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ON THE SOLUTIONS OF A CLASS OF LINEAR

SELFADJOINT DIFFERENTIAL EQUATIONS

BY

LARRY R. ANDERSON^) AND A. C. LAZER(2)

Abstract. Let L be a linear selfadjoint ordinary differential operator with co-

efficients which are real and sufficiently regular on ( — oo, oo). Let A* (A~) denote the

subspace of the solution space of Ly = 0 such that y e A* (y e A~) iff D"y e¿2[0, oo)

(Dky e L\ — oo, 0]) for k = 0, 1,..., m where 2m is the order of L. A sufficient con-

dition is given for the solution space of Ly = 0 to be the direct sum of A* and A~. This

condition which concerns the coefficients of L reduces to a necessary and sufficient

condition when these coefficients are constant. In the case of periodic coefficients this

condition implies the existence of an exponential dichotomy of the solution space of

Ly = Q.

1. Introduction. The object of study of this paper is the general linear homo-

geneous selfadjoint differential equation which for convenience we shall write in the

form

m

(1) 2 (-l)kDkakDky = 0,
k = 0

where Dky = dky/dtk.

Except when otherwise stated we will assume throughout that for each k = 0,

1,..., m, ak(t) is real valued, ak e Ck( — co, oo) and am(t)^0 for all te ( — oo, oo).

The motivation for this paper comes from the case when ak(t) = ck = constant,

k = 0, 1,..., m. In this case the solutions of (1) are determined entirely by the

zeros of the polynomial

m

(2) p(X)= 2 (-lfckX2k.
Jc = 0

Since only even powers of A appear in p it follows that if p^O is a zero of/» of

multiplicity r then — p. is also a zero of/» of multiplicity r and the functions rV,

t'e'"1, 7 = 0, 1,..., r— 1, form a set of 2r linearly independent solutions of (1).

Consequently if p(X) has no zero or purely imaginary roots and S denotes the set of

solutions of (1) considered as a complex vector space of dimension 2m, then S has a

simple geometrical description. Namely, if E+ denotes the subspace of 5 consisting
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of solutions of (1) which together with their derivatives tend to zero exponentially

as / -> oo and E~ denotes the subspace of S consisting of solutions of (1) which

together with their derivatives tend to zero as / -> — co exponentially then dimension

E+= dimension E~=m, dimension E+ nE~=0. Therefore Swill split into the

direct sum of E+ and E~.

The objective of this paper is to give a partial extension of this simple observation

to a class of equations of the form (1) with variable coefficients. For simplicity we

will only consider real solutions. Henceforth S will denote the set of real solutions

of (1) considered as a real vector space of dimension 2m.

Theorem 1. Assume that for each k = 0, l,...,m, ak(t) is bounded below on

( — oo, oo) and define

(3) ck = infafc(i).

Let A + and A ~ denote the subspaces of S defined by

(4) A+={veS°kVlL2[0^\
' \ 0 ^ k ^ m     )

( DkveL2(-oo,OT]
(5) A- = \v £S„      , i\-w                                                 \         0 S k ¿ m J

If

(6) cm > 0

and the polynomial p defined by (2) has no zero or purely imaginary roots then

dim,4+ ï: m,       dim A~ ^ m.

If, in addition, each ak(t) is bounded above as well as below then

dimension A + = dimension A~ = m

and

dimension A+ n A~ =0

so that S is the direct sum of A+ and A~.

IfveA* (veA~) then

lim Dkv = 0       / lim  Dkv = 0),       k = 0, 1,..., m-l.

To the best of our knowledge the only literature connected with Theorem 1

is a remarkable paper by M. Svec [3] which deals with the fourth order equation

d*y¡dti+p(t)y=0 where /» is defined and continuous on a half-infinite interval

[c, co). §vec showed that if/» is bounded below by a positive constant then there

exist two linearly independent solutions of the differential equation which belong

to l?[c, co) and tend to zero as t -> oo. As an application of Theorem 2, which
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is similar to Theorem 1 but concerns the differential equation (1) when the ak are

only defined on a half-infinite interval [c, oo), we shall generalize Svec's result.

