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THE STRICT TOPOLOGY FOR DOUBLE
CENTRALIZER ALGEBRAS(})

BY
DONALD CURTIS TAYLOR

Abstract. Sufficient conditions are given for a double centralizer algebra under
the strict topology to be a Mackey space.

0. Imtroduction. Let C(S) be the B*-algebra of all bounded complex valued
continuous functions on a locally compact Hausdorff space S; let Co(S) be the
algebra of all functions in C(S) that vanish at infinity, and let C(S); denote C(S)
under the B or strict topology. In 1958, R. C. Buck [3] proved that the strict dual
of C(S) under the strong topology is isometrically isomorphic to the norm dual
of Cy(S) and then raised the following question: Is it in fact true that the strict
topology B coincides with the Mackey topology ? In 1967, J. B. Conway [6] answered
this question for the most part. He showed that if S is paracompact, then indeed
the strict topology is the Mackey topology and he also gave examples of locally
compact spaces S where the strict topology for C(S) is not the Mackey topology.

More recently, R. C. Busby [4] in his study of double centralizers of B*-algebras
introduced a generalized notion of the strict topology. Specifically, if 4 is a B*-
algebra and M(A) is its double centralizer algebra, then the strict topology 8 for
M(A) is defined to be that locally convex topology generated by the seminorms
(A2)aea and (pg)aca, Where A (x)=ax| and p,(x)=|xal|, and we let M(A4); denote
M (A) under the strict topology. Although Busby investigated some of the proper-
ties of the strict topology in this setting, no mention was made of the strict dual of
M (A). Thus, the questions under consideration are the following: (1) Is the strict
dual of M(A) under the strong topology a Banach space that is isometrically
isomorphic to the norm dual of 4? (2) What are some sufficient conditions for the
strict topology for M(A4) to be the Mackey topology ? The answer to question (1)
is yes and to answer question (2) we prove the following two theorems:

THEOREM 1. Let {A, : Ae A} be a family of B*-algebras and let A=(3 A,)o,.
Then M(A), is a Mackey space if, and only if, for each A€ A, M(A,); is a Mackey
space.

Received by the editors October 14, 1969.
AMS Subject Classifications. Primary 4650, 4665; Secondary 4601.
Key Words and Phrases. Double centralizer algebras, B*-algebras, C*-algebras, strict
topology, Mackey topology.
(*) This research. was supported in part by the National Science Foundation, under con-
tract No. GP-15736.
Copyright © 1970, American Mathematical Society

633




634 D. C. TAYLOR [August

THEOREM II. Let A be a B*-algebra and suppose one of the following conditions
holds:

(1) M(A) is isometrically x-isomorphic to the bidual of A.

(2) A has a countable approximate identity.
Then M(A); is a Mackey space.

If S is a locally compact paracompact Hausdorff space, then by [2, p. 107] S
can be expressed as the union of a collection { Y, : A € A} of pairwise disjoint open
and closed o-compact subsets of S. For each A e A set 4,=Cy(Y,) and observe
that 4, has a countable approximate identity. Since 4 and M (A) are isometrically
x-isomorphic to Co(S) and C(S) respectively, where 4=(3 A,),, it follows that
Theorem II, together with Theorem I, generalizes Conway’s result [6, Theorem
2.6, p. 478] as well as a result of LeCam [11, Proposition 3, p. 220].

Furthermore Theorem II, together with the fact that the strict dual of M (A4) under
the strong topology is isometrically isomorphic to the norm dual of 4, gives for a
special case a characterization of the Mackey topology of W*-algebras (see [1]).

1. Notation and preliminaries. Let 4 be a B*-algebra. By a double centralizer
on A, we mean a pair (R, S) of functions from 4 to A4 such that aR(b) = S(a)b for
a, b in A, and we will denote the set of all double centralizers on 4 by M (A). If (R,
S) e M(A), then R and S are continuous linear operators on 4 and |R|=|S],
so M(A) under the usual operations of addition and multiplication is a Banach
algebra, where |(R, S)|=|R|. Furthermore, if we define (R, S)*=(S*, R*),
where R*(a)=(R(a*))* and S*(a)=(S(a*))* for all a€ A4, then (R, S)* € M(A)
and this implies that M(A4) is a B*-algebra. If we define a map uo: 4 — M(A)
by the formula po(a)=(L,, R,), where Ly(b)=ab and R,(b)=ba for all be A4,
then u, is an isometric *-isomorphism from A4 into M (A) and py(A) is a closed two
sided ideal in M (A4). Hence throughout this paper we will view A4 as a closed two
sided ideal in M (A). If A is commutative, then M(A) is isometrically *-isomorphic
to the algebra of multipliers as studied by Wang [17]. If {4,} is a family of B*-
~ algebras, then > A, and (3 4,), are defined as in [12]. It is clear that > A4, and
(3 A4,), are B*-algebras. For a more detailed account of the theory of double
centralizers on a B*-algebra, we refer the reader to [4], and for definitions and
concepts in general, we refer the reader to [10] and [12].

