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A FUNDAMENTAL SOLUTION OF THE

PARABOLIC EQUATION ON HILBERT SPACE. II:
THE SEMIGROUP PROPERTY

BY

M. ANN PIECH

Abstract. The existence of a family of solution operators {qt : t > 0} corresponding

to a fundamental solution of a second order infinite-dimensional differential equation

of the form du/dt=Lu was previously established by the author. In the present paper,

it is established that these operators are nonnegative, and satisfy the condition

QsQt=qs + i.

I. Introduction. This paper continues the study initiated in [12] of second order

parabolic equations, with variable coefficients, on Hubert space. In [12] we estab-

lished a fundamental solution for the equation du/8t = Lu, where L is a second order

differential operator satisfying certain regularity hypotheses. This fundamental

solution is given by a family of finite signed Borel measures {qt(x, dy) : t > 0, x e B}

on a Banach space B (B will be defined later) or, equivalently, by a family of

operators {qt : / > 0} on the space of bounded Lip-1 functions on B. These operators

were defined via infinite series, which made it difficult to determine either their

nonnegativity or whether they satisfy a semigroup property (qsqt=9t+s f°r all

s, t > 0).

The technique developed in this paper for establishing both nonnegativity and

the semigroup property is that of "semifinite" approximation. Basically, the dif-

ferential operator L is approximated by a differential operator LK acting in a finite-

dimensional subspace K of our Hubert space H plus the Laplacian A acting in K1.

Nonnegativity and the semigroup property are known for the fundamental solutions

of 8uj8t=LKu and 8uj8t= Au. Combining these fundamental solutions and passing

to the limit as K—> H in some suitable fashion, we obtain the desired properties

for {qt}.

II. Preliminaries. Most of the basic definitions and ideas necessary to the

following work can be found in Gross [8], [9] and in the preliminaries of [12]. The

notation is that of [12] to the extent to which that is possible.

Let H denote a real separable Hubert space with norm | • | and inner product
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( , ). Gauss measure on H with variance parameter t is denoted by vt, and is

defined for a cylinder set S<^ H by

vt(S) = (2nt)~n'2 f cxp[-\x\2/2t]dx
Je

where S=P~1(E), P being an «-dimensional projection on H and E a Borel set in

the range of P.

Let |[ • || denote a particular measurable norm on H, and let B be the com-

pletion of H with respect to || • ||. The triple (H, B, i), where i is the natural injection

of H into B, is called an abstract Wiener space. Gauss measure vt on H induces a

Borel measure pt on B which is such that

pt{x e B/(<(yx, *>,...., <yn, x» e E} = vt{x e ///«>>!, x>,..., < vn, x» e F}

for all finite subsets yx,. ■ -, yn of B* and Borel sets FeRn. (Here we identify 5*

with a subset of //*.) pt is called Wiener measure on B with variance parameter /.

Certain functions / defined on H determine measurable functions on B. The

manner in which this takes place is described in Gross [7] for tame functions on

H and for functions which are uniformly continuous near zero in Hm (u.c.n. 0 in

Hm), where Hm denotes H with the topology determined by the measurable semi-

norms. The measurable function on B determined in this fashion by/is denoted

by/. We will generally omit the tilde whenever it is obvious that we are working

on B—e.g. lüf(y)pt(dy). In this paper we assume that || v|| in is L"(pt(dy)) for all

1 ̂ p < oo and for all t > 0.

Let Wbt any Banach space. If/is a IF-valued function defined in a neighborhood

of a point x of B, we will write Dfi(x) for the Fréchet derivative off at x, and will

call / .ß-differentiable at x if Df(x) exists. We may also regard / as a function g

defined on a neighborhood of the origin of H by restricting/to the coset x + H of

B and defining g(h)=f(x + h). The Fréchet derivative of g at 0 is denoted by fi'(x),

and we say that /is //-differentiable at x if f'(x) exists. We write |F>/(x-)|| and

\f'(x)\ for the L(B, W) and L(H, W) norms respectively.

We will now briefly sketch the results of [12]. Let A(x) = I— B(x), where B() is

a map from B to the space of symmetric trace class operators on H. For a real-

valued measurable function/(x, t) on Bx(0, oo) we define

LxJ(x, t) = trace [A(x)f"(x, t)]-(8j8t)fi(x, t)       (0 < / < co)

whenever the right-hand side exists—that is, whenever (8/8t)f(x, t) andf"(x, t)

exist and [A(x)f"(x, t)] is trace class. When there is no danger of confusion, we will

omit the subscripts on L. We assume that B(x) satisfies the following hypotheses :

(a-1) x-+B(x) is a bounded Lip-1 function from B to the space of symmetric

trace class operators on H, with the trace class norm.

(a-2) There exists e0 > 0 such that B(x) ^ (1 — e0)I for all xe B.

(a-3) There exists a symmetric Hilbert-Schmidt class operator E on H and a
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family of operators B0(x) e L(H, H) such that for all xe B, B(x) = EB0(x)E and

|Lo(*)| = l.

(a-4) D2B0(x) exists and is a Lip-1 function from B to L(B -+ L(B -> L(H, H))).

(a-5) \\DBQ(x)\\, ||L»2L0(x)|| are uniformly bounded for all xeB.

(a-6) There exists a constant c such that for any orthonormal basis {e¡ : i=l,

2,...} of H we have £t" t | DBQ(x)el\2<c, independently of x e B.

Remarks. (1) Without loss of generality we may assume that £0< 1-

(2) (a-6) is always satisfied if B is the completion of H with respect to a measur-

able norm of the form || _v|| = | -S^f for all y e H, where S is a Hilbert-Schmidt

operator on H. For then 2¡™ i \T>B0(x)ei\2 is dominated for all x by a constant

times 2¡°=i Iktll2 (by (a-5)), and we have

CO CO

2 lle'll2 = 2 lSe'l2 = (the Hilbert-Schmidt norm of S)z.
¡=i ¡=i

(3) The argument given on p. 107 of [12] for the operator denoted there as

(C'(x)( •)(•), y) to be of trace class is incorrect, (a-6) is a sufficient, but by no means

necessary, condition for this operator to be of trace class. We will show this in

detail in the proof of (c-11) of §V.

Under the preceding hypotheses on B(x) (and therefore on A(x)), there exists a

family of finite real-valued signed Borel measures {qt(x, dy) : 0</<oo, x e B} on

B such that if qtf(x) = §B f(y)<}t(x, dy) then for each bounded Lip-1 function/from

B to the reals we have Lxtqtf(x) = 0 (for all 0 < / < oo, x e B) and lim^o qtf(x) =f(x)

uniformly in x.

III. The semiflnite approximation. Consider a finite-dimensional subspace K

of B of the following form : Let yu..., yn be a set of orthonormal vectors in H*

which also lie in B*. Let K= span (yx, ■ ■ -, y„). Then if P is the continuous extension

to B of the orthogonal projection of H onto K, we have

n

p* - 2 (y* x^yt'   (x e B)

and P is a projection on B.

In order to carry out our approximations, we must make three further assump-

tions. They are as follows :

(a-7) There exists a sequence {Ln} of commuting finite-dimensional projections

on B, of the above form, such that {Pn} converges strongly to the identity operator

onL.

(a-8) L (see (a-3)) commutes with each Pn.

(a-9) For each xeB and Pn from (a-7), there exists a constant cx¡Pn such that

2 \[DB0(Pnx)-DB0(x)]ei\2<cx,Pn
i=X

for every orthonormal basis {et} of H, and cXiPn -> 0 as n ->- oo.
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Remarks. (1) By considering pairwise least upper bounds, we may assume,

without loss of generality, that Fn + 1=2Fn.

(2) All projections which occur in this paper will be selected from this sequence,

and the subscripts will be omitted—so that P will denote an arbitrary member of

this sequence, corresponding to projection on the finite-dimensional subspace K

(where we may consider K as a subspace of B* or of B or of H).

