(x)]>0 and |[I+(1+2)C(x)]}| is uniformly bounded for all
x € B. Thus, by Lemma 4.1 of [6], for any fixed A<e,, [, | /¥|***p2(dy) is uniformly
bounded for x € B, for all P, and for all ¢>0. For A<e, we claim that | f¥—f] — 0
in L***(py) as P — I. This is equivalent to saying that |g¥—g| — 0 in L***(p,,,),
where g¥=exp [—(C¥(x)y, y)] and g=g*. To prove the latter, we write

f |&* — g *+*pyady)
=J. __g_;g__ 14‘)\(IgK|-l-|g|)1+)\1’1/2(d)’)

lg"l + lgl
A+ 1/t
{ [ |5 pl,z(dy)} { [ agm1+ 182 opyatan)}

[g¥T+1el Igl

where (r) 1+ +p) " t=1. (|g¥|+|g]) e LA+*PA+2 if (1+A)(1+p)<1+e;. This
condition is satisfied iff A+ p(1+A)<e; or, equivalently, iff p<(e; —A)(1+A)~1
Since (¢; —A)>0, we can always find such a p. The result now follows once we
observe that |(g¥—g)/(|g%| +|g|)| ~ is bounded by 1 a.e. on B and converges to zero
in probability by a previous calculation for the proof of Proposition 3.

a® — a pointwise for all y € B. Since |a¥|=Zc, it follows that |a¥—a| — 0 in
L%(py) for all 1=g<oo and for all t>0. b* — b in L(H, H) norm, |b¥| 4y p, is
uniformly bounded with respect to P, and thus, since b¥ is independent of y € B
we have |bX —b| . i — 0 in LYpy,) for all 1 =g<co and for all £>0.

|d¥ —d| — 0 in L*(py) by (c-9), (c-10) and (c-11), and |e¥—e| — 0 in L*(ps)
by (c-8). The L! convergence of these functions to zero implies their L? convergence
to zero for any 1 <g<oo. For if we have a sequence of functions {gX}, say, such
that |g¥| is dominated a.e. for each K by a function & which is in LY(p,;) for each
1=<g<0, then

1/(1+p)

J; |g* —g| par(dy) > 0

is equivalent to |g¥—g| — O in probability (ps) which, in turn, is equivalent to
|g¥ —g|?* — 0 in probability (ps;) and this is equivalent to

L | 8% —g|%Pa(dy) — 0.

It remains to check that d¥ and eX are dominated by the correct type of function.
This follows immediately from

Id¥ e = (48)~ | Fy|®+ct™|Epp| +(16¢%) 71| Fyl*,
and

le¥| = (40)~ |y |Eyl®.
Proposition 4 follows from the above estimates and several applications of
Holder’s inequality.
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PROPOSITION 5. As P — I, r&(x, dy) — r(x, dy) in variation norm, for each x € B,
t>0.

Proof. We may write

rE(x, dy) = D rEu(x, dy)

n=1
where rf,(x, dy)= M¥(x, dy) and rf,(x, dy) is defined for n=2 by
i d) = [ [ [ 107k, d0) ME (3, )

for all fe #(B), x € B and t>0. From the estimates of [12] it is easy to see that
there exists a constant Q, independent of P, x and ¢, such that

fB |ME|(x, dy) < Q11
and
an f ||, dy) < Q™2™ T(n)2).

Thus, given ¢ >0, there exists an N(e), independent of P and x (but dependent on ¢)
such that

N(g)
(18) f = riCe. d) S 3 f P — roalCx, d)+e.
Now rf (x, dy)=M§(x, dy), so rfi(x, dy) — r, ,(x, dy) in variation by Proposition

4. If we assume that rf,(x, dy) — r, ,(x, dy) in variation for all k<n—1, x € B and
t>0, then

J; |rtx.n—rt,n|(x, dy)
[0 [ a0 ME 5 @)= a3 ) Mool )
0:(u) JBi(¥) JBi(2)
S el @ Mol d)-d
0:(w) JBi(¥) JBi(2)

[ a0, do) [ ME M, -
0:(w) JBi(¥) JBi(2)

= (i) +(ii), say.

We consider (i). [, [ra-1—run-1|(y, dz) —0as P—Iforeachu>0and y € B.
Moreover, by (17)

n=1p(n—-1)2

Q 2-3
J; |r§.n-1_ru,n—1|(y, dZ) <2 P« 1)/2) u™ /2
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for all P. Since

t t
f f un/2—3l2_|Mt_u|(x’ dy)du é Q J- unl2—3/2.(t_u)—1/2_du
0JB 0

and the integral on the right-hand side exists, we conclude by Dominated Con-
vergence that (i) >0 as P — L.
We consider (ii).

Qn ~1p(n-1)/2

@) 5 Sy |, [ 1M~ Mol a0

Now [, |MX ,—M,_.|(x, dy) — 0 for each u>0 and moreover

fﬂ |Mtiiu_Mt—u|(xa dy)

is dominated (for all P and for all x € B) by 2Q(t —u)~*/2, which is integrable from
0 to ¢ with respect to u™~®2dy, Thus (i) -0 as P— I, and so rf.(x, dy) —
r (x, dy) for each k=1, 2, . ... The proposition now follows from (18).

PROPOSITION 6. As P — I, q¥(x, dy) — q«(x, dy) in variation norm, for each x € B,
t>0.

Proof.
L g —q.|(x, dy)
< [ Vit =l (x, dy)

t
w1, doy k) =, d) s, )]
0:(uw) JBi(v) JBi(2)
= (i)+(i), say.
Now (i) — 0 as P — I by Proposition 3, and

t
(i) < f f j 1P = 1|, d2)- |1t o] (x, dy)- du
0:(u) JBi(y) JB;(2)

t
1, doy a3, )
0:(u) JBi(y) JBi(2)

From [12, Proposition 3], [, |rF|(x, dy) Sc;t =12, where c,, is a constant inde-
pendent of ¢ and of x. ¢;, can easily be seen to be independent of P. Also
{5 |ME|(x, dy) is dominated by a constant, independent of P, x and ¢. By an argu-
ment similar to that of Proposition 5 we may now establish that (ii) — 0 as P — I.

COROLLARY 6.1. For each t>0, x € B, q(x, dy) is a probability measure on B.

This is an immediate consequence of Proposition 6.
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VII. The semigroup property.
THEOREM 1. For fe #(B), s and t>0, q,q,f(X)=q; , . f(X).

Proof. Let fe #(B), and for a finite signed Borel measure p on B let || denote
the total variation of u. Denoting the measure g,(x, dy) by g;, .(dy) we have

[(9:9s =41+ )f ()] = 194(gs— ) S| + (. =) g f ()] + (@ s — G2+ S (X)),

where
9a=a/ @ S Wflo [ | la=aFI o, do)-lad e, ).
B;(y) JBi(2)

Now [, |gs—¢%|(p, dz) converges to 0 as P — I pointwise for y € B. Moreover this
term is dominated by 2. It now follows by Dominated Convergence that
|9(gs—q%)f(x)| — 0 as P — I. Considering the two remaining terms, we have

[(q:—g)gES O] = 11Ge,c—gExll - 150 = 1ge.x—qEx] - |f ]
and

I(th+s“‘qt+s)f(x)| = "th+s.x_qt+s,x“ : ”f"ao,

both of which converge to zero as P — I by Proposition 6.
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