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THE STRICT TOPOLOGY FOR DOUBLE

CENTRALIZER ALGEBRASQ

BY

DONALD CURTIS TAYLOR

Abstract.    Sufficient conditions are given for a double centralizer algebra under

the strict topology to be a Mackey space.

0. Introduction. Let C(S) be the 5*-algebra of all bounded complex valued

continuous functions on a locally compact Hausdorff space 5; let C0iS) be the

algebra of all functions in C(S) that vanish at infinity, and let C(S)e denote C(S)

under the ß or strict topology. In 1958, R. C. Buck [3] proved that the strict dual

of CiS) under the strong topology is isometrically isomorphic to the norm dual

of C0iS) and then raised the following question: Is it in fact true that the strict

topology ß coincides with the Mackey topology ? In 1967, J. B. Conway [6] answered

this question for the most part. He showed that if 5 is paracompact, then indeed

the strict topology is the Mackey topology and he also gave examples of locally

compact spaces 5 where the strict topology for C(5) is not the Mackey topology.

More recently, R. C. Busby [4] in his study of double centralizers of 5*-algebras

introduced a generalized notion of the strict topology. Specifically, if A is a B*-

algebra and MiA) is its double centralizer algebra, then the strict topology ß for

M(A) is defined to be that locally convex topology generated by the seminorms

(K)aeA and (pa)aeA, where Xa(x)= \\ax\\ and pa(x)= \\xa\\, and we let M(A)e denote

M(A) under the strict topology. Although Busby investigated some of the proper-

ties of the strict topology in this setting, no mention was made of the strict dual of

M (A). Thus, the questions under consideration are the following: (1) Is the strict

dual of M(A) under the strong topology a Banach space that is isometrically

isomorphic to the norm dual of AI (2) What are some sufficient conditions for the

strict topology for M(A) to be the Mackey topology? The answer to question (1)

is yes and to answer question (2) we prove the following two theorems:

Theorem I. Let {AA : A e A} be a family of B*-algebras and let A=(J,AX)0.

Then M(A)e is a Mackey space if, and only if, for each A e A, M(Ah)e is a Mackey

space.

Received by the editors October 14, 1969.

AMS Subject Classifications. Primary 4650, 4665; Secondary 4601.

Key Words and Phrases. Double centralizer algebras, ß*-algebras, C*-algebras, strict

topology, Mackey topology.

(x) This research was supported in part by the National Science Foundation, under con-

tract No. GP-15736.

Copyright © 1970, American Mathematical Society

633



634 D. C. TAYLOR [August

Theorem II. Let A be a B*-algebra and suppose one of the following conditions

holds:

(1) M(A) is isometrically *-isomorphic to the bidual of A.

(2) A has a countable approximate identity.

Then M(A)B is a Mackey space.

If 5 is a locally compact paracompact Hausdorff space, then by [2, p. 107] S

can be expressed as the union of a collection {YA : À e A} of pairwise disjoint open

and closed a-compact subsets of 5. For each À e A set AK = C0(YK) and observe

that AA has a countable approximate identity. Since A and M(A) are isometrically

*-isomorphic to C0(S) and C(S) respectively, where A=Ç2,AX)0, it follows that

Theorem II, together with Theorem I, generalizes Conway's result [6, Theorem

2.6, p. 478] as well as a result of LeCam [11, Proposition 3, p. 220].

Furthermore Theorem II, together with the fact that the strict dual of M(A) under

the strong topology is isometrically isomorphic to the norm dual of A, gives for a

special case a characterization of the Mackey topology of H/*-algebras (see [1]).