(3) (a-7) is valid in the case of Wiener space. Let B be the space of real con-

tinuous functions on [0, 1] which vanish at zero and let H be that subset of B

consisting of the absolutely continuous functions which have square integrable

first derivatives. The inner product on H is given by

(x,y)^ j\'(t)y'(t)dt,

where ' denotes the first derivative with respect to t. B is the completion of H with

respect to the sup norm (|| • ||œ). We first construct a basis for H* consisting of

elements of B*. For this purpose we use the Haar functions {xÁf)}, which are

defined by

Xl(0=l te [0,1],

X2" + k(t) = V2" te P-D/2», (k-iW),

= -V2- re((fc-*)/2\fc/2"],

= 0 otherwise in [0, 1],

for n = 0, 1, 2,..., k= 1, 2,..., 2\ It is well known that {y„(0} forms a complete

orthonormal set in F2[0, 1] (using Lebesgue measure) ([15, p. 338]). Let yn(t) =

Jo vn(i) ds. It is obvious that {vn} forms a complete orthonormal set in H*. For

x e H, we have the formulas

<y%, xy = Jo x'(t) dt = x(l),

<y2"+k, xy = j X2n+ic(t)x'(t)dt

rtk-l/2)/2" /-Jc/2»

V2nx'(t)dt-\ V2nx'(t)dt
J(fc-l)/2" J(fc-l/2)/2"

We may now use these formulas to define < yn, x} for all x e B. yne B* since

\(yn, x}\ ^4\/2n\\x\\00. Moreover, for each xeB,

00

x(t) = 2 <y*> x}yn(t),
7t = l %■
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the convergence being uniform in / [1, Theorem 3]. If we now define

n

pnx = 2 (y* x~>y¡
¡=i

we have a sequence satisfying (a-7).

(4) If B is itself a Hubert space, with inner product [ , ], then x, y -*■ [x, y] is a

bilinear functional on H. Since \[x, y]\ á ||_xr|| • |j>|| ¿c|x| • [_v| for some constant c,

this bilinear form is bounded. Thus there exists a positive definite operator N on

H such that (Nx, y) = [x,y]. s/N is completely continuous, since |\/N*I = [x,x]ll2 =

||;c|| and the injection mapping from H ^> B is completely continuous [8]. Let {j>¡}

be an orthonormal basis for H consisting of eigenvectors of \/N, with {A¡} the

corresponding sequence of eigenvalues. Each A¡>0 and A¡—>-0. {Aj-1^} forms an

orthonormal basis for B. Considering yt to be in H*, we have

<yu x> = (yu x) = (N(Xr2y,), x) = A-^Ar1^, x]   for all xeH.

This formula makes sense for all xe B, and so defines the unique extension of j>¡

to an element of B*. Now for x e B,

n n

2 Of x>y> = 2 I*»"1.*» x^r^i -> x
i = X i=X

in the L-norm. Defining Pnx = ~2f=x (.yu x}yt, we see that (a-7) is thus satisfied

whenever B is a Hubert space.

(5) (a-9) is satisfied whenever B is of the form defined in Remark (2) following

(a-6), since in this case (a-5) gives

\[DB0(Px)-DB0(x)]y\ í constant- \\Px-x\\ • ||>-||

for each yeH.

Define

AK(x) = I-PB(Px)P (x e B)

= (I-P) + (P-PB(Px)P)

= Q + Ap(x),   say, where PH = K as stated before.

Considering K^B*, denote by K1 the annihilator of K in B. Then if v[ denotes

Gauss measure on K, and p\ denotes Wiener measure on K1, we have [9, p. 131,

Remark 2.2] Pl = v'txp'i and-th\ispt(x-,dy) = v't(x',dy')xp"t(x",dy") (for all xeB,

/>0), where x = x' + x", y=y'+y", x' and y' e K, x" and /' e K1.

Notation. If o>t(x, dy) is a finite real-valued signed Borel measure on a space

W, then for a Borel function/on W we define

(wJXx) = Í f(y) œt(x, dy),
Jw



262 M. A. PIECH [July

when this integral exists. (A finite Borel measure is one such that \o}t(x, E)\ <co

for all Borel sets F<= W. For a real-valued measure, finiteness is equivalent to

bounded variation, by the Hahn Decomposition Theorem.)

lff(x, t) is a real-valued Borel measurable function on Ä^x(0, oo), define

(1) LiJ(x, t) = trace* [A"(x)fxx(x, t)] - 8j8tfi(x, t)

for all r>0, x e K, whenever the right-hand side exists. Herefxx(x, t) denotes the

second Fréchet derivative off with respect to x. Lx-t is a parabolic operator in K.

By the finite-dimensional theory [2], [3], [4], [5], [10], [11] there exists a family of

functions {q'(t, x, y)}, where t > 0, x and y e K, which satisfies

(i) q'(t, x, y) is jointly continuous in t, x, and y;

(ii) <l'xx(t, x, y) and 8j8t q'(t, x, y) exist and Lx¡tq'(t, x, y) = 0 on (0, co)x KxK;

(iii) iff(x) is bounded and continuous on K, then

lim f f(y) q'(t, x, y) dy = f(x)       (x e K)
¿\o Jk

where the convergence is uniform on compact subsets of K;

(iv) for any e and r0 > 0, q'(t, x, y) is bounded on the set

{t+\x-y\ ä e, 0 < / ^ f0}.

Moreover, q'(t, x, y) is unique among functions which satisfy (i)-(iv).

It is not difficult [3], [4], [5], [11] to show that the construction of a fundamental

solution for the equation LXttf=0 described in [12] (in this case K is the Hubert

space under consideration) produces a family of finite signed Borel measures

{q't(x, dy)} on K which are of the form q[(x, dy)=q'(t, x, y) dy where q'(t,x,y)

satisfies properties (i)-(iv). (In q'(t, x, y) dy, the dy refers to Lebesgue measure on

K.) It now follows from Dynkin [4, Chapter V] that the family {q't : t > 0} forms a

contraction semigroup of positive operators acting on the space 38(K) of bounded

Borel functions on K. Moreover,

q'(t, x, y) > 0       (t > 0, x and y e K),

and

f q'(t,x,y)dy= 1        (t > 0, x e K).

(The last property is found in [11].)

We define a family of finite Borel measures {qf(x, dy)} on B by

qf(x, dy) = q\(x', dy') xp2t(x", dy")       (t > 0, x e B).

Remark. The family {p¡(x, dy) : t>0,xe K1} is a fundamental solution of the

heat equation 8/dtf(x, i)=i tracent [f"(x, t)] in K1 (see Gross [4, Theorem 3]).

A straightforward change of variables shows that the factor of i in the heat equa-

tion may be removed by considering the family {p"2t(x, dy)}.
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Proposition 1. {qf : / > 0} is a contraction semigroup of positive operators acting

in the space F(B) of bounded Borel functions on B with the sup norm || • \m.

Proof. If Lis a Borel set in B, of the form E=E' x E" where L'cLand E"^KL,

then

(qfxE)(x) = {(q'tXE')(x')}{(P2txE~)(x'%

and each function on the right-hand side is a Borel function of x. The set F of all

Borel sets L such that qfxE is measurable is clearly closed under finite disjoint

unions, and so contains the field generated by sets L of the above form E' xE".

Since F is closed under monotone limits, it follows that F coincides with the

CT-field of Borel sets. The set of all/for which qfffc a Borel function contains the

characteristic functions of the Borel sets and is closed under bounded monotone

limits, and thus contains all/s F(B). Since qf(x, dy) is a probability measure for

each xeB and />0, we have \qff\«^ |/||a>.

To prove the semigroup property, we note that for L of the above form

í   S XE(y)-q*(z, dy)q*(x, dz)

= j  q't(z', E')-p"2t(z", E")qf(x, dz)

= {jKq't(z',E')-q's(x',dz')y{^y2t(z", E")-p"2s(x", dz")

= q's+t(x', E')-p"2(s+t)(x", E")

= q^t(x,E)

= \xE(y)qf+t(x,dy).

The set of all / for which

f       f     Ry)- qf(z, dy) ■ qf(x, dz) =  \ f(y) q?+ t(x, dy)
JBUzy JB-.ly) JB

is closed under finite linear combinations and under bounded monotone limits,

and so by the preceding argument contains allfe Fi(B). Thus we have established

that qf(qf)f=qf+t /for all/£ @(B).
We next establish some notation and define some properties of measures. For

any metric space W with metric d, let 3t( W) denote the space of all bounded real-

valued Borel functions with the sup norm || ■ || „ and let stf( W) be the space of all

real bounded Lip-1 functions on If with norm \-\x defined by

11/11, = |/fl„+mf{c : \f(x)-f(y)\ ^ c-d(x,y) for all x,ye W}.

For a family {cot(x, dy) : x e W, t > 0} of finite real-valued signed Borel measures

on W, we define the following properties:
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(b-1) There exists a constant c, independent of t and x, such that

\wt\(x, dy) ^ ct~112   for ail x e W, t > 0.S,IW

(Here |«>í|(.x, E) denotes the variation of ojt(x, dy) over F for each Borel set Fin W.)

