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JOHN R. FAULKNER^)

Abstract. Necessary and sufficient conditions for two elements of a reduced

exceptional simple Jordan algebra 3 to be conjugate under the automorphism group

Aut 3 of 3 are obtained. It was known previously that if S is split, then such elements

are exactly those with the same minimum polynomial and same generic minimum

polynomial. Also, it was known that two primitive idempotents are conjugate under

Aut $ if and only if they have the same norm class. In the present paper the notion

of norm class is extended and combined with the above conditions on the minimum

and generic minimum polynomials to obtain the desired conditions for arbitrary

elements of 3.

In this paper we characterize the orbits of the automorphism group Aut 3 of a

reduced exceptional simple Jordan algebra 3 = §(03, y) over a field <E> of charac-

teristic not two or three. Since Jacobson [2, Theorem 9] has shown that in case the

octonion (Cayley-Dickson) algebra £> is split then such an orbit consists of exactly

those elements with the same minimum polynomial and the same generic minimum

polynomial, we shall restrict our attention to octonion division algebras. In partic-

ular, we shall assume i> is infinite.

Recall that 4?(£>3, y) ¡s the Jordan algebra of 3 x 3 symmetric matrices with entries

in D with respect to the involution x\-^-y~x5?y, y = diag {yx,y2,y3}, O^^e*!),

and with multiplication x-y=\(xy+yx), xy the usual matrix multiplication. An

element x e ¡q(D3, y) is of the form

(1) x = 2 "i^ii + 2 aiL/ft]   w'tri a¡ e <1>, a, e D,       * = 1, 2, 3,

where (i,j, k) is a cyclic permutation of (1, 2, 3) and a[ij] = yjaeij + yiäeli. We have

the mapping x i->- x# defined by

(2) x* = 2 (aiak - YiYkn(aù)eti + 2 (wO^k) ~ - a¡a.)L/k]

where x is as in (1) and n is the norm on O. If x^O and x#=0, we say x is of rank

one. Also, we write xxy=(x+y)#-x#-y#. For x, y eg write T(x,y) = T(x y)

where T(z) is the usual trace.
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For a e 3, we consider the quadratic form Fa on 3 defined by F Ax) = T(a, x#).

If e is a primitive idempotent and R is the radical of Fe, then it is known that

R=3i(e)+3Xi2(e), where 3((e) is the Peirce /-space of e, and 3/P is the orthogonal

direct sum of a hyperbolic plane and a subspace equivalent to %23 equipped with

the form Q where Q(x) = T(x#) and 823 is the Peirce (23)-space relative to an em-

bedding of e in a set of pairwise orthogonal primitive idempotents e=ex, e2, e3.

Recall that the norm class of e is defined to be *(e) = —FAu)N*, where u is a non-

isotropic vector with u+R orthogonal to the hyperbolic plane and where N*

={n(x)¥=0 \xeO}. In particular, K(exx)= -Q(l[23])N*=y2y3N*. A corollary to

a result of Springer is that two primitive idempotents e and e' of 3 lie in the same

orbit of Aut 3 if and only if «(e) = /c(e'). (See [2, Theorem 6, Corollary] or

[4, p. 427].)
If Í2 is any extension field of <t, we shall use the notation N£ = {n(u) / 0 | u e £>n}

and M£={n "("()/0 | ut e Qfo], vt e £>}. Thus, N* = N£^M£^N£.
We can now state our main result.

Theorem, (a) If Q is the splitting field of the minimum polynomial of ael$ and

if ue û[a]£3n is of rank one, then there exists a primitive idempotent e e 3 with

T(e, u)^0. Also, K'(u) = T(e, i<)/f(e)Mn is independent of the choice of e and hence

of the orbit in 3n ofu under Aut 3.

(b) If a, a' e ¡$ have the same minimum polynomial and the same generic minimum

polynomial whose splitting field is Q and if the natural isomorphism of Q[a] with

Ci[a'] sending a to a' is denoted by x\-^- x', then a and a' lie in the same orbit of

Aut S if and only ifi<'iu) — K'iu')for all ue ii[a] of rank one.