1. Notation and preliminaries. Let A be a 5*-algebra. By a double centralizer

on A, we mean a pair (R, S) of functions from A to A such that aR(b) = S(a)b for

a, b in A, and we will denote the set of all double centralizers on A by M (A). If (R,

S) e M(A), then R and S are continuous linear operators on A and ||Ä|| = ||S||,

so M(A) under the usual operations of addition and multiplication is a Banach

algebra, where \\(R, S)\\ = \\R\\. Furthermore, if we define (R, S)* = (S*, R*),

where R*(a) = (R(a*))* and S*(a) = (S(a*))* for all a e A, then (R,S)*eM(A)

and this implies that M (A) is a 5*-algebra. If we define a map p0: A —> M (A)

by the formula p,0(a) = (La, Ra), where La(b) = ab and Ra(b) = ba for all be A,

then p0 is an isometric *-isomorphism from A into M(A) and p.0(A) is a closed two

sided ideal in M(A). Hence throughout this paper we will view A as a closed two

sided ideal in M (A). If A is commutative, then M(A) is isometrically *-isomorphic

to the algebra of multipliers as studied by Wang [17]. If {AA is a family of B*-

algebras, then 2 AK and (2 Ax)0 are defined as in [12]. It is clear that 2 AA and

(2 ^a)o are S*-algebras. For a more detailed account of the theory of double

centralizers on a ¿""-algebra, we refer the reader to [4], and for definitions and

concepts in general, we refer the reader to [10] and [12].

2. The dual of M(A)ß. In this section we prove that the strict dual of M(A)

under the strong topology is isometrically isomorphic to the norm dual of A and

furthermore, we characterize the /3-equicontinuous subsets of the strict dual of

M(A).

Theorem 2.1. Let A be a B*-algebra and let A* denote the dual of A. Then

A*={a-f: aeA and fe A*} = {f-a : aeA and fe A*}, where a-f(b)=f(ba) and

f-a(b)=f(ab)forallbeA.
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Proof. Let/be a positive linear functional in A*. By virtue of [12, Theorem 4.5.14,

p. 219] fis representable; that is, there exists a Hubert space H, a continuous

^representation a -*■ Ta of A on H, and a topologically cyclic vector h0 in H such

that f(a) = (Tah0, h0) for all aeA. Let {eK} be an approximate identity for A.

Since /?0 = lim TaJt0 for some sequence {an} of elements in A, we can easily show

that lim Tehh0 = hQ. Due to the fact that H is an ,4-module in the sense of [9,

Definition 2.1, p. 147], we have by the Cohen-Hewitt factorization theorem [9,

Theorem 2.5, p. 151] that h0 = Tah1 for some aeA and hx e H. Define g on A by the

formula g(b) = (Tbh1, hx) for each be A and note that g e A* and f=aga*.

Now assume that fis any element of A*. Since/can be expressed as a finite

linear combination of positive functionals on A [14, Theorem 1, p. 439], we see

that lim eK-f=\\mf-eK=f. Hence, by [9, Theorem 2.5, p. 151], there exist elements

a and b in A and linear functionals g± andg2 in A* such Ih&i f=a-gY=g2-b and our

proof is complete.

Corollary 2.2. If A is a B*-algebra, then M(A)^={a-f : ae A andfe M (A)*}

= {f-a : aeA and fe M (A)*}, where a-f(x)=fixa) and f-aix)=fiax) for all

x e M (A).

Proof. Due to the fact that the strict topology is weaker than the norm topology,

we have that M(A)%<=-M(A)*. Now let/e M(A)% and let </>/denote the restriction

of/to A. By Theorem 2.1 there exists an a e A and a. g e A* such that <f>f=a-g.

By the Hahn-Banach theorem there exists an heM(A)* such that g = <ph- Now

let {eA} be an approximate identity for A and let x e M(A). Since eKx + xeA — eKxeK

converges to x in the strict topology and A is a closed two sided ideal in M (A),

we have that

f(x) = \\mf(eAx + xeA-eAxex) = lim a-g(eÁx + xek-eAxeA)

= g(xa) = h(xa) = ah(x).

Hence f=ah and similarly there is a b e A and an hx e M(A)* such that/=/i1-è.

Since it is easy to show that a-f and fa are strictly continuous for each aeA

and/e MiA)*, our proof is complete.

The strong topology for M(A)* is defined to be the topology of uniform conver-

gence on the /3-bounded subsets of M(A)ß.

Corollary 2.3. If A is a B*-algebra, then M (A)* under the strong topology is a

Banach space that is isometrically isomorphic to A*.