(b-l(a)) Given 0 < r0 < oo, there exists a constant cto, independent of t and x, such

that

f   H(x, dy) ^ ctot~112   for ail x e W, 0 < t S tQ.

(b-2) The map/-*- wtf defined by (wtf)(x) = jwf(y) oyt(x, dy) is a bounded linear

operator on âS( W) for each t > 0.

(b-3) (b-1) holds and/-* tu(/is a bounded linear operator on s&(W), with

H^/IU ^ c/-1'2!/!!    forallr>0,

where c is given by (b-1).

(b-3(a)) (b-1 (a)) holds and/-* cuf/is a bounded linear operator on srf(W), with

lk/|| i $<V"1,,l/li   for all 0< tú t0,

where cio is given by (b-l(a)).

(b-4) Given 0<8Sr0<co, there exists a constant cMo, independent off and x,

such that for S ̂  fl9 í2 á /0 we have

IK/)W-K/)WI ^ e^líj-í,!-!/!,
forall/ej/(IF)andjce W.

It is a consequence of [13, Propositions 4 and 5] that if the family {ojt(x, dy)}

satisfies (b-3) or (b-3(a)), then it must satisfy (b-2).

Define the family {mf (x, dy) : t > 0, x e B} of finite Borel measures on B by

(2) mf(x, dy) = exp [ - (CK(x)(x -y), x -y)/4t] ~p2t(x, dy)

where CK(x)=[AK(x)]-i-I=[I-PB(Px)P]-1PB(Px)P. On K\ CK(x) acts as the

zero operator. K is invariant under CK(x), and, if we define

Cp(x) = [P-PB(Px)PY1PB(Px)PeL(K,K)

then CK(x) = Cp(x) on K. Thus we can write

mf(x, dy) = exp [-(Cp(x')(x'-y'), x'-y')/4t] v'2t(x', dy')xp"2t(x", dy")

= mp(x',dy')xplt(x",dy")

where x = x'+x", y=y'+y", x' and y' e K, x" and v" e K1. We may also define

mf(x,dy) = [det AK(y)]-ll2m?(x, dy)

= [det Ap(Py)]-u2mf(x,dy)

= [det Ap(y')YU2mP(x', dy') xp2t(x", dy")

= m!(x',dy')xp"2t(x",dy").
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All the measures which we have defined are finite Borel measures on the appro-

priate spaces.

We may now "apply" LXit to mf(x, dy) as in [12, Proposition 2], obtaining a

family {Mf(x, dy)} of Borel measures on B satisfying (b-l)-(b-3). We observe from

equation (19) of [12] that we may write

Mf(x, dy) = Mf(x', dy') xp"2t(x", dy")

where Mf(x', dy') acts in K and is given by

Mf(x, dy) m [det APiy)]-"2{traceK [Ap(x)][-4(t)-\Cp"(x)()()(x-y), x-y)

-r\Cp'(x)(-)(-),x-y)

+ (iet2)-\Cp\x)(-)(x-y), x-y)

®(Cp\x)(.)(x-y),x-y)]

+ (4t)-\CPXx)(x-y)(x-y), x-y)}

•exp [-(Cp(x)(x-y), x-y)/4t]-v2t(x, dy)

for all / > 0, x and y e K. The symmetric operator T e L(K, K) which is denoted by

iCp'ix)i■)(■), x-y) is defined by

iTkx, k2) = i[(Cp'ix)kxk2, x-y) + iCp\x)k2kx, x-y)]   for all jfc„ k2 e K.

If we replace P by / and v2t by p2t in (4) (A'(y) = A(y), C'(x) = C(x)), then we obtain

the measures {Mt(x, dy)} of [12]. We may also replace P by Un (2) and (3), obtaining

{mt(x, dy)} and {mt(x, dy)}.

Proposition 2. The family {qf(x, dy) : t > 0, x e B} coincides with the fundamental

solution of

(5) LlJ(x, t) = trace« [/F(x)/"(x, /)] - 8/8tfix, /) = 0

obtained by the method of [12].

Lemma 2.1. If {Mt : / > 0} is any family of operators on á?(L) which satisfies an

inequality of the form lA/4/|<x,aß/~1'al/|U for some constant Q independent of

t > 0 and of fe SSiB), then any family {/¡(x, dy) : t>0,xeB}of real-valued signed

Borel measures on B which satisfies

(6) rtfix) = Mtfix) +Ç M( _ u[ru/](x) du
Jo

for allfe 3S(B) and property (b-l(a)) is unique.

Proof. Assume that {rt(x, dy)} and {ft(x, dy)} each satisfy (6) and (b-l(a)).

Without loss of generality we may assume that the constants cto of (b- 1(a)) are the

same for both families. Then for/£ F(B)

rtf(x)-fJix) = J  Mt-u[ruf-ruf]ix)du.
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Now

\\Mt_u[rJ-rufi]\\œ Ú Q(t-u)-v2\\rJ-rufU    for ail 0 < m < / < oo.

Thus for ail 0 < t ^ t0 we have

VJ-rJU = Q^(t-u)^>2\\ruf-rufUdu

ú2ct0\\fUQ^(t-u)-í'2u-v2du

= 2ct0\\f\UQ,2>2t2'2-\Y(2l2))-K

Iterating, we get

VJ-fJU ík 2ct0\\fUQ2TT2>2(Y(2l2))^ ^(t-uy^u2'2-! du

= 2Ci0||/|UßV2r3'2-1(r(3/2))-1,

and eventually obtain

Wtf-fJU ^ 2ct0\\fiUQn-^n,2r'2-\Y(ni2))^

for each w = 2, 3,.... But Qn-1Trnmtnl2'1(Y(n/2))-1 goes to zero as « -+ oo, for each

t>0. Therefore \\rtf-rtf\\<c=0 for all r>0, and so rj=fjfor all/e 36(B) and in

particular rt(x, E) = ft(x, E) for all Borel sets E<=B.

Proof of Proposition 2. From the construction of {q[(x, dy)} described in [12], we

have the existence of a family {r[(x, dy)} of measures on K satisfying properties

(b-2), (b-3(a)) and (b-4) and also

r'J(x) = Mpf(x) + |  Mtp-U[r'uf](x) du   for all/e <%(K), xeK.

Define rf(x, dy) = r[(x', dy') xp"2t(x", dy"). We will show that

(7) rff(x) = Mff(x) + £ M?_ u[r«fi](x) du

forallfei%(B),xeB.

If/=X£> where E=E'xE", E'^K, E"^K\ then

Mtp(x\ E-)-p"2t(x", £*)+£{£ r'u(y', E')-Mtp.u(x', dy')}

•{j^P'toW* E")-P2«-»Áx", dy")} du

= { Mtp(x', E') + £ JV„(y, E')-MU(x', dy') duj-p^x", E")

= r't(x',E')-p"2t(x",E")

= rfxE(x).
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Since the set of all/£ á?(L) which satisfies (7) is closed under finite linear com-

binations and under bounded monotone limits, it follows as in the proof of

Proposition 1 that this set is exactly J'(L). Moreover

f \rf |(x, dy) í  f  \rf\ix, dy),
Jl! JK

and since {rP(x, dy)} satisfies (b-l(a)), we conclude that {rf(x, dy)} satisfies (b-l(a)).

Thus, by Lemma 2.1, {rf(x, dy)} coincides with the family of measures constructed

via the technique of the proof of Proposition 3 of [12] during the construction of

the fundamental solution of (5).

To complete the proof of the proposition, we need only establish that qf satisfies

(8) qU(x) = mff(x) + £ mf_ J/f/](x) du

for allfe F(B), xeBAfEisa Borel set in B of the form L' x E" with L'c K and

E'<=K\ then

mfxs(x) +  I  mfLu[(r'u *pIJxeK*) du

= rhPix', E')-p"2tix", E")+C f ¡ii/, E')-p"Uy", E")-mf^ix, dy) du
Jo Jb

= mP(x',E')p2t(x",E")

+fo {L r'u(y' E')'rhï-AX'' dy,)}'{SK,P2Áy"' e")-p™-«¿x"> dy")} du

= mP(x',E')-p"2t(x",E")

+ {Í L r'Áy', E')rflï(x'' dy'y^-P^x", E")

= q'txAx') pltxAx")

= qfxE(x).

Since the set of all/£ ^(L) which satisfies (8) is closed under finite linear com-

binations and under bounded monotone limits, it again follows that this set is

exactly 3$iB). This concludes the proof of Proposition 2.