The proof of the theorem consists of a case by case consideration of the various

possibilities for the minimum and generic minimum polynomials, yielding in some

cases a stronger result than the theorem itself. Since a can clearly be replaced by

aa + ß where a, ß e <D, a^O, we have the following possibilities for the minimum

polynomial /¿(A) and generic minimum polynomial m(A) of a e ¡g, a^O, 1 :

I. pj(X) = A(A— 1), «i(A) = A2(A— 1); i.e., a is a primitive idempotent.

II. /ti(A) = A2, m(A) = A3.

III. /¿(A)=m(A) = A3.

IV. it(A)=m(A) = A2(A-l).

V. p(X) = m(X) = (X-p.x)(X—p.2)(X—p,3), p.¡ e 4> and distinct.

VI. /i(A)=m(A)=(A—p~x)(X-p.2)(X-p,3), p,t e Q\<t> and distinct.

VII. p.(X)=m(X) = (X-p.x)(X-p.2)(X-p.3), p,x e i>, p.2, /x3 e Q\<D and the p.t are

distinct.

Note that if m(A) has a double root then all of the roots necessarily lie in 3>.

Before considering the cases, we first prove two more general lemmas.

Lemma 1. If ae$j and if {ex, e2, e3} is a set of pairwise orthogonal primitive

idempotents, then there exists an isomorphism -n: 3 -> i>(£>3, y)for some y such that

e?=e(( and a" e i>(P3, y) where P is a quadratic subfield ofD.
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Proof. If in the Peirce decomposition of 3 relative to ex, e2, e3 the (l,j) com-

ponent of a, aXj, j=2, 3 is not zero, then set xiy = aw. Otherwise, let xu be an

arbitrary nonzero element of 3iy- Since O is a division algebra, xu is invertible in

3n+3«+3i>- Thus, by the Jacobson Coordinatization Theorem (see [1]), there

exists r¡: 3 -> §(D3, y) with e?=eii and x\¡—\\\j\. Since all of the entries of a"

with possible exception of the (2, 3) component are in <D, we see that a" e i>(P3, y)

where P is a quadratic extension of 0 generated by 0 and a single element ue D,

ui<b.

In the sequel whenever we have an isomorphism -n : 3 -*■ ¡Qfa3, y) and a quadratic

subfield P of D, we shall abuse notation and consider the elements of &(P3, y)""1

as endomorphisms of a vector space V over P with basis vx, v2, v3 which are self-

adjoint with respect to the Hermitian form h defined by h(viy vj) = 8ijy]'x; i,j=l,

2,3.

If yUx=2(yx)x—yx2, x, je3 then it is known that UyUx=UxUyUx and

yUx = T(x, y)x — x*xy (see [3]). In particular, if u, v e 3 with v of rank one, then

uUv = T(u, v)v. It is also well known that the elements of rank one are of the form

au where 0#a e <t>, and u is either a primitive idempotent or m2=0.

We say that a set of primitive idempotents {f0,fx, ■ ■ .,/„} is an (e, e')-orthogonal

chain of length n if/0 = e,/„=e', and/ is orthogonal to/t+1, /=0, 1,..., n — 1.

Lemma 2. (a) For any two primitive idempotents e, e' o/3 there exists an (e, e')-

orthogonal chain of length ¿3.

(b) If e" is distinct from e and e', then there exists an (e, e')-orthogonal chain

which does not contain e".

Proof, (a) If {e = e1( e2, e3} is a set of pairwise orthogonal primitive idempotents

and if T(eh e') = l for i =1,2, 3, then e' = 1 Ue- = 3e', a contradiction. Hence, to

show (a) we need only to show that if T(e, e') = a¿ 1, then there exists a primitive

idempotent/! orthogonal to both e and e'. Letf=e'Ui-e; i.e., fis the 3o(e) com-

ponent of e'. Clearly,/is rank one (take ei = eii and use (2)). Now/2 = l£/,=

(1 —e)UeUi-e=(l —cc)f Hence, g=(l —a)~xfis a primitive idempotent orthogonal

to e. Iffi = l—e—g, then/ is as required since T(f, e')e' = lUe'Ux-eUe. = li/(1_a)c-

=(l-a)Vsor(/1,e')=0.