Proof. By virtue of the uniform boundedness principle, it is straightforward

to show that the /3-bounded subsets of M(A) are norm bounded. Therefore, the

strong topology for MC4)* is the usual topology generated by the norm of M(A)*.

Since A is strictly dense in M(A)B, we have by Theorem 2.1 and Corollary 2.2 that

the restriction map <f> is an isomorphism of M(A)* onto A*. Therefore, to complete

the proof we need to show that <p is an isometry. But this follows from the fact
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that f(x) = limf(xeA for each/e M(A)$ and xe M(A), where {eA} is an approxi-

mate identity for A.

Lemma 2.4. Let A be a B*-algebra and let {dn} be a sequence of elements of A,

\\dn\\ < 1, that converges to zero. Then there exist sequences {bn} and{cn} of elements

of A and a hermitian element a of A, ||a|| á 1, such that

(1) dn = abn = cna;

(2) Kl^maxUM2, ||CJ2}.

Proof. Let A1 be the 5*-algebra obtained by adjoining the identity, let {eA}

be an approximate identity for A consisting of hermitian elements, and let

Z={x ë A : x = dn, x = d*, x = (dnd*)lji, or x = (d*dA1!i}- Since eKx -> x uniformly

on Z, we may define by induction a sequence {eAJ of elements in the unit ball of A

such that lljc-e^jcll <3/8n + \ xeZ, and \\eAk-eK^eAk\\<öß2^\ 7c=l, 2,...,«,

where S = min (1 - \\dn\\112 : n= 1, 2, 3,...}. Now set

n

an =  2 v(l-v)k~1e*k + (l-v)n,    where 0 < v < 1/4.
fc = i

It follows, as in the proof of [16, Theorem 2.1], that a~l exists, ||a^ 1|| á4n, and

añh-añ1=r(\~eÁn + l) + s, where ||/"||á4n and ||s|| ^8/2n + 2. These facts together

with the fact that añ1 is hermitian gives us, as in the proof of [16, Theorem 2.1],

that \imañ1x and Yxmxañ1 exist for each xeZ and that ||lim añ1x\\ á ||*|| + S.

So, by setting /3n = limp_0O af,xdn, cn = limp^00 í/na¿" \ and a = limap, we see that

(1) holds. We now wish to show that (2) holds. But

IIM2 = \\b«b*\\ =  lim  \\a^dnd*a^\\ =  lim  \\a^(dnd*y'\dndíy>\dnd*)^a^\\
p-* oo p-* CO

¿ (K4íir + S)2KII ú K||.

Similarly ¡cn||aá K|| and (2) holds.

Lemma 2.5. Let A be a B*-algebra. The collection of all sets

Va = {xeM(A) : \\ax\\ á 1 and \\xa\\ á 1}

for a e A is a base at 0 in M (A) for the strict topology.

Proof. The proof follows from a straightforward application of Lemma 2.4.

Theorem 2.6. Let A be a B*-algebra and let {eK: A e A) be an approximate

identity for A. If H is a subset of M (A)*, then the following statements are equivalent:

(1) H is ß-equicontinuous.

(2) H is uniformly bounded and eÁ-f+f-eA — eA-f-eA —>f uniformly on H, where

e* f(x) =f(xeA) andf- eA(x) =f(eKx) for all x e M (A).

Proof. Assume (1) holds. Then H is contained in the polar of some basic

neighborhood Va = {x e M(A) : \\ax\\ á 1 and ||xa|| á 1} of 0. Since the /3-topology

is weaker than the norm topology, it follows that H is uniformly bounded. Now for
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each xeM(A) and £>0 the element x/(||ax| + ||jca|| +e) belongs to Va. So for

feH

\f(X)\ = i(ii«i+o»i+..)/tJcy(i«i+iixo|+.))i

< ||ax|| + ||jca||-l-e.