IV. Convergence of {mf(x, dy)}. In the work that follows we will use c to

represent a general constant whose dependence may only be on the coefficient

operators Ai ■ ) and on the relationship of the space B to the space H. That is, c

will always be independent of / for any />0, independent of any space variables

x, y, etc., and independent of P. All estimates and all formulas will be valid for

the case P = I with the obvious modifications.

Lemma 3.1. Let tu be a finite positive measure on a space W, and {/,} be a sequence

of real-valued functions on W which converge almost everywhere (a.e.) to f. Iffn and

f belong to L1 + \oS)for some A>0, with ||/n||i + A uniformly bounded, thenfn-^-fiL1).



268 M. A. PIECH [July

Proof. Define

8ÁX) g \uT+f\fî)\     ifl/»WM/«l*°>

= 0 otherwise,

f    \fin-fi\dœ =   f    \gn\(\fin\ + \fi\)dco g   \\gn\\z.\\ I/.I + I/I  ||1 + A
Jw Jw

where (t)_1-|-(1 +A)_1 = 1. Since \gn(x)\ ís 1 for all x e W and for all «, and since

tu is a finite measure, gn eLlgn -*■ 0 a.e., and so, by Lebesgue's Dominated Con-

vergence Theorem, ||gn||t-*0. || |/„| + |/| ||i + ̂ |/n ||i+K+\\f\\i+xéc (independent

of»). Thus fJ/B-/| <&»-►().

Remark. Rather than assume that/, ->/a.e., it suffices to assume that gn -*• 0

in measure (defining gn as in the above proof). For since |^n|x ^ 1, it is a standard

measure-theoretic result that again we have ||gn¡, ->- 0 for each 1 ̂  t< go.

Proposition 3. As P converges to the identity operator on B, mf(x, dy) ->

mt(x, dy) in variation, for each xeB, t > 0.

Proof. We must show that

(i) = j |[det A*{y)}-™ exp [-(C«(x)(x-y), x-y)/4t]

- [det A(y)]"1'2 exp [-(C(x)(x-y), x-y)j4t]\ p2t(dy)

converges to zero as P —> I.

(i) á jB [det^(j)]-1'2! exp [-(CK(x)(x-y),x-y)l4t]

-exp [-(C(x)(x-y), x-y)/4t]\ p2t(x, dy)

+ jB |[det AK(y)}-^2- [det A(y)]-™\ -exp [(C(x)(x-y), x-y)/4t]-p2t(x, dy)

= (ii)+(iii),   say.

Treating (iii) first, we recall that AK(y) = I-PB(Py)P. PB(Py)P is uniformly (in P

and y) bounded in trace norm. AK(y) is uniformly (in F and y) bounded away from

zero in L(H, H) norm. (Note that AK(y) ̂  e0I for all F and y, where e0 is defined

in (a-2).) Applying Lemma 4.1 of Gross [6] and noting the Remark on p. 98 of

[12], we find that {det AK(y)} is uniformly bounded both above and away from

zero, and

(9) |[det A*(y)]- [det A(y)]\ í c\\PB(Py)P-B(y)\\tT.



1970] THE PARABOLIC EQUATION ON HILBERT SPACE. II 269

(If TeLiH, H), then ||L||tr = trace [(T*T)112].) Since x"1'2 is Lip-1 on subsets of

(0, oo) which are both bounded above and bounded away from zero, we have

(10) \[detAKiy)]-ll2-[detAiy)]-ll2\ ^ c\[det AKiy)]-[det Aiy)]\.

Now if we let || • ||H-s denote the Hilbert-Schmidt norm, we have

\\PBiPy)P-Biy)\\tT S \\PBiPy)P-BiPy)\\tT+\\BiPy)-Biy)\\tr

= ||(L-/)L(L7)L + L(L>0(L-/)||tr+ ||L(L^)-L(j)||tr

á \\QEB0iPy)EP\\tr+ \\EB0iPy)EQ\\tr+ \\BiPy)-B(y)\\tr

á c|!ßL||H-s||L||H-S+ \\BiPy)-Biy)\\tT.

Since   L  is  Hilbert-Schmidt,   |gL||H_s->0 as P ^ I. Since  L()   is  Lip-1,

¡BiPy)-Biy)\\tr^c\\Py-y\\B -* 0 pointwise in y as P ^ I. Thus

(11) \\PBiPy)P-Biy)\\tr~>0

as P-> I, the convergence being pointwise in y. Combining (9), (10) and (11), we

conclude that

(12) | [det AKi y)] " m - [det Ai y)] - »« | -* 0

as P -> I, the convergence being pointwise in y. It is shown in [12, p. 99] that

exp [-idx)ix-y), x-y)¡4t] eLi + \p2tix, ■))

for all positive A which are sufficiently close to zero. For such a A, the L1 + A-norm

is uniformly bounded with respect to x and /. Thus

(iii) ácj     I [det AKiy)] ~ll2 - det [Aiy)] - *»|« + *» .^(^ ^ I

The preceding integrand is uniformly (in P and y) bounded above, and converges

pointwise in y to zero as P -> L Thus, by Lebesgue's Dominated Convergence

Theorem, (iii) —>- 0 as P-*■ I. We note that the convergence is not necessarily

uniform in x nor in /.

Turning now to (ii), we make the change of variables y ^-x + 2\/ty and note

that the determinant term is uniformly (in P, x and /) bounded above, obtaining

(ii) ^ c f \exV[-iCKix)y,y)]-exp[-iCix)y,y)]\pll2idy).
Jb

Now

||C*(x)-C(x)||tr ú \\[iI-PBiPx)P)-í-H-Bix))-í]Bix)\\tT

+ || iI-PBiPx)P) - » [LL(Lx)L - L(x)] || tr

= (iv) + (v),    say.
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(I-PB(Px)P) 1 is uniformly (in F and x) bounded in L(H, H) norm. It now follows

from (11) that (v) -> 0 as P ~> /, pointwise in x. Writing

(I-PB(Px)P) -l - (I- B(x)) -x

= (I-PB(Px)P) - \I- B(x))(I-B(x)) -x

(13) - (I-PB(Px)P) - 1(I-PB(Px)P)(I- B(x)) -»

= (I-PB(Px)P) "»[(/- B(x)) - (I-PB(Px)P)](I- B(x)) -l

= (I- PB(Px)P) ~1[PB(Px)P - B(x)](I- B(x)) - \

we find that

(iv) Ú c\\[PB(Px)P-B(x)]C(x)\\tr

ic\\PB(Px)P-B(x)\\tr\C(x)\UH,H)

á c\\PB(Px)P-B(x)\\tr,

and the right-hand side of this inequality converges pointwise to zero as F ->■ I.

Thus ||CK(;c) — C(x)||tr^0 as F—*/, pointwise in x. We use [6, Lemma 1.2] to

evaluate

/.
\(CK(x)y,y)-(C(x)y,y)\pll2(dy)

< jjlC*(x)-C(x)\v*y\*plt¿dy)

= i(Hilbert-Schmidt norm of IC^-CWI1'2)2

= |||C*(x)-C(x)||t2r.

Thus (CK(x)y, y)~ -> (C(x)y, y)~ in mean (pit2). Since we are in a finite measure

space we also have convergence in probability (pi/2). Now for any two real numbers

a and b.

)

eu — e"

ea + ec
\a — b\    for some d between a and b

\ea + e"\

á \a-b\.

Therefore if |(ea — eb)/(e° + eb)| >e, then \a—b\ >e. Consequently,

exp [ - (C*(x)y, y)} - exp [ - (C(x)y, y)]
Fl/2 > e

exp [ - (CK(x)y, y)] + exp [ - (C(x)y, y)]

ÍPii2{\(CK(x)y,y)~-(C(x)y,y)

showing that

exp [ - (CK(x)y, y)] - exp [ - (C(x)y, y)}

~\ > *},

exp [ - (CK(x)y, y)] + exp [ - (C(x)y, y)]

converges to zero in probability for each x e B. Since

||exp [-(CK(x)y, v)]|1+A = det [(I+(l + X)CK(x))-^2]
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for A sufficiently small and positive, the calculation on p. 99 of [12] shows that

{|exp [-(CK(x)y, y)]\\x + >) is uniformly bounded with respect to F and x. By

Lemma 3.1 and the remark which follows it, we conclude that (ii) -»■ 0 as F -> /,

the convergence being independent of t but not necessarily of x. This concludes the

proof of Proposition 3.

V. Estimates on the coefficients. We again note that unless specified otherwise

all estimates will be valid for the case P = I(K=H) with the obvious modifications.

(c-1) There exists a symmetric Hilbert-Schmidt class operator F on H and a

family of operators C0*(x) e L(H, H) such that for all xeB, CK(x) = FC0K(x)F and

|C0*(x)|^l. Fis independent of F (i.e. of K).