2. The dual of M(A),;. In this section we prove that the strict dual of M(A)
under the strong topology is isometrically isomorphic to the norm dual of 4 and
furthermore, we characterize the B-equicontinuous subsets of the strict dual of
M(A).

THEOREM 2.1. Let A be a B*-algebra and let A* denote the dual of A. Then
A*={a-f:ac A and fe A*}={f-a: ac A and fe A*}, where a-f(b)=f(ba) and
f-a(b)=f(ab) for all b € A.
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Proof. Let fbe a positive linear functional in 4*. By virtue of [12, Theorem 4.5.14,
p. 219] f is representable; that is, there exists a Hilbert space H, a continuous
x-representation a — T, of 4 on H, and a topologically cyclic vector A, in H such
that f(a)=(T,ho, ho) for all ae A. Let {e,} be an approximate identity for A.
Since ho=1im T, h, for some sequence {a,} of elements in A, we can easily show
that lim T,,hy=h,. Due to the fact that H is an 4-module in the sense of [9,
Definition 2.1, p. 147], we have by the Cohen-Hewitt factorization theorem [9,
Theorem 2.5, p. 151] that ho=T,h, for some a € 4 and h, € H. Define g on A by the
formula g(b)=(T,h,, h,) for each b € 4 and note that g € A* and f=a-g-a*.

Now assume that f is any element of A*. Since f can be expressed as a finite
linear combination of positive functionals on A [14, Theorem 1, p. 439], we see
that lim e,-f=1lim f-e,=f. Hence, by [9, Theorem 2.5, p. 151], there exist elements
a and b in A4 and linear functionals g, and g, in A* such that f=a-g, =g,-b and our
proof is complete.

COROLLARY 2.2. If A is a B*-algebra, then M(A)f={a-f : ac A and fe M(A)*}
={f-a:acA and fe M(A)*}, where a-f(x)=f(xa) and f-a(x)=f(ax) for all
x e M(A).

Proof. Due to the fact that the strict topology is weaker than the norm topology,
we have that M (A)5 < M (A4)*. Now let fe M(A4)} and let ¢f denote the restriction
of fto A. By Theorem 2.1 there exists an a € A and a g € A* such that ¢f=a-g.
By the Hahn-Banach theorem there exists an /1 e M(A)* such that g=4h. Now
let {e,} be an approximate identity for A4 and let x € M (A). Since e x + xe, —e,xe,
converges to x in the strict topology and A is a closed two sided ideal in M (4),
we have that

f(x) = lim f(e,x + xe, —exxe,) = lim a-g(e,x + xe, —exxe,)
= g(xa) = h(xa) = a-h(x).

Hence f=a-h and similarly there is a b € 4 and an h, € M(A)* such that f=h,-b.
Since it is easy to show that a-f and f-a are strictly continuous for each ae€ 4
and fe M(A)*, our proof is complete.

The strong topology for M (A) is defined to be the topology of uniform conver-
gence on the B-bounded subsets of M (A4),.

COROLLARY 2.3. If A is a B*-algebra, then M(A)} under the strong topology is a
Banach space that is isometrically isomorphic to A*.

Proof. By virtue of the uniform boundedness principle, it is straightforward
to show that the B-bounded subsets of M(A4) are norm bounded. Therefore, the
strong topology for M (A)} is the usual topology generated by the norm of M (A4)*.
Since A is strictly dense in M (A4)z, we have by Theorem 2.1 and Corollary 2.2 that
the restriction map ¢ is an isomorphism of M (A)} onto A*. Therefore, to complete
the proof we need to show that ¢ is an isometry. But this follows from the fact
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that f(x)=lim f(xe,) for each fe M(A)} and x € M(A4), where {e,} is an approxi-
mate identity for 4.