Since £ was picked arbitrarily, it follows that \f(x)\ S \\ax\\ + \\xa\\. Hence

\(f-eA-f-f-eA + e,-f-eA(x)\ = |/((1 -eA)x(\ -eA))\

i2(\\aeA-a\\ + \\eAa-a\\)\\x\\

for each/e H and x e M(A). So for each/e H

\\f-(eA-f+f-eA-eA-f-eA)\\ á 2\\aeA-a\\+2\\eAa-a\\

and therefore it is clear that (2) holds.

Now assume (2) holds and that H is uniformly bounded by 1. To prove that H

is ß-equicontinuous, it will suffice to show that H is contained in the polar of some

basic neighborhood of 0 in M(A)$. For each A e A set RAf=eA-f+f-eA-eA-f-eA

for each/e M(A)* and set SAx = eAx + xeA — eAxeA for each x e M(A)e. Now choose

a sequence {eAJ of elements from our approximate identity such that for each

positive integer 77 we have An+1>A„, \\RAn + lf-RAnf\\ g l/4n + 1 for each fe H,

!K-eAtcA„ + JSl/9-4» for k=\,2,...,n, and "||cÄl-eA„ + 1eAJ| < 1/9-4" for

k = 1, 2,..., 77. Let {dk} be a sequence of elements in A defined by d5k_4 = (3/2fc + 1)eAfc,

d5k-a = eAk-eAkeAk + 1, d5k^2 = eAk-eAk + 1eAk, d5k_x=eAk-eAkeAk+2, and d5k = eAk

—ehk+ae\k- It is clear that dk -> 0 uniformly and \\dk\\ < 1. Therefore, by Lemma 2.4,

there exist sequences {bk} and {ck} of elements in A and a hermitian element

aeA, ||ö|al, such that dk = abk = cka and max{|¡/3t||2, |cfc||"}áK|. Set fll = 8a.

We now wish to show that H^ K°i; where V^ is the polar of

K0i = {xeM(A) : \\axx\\ â 1 and \xax\ Ú 1}

in M(A)fj. Since d5k^i = ab5k.1 = c5k_ia, we have for each xe Vai that ||xeAJ

= (2k + 1ß)\\xabbk.i\\u2k + 1ß-% and similarly \\eAkx\\ â2k + 1/3-8. It follows, by

straightforward computations, that for each/e H and x e Vai that

|H*A*-SWf)| * 1/2*+3>       l^+1^-SXi+ax)| á l/2* + 3,

and

\\SAkx\\ á 2fc+1/8.

These inequalities and  the fact that /= A?Al/+2i?= 1 (RKktif-Rhlcf) for  each

/e /A imply that

l/WI â \fiSAlix))\+f  \iRAk + 1f-RAJ)ix-SAk + 2x+SAkt2x)\ < 1
k=l

whenever/e AY and jc e Va . Hence H<^ VSi and our proof is complete.
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We will now generalize a result due to L. LeCam [11, Proposition 2, p. 217]

and J. R. Dorroh [8] that concerns the ß' or bounded strict topology. The ß'

topology is the strongest locally convex topology for M(A) that agrees with the ß

topology on norm bounded sets. For a proof of existence, we refer the reader to

[5] where an explicit neighborhood base is given. Another generalization of this

theorem exists. F. D. Semilles proved a similar result [ 15] in a Banach module setting

and though we use the same technique his result does not seem to subsume our

Corollary 2.7. If A is a B*-algebra, then the ß and ß' topologies for M(A)

give the same dual. Consequently, ß = ß'.

Proof. By virtue of Theorem 2.1, the proof that the ß' dual of M (A) is M (A)*

is similar to the one given for Corollary 2.2. Therefore, it remains to be shown that

ß = ß'. Let W be an absolutely convex /3'-closed ^'-neighborhood of 0. Then there

exists a sequence {an} of elements in A such that Bn n Vay^Bn n W, where Van

= {xeM(A): \\anx\\ ¿ 1 and \\xan\\^l} and Bn = {x e M (A) : \\x\\^n). Set Dn

= Bn n Van and W equal the /S'-closed absolutely convex hull of (J Dn. Then

H/'cz w, and (W')° = C\ (Dn)°, where (W'f and (Dnf are the polars of W and

Dn respectively in M(A)*. We will show that (W')° is /3-equicontinuous which

implies that the /3-closure of W is a /3-neighborhood. To this end, we will show that

eA-f+f-eA — eA-f-eA ->/uniformly on (W)0, where {eA} is an approximate identity

for A consisting of positive elements. Let e>0. Choose a positive integer 77 so that