The proof of Theorem 1 will be deferred until after we have established some

auxiliary lemmas.

2. Some preliminary lemmas.

Lemma 2.1. Let dk, k = 0, 1,..., m, be real numbers with the property that

m

q(a>) =  2 dkw2k ̂  0
k = 0

for all real to. Let f be a real function of class Cm_1 on [-T, T], T>0, and sectionally

of class Cm on this interval, i.e. there exist numbers t,,j=l,.. ., A— 1, such that

-T = t0 < tx <•■■< ts-i < tN = T

and f is of class Cm on each of the intervals [tj-x, tj],j= I,..., N. If

Dkf(-T) = Dkf(T) = 0,       k = 0,l,...,m-l,

then

fT       m

2 dk(Dkf(s))2 ds ^ 0.
J-Tfc=o

Proof. If for t e [—n, n] we define F(t) =f(tT/n) then F is of class Cm~x on

[—77, it], Fis sectionally of class Cm on this interval,

(7) DkF(-TT) = DkF(tr) = 0,       OáHm-1,

and

8) 2 dk(Dkf(s))2 ds = -\      2 dkr2k(DkF(u))2 du,
J -T  k = 0 '   J -X k-0

where r = n/T.

For eachy=0, ±1, ±2,... let

y<=i2^Lme~i,udu>

Integration by parts and (7) yield

(9) (-y)Vy = (¿p f_m DkF(u)e-"" du,

for k = 1,..., m — 1. Since DmF is sectionally continuous it follows by dividing the

interval of integration in (9) into suitable subintervals that (9) is also true for

k=m.

The orthonormal functions

(l/r»1'a)eM".      7 = 0, ±1, ±2,...,
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form a complete set in L2[ — -n, tr], so by Parseval's formula

P (DkF(u)f du =  2 flyJ
J —It j = _- CO

for k = Q, 1,..., m (0°= 1 in the above and following identity). Hence

2 dkr2k(DkF(ü)f du = 2 «fc"3"   2  J2k\n\2
-n }c = o fc = 0 j= -co

co m oo

=    2    W2 2 ^0>)2fc =    2    \YiMrj) ̂ 0.
J = - 00 fc = 0 ^ = - co

By (8), this proves the lemma.

Lemma 2.2. Let the real numbers d0, dx,..., dm satisfy the same hypothesis as in

Lemma 2.1. Let f be a real valued function defined and of class Cm on the interval

[0,T],T>0.If

(10) Dkf(T) = 0,      0 á k m\ m-h

and for some fixed integer j with Oá/ám-1,

(11) L»fc/(0) = 0,       k ftj,0 ¿ k á m-1,

then

2       dk(Dkf(s)Y ds ^ 0.
ic = 0 Jo

Proof. We define a function g on [ — 7, T] as follows:

If y is an even integer

g(t)=f(t), OútúT,

= /(-/),        -Tút<0.

If _/' is an odd integer

git)-ft), osisr,

= -ñ-t),      -Tït<0.

Using (11) it is easy to verify that g is of class Cm_1 on [-T, T] and sectionally

of class Cm on this interval since Dmg has both left-hand and right-hand limits at

r = 0. From ( 10) Dkg( -T) = Dkg(T) = 0,0¿,k¿,m-l. Thus Lemma 1.1 is applicable

and
JT       m

2 dk(Dkg(s)f ds ^ 0.
-T Jc = 0

But

2 dk(Dkf(s)fds = ^ 2 dk(Dkg(s)fds
Jo  ¿Tb z J-r fc = o

and the assertion of the lemma follows.
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Lemma 2.3. Let the real numbers d0, dx,...,dm satisfy the same hypothesis as in

Lemma 2.1. Iffe Cm(—oo, oo) and DkfeL2( — co, oo), k = 0, 1,..., m, then

/•co       m

2 dk(Dkf(s))2 ds ^ 0.
J-oo   k = 0

Proof. This result is almost an immediate consequence of Lemma 2.1. Let cp(t)

be a real valued function defined and of class C° on the real line such that cp(t) = l

for r^| and <p(t) = 0 for iS: 1. For each positive integer n let 6n be the Cm function

defined by

en(t) = 1, O^tún,

= cp(t — n),      n < t,

= en(-t),    t < o.