LEMMA 2.4. Let A be a B*-algebra and let {d,} be a sequence of elements of A,
|d.ll <1, that converges to zero. Then there exist sequences {b,} and {c,} of elements
of A and a hermitian element a of A, ||a| £ 1, such that

(1) d,=ab,=c,a;

(2) [|dn]| 2 max {[|ba]|?, [cal®}-

Proof. Let A, be the B*-algebra obtained by adjoining the identity, let {e,}
be an approximate identity for A consisting of hermitian elements, and let
Z={xe A : x=d,, x=d}, x=(d,d¥)"%, or x=(d¥d,)"'*}. Since e,x — x uniformly
on Z, we may define by induction a sequence {e, } of elements in the unit ball of 4
such that |x—e, x|| <8/8"*%, x€ Z, and [le, —e,,, e[ <8/32"*%, k=1,2,...,n,
where §=min {1 — ||d,['? : n=1,2,3,...}. Now set

n
a, = > W(1—v)le, +(1—v)", where 0 < v < 1/4.
k=1
It follows, as in the proof of [16, Theorem 2.1], that a;* exists, |a; [ £4", and
a;ti—a;'=r(l—e, , )+s, where |r| £4" and |s| <8/2"*2. These facts together
with the fact that a, ! is hermitian gives us, as in the proof of [16, Theorem 2.1},
that lim a; ! x and lim xa, * exist for each x € Z and that |lim a; x| < |x| +38.
So, by setting b,=lim,_ , a; 'd,, c,=lim,_, d,a, !, and a=lim a,, we see that
(1) holds. We now wish to show that (2) holds. But

16a = 6wl = lim |lap dud¥a; || = lim [a; (dud) " (dud ) *(dndt) ;|
2 (ldudX|M* + )2 dull = |1dull-
Similarly [c,[|< | and (2) holds.
LEMMA 2.5. Let A be a B*-algebra. The collection of all sets
Vo={xeM(A): |ax| £ 1 and ||xa|| = 1}
for ae A is a base at 0 in M(A) for the strict topology.
Proof. The proof follows from a straightforward application of Lemma 2.4.

THEOREM 2.6. Let A be a B*-algebra and let {e, : A€ A} be an approximate
identity for A. If H is a subset of M (A)}, then the following statements are equivalent:

(1) H is B-equicontinuous.

(2 His ;miformly bounded and e,-f+f-e\—ey-f-ex — f uniformly on H, where
ex-f(x)=f(xe)) and f-e\(x)=f(exx) for all x € M(A).

Proof. Assume (1) holds. Then H is contained in the polar of some basic
neighborhood V,={x e M(A) : |ax||£1 and |xa|| 21} of 0. Since the B-topology
is weaker than the norm topology, it follows that H is uniformly bounded. Now for
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each x € M(A) and >0 the element x/(|ax| + |xal +¢) belongs to V,. So for
feH
/Gl = |(llax|| + | xa| + &) f(x/(|ax] + [ xa] +e))|

< |lax| + || xa| +e.
Since & was picked arbitrarily, it follows that | f(x)| < |lax| + | xal||. Hence

|(f—ex-f—f-exten-f-e)(x)| = |f((1 —enx(l—ey))|

< 2|laex—all + llexa—al)|x]|
for each fe H and x € M(A). So for each fe H
If—(ex-f+S-ex—er-f-e)| = 2|aex—a| +2|exa—al|

and therefore it is clear that (2) holds.

Now assume (2) holds and that H is uniformly bounded by 1. To prove that H
is B-equicontinuous, it will suffice to show that H is contained in the polar of some
basic neighborhood of 0 in M(A)%. For each A€ A set R, f=e,-f+f-ex—ex-f-ex
for each fe M(A)} and set S,x=e,x + xe, —e,xe, for each x € M(A);. Now choose
a sequence {e, } of elements from our approximate identity such that for each
positive integer n we have A, >A,, |R,,, f—R, f|<1/4"*! for each feH,
lex.—eren, .. =1/9-4" for k=1,2,...,n, and |e, —e,, , e[ <1/9-4" for
k=1,2,...,n. Let{d,} be asequence of elements in 4 defined by d;;._,=(3/2%*")e,,,
dsic_3 =€\ —er\Crn.,p sk-2 =€, "€+ 1€00 dsi_1 =€y, —€rexr ,, and dg= €,
—ey, , .8, Itis clear that d;, — 0 uniformly and |d; || < 1. Therefore, by Lemma 2.4,
there exist sequences {b,} and {c,} of elements in 4 and a hermitian element
ae A, ||a| £1, such that d,=ab,=c,a and max {||b,|?, | c||?} < |di|- Set a, =8a.
We now wish to show that <=V}, where V¢, is the polar of