\/n<e and then choose a A0 so that for AáA0, ||(1 —eA)an\\ < \\n and ||a„(l — eA)\

<ljn, Hence {n(\-eA)x(\-eA) : x e B,}^ Dn for A^A0. Therefore for fe(W')0,

x e Bu and Aâ A0

\(f-eA-f-f-eA + eA-f-eA)(x)\ = \f((l-eA)x(\-eA))\ < I/« < «.

In other words, \\f—eA-f—f-eA + eA-f-eA\\<e for all fe(W')0 and A^A0. Thus,

by Theorem 2.6, (W')° is a /3-equicontinuous and our proof is complete.

It is well known that the bidual A** of a ß*-algebra A is a H/*-algebra, and when

A is canonically imbedded into A**, A is a *-subalgebra of A**. We will now

consider the case when M(A) is isometrically *-isomorphic to A**. For example,

if A is also an annihilator algebra, then this is true.

Corollary 2.8. Let A be a B*-algebra such that M (A) is isometrically *-isomor-

phic to A**. Then M(A)B is a Mackey space.

Proof. The proof follows from Corollary 2.2, Corollary 2.3, Corollary 2.7,

and [1, Theorem II.7, p. 292],

3. Proof of Theorem I and Theorem II.

Lemma 3.1. Let {AA : A e A} be a family of B*-algebras and let ^4 = (2^a)o-

Then M(A) is isometrically ^-isomorphic to 2 M(AA).



1970] DOUBLE CENTRALIZER ALGEBRAS 639

Proof. Let (R, S) e M (A) and let AeA. Define RA and SA on AA by the formula

RA(a(Á)) = (R(a))(X) and SA(a(X)) = (S(a))(X) for each a e A. To see that RA and SA

are well defined, observe that if a e A, with a(A) = 0, and if {ea} is an approximate

identity for A, then by [4, Proposition 2.5, p. 80],

R(a)(X) = lim R(eaa)(X) = lim R(ea)(X)a(X) = 0,

and similarly, S(a)(A) = 0. It is straightforward to show that (RA, SA) e M(AA)

and that \\(RA, SA)\\ S \\(R, S)\\, so define the map p.: M(A)^^M(AA) by the

formula p.((R, S))(X) = (RA, SA). It is clear that p is a »-isomorphism from M(A)

into IM(AA) and that \\p.((R, S))\\ è \\(R, S)\\ for all (R,S)eM(A). Now for

(R, S) e M(A) and aeA, \\a\\ Ú 1,

||*(a)|| = sup{|j/?(a)(A)|| : AeA} = sup{||J?A(a(A))|| : A e A}

â sup{||/M| : AeA} = sup {\\(RA, SA)\\ : A e A} = \\p.((R, S))\\.

In other words, \\(R, S)\\ = \\p.((R, S))\\. Therefore to complete the proof we

need to show that p is onto. Let ^,(RA, SA) e~2 M(AA) and define (7?(o))(A) =

RA(a(X)) and (S(a))(X) = SA(a(X)) for each aeA and AeA. But it is clear that

(R, S) e M (A) and p,((R, S)) = ^(RA, SA). Hence p is onto and our proof is

complete.

Lemma 3.2. Let {AA : A e A} be a family of B*-algebras. Then the following

statements are eqivalent :

(1) If A — (^AeA AA)0, then M(A)e is a Mackey space.

(2) If A0 is a countable subset of A and A0 = (^AeAo AA)0, then M(A0)fí isa Mackey

space.