Let /„ = 9nf for « = 1,2,....  Since  Dk6n is bounded independently of n for

O^k^m there exists a fixed constant L such that

m

(D%)2 ií L 2 ( W
1 = 0

for k and « in the same range. For each fixed t e ( — oo, oo), limn^ M Dkfn(t) = Dkf(t)

so by the dominated convergence theorem

/•go       m /»oo       n

2 dk(Dkf(s))2 ds = lim 2 dk(D%(s))2 ds.
J -<x>  k=0 n-*<x> J - oo  k = o

Since for each «, /n has compact support, it follows from Lemma 2.1 that

/•co        n

2 d¿Dkfn(s)yds ^ °-
J - «   ic = 0

This proves the lemma.

3. Proof of Theorem 1. In addition to the preliminary lemmas the proof of

Theorem 1 will depend on a certain identity which we first establish.

For each solution y of (1) we define a function F [y] on (-co, co) by the formula

(12) F[y](t) =22 (-l)' + k(Diy)(t)(Dk-'-iakDky)(t).
k=li=0

According to (1)

y(s) 2 (-lf(DkakDky)(s) ds = 0
Jo fc = o

so by the integration by parts formula

Í yDkzds = 2 (-l)'(Dly)(Dk'i-1z)    +(-l)k Í zDkyds,
JO j = o Jo Jo
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we obtain the important identity

(13) E[y](t) = F[y](0)-2   f ak(s)(Dky(s))2 ds.
k = 0 Jo

The proof of Theorem 1 will be broken up into several lemmas.

Lemma 3.1. Let the coefficients ak(t) be bounded below on ( — oo, oo) and assume

that the numbers ck satisfy the hypothesis of Theorem 1. Let v be a solution of (I) such

that for some number T>0,

(14) Dkv(T) = 0,       0íH»i-l,

and for some fixed integer j with Oújúm—l,

(15) Dkv(0) = 0,       k ¿J,0 £ k i m-l.

There exists a number M>0 independent of both v and T, such that

(16) 2       (Dkv(s))2 ds ^ MF[v](0).
Jc = 0  Jo

Proof. Since the polynomial /»(A) = 2™= o ( — l)kck\2k has no zero or purely

imaginary roots it follows that if ß(co) =p(iw) = 2J?_ o ck(o2k then ß(co) ^ 0 for all

co e (-co, oo). According to assumption (6) cm>0 and hence

(17) lim   ß(co) = +00.
œ-* ± oo

Thus g(co)>0 for all real co and in particular g(0) = c0>0. This together with (17)

implies the existence of a number 8 > 0 such that if

(18) dk = ck-8,       0 ^ k S m,

then

(19) q(oj) =  2 dkw2k ^ 0,        co e (-oo, oo).
fc = 0

Now by (14) and (12) it follows that F[v](T)=0 and so by (13)

^f](0) = J  i aÁs)(Pkv(s))2 ds.
k = o Jo

From (2) ak(t)^ck, O^k^m, so by using (18) we have

f[v](0) ^  2       ck(Dkv(s))2 ds = 2       dk(Dkv(s))2 ds+8 2       (Dkv(s))2 ds.
lc = 0 JO (c = 0 JO fc = 0 Jo

From (14), (15) and (19) we observe that the function v and the numbers dk satisfy

the hypothesis of Lemma 2.2 and hence

2   f dk(Dkv(s))2 ds ̂  0.
fc = 0 Jo
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The assertion of the lemma follows by setting M =1/8.

Lemma 3.2. Let the hypothesis of Lemma 3.1 hold. For each integer j with

0^j^m—l there exists a solution VjOf(l) such that

Dkvj e L2[0, oo),       0<k^m,

(20)
Dkvf(0) = 0, k ¿j, 0 á k á m-l,

and

(21) D%(0) # 0.