Vo, ={xeM(4) : |aix|| < 1and |[xa,|| £ 1}

in M(A)f. Since ds_s=abs,_s=cs._4a, we have for each x e V,, that |xe, |
=(2k*1/3)| xabsy-4|| £2%**/3-8 and similarly |e, x| <2¥*1/3-8. It follows, by
straightforward computations, that for each fe H and x € V,, that

[ RAS(x =S X S 1292, Ry, f(X = Si, %) S 1/2°%3,
and
[Sax| < 2¢+1/8.
These inequalities and the fact that f=R, f+2>7.; (R, ,,f— R, f) for each
fe€ H imply that

I £ 1fSn(]+ Z Ray. S R )X Sn, . ¥+ Sny )] < 1

whenever fe H and x € V, . Hence H= ¥V, and our proof is complete.
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We will now generalize a result due to L. LeCam [11, Proposition 2, p. 217]
and J. R. Dorroh [8] that concerns the B’ or bounded strict topology. The B’
topology is the strongest locally convex topology for M(A) that agrees with the B
topology on norm bounded sets. For a proof of existence, we refer the reader to
[5] where an explicit neighborhood base is given. Another generalization of this
theorem exists. F. D. Sentilles proved a similar result [15] in a Banach module setting
and though we use the same technique his result does not seem to subsume our

COROLLARY 2.7. If A is a B*-algebra, then the B and B’ topologies for M(A)
give the same dual. Consequently, B=§'.

Proof. By virtue of Theorem 2.1, the proof that the 8’ dual of M(A4) is M(A)}
is similar to the one given for Corollary 2.2. Therefore, it remains to be shown that
B=PB". Let W be an absolutely convex B’-closed B’-neighborhood of 0. Then there
exists a sequence {a,} of elements in A such that B, NV, <B, N W, where V,_
={xe M(A): |a,x| <1 and |xa,|<1} and B,={xe M(A): |x|<n}. Set D,
=B, NV, and W’ equal the B'-closed absolutely convex hull of |J D,. Then
W' W, and (W)= (D,)° where (W’)° and (D,)° are the polars of W’ and
D, respectively in M(A4)%. We will show that (W’)° is B-equicontinuous which
implies that the S-closure of W' is a B-neighborhood. To this end, we will show that
ex-f+f ex—ex-f-ey— funiformly on (W’)° where {e,} is an approximate identity
for A consisting of positive elements. Let e >0. Choose a positive integer » so that
1/n<e and then choose a A, so that for A=A, (1 —ey)a,| <1/n and |a,(1—e,)|
< 1/n. Hence {n(1 —e)\)x(1 —e,) : x € B;}< D, for A2 X,. Therefore for fe (W')°,
X € By, and A= ),

|(f—er-f—f-extenf-e)x)| = [f(1—e)x(l—ey))| < I/n < e

In other words, ||f—e\-f—f-ex+er-f-e\]| <e for all fe(W’')° and A=A, Thus,
by Theorem 2.6, (W')° is a B-equicontinuous and our proof is complete.

It is well known that the bidual 4** of a B*-algebra A is a W*-algebra, and when
A is canonically imbedded into A**, A is a *-subalgebra of A**. We will now
consider the case when M (A) is isometrically *-isomorphic to 4**. For example,
if A is also an annihilator algebra, then this is true.

COROLLARY 2.8. Let A be a B*-algebra such that M (A) is isometrically x-isomor-
phic to A**. Then M(A); is a Mackey space.

Proof. The proof follows from Corollary 2.2, Corollary 2.3, Corollary 2.7,
and [1, Theorem I1.7, p. 292].

