ON THE SOLUTIONS OF A CLASS OF LINEAR SELFADJOINT DIFFERENTIAL EQUATIONS

BY
LARRY R. ANDERSON(1) AND A. C. LAZER(2)

Abstract. Let L be a linear selfadjoint ordinary differential operator with coefficients which are real and sufficiently regular on $(-\infty, \infty)$. Let A^+ (A^-) denote the subspace of the solution space of Ly=0 such that $y\in A^+$ $(y\in A^-)$ iff $D^ky\in L^2[0,\infty)$ $(D^ky\in L^2(-\infty,0])$ for $k=0,1,\ldots,m$ where 2m is the order of L. A sufficient condition is given for the solution space of Ly=0 to be the direct sum of A^+ and A^- . This condition which concerns the coefficients of L reduces to a necessary and sufficient condition when these coefficients are constant. In the case of periodic coefficients this condition implies the existence of an exponential dichotomy of the solution space of Ly=0.

1. **Introduction.** The object of study of this paper is the general linear homogeneous selfadjoint differential equation which for convenience we shall write in the form

(1)
$$\sum_{k=0}^{m} (-1)^k D^k a_k D^k y = 0,$$

where $D^k y \equiv d^k y/dt^k$.

Except when otherwise stated we will assume throughout that for each k=0, $1, \ldots, m$, $a_k(t)$ is real valued, $a_k \in C^k(-\infty, \infty)$ and $a_m(t) \neq 0$ for all $t \in (-\infty, \infty)$.

The motivation for this paper comes from the case when $a_k(t) = c_k = \text{constant}$, k = 0, 1, ..., m. In this case the solutions of (1) are determined entirely by the zeros of the polynomial

(2)
$$p(\lambda) = \sum_{k=0}^{m} (-1)^k c_k \lambda^{2k}.$$

Since only even powers of λ appear in p it follows that if $\mu \neq 0$ is a zero of p of multiplicity r then $-\mu$ is also a zero of p of multiplicity r and the functions $t^j e^{\mu t}$, $t^j e^{-\mu t}$, $j = 0, 1, \ldots, r-1$, form a set of 2r linearly independent solutions of (1). Consequently if $p(\lambda)$ has no zero or purely imaginary roots and S denotes the set of solutions of (1) considered as a complex vector space of dimension 2m, then S has a simple geometrical description. Namely, if E^+ denotes the subspace of S consisting

Received by the editors August 27, 1969.

AMS subject classifications. Primary 3420, 3422.

Key words and phrases. L² solutions of linear differential equations, periodic coefficients, asymptotic behavior of solutions.

⁽¹⁾ Partially supported by NASA under grant no. NS G(T)-42.

⁽²⁾ Partially supported by NSF under grant no. NSF GP-8961.

of solutions of (1) which together with their derivatives tend to zero exponentially as $t \to \infty$ and E^- denotes the subspace of S consisting of solutions of (1) which together with their derivatives tend to zero as $t \to -\infty$ exponentially then dimension E^+ edimension $E^- = m$, dimension $E^+ \cap E^- = 0$. Therefore S will split into the direct sum of E^+ and E^- .

The objective of this paper is to give a partial extension of this simple observation to a class of equations of the form (1) with variable coefficients. For simplicity we will only consider real solutions. Henceforth S will denote the set of real solutions of (1) considered as a real vector space of dimension 2m.

THEOREM 1. Assume that for each $k=0, 1, ..., m, a_k(t)$ is bounded below on $(-\infty, \infty)$ and define

$$(3) c_k = \inf a_k(t).$$

Let A^+ and A^- denote the subspaces of S defined by

(4)
$$A^{+} = \left\{ v \in S \middle| \begin{array}{l} D^{k}v \in L^{2}[0, \infty) \\ 0 \leq k \leq m \end{array} \right\},$$

(5)
$$A^{-} = \left\{ v \in S \middle| \begin{array}{l} D^{k}v \in L^{2}(-\infty, 0] \\ 0 \le k \le m \end{array} \right\}.$$

If

$$(6) c_m > 0$$

and the polynomial p defined by (2) has no zero or purely imaginary roots then

$$\dim A^+ \ge m$$
, $\dim A^- \ge m$.

If, in addition, each $a_k(t)$ is bounded above as well as below then

dimension
$$A^+ = dimension A^- = m$$

and

dimension
$$A^+ \cap A^- = 0$$

so that S is the direct sum of A^+ and A^- .

If $v \in A^+$ $(v \in A^-)$ then

$$\lim_{t\to\infty} D^k v = 0 \qquad \left(\lim_{t\to-\infty} D^k v = 0\right), \qquad k = 0, 1, \ldots, m-1.$$

To the best of our knowledge the only literature connected with Theorem 1 is a remarkable paper by M. Švec [3] which deals with the fourth order equation $d^4y/dt^4+p(t)y=0$ where p is defined and continuous on a half-infinite interval $[c,\infty)$. Švec showed that if p is bounded below by a positive constant then there exist two linearly independent solutions of the differential equation which belong to $L^2[c,\infty)$ and tend to zero as $t\to\infty$. As an application of Theorem 2, which

is similar to Theorem 1 but concerns the differential equation (1) when the a_k are only defined on a half-infinite interval $[c, \infty)$, we shall generalize Svec's result.