Proof. By virtue of Theorem 2.6, Lemma 3.1, and [10, p. 173], it is easy to

show that (1) implies (2). Now let H be a /3-weak* compact convex circled subset

of M(A)* and let <f>A denote the restriction map from M(A) onto M(AA), where

M(AA) is now viewed as a subspace of M(A). Set A0 = {A e A : ||<tSa/|| >0 for some

feH). If A0 is countable, then (2), together with Theorem 2.6, Lemma 3.1, and

[10, p. 173], implies that H is ß-equicontinuous and therefore, by [10, p. 173],

(2) implies (1). Hence, it remains to be shown that A0 is countable.

For each A e A0 choose an xA e M(AA), \\xA\\ â 1, so that for some/e H we have

f(xA)^0. Now define x e M (A) by the formula

x(X) = xA    if A e A0,

= 0     if A <f A„,

where we now view M(A) as 2*eA M(AA), and then define the map

T: C(A\ -> M(A)„

by the formula T(a)(X) = a(X)x(X) for each a e C(A) and AeA. Here the topology
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for A is the discrete topology. Let {aj be a norm bounded net in C(A) that con-

verges to zero in the strict topology. It is straightforward to show that the net

iT(at)} ¡n M (A) converges to zero in the strict topology and therefore, by virtue of

Corollary 2.7, T is /S-continuous. This implies that T has a well-defined adjoint

map T*: M (A)* -*■ C(A)*, which is continuous when both range and domain

have their /3-weak* topologies. It follows that T*(H) is /3-weak* compact and there-

fore, by virtue of [6, Theorem 2.6, p. 478] and [6, Theorem 2.2, p. 476], A0 is

countable. Hence our proof is complete.

Lemma 3.3. Let A be a B*-algebra and let a and b be hermitian elements in A

such that 1 è ||a|| ^ ||6||. Then \\a + b\\ á 1 +2\\ab\\.

Proof. Let o be the smallest number such that

(3.1) \\c + d\\ á 1+C7

for all hermitian elements c and d in A, where 1 ä [|c|| ä \\d\\ and \\cd\\ g ||ab\\.

It is clear that such a number exists. Now if o->2||a6||, then \\c + d\\2= \\(c + d)2\\

á||c2 + í/2||+2||cí/||ál+o- + 2||a/j||<(l+a)2 for all hermitian elements c and d in

A, where 1 ̂  ||c|| ä \\d\\ and ||cd|| â ||ab||. But this contradicts (3.1), so <r^2||aé||

and our proof is complete.

The author would like to thank Professor L. Einer for the suggestion of the

argument given for Lemma 3.3. This argument eliminated a longer proof.

Remark. It follows immediately from Lemma 3.3 that for each pair of hermitian

elements a, b in a B*-algebra A the inequality ||a + /3|| ¿ ||a|| +2||a6||/||a|| holds

whenever ||a|] ä ||6|| and ||a||#0. In fact, there is a smallest number k such that

||a + /3|| ̂  HI +zc||aé||/||a|| and this, in a sense, is a generalization of the triangle

inequality for AJ*-algebras. But k = 1 when the 5*-algebra A is commutative, and

this fact suggests the following question : Is it true that k = 1 only if A is commutative ?

Proof of Theorem I. Let {Ak}k = x be a sequence of S*-algebras such that M(Ak)ß

is a Mackey space for each positive integer k. If we show that M(A)B is a Mackey

space, where A=(Jik = 1 Ak)0, then by virtue of Lemma 3.2 the proof will be com-

plete. To this end, it will suffice to show that each /3-weak* compact circled convex

subset of MiA)* is /3-equicontinuous. Now suppose that H is a /3-weak* compact

circled convex subset of MiA)* that is not /3-equicontinuous. Since H is /3-weak*

compact, H is uniformly bounded and we can assume, without loss of generality,

that H is uniformly bounded by 1. Let {e6 : S e A} be an approximate identity

for A consisting of positive elements. Then by virtue of Theorem 2.6 there exists

an £ > 0 such that for each o0 e A we have

(3.2) \\f-e6-f-feó + eó-f-e6\\ ^ 4e

for some/e H and 8> S0. We will now define by induction a sequence of triples

{ifk, xk, nk)}k = 1 that satisfies the following conditions:

(1) fk e H, xk e M (A), and nk is a positive integer less than nk+1.
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(2) \\xk\\ S 1, xk(q) = 0 for each positive integer q-¿nk_y or q>nk, where M(A)

is now viewed as 2™=i M(Ak).