3. Proof of Theorem I and Theorem II.

LeEMMA 3.1. Let {4, : A€ A} be a family of B*-algebras and let A=(3 A,),.
Then M (A) is isometrically x-isomorphic to > M(A,).
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Proof. Let (R, S) e M(A) and let A € A. Define R, and S, on A4, by the formula
R, (a(A))=(R(@))(A) and Sx(a(A))=(S(a))(A) for each a € A. To see that R, and S,
are well defined, observe that if a € 4, with a(X)=0, and if {e,} is an approximate
identity for A, then by [4, Proposition 2.5, p. 80],

R(a)(A) = lim R(e,a)(A) = lim R(e,)(A)a(A) = 0,

and similarly, S(a)(A)=0. It is straightforward to show that (R,, S,) € M(4,)
and that [[(R,, Sy)| S |I(R, S)|, so define the map p: M(A) — 5 M(A,) by the
formula p((R, S))(A)=(R,, S,). It is clear that p is a x-isomorphism from M (A)
into > M(4,) and that |u((R, S))|=|(R, S)|| for all (R, S)e M(4). Now for
(R,S)eM(A)and a€ 4, |a| £1,

IR@

sup {[|R(@X)] : A€ A} = sup {|Ry(a(V)] : A€ A}
sup{[[Ra]l : Ae A} = sup {[|(Ry, S))| : A€ A} = |[u((R, ).

lIA

In other words, |[(R,S)|=|u((R, S))||. Therefore to complete the proof we
need to show that u is onto. Let > (R,, S)) € > M(A4,) and define (R(a))(A)=
R,(a(d)) and (S(a))(A)=S\(a()) for each ae A and Ae A. But it is clear that
(R, S)e M(A) and p((R, S))=> (R,, S»). Hence p is onto and our proof is
complete.

LEMMA 3.2. Let {A, : A€ A} be a family of B*-algebras. Then the following
Statements are eqivalent

(1) If A=Caca An)o, then M(A), is a Mackey space.

(2) If Ay is a countable subset of A and Ay =2 ren, Ar)o, then M(Ay), is a Mackey
space.

Proof. By virtue of Theorem 2.6, Lemma 3.1, and [10, p. 173], it is easy to
show that (1) implies (2). Now let H be a B-weak* compact convex circled subset
of M(A); and let ¢, denote the restriction map from M(A4) onto M(A,), where
M (A,) is now viewed as a subspace of M(A4). Set Ag={Ae A : ||$,f]|| >0 for some
fe H}. If A, is countable, then (2), together with Theorem 2.6, Lemma 3.1, and
[10, p. 173], implies that H is B-equicontinuous and therefore, by [10, p. 173],
(2) implies (1). Hence, it remains to be shown that A, is countable.

For each X € A, choose an x, € M(4,), |x.] =1, so that for some f€ H we have
f(x,) #0. Now define x € M(A) by the formula

x(A) = x, if Ae A,,
=0 if A¢A,,

where we now view M (A) as >,.a M(A4,), and then define the map
T: C(A)s— M(A),
by the formula T(«)(A)=c(A)x(A) for each « € C(A) and X € A. Here the topology
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for A is the discrete topology. Let {c;} be a norm bounded net in C(A) that con-
verges to zero in the strict topology. It is straightforward to show that the net
{T(«;)} in M (A) converges to zero in the strict topology and therefore, by virtue of
Corollary 2.7, T is B-continuous. This implies that 7 has a well-defined adjoint
map T*: M(A)F — C(A)}, which is continuous when both range and domain
have their B-weak* topologies. It follows that T*(H) is 8-weak* compact and there-
fore, by virtue of [6, Theorem 2.6, p. 478] and [6, Theorem 2.2, p. 476], A, is
countable. Hence our proof is complete.

LEMMA 3.3. Let A be a B*-algebra and let a and b be hermitian elements in A
such that 12 ||a|| Z ||b||. Then |a+b| =1+2|ab].

Proof. Let o be the smallest number such that
3.1 le+d| = 1+0

for all hermitian elements ¢ and d in A, where 12 |c|=|d| and |cd| < ab|.
It is clear that such a number exists. Now if o>2|ab|, then |c+d|2=|(c+d)?|
S| +d?|+2|cd| £1+0+2|ab| <(1+0)? for all hermitian elements ¢ and d in
A, where 12|c||2]|d| and |cd| = |lab||. But this contradicts (3.1), so o <2|ab||
and our proof is complete.

The author would like to thank Professor L. Eifler for the suggestion of the
argument given for Lemma 3.3. This argument eliminated a longer proof.

REMARK. It follows immediately from Lemma 3.3 that for each pair of hermitian
elements a, b in a B*-algebra A the inequality |a+b]| < |a] +2|ab]|/||la| holds
whenever ||la|| 2 |6| and |la]| #0. In fact, there is a smallest number k such that
la+b) = |lal|+k|ab|/|all and this, in a sense, is a generalization of the triangle
inequality for B*-algebras. But k=1 when the B*-algebra 4 is commutative, and
this fact suggests the following question: Is it true that k =1 only if A is commutative?