We follow the proof of c-2) of [12]. Since the operator E of (a-3) commutes

with F it is easy to see that such an F exists for each P. However, to see that F can

be chosen independently of P, we will go through the necessary calculations.

If P' is chosen from our special family of projections, and if Q' = I—P', then

I-PB(Px)P = I-(P'+Q')PB(Px)P(P'+Q')

= [I-P'PB(Px)PP'] - [P'PB(Px)PQ' + Q'PB(Px)P].

Since \P'PB(Px)PQ' + Q'PB(Px)P\^c\EQ'\, we may choose P' to satisfy

\P'PB(Px)PQ'+Q'PB(Px)P\ Ú (l-*oK-

The e0 used above is the e0 of hypothesis (a-2). Factoring out [I—P'PB(Px)PP'],

we obtain

(14) I^PB(Px)P = [I-P'PB(Px)PP'][I- DK(x)]

where

DK(x) = [I-P'PB(Px)PP']-1E[P'PB0(Px)PQr + Q'PB0(Px)P]E.

\DK(x)\ ^ 1 -e0. Also, for yx, y2 e H,

\(DK(x)yx,y2)\ á 2\Eyx\-\E[I-P'PB(Px)PP']-1y2\.

Now

\E[I-P'PB(Px)PPT1y2\2

= \E[I-P'PB(Px)PP']-1P'y2 + E[I-P'PB(Px)PP']-1Q'y2\2

(15) Ú |F|V2|F>2|2+|FÔ'v2|2

^ |£iJ2|2

where F1 = 2[|F|e^1F'-l-Fß']. Since Ex is symmetric and of Hilbert-Schmidt class
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and 2|Lvi| ájj&iJ'il, it follows from [6, Lemma 4.2] that we may write DKix) =

L1LfJ(x)L1, where |LfJ| ^ 1. Expanding,

n

[I-DKix)]-x = I+lim y [DKix)]'
»-« i=x

(16) = I+Ex\dUx)+ lim t Ù$(x)E1[Dk(x)YE1D$(x)\e1

= I+ExD^ix)Ex,    say,

where | £>f(x)| S 1 + IL^Vl. Thus

\(CK(x)yx,y2)\ = |([/-L'r(x)]-1[/-L'LL(Lx)LL']-1LL(Lx)L>'1,^2)|

â \(B0(Px)PEyx, PE[I-P'PB(Px)PP']'ly2)\

+ \(D^(x)E1[I-P'PB(Px)PP']-1PEB0(Px)PEy1, Exy2)\

=£ \Eyx\-\Exy2\H^ + \Ex\^ö1}-\F1\^ö1-\E\-\Eyx\-\E1y2\

â \aEy1\-\Eíya\

where a= 1 + [1 + IL^2^1]- |LX| -ej"1- |L|. (c-1) now follows on applying Lemma

4.2 of [6] together with the argument following b-5) of [12].

(c-2) There exist families of operators C^(x) e L(B -* L(H, H)) and Cf(x) e

L(B -► L(L -> L(H, //))) such that for all x, z, zl5 z2 e B we have LCir(x)z =

FC?(x)zF and Z)2C'r(x)z1z2 = LC2K(x)z1z2L with ||Cf(x)|| ^ 1 and ||Cf(x)|| á 1.

DCK(x)z is given for all x, z 6 L by the formula

DCK(x)z = [/-LL(Lx)L]-1L[LL(Lx)z]L[/-LL(Lx)L]-1LL(Lx)L

+ [I-PB(Px)P]~1P[DB(Px)z]P

= [7-LL(Lx)L] - li» [DB(Px)z]P [(I-PB(Px)P]~l.

We note for future reference that DCK(x)z depends only on Pz, since B(Px) depends

only on Px and so DB(Px)z = 0 for all z e K1. Moreover, DCK(x)z acts as the zero

operator on K1, and K is invariant under DCK(x)z. For each y\, y2 e H we have

[(DC^x^j!, ä)| ^ |LL0(Lx)z| • \E[I-PB(Px)P]-1y1\ ■ \E[I-PB(Px)P]'iy2\.

From (14) and (16) we obtain

EU-PBiPx)?]-1 = E[I- DKix)]-1[I-P'PBiPx)PP']-1

= E[I-P'PB(Px)PP'] -i + EExDf(x)Ex[I-P'PB(Px)PP'] ~ K

It now follows from (15) and from a similar estimate for \Ex[I—P'PB(Px)PP']~1y\

that there exists a symmetric Hilbert-Schmidt class operator Fx on H such that

\iDCKix)zyx,y2)\ ú \FíVí\- |F1Äj • ||z||.

Without loss of generality we may assume that Fx = F. Lemma 4.2 of [6] now gives

the desired result for DCKix)z.

The calculations for D2CKix) follow without difficulty from the above estimates.
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(c-3) AsF->/, \[I-PB(Px)P]-1-[I-B(x)]-1\ ->0 pointwise for all xeB.

From (13) we have

[I-PB(Px)P]~1- [I-B(x)]-1 = [I-PB(Px)P]'1[PB(Px)P-B(x)][I-B(x)]-1.

Since \[I—PB(Px)P]~1\ is uniformly (in x and F) bounded, we have

\[I-PB(Px)P]-1-[I-B(x)]~1\ S c\PB(Px)P-B(x)\

á c\\PB(Px)P-B(x)\\tT

and the right-hand side of the previous inequality converges to zero as P -> I,

by (11).

(c-4) AsP^I, \P[DB(Px)z]P- DB(x)z\ -> 0 pointwise for x e B and uniformly

for z varying over a bounded set in B.

Let Q = I-P. Then

\P[DB(Px)z]P- DB(x)z\

^ \P [DB(Px)z]P - DB(Px)z\ + | DB(Px)z - DB(x)z\

= | [P-I][DB(Px)z]P+ [DB(Px)z][P-I]\ + \E[DB0(Px)z-DB0(x)z]E\

^ | QE[DB0(Px)z]EP\ + \E[DB0(Px)z]EQ\+c\\DB0(Px)-DB0(x)\\ ■ \\z\\

Sc\\z\\-\EQ\+c\\Px-xl\\z\\

by (a-5), and the right-hand side of the above inequality converges to zero as

P -> I, the convergence being pointwise in x and uniform on bounded sets of ||z||.

(c-5) As F -> I, | DCK(x)z — DC(x)z\ -^ 0 pointwise for x e B and uniformly for

z varying over a bounded set in B.

Noting that

\DCK(x)z-DC(x)z\ = \[I-PB(Px)P]-1P[DB(Px)z]P[I-PB(Px)P]-1

-[I-B(x)Y1DB(x)z[I-B(x)Y1\,

the result follows immediately from (c-3) and (c-4).

(c-6) As P->I, \P[D2B(Px)zxz2]P-D2B(x)zxz2\ -^0 pointwise for xeB and

uniformly for zx and z2 varying over bounded sets in B.

Setting Q = I—P, we have

\P[D2B(Px)zxz2]P- D2B(x)zxz2\

Ú \[P-I][D2B(Px)zxz2]P+ [D2B(Px)zxz2][P-I]\

+ | D2B(Px)zxz2 - D25(x)z1z2|

Ú | QE[D2B0(Px)zxz2]EP\ + \E[D2B0(Px)zxz2]EQ\

+ \E[D2B0(Px)- D2B0(x)]zxz2E\

è c\QE\ ■ \\zx\\ ■ \\z2\\ +c\\D2B0(Px)-D2B0(x)\\ ■ \\zx\\ ■ \\z2\\

ic\\zx\\.\\z2l[\QE\ + \\Px-x\\].

| ßF| —> 0 as F -> /, and \\Px — x\\ —> 0, pointwise in x, as F —> I.
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(c-7) As   P-+I,   \D2CKix)zxZ2-D2Cix)zxZ2\ -+0   pointwise   for   xeB   and

uniformly for z1 and z2 varying over bounded sets in B.

We have the formula

D2CKix)zxZ2- D2Cix)zxZ2 = [I-PBiPx)?]-1

■ {P [DBiPx)z2]P[I-PBiPx)P]- \P [DBiPx)zx]P

+P[D2BiPx)zxZ2]P

+P[DBiPx)zx]P[I-PBiPx)P]-XL[DBiPx)z2]P} [I-PBiPx)P]~x

- [/- L(x)] - 1{[DBix)z2][I- Bix)] - 1[DBix)z1] + [L2L(x)z1z2]

+ [DBix)zx][I- Bix)] - 1[LL(x)z2]}[7- Bix)] 'l.