Proof. Let zt, 0^i^2m— 1, denote the solution of (1) defined by the initial

conditions

Dkz,(0) = 8ik = 0,       i + k,

= 1,       i = k.

The solutions z0, zx,..., z2m_j obviously form a basis for the vector space S.

Let 0^j^m—l. By a well-known result of algebra, for each positive integer n

there exist w-f-1 numbers, which we denote by b{, ¿>™, 6™+ 1» • • • , b2m~i, not all zero

such that

2m-1

(23) b{DkZi(ri)+ 2  blWzM) = 0   for k = 0, 1,..., m-1.
i=m

By a suitable normalization we may further assume that for all n = 0, 1, 2,...,

2m-1

(24) (#)2+ 2   (#.)2 = 1-
i=m

For each positive integer n consider the solution

2m-l

(25) vin = bte,+ 2 *U.

From (22) and (23) /)fct»Jn(0) = 0, k #/, 0 ̂  #t g m -1, Z)fci;ín(n) = 0,0^/t^m-l. Thus

if M is defined as in Lemma 3.1, it follows that for all n = 0, 1,2,...,

m      /.n

(26) 2       (flVW)2 ds ï MF[vjn](0).
k=0 Jo

Condition (24) implies the existence of a sequence of integers {nh} and m +1 num-

bers V, bm, bm + 1,...,b2m~1 such that limft^„o #,„ = 6*, /=./, m^i^2m-l, and

2m-1

(27) (¿>>)2 + 2   (*Da = I-
i = m

We will show that the solution
2m-1

(28) vt = b>zj+ 2  b%
i = m

fulfills the assertion of the lemma.
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Fix Z>0. Since by (25) the sequences {Dkvjnf} converges uniformly to Dkvt,

O^k^m, on bounded intervals

2   Ç (Dkv,(s))2 ds =  lim   2   Ç (Dkvjn¿s))2 ds.
Ic = 0 Jo ft-°°    ;c = 0 Jo

For nh ̂  / it follows by (26) that

2      (Dkvinh(s))2 ds g  2        (D%nM2 ds Ú MFKJ(0).
Jc = 0 Jo /c = o Jo

From (12), (25), and (28) we see that

lim F[vjnh](0) = F[Vj](0).
ft-* OO

Hence

2       (DkVj(s))2 ds =£ MF[Vj](0).
k = o Jo

Since i>0 was arbitrary this implies that Dlcvj eL2[0, co) for Oük^m and

/c = 0 JO

(DkVj(s))2 ds â Mf^KO).

Finally, suppose contrary to the lemma Divj(0) = 0. By (22) and (28) Dkv,(0) = 0,

0^/t^w-l, so by (12) f [^(0)1 = 0. Hence

m      /»com      /»co

2    (/>^w)2 * = o
ic = 0 Jo

and p/r)=0 for all /. This, however, contradicts (27), (28) and the linear in-

dependence of the solutions z¡, zm, zm + 1,..., z2m^i. Hence D'v^fy^O and the

lemma is proved.

From this lemma the first assertion of Theorem 1 follows immediately. For each

/ with OSjim- 1, let v} be the solution whose existence was established above. If

Vo> VuVm-! were not linearly independent, there would exist numbers y0,yu..., ym_i,

not all zero such that
m-l

2 YPm = o
i = o

for all t. But DkVj(0) = 0, k^j, OSk^m-1, M»X0)#Qs so yj = 0,j=0, 1,..., m-1.

This contradiction proves that the set {v,}fs¿ is linearly independent and hence

dim A+ im.