Proof of Theorem I. Let {4,}2_, be a sequence of B*-algebras such that M (4,);
is a Mackey space for each positive integer k. If we show that M (4), is a Mackey
space, where 4 =(22-; A;)o, then by virtue of Lemma 3.2 the proof will be com-
plete. To this end, it will suffice to show that each 8-weak* compact circled convex
subset of M(A)¥ is B-equicontinuous. Now suppose that H is a S-weak* compact
circled convex subset of M(A)F that is not B-equicontinuous. Since H is f-weak*
compact, H is uniformly bounded and we can assume, without loss of generality,
that H is uniformly bounded by 1. Let {e; : 8 € A} be an approximate identity
for A consisting of positive elements. Then by virtue of Theorem 2.6 there exists
an e >0 such that for each 8, € A we have

3.2) |f—esf—fes+esf-es| Z de

for some fe H and 8> 6, We will nbw define by induction a sequence of triples
{(fer Xi» M)}~ 1 that satisfies the following conditions:
(1) fr€ H, x, € M(A), and n, is a positive integer less than n, ;.
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2) ||x]| £1, x,(g)=0 for each positive integer g<n,_, or g >n,, where M(A)
is now viewed as Y-, M(A4,).

3 |fx)| ze

By virtue of (3.2) there exists an f; in H,a §in A, and a y in the unit ball of M (A)
such that |f;((1 —e;)y(1 —e;s))| 2 3e. Since M(A)f under the strong topology is
isometrically isomorphic to 4* and A* is isometrically isomorphic to the L'
direct sum of {A4}}>-,, we can find a positive integer n, such that | fi(x,)| = &, where
X, is the element in M (A) defined by x;(q)=((1 —e;) y(1 —e;))(g) forg=1,2,..., n,
and x;(q)=0 for ¢>n,. It is clear that (f;, x;, n,) satisfies conditions (1), (2), and
(3). Now assume that (fy, xi, n,) has been defined for k=1,2,...,p. Let B,
be the subspace of A defined by B, =24~ 4, and let ¢ denote the restriction
mapping from M(A) to M(B,,)=2>r, M(A,). It is straightforward to show, by
using Theorem 2.6, that M(B, ), is a Mackey space and therefore, by virtue of
Theorem 2.6, [10, p. 173}, and (3.2), there exists an f,,, in H,a din A,and a y
in the unit ball of M (A) such that |f,,,((1 —es) y(1 —e;))| 2 3= and

(3.3) [6(fos1—€s for1—Sor1-€s+es for1-€)l| < e

By virtue of (3.3) and the fact that M (A4)} under the strong topology is isometrically
isomorphic to the L! direct sum of {4}}>_,, we can find a positive integer n,,;>n,
such that |f(x,,1)| 2, where x,,, is the element in M(A4) defined by x,..(q)
=((1—es)y(1 —es))(gq) for n,<q<n,,, and x,,,(q)=0 otherwise. It is clear that
(fo+1> Xp+1, Hpy1) satisfies conditions (1), (2), and (3), and our induction is com-
plete. Now let x be the element in M (A4) defined by x(g)=x,(g) when n,_, <g=n,.
Then define the map T: (I, B) — M(A), by the formula T(a)(q)=o(g)x(q) for
each « € [ and positive integer g. By virtue of Corollary 2.7, it is straightforward
to show that T is continuous. Hence T has a well-defined adjoint map T*: M(A)}
— [, which is continuous when both range and domain have the -weak* topolo-
gies. Thus, T*(H) is a B-weak* compact subset of /* and this implies, by virtue of
[6, Theorem 2.4, p. 477], that T*(H) is B-equicontinuous in /*. Since >%_, a(k)x(k)
converges in the strict topology to T(x) as ¢ — oo for each « € /®, we see that
T*(e)=f(T(x))=2-1 k) f(x(k)) for each fe M(A)f and ael®. So T*f=
{f(x(k))}E- . Since T*(H) is B-equicontinuous, there exists, by virtue of [6, Theorem
2.2, p. 476}, a positive integer N such that > ., |f(x(k))| <e for each fe H.
This implies that |f(x,)| < ket | f(x(k))| <& for n,> N. This holds for all fe H
and in particular | fi(x,)| <e. But this contradicts (3). Hence H is B-equicontinuous
and our proof is complete.