(3) \fM\i:
By virtue of (3.2) there exists an/i in H, a 8 in A, and ay in the unit ball of M(A)

such that |/i((l — e6)y(\ — ed))\ 5:3e. Since M(A)* under the strong topology is

isometrically isomorphic to A* and A* is isometrically isomorphic to the L1

direct sum of {/4*}™=1, we can find a positive integer nx such that |/i(*i)| a«, where

*! is the element in M(A) defined by xx(q) = ((\ —eó)y(l —ed))(q) for q—1,2,..., rix

and Xx(q) = 0 for q>n1. It is clear that (fu xu nx) satisfies conditions (1), (2), and

(3). Now assume that (fk,xk,nk) has been defined for k=\,2,..., p. Let BUp

he the subspace of A defined by Bn =22=i Ak and let <f> denote the restriction

mapping from M (A) to 7V/(ßnp) = 2£p=i M(Ak). It is straightforward to show, by

using Theorem 2.6, that M(Bn)ß is a Mackey space and therefore, by virtue of

Theorem 2.6, [10, p. 173], and (3.2), there exists an/p+1 in 77, a 8 in A, and a y

in the unit ball of M (A) such that \fp+1((l -e6)y(\ -ea))|£3* and

(3-3) H(fP+i-eô-fp+1-fp+1-eôA-e6-fp+1-e0)\\ < e.

By virtue of (3.3) and the fact that M(A)^ under the strong topology is isometrically

isomorphic to the L1 direct sum of {A*}k = 1, we can find a positive integer np+1>np

such that \f(xp+1)\^e, where xp+1 is the element in M (A) defined by xp+1(q)

= ((1 —e6)y(\ —ed))(q) for np<q^np+1 and xv+1(q) = 0 otherwise. It is clear that

ifp + i, Xp+i, Hp+i) satisfies conditions (1), (2), and (3), and our induction is com-

plete. Now let x be the element in M (A) defined by x(q) = xk(q) when nk-1<q^nk.

Then define the map T: (/", ¿3)-► M(A)B by the formula T(a)(q) = a(q)x(q) for

each a e /œ and positive integer q. By virtue of Corollary 2.7, it is straightforward

to show that T is continuous. Hence Thas a well-defined adjoint map T*: M (A)*

-+ I1, which is continuous when both range and domain have the /3-weak* topolo-

gies. Thus, T*(H) is a /3-weak* compact subset of/1 and this implies, by virtue of

[6, Theorem 2.4, p. 477], that T*(H) is /3-equicontinuous in I1. Since 2iUi <*(k)x(k)

converges in the strict topology to T(a) as q-> oo for each a el"", we see that

T*f(a)=f(T(a)) = Zk°=ia(k)f(x(k)) for each /e A/04)* and «e/œ. So T*f=

{f(x(k))}k^1. Since T*(H) is /3-equicontinuous, there exists, by virtue of [6, Theorem

2.2, p. 476], a positive integer N such that 2™=n + i \f(x(k))\<e for each fe H.

This implies that \f(xq)\-¿2lVn\ \f(x(k))\<e for n„> N. This holds for all fe H

and in particular |/,(x,)| <£. But this contradicts (3). Hence H is /3-equicontinuous

and our proof is complete.

Proof of Theorem II. Let A be a 73*-algebra. If condition (1) holds, then it

follows from Corollary 2.8 that M(A)ß is a Mackey space. Now assume that A

has a countable approximate identity. To show that M(A)ß is a Mackey space

it will suffice to show that every /3-weak* compact subset of M (A)* is /3-equicontinu-

ous [10, p. 173]. Suppose that H is a j8-weak* compact subset of M(A)f that is

not /3-equicontinuous. Since H is /3-weak* compact, H is uniformly bounded, and
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without loss of generality we can assume that H is uniformly bounded by 1.