The proof that, under the hypothesis of Lemma 3.1, dim A~^m follows easily

from the inequality dim A+ ~¿,m by means of a convenient artifice. For /c = 0,

1,..., m, define functions äk(t) = ak( — t), t e ( — co, oo). Clearly äk e C"(— oo, oo)

and inf äk = inf ak = ck. Therefore, by what we have just shown, there exist m linearly

independent solutions ¿50, vu ..., vm-1 of the differential equation
m

0') 2 (-l)kD%äkDky) = 0
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such that D% eL2[0, oo) for Q&k£m, 0£j£m-l. If for j=0, 1,..., m-l,

o)j(t) = Vj( — t), it is easy to verify that ca¡ is a solution of

m

(1) 2 i-l)kDk(akDky) = 0.
k = 0

Therefore, since  DkcoJeL2( — co, 0], Ofík^m, and the set {otjffZo   ¡s linearly

independent, dim A~ ¡¿m.

The second assertion of Theorem 1 is a consequence of the following:

Lemma 3.3. Suppose in addition to the hypothesis of Lemma 3.1, ak is bounded

above as well as below for O^k^m. Ifu is a solution of( 1 ) such that Dku e L2( — oo, oo)

for O^k^m, then u(t) = 0 for all t e ( — oo, oo).

Proof. Referring to the proof of Lemma 2.3 we see that there exists a sequence

of function {h„}™= i such that

(29) un(t) = 0   if|r|è«+l,   uneC2m( -oo,oo),

and

(30) lim Dkun = Dku   in L2( - oo, oo)   forO ^ k Ú m.
n-> oo

Since for n=l, 2,...

un(s) 2 (- lfDk(akDku)(s) ds = 0,
J-" fc=0

it follows from (29) and integration by parts that

Joo       m
2 ak(s)(Dkun(s))(Dku(s)) ds = 0.

-°°   fc = 0

By the boundedness of ak, 0 is k á m, (30) implies that

Joo        m
2 afc(j)(/>*K(í))2 «& = 0.

- o°  )c = 0

Let the numbers d0, dx,..., dm and S >0 be defined as in the proof of Lemma 3.1.

Since 2fc = o dkoj2k^0, Lemma 2.3 implies that

Joo       m
2 dk(Dku(s))2 ds £ 0.

- oo  fc = o

Therefore

tn       /»oo w       /»oo wi       /» oo

S 2 (Mi))2*^2 (L>ku(s))2 ds+ 2 dk(D*u(s))a ds
k~-

m      «oom       /ico «i       /»oo

=  2 ck(Dku(s))2 ds¿ 2 flk(j)(Z)»ii(i))a ds = 0
/c=oJ-°° fc = 0 J - oo

and so w(f) — 0 for all t e ( — oo, oo).
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The second assertion of Theorem 1 now follows by a well known result in

algebra. Assuming the hypothesis of Lemma 3.3 we have as an equivalent statement

dimension A+ n A~ =0.

Therefore

dimension A + + dimension A ~ ^ dimension S = 2m

(see for example [2, §12, problem 7(b)]). But we have shown that dim^4+^m,

dim A~ ^m; hence dim A+ =dim,4~ =/n.

The final statement of Theorem 1 is a consequence of the following elementary

fact:

Lemma 3.4. Iffe C^O, oo) andfeL2[0, oo),f eL2[0, oo), then lim^/i^O.

Proof. The hypothesis implies that 2ff'eL1[0,oo). Therefore the identity

f(t)2=f(0)2 + 2 P0f(s)f'(s) ds implies that lim^«, f(t) exists. But feL2[0, oo) so

linw/(r) = 0.

This concludes the proof of Theorem 1.

4. Equations defined on a half-infinite interval—Examples. The following

statement is actually a corollary of Theorem 1 :

Theorem 2. Let ak,0^k^m, be real functions defined on the half-infinite interval

[b, oo) with ak e Ck. Assume each ak is bounded below and if ck = inf ak, O^k^m,

then cm>0 and the polynomial (2) has no zero or purely imaginary roots. If A denotes

the vector space of real solutions of

m

(1) ^(-\)kDk(akDky) = 0

k = 0

which together with their first m derivatives belong to L2[b, oo), then dim A^m. If

each ak is bounded above as well as below on [b, oo), then dim A = m.