Proof of Theorem II. Let 4 be a B*-algebra. If condition (1) holds, then it
follows from Corollary 2.8 that M(A), is a Mackey space. Now assume that A
has a countable approximate identity. To show that M(4), is a Mackey space
it will suffice to show that every B-weak* compact subset of M (A4)} is B-equicontinu-
ous [10, p. 173]. Suppose that H is a B-weak* compact subset of M(A)} that is
not B-equicontinuous. Since H is B-weak* compact, H is uniformly bounded, and
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without loss of generality we can assume that H is uniformly bounded by 1.
Suppose {d,}2-, is an approximate identity for 4 consisting of positive elements.
We may assume that for each positive integer n

(34) |dns1di—dy|| < 1/n-27+3

for k=1, 2,..., n. Now because of Theorem 2.6 there exists an >0 such that for
each positive integer N the inequality

holds for some f'€ H and integer n > N. We will now define by induction a sequence
of quadruples {(fy, @y, Nax_ 1, Na2i)}i-1 that satisfies the following conditions:

(a) f. € H, a, is a hermitian element in the unit ball of 4, and n,,_,, n,, are
positive integers such that ng, _; <Hg, <Hgy ;.

(0) [ /iy, (1 ~ oy (1 —doy, )] 2 e.

By virtue of (3.5) and Corollary 2.3, it is straightforward to show that there
exist an f; € H, a hermitian element a, in the unit ball of 4, and positive integers
ny, ngy With n; <n, such that

|fl(dn2(l _dnl)al(l _dnl)dnz)l 2 e

Thus (f1, ai, 1y, ny) satisfies (a) and (b). Now suppose the quadruple (fy, ax,
Ngi 1, Ngi) has been defined for k=1, 2, ..., p so that conditions (a) and (b) have
been satisfied. Again, by virtue of (3.5) and Corollary 2.3, it is straightforward
to show that there exist an f,,,; € H, a hermitian element a,,, in the unit ball of
A, and positive integers ny,, 1, Hgpy o With Hy, <Hgp, 1 <Hg,. o such that

|fp+ l(dng,,+ 1(‘ _dn2p+1)aﬂ+ l(l _dn2p+1)dn2p+2)|

and our induction is complete. Set x,=d,, (1 —d,, _)a(l—d,, _)d., and
e, =d,.. Because of (3.4), (a), and (b), {(f«, xx, €)}7-1 is a sequence of triples such
that the following conditions hold:

(a)’ fix € H, x, is an hermitian element in the unit ball of 4, and e, € 4.

(b)" {e,} is an approximate identity for 4 consisting of positive elements.

(c)’ For each positive integer p, |e,x;| =|xe,| <1/2* for k=p+1,p+2,...
and ||x, 1% =||xexps1l <1/p-2P*2 for k=1,2,...,p.

@) Al ze.

Let a={«}-, belong to [®. By virtue of Lemma 3.3, it is straightforward to
show that |>2_; epx,] S Jlefw DRy /25" 1 <2|e| . for each positive integer n.
This inequality and the fact that |e,x,| = [x,e.]| <1/2” for p=n+ 1, imply that the
sequence of partial sums {3%_,; ex,}2-; is B-Cauchy. Since M(A), is complete
[4, Proposition 3.6, p. 83], we may define the map T: (/®, B) - M(A); by the
formula T(«)=32; o;x,, where a={e}?_; and >, «.x, is the B-limit of the
partial sums. By virtue of Corollary 2.7, it is straightforward to show that T is
continuous and therefore T has a well-defined adjoint map T*: M(4)} — /',

v

&
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which is continuous when both range and domain have the S-weak* topologies.
Thus T*(H) is a B-weak* compact subset of /! and this implies, by virtue of [6,
Theorem 2.4, p. 477], T*(H) is B-equicontinuous in /!. Observe that T*f(«)
=f(T(x))=>7-1 o f(x;) for each « € /® and fe M(A)}, so that T*/={f(x)}’-:.
Since T*(H) is B-equicontinuous, there exists by virtue of [6, Theorem 2.2, p. 476]
a positive integer N such that >2_y ., |f(xx)| <e for each fe H. Thus, for fe H
and k>N we have |f(x,)]<e and in particular |f,(x,)| <e for k> N. But this
contradicts (d)’. Hence H is B-equicontinuous and our proof is complete.
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