(c-7) now follows on using estimates (c-3), (c-4) and (c-6).

The next set of estimates that we shall make will be integral estimates. The

measurability of most of the functions which we will use follows from either

[12, Lemma 1] or else from the following lemma.

Lemma 4.1. Let M be a normed linear space with norm | • |M and let H(N> = Hx

Hx ■■ ■ x H iN times). Let fiyx, ■ ■ -, yN):  Hm ->- M be linear in each y{. If

\fiyx, ■ ■ -, Jn)|m = c|>'1|1'|j>'2|2.IjvIat where \ ■ |t is a measurable seminorm on H

(/= 1,..., N), then G(j) = \fiy,.. .,y)\M is u.c.n. 0 in Hm.

The proof of this lemma is similar to that of Lemma 1 of [12], once we observe

that

\Giy) - G(z)| s \fiy, y,...,y) -fiz, z,..., z)|M.

(c-8) As P^I, JB \i[CK'ix)-C'ix)]yy,y)\p2tidy)^0 pointwise for xeL and

/>0.

Set Q=I-Land write

iC'ix)yy,y) = ([C'(x)](Lv)(Lj),L>0 + ([C'(x)](Ly)(L>0, Qy)

+ i[C'ix)]iPy)iQy), y) + i[C'ix)]iQy)y, y),

valid for each ye H. Noting that iCK'ix)yy,y)~ =i[CK\x)]iPy)iPy),Py) for a.e.

y £ B, we have

¡B\i[CK'ix)-C'ix)]yy,y)\p2tidy)

á  f    \i[CK-ix)-C'ix)]iPy)iPy),Py)\V2tidy)
JPH

+ jB i\\Py\\ ■ \FPy\ ■ \FQy\ + \\Py\\ ■ \FQy\ ■ \Fy\)p2tidy)

+ jB\\Qy\\-\Fy\2-p2tidy)

= (i)-r-(ii)+(iii),   say.
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The integrand of (iii) is bounded by c||j>|| -|Fy|2~ for a.e. yeB and moreover it

converges to zero a.e. on B as P ^-1. Thus (iii) -*■ 0 as F -> / by Dominated

Convergence.

(ii)Sc f \\y\\-\Fy\-\FQy\-p2t(dy)
Jb

- c{jB(\\y\\-\FyWP2¿dy)}ll2{jB \FQy\2p^dyy]m

Ú c{trace [(I-P)F]2}112

-> 0 as F -*■ I.

Let Sn denote the sphere in H with center at the origin and with radius w. We

have

JPHIPSn

á c

f |([C*'(x)- C'(x)](Py)(Py), Py)\ v2l(dy)
JPHIPSn

f ||FvHFFy|2-v2i(¿y)

UPH ) {.JPHIPSn

= c{ f  |Fj||X(^))1/2{ f |FFy| V(¿v)}
\.«/B y kJ PHIPSji J

¿ <•{£ w,a*w}1,"{J„/, i^i4*^)}1'

f |FP^|%(rfy)}1/a'
>PHIPSn

We claim that the right-hand side of the previous inequality converges to zero as

« —s- co, the convergence being independent of F. Since PH is invariant under F

(all F's commute with F), we can choose a basis {et : i= 1,..., w} for F//consisting

of eigenvectors of F. Let A¡ = Fet and j = 2P= i JA- Then

f |FFj|V2((^)
JPHIPSn

- râ-L< (IA^)2 «p (-| H *• ■ ■*■
= (4*0 - ""2 f (J  AfAfcftf ) exp ( - J tf/4f ) </* • • • dym.

JPHIPSn   \ijTl / \       itl /

Given e>0, for each i=l,..., m,

(4nt) -m'2 f AM exp ( - 2 y?/4t) dy,--- dym
JPHIPSn \      j=X j

Ú (*rt)-"»A/ f        .       .    2,.w
JiïiènJ4exp(-j2/40i/y



276 M. A. PIECH [July

and J|ViaBy2 exp ( — v2/4/) dy can be made   <£(47r/)1/2 for n sufficiently large.

Similarly,

(4,7/) -""2 f A?À?tf >? exp ( - 2 J?/4/) ¿Vi • • ■ dym

^ A¡2A2((47r/)-1/2 f       j2exp(-//4/)d>)

where J"|¡,|eny2 exp (—>»2/4/) (/y can be made <i4-nte)112 for n sufficiently large.

Thus

f iLL^Wv) á e 2  *W
JpHiPSn i,y=i

(m        \ 2

JA?)   ^ ¿(trace L2)2,

for all « sufficiently large and for all P.

Now for any fixed n we may make use of estimate (c-5) to choose P0 so that

P^P0 implies that

|([CX'(X)-C'(X)]^V,J)|   <e

for all y e Sn. Then

f     |([C*'(x)- C'ix)]iPy)iPy), Py)\ v2tidy) < e
Jps„

and so (i) -> 0 as P -> /, pointwise for x e B. This concludes the proof of (c-8).

(c-9) As P -> L

£ ¡([C'W-C'WKX)^ ^lltrMrfF) -*■ o

pointwise for x e B and / > 0.

Set Q = I-P and write

(C"(*X ■)(•)>',>') = (C"(x)(.)()(Lj),Lj) + (C"(x)()()(LjO, ßy)

+(C"(*X-X-Xßj»,j'),
valid for each y e H. Since

IKC^X-X-^IItT = \\iC«"ix)i.)i.)iPy),Py)\\tr

for a.e. y e B, we have

£ K[C**C*)-c'(x)X-X-)fc y)I«r/u(40

^  f    Wi[CK"ix)-C"ix)]i)i)iPy),Py%lV2tidy)
JPH

+ jB i\FPy\ ■ \FQy\ + \FQy\ ■ \Fy\) p2tidy)

= (i) + (ii),   say.
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(ii) gc f \Fy\-\FQy\-pJdy)

í C{Js \Fy\apJdy)ya{fa \FQy\2p2t(dy)}112

á c{trace ((I-P)F)2}1'2

->0asP->I.

Let Sn denote the sphere in H with center at the origin and with radius «. We

have

f     ||([C*"(0- C"(x)]()()(Py), Py)lrv2t(dy)

£cf     \\D2(C*(x)-C(x))\\-n2-v2t(dy)

^ en2    sup    | D2(CK(x) - C(x))zxz2 \
Üli, «Z2IISI

->- 0   as P -> I,       by estimate (c-7).

Now

f \\{[CK"(x)-C"(x)](.)(.)(Py),Py)\\tTv2t(dy)úc f \FPy\2v2t(dy).
JPHIPSn JPHIPSn

As in the proof of (c-8) we can show that the right-hand side of the previous

inequality converges to zero as « —> 00, the convergence being independent of P. It

follows that (i) -+ 0 as F -> I.

(c-10) AsF->7

jB \\(C«Xx)(.)y,y) ® (CK\x)(.)y,y)-(C'(x)(-)y,y) ® (C'(x)(-)y,y)\\trp2t(dy)

converges to zero, pointwise for x e B and / > 0.

For he H we will write h2 for « ® «. (CK'(x)( ■ )y, y) is, for each xeB and y e H,

a bounded linear functional on H. Thus it may be identified with an element

he H with |«| ¿ c\Fy\2. Noting that the constant is independent of the choice of F

and that ||A <g> Ä|tr=|A|2 (see [14]), we obtain

\\(CK'(x)(-)y,y)2-(C'(x)(-)y,y)2lr Ú c\Fy\\

valid for each yeH. This ensures that the integral in (c-10) exists, and also that the

integrand arises from a function on H which is u.c.n. 0 in Hm.

Set g=/-F, and for y e H write

(C'(x)( -)y,y) = (C'(x)(-)(Py),Py) + (C'(x)()(Py), Qy) + (C'(x)()(Qy),y).
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Noting that iCK\x)i-)y, y) = iCK\x)i-)iPy), Py) for each y e H, we have

£ |(C*'(*X-)y. j)2-(C'(x)(->, y)2lrp2tidy)

ï  f    «(C^xX-XL^^^-iCXxX-XL^^j)2!^^)

+ £ ||(C'(x)(.)(L^),Lj) g [(C'(x)(.)(Ly), ß>>) + (C'(x)()(ß;0,>0]

+ [(C'(x)(.)(L>0, Qy) + iC'ix)i)iQy), y)]2

+ [iC'ix)i-)iPy), Qy) + iC'ix)i-)iQy), y)]

®iC'ix)i-)iPy),Py)\\trp2tidy)

= (i) + (ii),    say.