Proof. Let y be a real C°° function defined on ( — oo, oo) such that

0 g <p(t) Ú 1,       ie(-oo, oo),

(31) 9>(0 = 0,       túb+1,

<p(t) = 1,       t ^ b + 2.

For k=0, 1,..., m, define ajf e Ck( — oo, oo) by the formula

«KO- [1-<p(0K+<p(íK(0-

Since for /c = 0, 1,..., m

inf   a* = inf ak = ck,
^ 00,00) [Ö.OO)

Theorem 1 implies that the differential equation

m

(1") 2 (-l)kDk(a*Dky) = 0
k = 0
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has m linearly independent solutions which together with their first m derivatives

belong to L2[0, oo). For t^b + 2 these solutions are also solutions of (1). Con-

tinuing these solutions back from ¿» + 2 to b we obtain m linearly independent

solutions of (1) which are in A. This proves the first assertion of Theorem 2.

Suppose that each ak is bounded above as well as below on [b, oo) and contrary

to the second assertion of Theorem 2, dim A^m+l. This clearly implies that (1")

has m +1 linearly independent solutions which together with their first m derivatives

belong to L2[0, oo). But if each ak is bounded above on [b, oo) each a£ is bounded

above on ( — oo, oo) so we have a contradiction to Theorem 1. This contradiction

proves Theorem 2.

We conclude with some simple but noteworthy examples:

1. Assume that both the first and second hypothesis of Theorem 1 and in ad-

dition that each ak is periodic with the same period T>0. It is known (see for

example [1, Chapter 3]) that every solution of (1) can be expressed as a linear

combination of solutions of the form

(32) e» 2 PAW
i = o

where pi(t + T)=pj(t). The numbers A are the characteristic numbers of (1). If y is

a solution of (1) then y e A+ (y e A~) if and only if in the linear combination of the

solutions of the form (32) (comprising y) those solutions with Re (A) ä 0 (Re (A) ̂  0)

do not appear. Hence if E+ (E~) denotes the subspace of solutions tending to zero

exponentially as f-»- +oo (r-> — oo) it follows that E+ =A + , E~ =A~. Hence by

Theorem 1,

(33) dimension E+ = dimension E~ = m,

(34) dimension E+ n E~ = 0.

From the above discussion it also follows that if yeE+ (yeE~) and y is not

identically zero then y is unbounded on ( — oo, 0] (on [0, oo)). Thus since (33) and

(34) imply that every solution y of (1) can be represented uniquely in the form

y=yx+y2, yxe E + , y2e E~ it follows that there exists no nontrivial solution of (1)

bounded on ( —co, co). In particular, (1) has no periodic solution other than the

trivial one.

2. Consider the fourth order selfadjoint differential equation

(35) wr+to/y+w = o.
If reC2[b, oo),q e Cx[b, oo),/» e C[b, oo), inf r = R >0, sup q=Q< +oo, infp=P>0,

and either Q < 0 or Q2 — 4RP < 0, then by Theorem 2, there exist two independent

solutions uk, k=l, 2, of (35) such that uk, u'k eL2[b, oo), k= 1, 2. For the special

case r(t)=l,q(t) = 0 for all t e [b, oo), this result was discovered by Svec [3].

3. Finally consider the classical second order selfadjoint equation

(36) (ry')'+qy = 0
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where r e Cx[b, oo), q e C[b, co). If

sup r = R < 0,        inf q = Q > 0,

then by Theorem 2, (36) has a nontrivial solution u such that u, u' eL2[b, oo). It is

easy to see that any other solution of (36) with this property must be of the form cu.

Indeed if v is a solution with f(¿»)>0, v'(b)>0 then since drvv'¡dt = r(v')2—qv2<Q,

v(t)>0, v'(t)>0 for all / e [b, oo). Since u and v are independent solutions of (36)

any other solution y has the form c^u + c2v and hence y, y' e L2[b, oo) if and only if

c2 = 0. Thus dimension A= 1 regardless of whether or not r is bounded below and

q is bounded above.
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