(b) We first note that if gx and g2 are orthogonal primitive idempotents, then

there exists a primitive idempotent g ^ g2 such that g is orthogonal to gx but not to

g2. Indeed, we may assume 3 = &fa3, y), gi = e{i, i=l, 2, and take

g = ß~x{Y2Yan(v)e22 + a2e33 + av[23]}

where 0/pëD, ß=y2y3n(v) + a2, and since d> is infinite a e <t> can be chosen so

that ß # 0. Since g is of rank one and T(g) = 1, we see that g is a primitive idempotent.

The other properties of g are clear.

In the proof of (b) we may now assume that neither e nor e' is orthogonal to e".

Using (a), we have an (e, e')-orthogonal chain {f0,fx,.. .,/„} of length «^3.

Clearly,/T^e'V/n-i and the proof is complete.
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We now consider the seven cases.

(I) In view of Springer's result mentioned above, both parts of the theorem will

follow from

Lemma 3. If e is a primitive idempotent, then K'(e) = K(e).

Proof. We need to show that if e' e ^ is a primitive idempotent with T(e, e')

= a^0, then K(e) = ccK(e'). If/is any primitive idempotent orthogonal to e' with

T(e,P=ß^0, we claim ßK(f) = aK(e'). Indeed, take 3 = $(03,y), e' = exx, f=e22,

and note that (2) implies aß=yxy2n(a2) for some a2 e £>. Hence, ccK(exx) = a.y2y3N*

= ß~1YiY2n(a3)y2y3N*=ßK(e22).

By Lemma 2, we have an (e, e')-orthogonal chain {f0,.. .,/"„}. If P(/„_i, e)=£0,

the above argument shows e' =/„ may be replaced by/n_j. Hence, we may assume

that P(/n_!, e)=0 (i.e.,/n_j is orthogonal to e) and therefore that «=2. Take

g = §(D3, y) with e' = exx and/! = e22. Then e = aexx+il — a)e33 + u[3l] for some

O^ue £). If O^y is in the Peirce (2, 3)-space relative to {e, e22, l—e — e22}, then

/c(e)= - Qiy)N* and y is of the form ^ = t>[12] + w[23], v, we £). Since ey=0,

we have av= —y3wu. Thus,

-Q(y) = -Tiy#) = yxy2niv) + y2y3niw) = {yiy3a~2«(M)+l}y2y3«(w)

= {oe-1(l-a)+l}y2y3"(w)

(since yxy3niu) = ai<x— l)) = a~1y2y3niw). Since w = 0 would imply v = 0 and >> = 0,

we have K(e) = ay2y3Af* = a/c(e').

(II) This case has also been mentioned by Springer and Veldkamp (see [4, p. 427]).

We give here a proof of a more detailed result. We recall that since a is of rank

one, the form Fa is similar to Fe where e is any primitive idempotent of 3 (see

[2, Lemma 3]). Thus, if R is the radical of Fa, then Q/P is the orthogonal direct

sum of a hyperbolic plane and a subspace similar to S23 equipped with the form

Q. We define the norm class *(a) = —FAu)N* where u is a nonisotropic vector

with u + R orthogonal to the hyperbolic plane. Clearly, *(a) is an invariant of the

orbit of a.