Using the fact that \\hx <S> A2||tr = |Ai| ■ |A2| for each hx, h2 e H, we obtain

(ii) S c £ {\FPy\2[\FPy\ ■ \FQy\ + \FQy\ ■ \Fy\]

+ [\FPy\-\FQy\ + \FQy\.\Fy\]2

+ [\FPy\ ■ \FQy\ + \FQy\ ■ \Fy\].\FPy\2}p2tidy)

Ú c £ [|Ly|3|Lßj| + |Ly|2|Lß^|>2t(a»

á c í \Fy\*\FQy\p2tidy)
Ja

ú c{£ m*Mdy)y*{jB \FQy\2p2tidy)y2

ú c{trace ((Z-L)L)2}1'2

-* 0 as P -*■ L

For Ax, A2 e // we have

||A?-A¡||tr = ||(A1-A2)®A1+A2®(A1-A2)||tr ^ (^1 + \h2\)-\hx-ha\.

Thus

(Oácf    ILLjI2-    sup    {[C"Xx)-C'ix)]hiPy),Py)}-v2tidy).
Jph fte«;lh| = l

Using (c-5) and proceeding in a manner similar to that used for (i) of (c-8) or (c-9),

we find that (i) -> 0 as P -> I, the convergence being pointwise for xe B.

(c-11) AsP^I,

¡b ll(C*'(*X-X"), j)-(C'(x)(-)(-),y)lrP2tidy) -► 0,

pointwise for x e L and / > 0.
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We recall that for each y e H the operators TK=(CK'( ■)(■), y) are defined for all

hx, h2eHby

(TKhx,h2) = \[(C«'(x)hxh2,y) + (CKXx)h2hx,y)}.

Each TK is symmetric and of Hilbert-Schmidt class. The symmetry is obvious from

the definition ; to demonstrate the Hilbert-Schmidt property we will show that TK

is a sum of two Hilbert-Schmidt class operators. If {et} is any orthonormal basis

for H, then

2     sup    |(C*'(x)«e„v)|2= 2     sup    \(FC?(x)hFeu y)\2
¡Ti heH; Iftl = 1 ¡Ti heH: ]h\ = 1

Ú c\Fy\2-2 \Fet\2 < oo
i = i

and

2    sup    |(C*'(*)ei«,v)|2
,-Ti heH: \h\ = 1

= y    sup    \([I-PB(Px)P]-1PDB(Px)eiP[I-B(Px)P]-1h,y)\2
fc?x he/i:|h| = l

Ú y \E[I-PB(Px)P]-1y\2-\DB0(Px)ei\2-    sup    \E[I-PB(Px)P]-1h\2
¡Ti heH: |Ji| = l

Ú cy-2 \DB0(Px)et\2
¡ = i

where cy is a constant depending only on y. The last sum is finite, by hypothesis

(a-6).

To show now that each TK is of trace class, it now suffices to show that

L°°=i \(TKe„ e,)\ <co for each {e(}. We have

\(TK(x)eu e,)| = \([I-PB(Px)P]-íEP[DB0(Px)ei]PE[I-PB(Px)P]-íel,y)\

á |DB0(Px)ei\ ■ \E[I-PB(Px)P]~let\ ■ \E[I-PB(Px)P]"*y\

where

\E[I-PB(Px)P]~1y\ = \E[I-P'PB(Px)PP'][I-DK(x)]y\       by (14)

Ú \E[I-P'PB(Px)PP']y\+c\DK(x)y\

Í \Exy\+c\Ey\

by (15) and the definition of DK(x). Ex and c are independent of P, x and y, and

both Ex and E are of Hilbert-Schmidt class. Thus there exists a Hilbert-Schmidt
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class operator E2 e L(H, H) such that for all yeHv/e have \E[I-PB(Px)P]~1y\ ^

\E2y\. Then

2 \(TK(x)et, ed\ Ú 2 \DB0(Px)ei\-\E2ei\-\E2y\
¡ = i i = i

r oo \ is   c •

^ |F2j|-|2 \DBa(Px)e\2}    -|2 13*11

Ú c\E2y\

by (a-6). It follows that ||TK(x)||trá c|F2y|. This ensures that the integrand in (c-11)

exists and that it arises from a function which is u.c.n. 0 in Hm.

We now estimate the integrand by

\\(C«'(x)(-)(-),y)-(C'(x)(-)(-),y)\\tri \\(C«'(x)()(-),Py)-(C'(x)(-)(-),Py)lr

+ \\(C'(x)(-)(-),Qy)\\tr

= (i) + (ii),    say.

If we can show that (i) -> 0 as F -> I, pointwise for each xeB and uniformly for

j in a bounded set in H, then the techniques employed in proving (c-8)-(c-10) will

give us (c-11). Note that for any orthonormal basis {ej of H

2 \(CK'(x)eieu Py)-(C'(x)eiei, Py)\
í = l

DO

^ I^jI'2 W-PB(Px)P]-íP[DB(Px)ei]P[i-PB(Px)P]-í

-[I-B(x)]-íDB(x)ei[I-B(x)]-í]ei\.

It suffices to show that the latter sum converges (for each x e B) to zero as P -> I,

and that the convergence is independent of the choice of basis {ej. This sum may

be written as

2 {[I-PB(Px)P] - l - [I-B(x)] - !}F [DB(Px)ei]P [I-PB(Px)P]~ le{

+ [I-B(x)]'1{P[DB(Px)el]P- DB(x)ei}[I-PB(Px)P]-1ei

+ [I- B(x)] -1DB(x)ei{[I-PB(Px)P]-» - [/- B(x)] - ifa

00

^ c\[I-PB(Px)P]-1-[I-B(x)]-1\^ \DB0(Px)ei\-\E[I-PB(Px)P]-1et\
i=l

00

+ c 2 \[DB0(Px)-DB0(x)]ei\\E[I-PB(Px)P]-1ei\
i = i

+ c 2 \DB0(x)ei\-\E{[I-PB(Px)P]-1-[I-B(x)]-1}el\
¡ = i

= (iii) + (iv) + (v),    say.
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(c-3), (a-6) and the fact that L is Hilbert-Schmidt give us the result that (iii) -> 0 as

P -> /, independent of the choice of {e¡} ; (a-9) gives us the same result for (iv) ; and

(v) follows from (a-6) and the calculation

1/2
2l2 \E{[I-PBiPx)P]-^-[I-Bix)]-i}ei

= i

¿ |[/-LL(Lx)L]-1-[/-L(x)]-1|L<if,ií)||L||H-s

-»0   as P -> I,       by (c-3).

VI. Convergence of {MtKix, dy)}, {/f (x, dy)} and {qf(x, dy)}.

Proposition 4. As P ^ I, Mfix, dy) -> Af((x, dy) in variation norm, for each

x e B, t > 0.

Proof. It follows from (4) that we may write

MtKix,dy) = [det ^«(x+j;)]-1'2-{trace [AKix)]-[i-4t)-1iCK'ix)i)i)y,y)

+ r\C«'ix)i-)i),y)

+ il6t2)-\CK\x)i-)y,y)2]

+ i-4t)-\CK'ix)yy,y)}~

■exV[-iCKix)y,y)/4t]~-p2tidy).

This formula, with the obvious modifications, also holds for P = I. To simplify the

notation in this proof, we will fix x and / and write

ai y) = [det Aix+y)] ~ l'a,       b = Aix),

diy)^i-4t)-\C"ix)i-)i-)y,y) + r\C'ix)i.)i-),y) + il6t2)-KC'ix)i)y,y)2,

eiy) = (-4t)-\C'(x)yy,y),      fiy) = exp [-(C(x)^,y)/4t],

and aK,.. .,fK for the above functions with A and C replaced by AK and C*

respectively. We must show that

L\aK[trace ibKdK)+eK]fK-a[trace (M) + e]/| p2tidy)^0
jb

as P -> I. The integrand may be written as

|[aK-a][trace (Ai/) + e]f+ ^{trace [(Asr-A)(/]+trace [A*((/*-</)]}/*

+ aKieK - e)fK + a*[trace ibd) + e] [/* -/] | ~

Ú {|«*-aj ■ Itrace ibd) + e\ ■ \f\ + \a*\ ■ \bK-b\UH,m- \\d\\tr- \f*\

+Kl • \bK\UH.Hy ¥K-d\\tI- \f"\ + \a*\ ■ \e*-e\ ■ \fK\

+|a*| • |trace ibd) + e\ ■ \fK-f\}~.