Suppose {dk}k = 1 is an approximate identity for A consisting of positive elements.

We may assume that for each positive integer n

(3.4) \\dn+1dk-dk\\ < lln-2» + 3

for k=\,2,..., n. Now because of Theorem 2.6 there exists an £>0 such that for

each positive integer zV the inequality

(3.5) \\f-dn-f-f-dn + dn-f-dn\\ ê 5£

holds for some/e H and integer n > N. We will now define by induction a sequence

of quadruples {(fk, ak, n2k.x, n2k)}k = 1 that satisfies the following conditions:

(a) fk e H, ak is a hermitian element in the unit ball of A, and n2k-i, n2k are

positive integers such that n2k.1<n2k<n2k+l.

(b) IA«t(i-i/n2t.IK(i-<t_1KJI a«-
By virtue of (3.5) and Corollary 2.3, it is straightforward to show that there

exist an/ e H, a hermitian element ax in the unit ball of A, and positive integers

/?!, /72 with n1 < n2 such that

1/(^(1-0^(1-001  ä e.

Thus (/, a,, »i, n2) satisfies (a) and (b). Now suppose the quadruple (fk, ak,

>hk-i, n2k) has been defined for k = 1, 2,.. .,p so that conditions (a) and (b) have

been satisfied. Again, by virtue of (3.5) and Corollary 2.3, it is straightforward

to show that there exist an/p+1 e H, a hermitian element ap+1 in the unit ball of

A, and positive integers n2p+i, n2p + 2 with n2p<n2p+x <n2v + 2 such that

\fP+i(dTl2p,l(\-dn2p^)ap+1(\ -dn2p + l)dn2pt2)\ £ £

and our induction is complete. Set xk = dn2k(l —dn2k_l)ak(l —dn.Zk_1)dn2k and

£k = d2k. Because of (3.4), (a), and (b), {(fh, xk, ek)}k = 1 is a sequence of triples such

that the following conditions hold:

(a)' fk e H, xn is an hermitian element in the unit ball of A, and ek e A.

(b)' {ek} is an approximate identity for A consisting of positive elements.

(c)' For each positive integer p, \\epxk\\ = \\xkep\\<ll2k for k=p+l,p + 2,...

and lljCp+iXfcll = \\xkxp+1\\ < l/p-2p + 2 for k= 1, 2,...,/?.

(d)'   \fk(xk)\^e.

Let a = {ak}k = 1 belong to lm. By virtue of Lemma 3.3, it is straightforward to

show that ||2k = i akXk\\ =? ||aIU 2i5 = i l/2'c"1^2||a||co for each positive integer n.

This inequality and the fact that \\enxp\\ = \\xpen\\ < 1/2P for p^n+ 1, imply that the

sequence of partial sums {2£ = i akxk}ñ=i is /3-Cauchy. Since MiA)ß is complete

[4, Proposition 3.6, p. 83], we may define the map T: (/°°,/3)->- M(A)B by the

formula T(a) = ^k = 1akxk, where a = {ak}k = 1 and 2^.k = iakXk is the /3-limit of the

partial sums. By virtue of Corollary 2.7, it is straightforward to show that T is

continuous and therefore T has a well-defined adjoint map T*: M(A)*^-lx,
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which is continuous when both range and domain have the /3-weak* topologies.

Thus T*(H) is a /3-weak* compact subset of 71 and this implies, by virtue of [6,

Theorem 2.4, p. 477], T*(H) is /3-equicontinuous in I1. Observe that T*f(a)

=/(n«)) = Ifc=i«fc/fe) for each «e 7» and/e M (A)*, so that T*f={f(xk)}^1.

Since T*(H) is /3-equicontinuous, there exists by virtue of [6, Theorem 2.2, p. 476]

a positive integer TV such that 2™=n + i |/(*tc)| <£ f°r each/e TV. Thus, for fe H

and k>N we have |/(*fc)|<e and in particular \fk(xk)\<e for k>N. But this

contradicts (d)'. Hence H is /3-equicontinuous and our proof is complete.
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