If ex, e2, e3 are pairwise orthogonal primitive idempotents of 8 with P(e¡, u) = 0,

i =1,2, 3, where u is of rank one, then m = 0 by (2), a contradiction. Thus, the first

statement of part (a) of the theorem holds. The remainder of the theorem follows

in this case from

Lemma 4. If0^ae% with a2=0, then there exists a primitive idempotent e with

a e So(e)- If e is any such idempotent and a e /c(a), then there exist pairwise orthog-

onal primitive idempotents e = ex, e2, e3 and an isomorphism r¡: $¡-+ £>(D3, 8)

where S = diag{l, o, — a} with e} = ett, i=l,2,3 and a"= — e22 + e33 — ct_1[23].

Moreover, iff is a primitive idempotent with Tip, a) = a^0, then /c(a) = aic(/).

Proof. Let {fx=f,f2,f3} be a set of pairwise orthogonal primitive idempotents

with Tip, a) = a^0. Let r¡x: Q -> §(£>3, y) be the isomorphism of Lemma 1 with
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yx = 1, so that/" = e(i and a" e &(P3, y). We shall use the notation established after

Lemma 1. Write vxa—avx+a2v2 + a3v3 with o¡¡eP. If a2=oc3=0, then a2=0

implies a2=0, a contradiction. Hence vx and vxa are linearly independent. Since

h(vx, vxa) = a^0, vx and vxa span a nonisotropic subspace Wof Vinvariant under a.

Hence, V= W® W1 and W^a^ W1 since a is selfadjoint with respect to h. Since

W1 is one-dimensional, there exists peP with wa=pw, w e W1. But a2=0 implies

p = 0and WLa = d.

One easily sees that if 0^ux e W1,

u2 = vx— i(a~1 + \)vxa,   and   u3 = vx— Ka~1 — l)via->

then ux, u2, u3 is a basis for V relative to which a has the matrix A= —e22+e33

+ e23 — e32 and h the matrix diag{/o, —a, a} where p=hfa, uJ^O. Since /¡(w1; vx)

=h(ux,vxa)=0, we have «j = p2v2 + p3v3 where pteP and o£2p2y2~1 + a3p3y3 x = 0.

In particular n(a2)n(p2)y22 = n(a3)n(p3)y32. Also, since a2 = 0, we have

a2 + y2xn(a2) +y3xnfa) = 0.

If say a2,£0, then

p = h(ux,Ui) = n(p2)y2x+n(P3)y3x = nfa)"xn(a3)n(p3)y2y3 2 + n(p3)y3 1

= yayâ" Hyâ" ̂fa) + y3 xn(a3))n(p3)n(a2) -1

= -y2y3"1«2n(/'3)"(«2)"1e -«(/).

Similarly, if a3/0, then pe —K(f). Thus, h' = p~xh is a form similar to h and

h'(ui,u¡) = 8ijXjx, i, 7=1, 2, 3, where Aj = l and A2 = — A3 e a/c(/). We have an

isomorphism r¡2 of £>(P3, yfï1 onto ^)(P3, A) mapping a onto ^4 which can be

extended to an isomorphism -n2: 3 ->■ ®(D3, A). (Use the Jacobson Coordinatiza-

tion Theorem with ejjï1, /=1, 2, 3; 1Í12JV1; and 1[13]V\)

Clearly the first statement of the lemma holds. If now a e 30(e) for a primitive

idempotent e, then after imbedding e in a set {/ =/,/2 = e,/3} of pairwise orthogonal

primitive idempotents with T(f, a)=£0, we may argue as before to obtain an iso-

morphism r¡2: 3 -*■ €>(£>3, A) with a"z = A. Since v2 = v2e, we have h(v2,vxa) =

h(v2, vxae) = 0 so v2e W1. Thus, e"2=e11. To complete the proof of the lemma,

we need only show that K(a) = aK(f) and that A2 may be replaced by any o e k(o).

The first follows from a direct calculation which shows that if R is the radical of

FA in i>(D3, A) then exx + R and e22 + R span a hyperbolic plane in f>(£>3, A)//?

and — Fil(l[12])A* = A2Ar* = a/c(/). The second follows by considering the iso-

morphism 77: $¡->!q(£)3, 8) (with Sx = 1) given by the Jacobson Coordinatization

Theorem using e$â\ /= 1, 2, 3; h[12]"21; and M[13]"a * where m e O with a=X2n(u).