From [12, pp. 98-99] we find that for any A>0

I |/T+W«M = det[(/+(l + A)Cir(x))-1'2].
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Moreover there exists an ex > 0, independent of F and x, such that for A < ex we

have [I+(l + X)CK(x)]>0 and ¡[I+^+X^x)]-1] is uniformly bounded for all

xeB. Thus, by Lemma 4.1 of [6], for any fixed A<e1; ffl \fK\1 + Kp2t(dy) is uniformly

bounded for xeB, for all F, and for all t > 0. For A < ex we claim that \fK —f\ -»■ 0

in F1 + A(/J2f) as F -> F This is equivalent to saying that \gK—g\ -> 0 in F1 + A(/?1/2),

where g^exp [ — (CK(x)y, y)] and g=g". To prove the latter, we write

Jji"-*l1+W<«

^\\gK\ + \g\)1 + ÁPm(dy)f I  **
LIlFl

= 1     lírrfe p^dy)\   1    (l^l + ̂ l)<1 + A,<1 + i,F1/2(^)
UbIIs   I t Is I J      Wb

i/(i + p)

where (t^+O+p)-1-!. (|^r| + |g|)6L(1 + *xl + *> if (l+A)(l+p)< l+ex. This

condition is satisfied iff X + p(l+X)<ex or, equivalently, iff p<(ex — A)(l+A)_1.

Since (ex — A)>0, we can always find such a p. The result now follows once we

observe that \(gK—g)/(\gK\ + \g\)\ ~ is bounded by 1 a.e. on B and converges to zero

in probability by a previous calculation for the proof of Proposition 3.

aK -> a pointwise for all y e B. Since \aK\¿c, it follows that la* — a\ -»-0 in

L"(p2t) for all l^q<oo and for all r>0. bK^~b in L(H,H) norm, \bK\UH¡m is

uniformly bounded with respect to F, and thus, since bK is independent of y e B

we have \bK — b\UHiH) -*■ 0 in L"(p2t) for all 1 Sq<<x> and for all t>0.

||</*-</||tr->0 in Lx(p2ù by (c-9), (c-10) and (c-11), and \eK-e\ -+0 in L1^)

by (c-8). The L1 convergence of these functions to zero implies their L" convergence

to zero for any 1 ̂ a<oo. For if we have a sequence of functions {gK}, say, such

that |j*| is dominated a.e. for each Kby a function « which is in L"(p2t) for each

1 ̂ q<co, then

/.
\gK-g\P2t(dy)^0

is equivalent to \gK—g\ ->0 in probability (p2t) which, in turn, is equivalent to

\gK—g\" ->- 0 in probability (p2t) and this is equivalent to

jB\gK-g\"P2t(dy)->0.

It remains to check that dK and eK are dominated by the correct type of function.

This follows immediately from

14*1* ú (4t)-^\Fy\2 + ct^\E2y\+(^t2)-i\Fy\\

and

|e*| S(4i)-»M-|/>|».

Proposition 4 follows from the above estimates and several applications of

Holder's inequality.
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Proposition 5. As P -*■ /, rf (x, dy) -> r((x, dy) in variation norm, for each xe B,

/>0.

Proof. We may write

CO

rf (x, dy) = 2 r£»(*. dy)
n=X

where rf x(x, <sfy) = MtKix, dy) and rf „(x, dy) is defined for n ̂  2 by

rf„(x, dy) =  f f   f/(z)<n_1(*<fe)-A/t*_.(*,<i>0-<*i
Jo Jb Jb

for all/E^L), xeL and />0. From the estimates of [12] it is easy to see that

there exists a constant ß, independent of P, x and /, such that

jB \M?\(x, dy) Qt-1/2

and

(17) I |rfn|(x, dy) í ßV2/"'2-Vr(n/2).

Thus, given e > 0, there exists an Nie), independent of P and x (but dependent on /)

such that

/• JWc)    -

O«) \rf-rt\(x,dy)S  ¿       Kn~rt.n\ix, dy) + e.
Jb n=iJb

Now rfi(x, dy) = Mfix, dy), so rf^x, dy) ->- ̂ (x, dy) in variation by Proposition

4. If we assume that rf fc(x, ¿/y) -* rt>k(x, <fy) in variation for all k ^ « — 1, x e B and

/ > 0, then

\rf,n-rt,n\(x,dy)
Jb

^ \        \       \rln-xiy,dz)-Mt1uix,dy)-rUtn_xiy,dz)-Mt_uix,dy)\du
Jo;(u) jB;(y) Jb-.(z-)

^ i      ku.n-i-^.n-iKj, dz)-\Mt-u\ix,dy)-du
Jo-.M Jbuv) Jb;(z)

+ f      Í       f      Vln-x\iy,dz)-\M?_u-Mt_u\ix,dy)-du
Jo:(ti) Jb;(ï) Jb;(í)

= (i) + (ii),   say.

We consider (i). JB | rf,, _ i - ru>n _ ! | (j, i/z) -»■ 0 as P -> / for each u > 0 and j e 5.

Moreover, by (17)

f rtn- l_(n - l)/2
\rK     ,-r      A(v dzt < 2 —_-_«n/2-3/2jB i^.n-i  ru,n_x\(y,az) s ¿ r((«-i)/2) M
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for all P. Since

f   f unl2-3l2-\Mt.u\ix,dy)-duè Q f unl2-3l2it-u)-ll2-du
Jo Jb Jo

and the integral on the right-hand side exists, we conclude by Dominated Con-

vergence that (i) -»> 0 as L -> /.

We consider (ii).

nn-X   (n-l)/2   ft   /•

(ii) * r((n-i)/2) J0 £ W-.-*i..|fe*)-rf--"-*.

Now JB \MtK_u — M¡_u|(x, (/y) -> 0 for each w>0 and moreover

\Mt*.u-Mt-,\ix,d¡y)L
is dominated (for all L and for all x e Lf) by 2ß(/ — u)~112, which is integrable from

0 to / with respect to u(n~3)l2 du. Thus (ii) —>0 as L -> /, and so rf fc(x, i/y) —>

riifc(x, i/y) for each jfc=l, 2,.... The proposition now follows from (18).

Proposition 6. As P -> I, qfix, dy) -> ^¡(x, </y) /« variation norm, for each xe B,

/>0.

Proof.

\\qf-qt\ix,dy)

¿ J   |wf-w,|(x, dy)

+ I if (?, dz) ■ rht u(x, dy) - ruiy, dz) ■ rht _ „(x, dy) \ ■ du
Jo;(u¡ jB;(y) Jb;(2)

= (0 + 00,    say.

Now (i) -> 0 as L -> / by Proposition 3, and

(ii) Ú \r*-ru\iy, dz)-\mt_u\ix, dy)du
Jo;(u) jB;(,y> Jb-.U)

+ |r*|(j, dz)- |/Af_u-mt_u|(x, dy)-du.
Jo;(u) Jb;(i/) Jb;<2)

From [12, Proposition 3], J*B |rf|(x, dy)-¿clot~112, where c(o is a constant inde-

pendent of / and of x. cto can easily be seen to be independent of P. Also

JB |wf |(x, dy) is dominated by a constant, independent of L, x and /. By an argu-

ment similar to that of Proposition 5 we may now establish that (ii) -*■ 0 as P -> I.

Corollary 6.1. For each / > 0, xe B, qtix, dy) is a probability measure on B.

This is an immediate consequence of Proposition 6.
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VII. The semigroup property.

Theorem 1. For fie &(B), s and t>0, qtqsf(x)=qt+sf(x).

Proof. Yet fie ßS(B), and for a finite signed Borel measure p. on B let ||/x|| denote

the total variation of p. Denoting the measure qt(x, dy) by qt,x(dy) we have

\(qtqs-qt + s)f(x)\ Ú \qt(qs-qDf(x)\ + \(qt-qf)qff(x)\ + |(*f+s-flt+s)/(x)|,

where

\qt(qs-qf)fi(x)\ ik ||/||.  f        f       \qs-qf\(y, dz)-\qt\(x, dy).
jB:(.y) jBUz)

Now |B |^rs — qf \(y, dz) converges to 0 as F —>■ / pointwise for y e B. Moreover this

term is dominated by 2. It now follows by Dominated Convergence that

\qt(qs—qf )f(x)\ -*■ 0 as F —> I. Considering the two remaining terms, we have

U-qf)qff(x)\ è \\qt.x-qlx\\-\\qff\U â |k,-?í*|| • Il/Il -
and

\(q?+s-qt+s)f(x)\ ^ ||af+s,x-?i+s,xl|-||/[|oo,

both of which converge to zero as F —> I by Proposition 6.
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