We have 32= -g(M[12]) = A2n(M) = <7 and 83= -g(M[13])= -a. Since 2u[l2]u[l3]

=n(«)[23], we see a" = A.

(Ill) This case can be handled by proving that any two elements of this type are

in the same orbit of Aut 3 (see [2, §6, Exercise 4]). We use Lemma 1 and the nota-

tion following it. Choose v = vx, v2, or v3 so that t>a2#0. Thus, wi = vai~x, /= 1, 2, 3,
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is a basis for V relative to which a has the matrix eX2 + e23 and h the matrix hxexx

+h2(eX2+e2X)+h3(eX3 + e22+e3X) where «( e <t>, /'= 1, 2, 3, since a is selfadjoint with

respect to « and a3 = 0. Also, «3#0. Replacing v first by wx—^h2h31w2 and then

by wx—\hxh31w3, we may assume «1 = «2 = 0. Replacing « by h3lh, we see there

is an isomorphism -n of a simple subalgebra 91 of g containing a onto the algebra

of all symmetric matrices over 0 relative to the involution Jfi-> ö"1A'tö where

ô = ^i3 + ^22 + ^3i such that a" = e12 + e23. If a' has the same minimum polynomial

as a and if r¡' is the corresponding isomorphism, then ijij'-1 can be extended to

an automorphism of 3 by [2, Theorem 3].

(IV) If e=a2 and u = a(a— 1), then e and « are elements of rank one. Indeed, e

is an idempotent of trace 1 and hence primitive and u2=0. Moreover, ue$¡Ae)-

Using Lemma 4, we see that if a e k(u) = k'(u), then there exists an isomorphism

?7: 3->-§(£>3, S) where 8 = diag {1, a, — a} with e"=en and w"=— e22 + e33

— a_1[23]. Since a=e — u, we have a" = e11 + e22 — e33 + or_1[23] and the theorem

follows for this case.

(V) Let et=(pt—p-^'Ah-i — Mfc)_1(a—.uí)(a—Mie) where /,/, fc are distinct. Clearly

the e¡ are pairwise orthogonal primitive idempotents. If y = diag{l, y2, y3} with

y2 £ K(e3) = K'(e3) and y3 e *(e2) = «'(^2), then by the Jacobson Coordinatization

Theorem we have an isomorphism r¡ : g -> £(D3, y) such that ef = e¡¡. Since

a=2 M¡ei) we bave a" = 2 Mteu> ana we are done in this case.

(Via) and (Vila) Throughout the last two cases we let

et = 0*i-/*/)-10*i-/*fc)" Kß-/*>)(<*-/**)

where r, /, Â: are distinct. The e¡ are primitive idempotents in Qn and every element

of rank one in Q[a] is of the form aeh i=l, 2, or 3; a e Q. If n is an element of the

Galois group Gal (Í2/<1>), let -n- also denote the corresponding permutation of

{1,2,3} and also the w-semiautomorphism of ^n fixing g. Thus, p-f=piK and

e?=eu,i=l,2,3.

We first note that if ueQ[a] is of rank one and u^pv, veQ, peil, then

T(u, e) = 0 for at most one primitive idempotent eeg. To see this, write u = ae¡.

In case (VI), since Gal (Ü/0) is transitive on {1, 2, 3}, we see T(e, et)=0 implies

T(e) = T(e, 1) = 0, a contradiction. In case (VII) i+l and T(e, e,) = 0 implies

T(e, ein) = 0 where w = (2, 3). Hence e=ex.

Now let ue Q[a] be of rank one and let e e $ be a primitive idempotent with

T(e, u) = a^0. If u=ßv with ue;g, ß e Ù, we may assume we are in case (VII)

and v = ex. Thus, by (I) we see x(e) = T(e, ex)K(ex) = aß~1K(ex) and T(e, u)K(e)Mg

=j8/c(e1)Afn is independent of the choice of e. If u^ßv for any v e 3, ß e D, then

if e' e $ is a primitive idempotent with P(e', u) = a V 0, then by the above note and

Lemma 2(b), we may assume e is orthogonal toe'. Using Lemma 1 with e^e,

e2 = e', and e3= 1 -e2-e3, we get r¡: g -»• #(D3, y) with e? = ej¡ and a" e £(P3, y).

Extending r¡ to 8n, we have u" e £>(P3, y) where P'=Pa. Thus by (2), aa'=y1y2«(z;)

for some veP'. Hence, <xK(e)Ma=(aa')a'y2y3Mn=a'yxy2Mn = a'K(e')Mj¡1'.
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(VIb) Let -n be given by Lemma 1 so that a" e §(P3, y) and use the notation

following Lemma 1. If O^v e V, then v, va, va2 form a basis for V relative to which

a has the matrix

A =

0

0

8,

1

0

82

0

1

§3

where 8x=pxp2p3, 82= -fap2 + p2p3 + p3px), and 83=pi+p2+p3, and the form h

has the matrix

H =

h h2 h3

h2 h3 hi

h3   hi   h5

where ht e 0. Clearly we have a subalgebra 91 of £>(P3, yf 1 which we may view

as endomorphisms of W= Q>v + <ï>va + Q>va2 symmetric with respect to h\W. Also,

aeSH.

Now let P be any subfield c o. Since H is diagonalizable, there is an isomorphism

t: 91 -► §($3, y) for some y which may be extended to t: 3-► &(p3> y)- Now

§(P3, y)t_1 may be viewed as endomorphisms of WP selfadjoint with respect to

the Hermitian form h defined by //. If 0 # v' e WP, then relative to the basis v',

v'a, v'a2, a has the matrix A and h has the matrix //' where h[ replaces ht in H.

In particular, if 0^xePn with x=rfa), reP[X], let v' = vr(a). Then since t>'a'

= vair(a) and HAl=AH, we see H=RHRt = RRH where Ä = r(/i). Induction

shows that if O^x, eP£», /=1,2,..., n, if xl = rifa), rfeP(i)[A], and if Ri = rt(A),

then there is an isomorphism t of a subalgebra of 3 containing a onto the algebra

of all matrices X over <D with H'Xt = XH' where H' = RxRi- -RnRnH such that
az = A.

Since there exists we W with /¡(w, w)^0 and since /¡|^ can be diagonalized

by a basis for W containing w, we see that there is a primitive idempotent e e 21

with we = m>. Replacing v by w, we may assume hi = h(v,v) ^ 0 and ve = v. Replacing

h by hï xh, we may also assume hi = 1. With these normalizations, we shall now give

an expression for H in terms of a=T(e, ex) e £1. If

Q =

0 0

0  1

1

s3

1    83   82 + 82

then

Q
-1 _

82    — 83.   1

■83       1     0

1        0    0

and    QAi = AQ.
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If S=HQ~1, then AS=HAtQ~1 = SA. Let S be the endomorphism of W corre-

sponding to S. We have vs = vp(a) wherep(X) = hxX2 + (h2 — 83hx)X + (h3 — S3«2 — 82hx)

e <I>[A]. Hence, va's = vsai = vp(a)ai = vaip(a) and S=p(A). In Q, we calculate

Pipi) = h3 + iPi-àa)h2 + (p.x-83p,x-82)hx = h3-(p2 + p-3)h2 + p,2p.3hx

= h(v, v(a2-(p2+p.3)a+p.2p.3)) = ipx-p.2)ipx-p.3)hiv, vex)

= ip.x-p.2)ip.x-p.3)a.

Thus, if Q-tiA)Q where /(A) e <D[A] with tipx)=ipx-p-2)(jj.x—^3) and if a=qip.x)

where q e 0>[A], then H=SQ=piA)Q = tiA)qiA)Q=qiA)Q.

Now let a' have the same minimum polynomial as a. Using the normalization

above we have (with obvious notation) H'=q'iA)Q where T(e', e'x) = a' =q'(px).

If K'(ex) = K'(e'x), then aK(e)Ml = a K(e')MZ or a'a~1eßMl where 0#j8e

«{eXeOsâX Write a'a"1=j8«(jc1)-- «(xn) with xf e Cl[vt], vt e 0\0, i'=l, 2,...,«.

Since Q[t)i]=PH) where P'^Ofo], we may write xi=rl(p,x) with r¡ eP(i)[A]. Thus,

efc^-fcCftftta)- • -rjf&jpà, qXAMAp^ßR.R,- RnRn where Pi=rt(^),
and H'=q'(A)q(A)~1H=ßRxRx-■ RnRnH. Using the isomorphism t above, we

can easily construct an isomorphism a mapping a subalgebra of g (isomorphic to

£>(<I>3, y) for some y) containing a onto a subalgebra of 3 containing a' such that

a" = a'. Clearly, a can be extended to an automorphism of g. (Use the Jacobson

Coordinatization Theorem or [2, Theorem 3].) We remark that the above proof

was suggested by the methods used by Williamson in [5].

(Vllb) The methods of the previous case could be applied here, but we prefer to

prove a somewhat stronger result using a Galois argument. We shall show that

k'(u) = k'(«') in the statement of (b) can be replaced in this case by Ka(u) = *q(w')

where Kn is the norm class in !$n. This implies that a and a' lie in the same orbit

of Aut 3 if and only if they lie in the same orbit of Aut $¡n.

Let -n: 3->í>(£>3> y) be given by Lemma 1 so that a" e £>(P3, y). Let 91 =

Q(Q>3, y)""1. We shall show 9In n 3fil2#0 (where ¿3Q12 is the Peirce (1, 2)-space of

3n relative to e, = (pt - p.¡) " ̂  - /¿fc) " Aa - p-i)i" - /**) ; i, j, k distinct). If v = (2, 3),

then 9inC/Cl,e2=0 implies 9tní/ei,e3 = (9íí2fyei,e2)'I = 0 and 9ln n gni(e1)=0. If

ft = e?t~l, i=l, 2, 3, then P(/(, ej)/0 for some/'; say i=l. If the Peirce ^-component

of/i relative to ex is zero, then (2) implies fx = ex. But9In n 3ni(/i)=0 is a contra-

diction. Hence, we may choose 0#w12 e 9In n 3nia. Let «i3 = «î2 and m23 = «i2-«i3.

If M is the space spanned by el5 e2, e3, uX2, uX3, and u23 over £2, then since M£9tn

and dim M=dim 9tn, we have M=9tn. Since «rn(e3) = *n(e3), we can find u'X2 e !$'nx2

(the Peirce (1, 2)-space of 3n relative to e'x, e2, e3) such that ß(«l2) = 6("i2)- Now

"Í3 = "í2e8ói3 and ß(«i3)=r(«if)=r(«'io=ß(«ia)"=ß("18). Let i»:3n^

£>(£>fi3, 8) be an isomorphism given by the Jacobson Coordinatization Theorem

such that ef = eif, «f2=l[12], and upX3=l[l3], and let p : 3n-► ^(Oa3, 8') be a

corresponding isomorphism for e¡', «i2, and u'X3. Since ß(«i2)=ß(wi2) and Q(uX3)

— ß("i3), we may take 8 = 8'. Hence, a = pp' ~* is an automorphism of So such that
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e1 = e[; i.e., a°=a'. Now ef»=e{»=«4,=eS,=«r, /=1, 2, 3, wï?=kÎ7 = mU=kî?,
7=2,3, and W23 = (Mi2'"i3)™ = ("Í2"Í3)* = "Í3-"Í2="23- Hence 2Iff is pointwise

fixed by -n. Since tt generates Gal (Ü/®), we see 21"^$ and a|9t is an isomorphism

of 9Í into 3 such that aa=d. Clearly, or|2í extends to 3-
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