The proof of Theorem 1 will be deferred until after we have established some auxiliary lemmas.

2. Some preliminary lemmas.

LEMMA 2.1. Let d_k , k = 0, 1, ..., m, be real numbers with the property that

$$q(\omega) = \sum_{k=0}^{m} d_k \omega^{2k} \ge 0$$

for all real ω . Let f be a real function of class C^{m-1} on [-T, T], T > 0, and sectionally of class C^m on this interval, i.e. there exist numbers t_j , $j=1,\ldots,N-1$, such that

$$-T = t_0 < t_1 < \cdots < t_{N-1} < t_N = T$$

and f is of class C^m on each of the intervals $[t_{j-1}, t_j], j=1, \ldots, N$. If

$$D^k f(-T) = D^k f(T) = 0, \qquad k = 0, 1, ..., m-1,$$

then

1970]

$$\int_{-T}^{T} \sum_{k=0}^{m} d_k (D^k f(s))^2 ds \ge 0.$$

Proof. If for $t \in [-\pi, \pi]$ we define $F(t) = f(tT/\pi)$ then F is of class C^{m-1} on $[-\pi, \pi]$, F is sectionally of class C^m on this interval,

(7)
$$D^k F(-\pi) = D^k F(\pi) = 0, \quad 0 \le k \le m-1,$$

and

8)
$$\int_{-T}^{T} \sum_{k=0}^{m} d_k (D^k f(s))^2 ds = \frac{1}{r} \int_{-\pi}^{\pi} \sum_{k=0}^{m} d_k r^{2k} (D^k F(u))^2 du,$$

where $r = \pi/T$.

For each i=0, +1, +2,... let

$$\gamma_{j} = \frac{1}{(2\pi)^{1/2}} \int_{-\pi}^{\pi} F(u) e^{-iju} du,$$

Integration by parts and (7) yield

(9)
$$(-ij)^k \gamma_j = \frac{1}{(2\pi)^{1/2}} \int_{-\pi}^{\pi} D^k F(u) e^{-iju} du,$$

for $k=1,\ldots,m-1$. Since $D^m F$ is sectionally continuous it follows by dividing the interval of integration in (9) into suitable subintervals that (9) is also true for k = m.

The orthonormal functions

$$(1/(2\pi)^{1/2})e^{iju}, \quad j=0,\pm 1,\pm 2,\ldots,$$

form a complete set in $L^2[-\pi, \pi]$, so by Parseval's formula

$$\int_{-\pi}^{\pi} (D^{k}F(u))^{2} du = \sum_{j=-\infty}^{\infty} j^{2k} |\gamma_{j}|^{2}$$

for k = 0, 1, ..., m ($0^0 \equiv 1$ in the above and following identity). Hence

$$\int_{-\pi}^{\pi} \sum_{k=0}^{m} d_k r^{2k} (D^k F(u))^2 du = \sum_{k=0}^{m} d_k r^{2k} \sum_{j=-\infty}^{\infty} j^{2k} |\gamma_j|^2$$

$$= \sum_{j=-\infty}^{\infty} |\gamma_j|^2 \sum_{k=0}^{m} d_k (jr)^{2k} = \sum_{j=-\infty}^{\infty} |\gamma_j|^2 q(rj) \ge 0.$$

By (8), this proves the lemma.

LEMMA 2.2. Let the real numbers d_0, d_1, \ldots, d_m satisfy the same hypothesis as in Lemma 2.1. Let f be a real valued function defined and of class C^m on the interval [0, T], T > 0. If

(10)
$$D^k f(T) = 0, \quad 0 \le k \le m-1,$$

and for some fixed integer j with $0 \le j \le m-1$,

(11)
$$D^k f(0) = 0, \quad k \neq j, 0 \leq k \leq m-1,$$

then

$$\sum_{k=0}^m \int_0^T d_k(D^k f(s))^2 ds \ge 0.$$

Proof. We define a function g on [-T, T] as follows:

If j is an even integer

$$g(t) = f(t), 0 \le t \le T,$$

= $f(-t), -T \le t < 0.$

If j is an odd integer

$$g(t) = f(t), 0 \le t \le T,$$

= $-f(-t), -T \le t < 0.$

Using (11) it is easy to verify that g is of class C^{m-1} on [-T, T] and sectionally of class C^m on this interval since $D^m g$ has both left-hand and right-hand limits at t=0. From (10) $D^k g(-T) = D^k g(T) = 0$, $0 \le k \le m-1$. Thus Lemma 1.1 is applicable and

$$\int_{-T}^{T} \sum_{k=0}^{m} d_k (D^k g(s))^2 ds \geq 0.$$

But

$$\int_0^T \sum_{k=0}^m d_k (D^k f(s))^2 ds = \frac{1}{2} \int_{-T}^T \sum_{k=0}^m d_k (D^k g(s))^2 ds$$

and the assertion of the lemma follows.

LEMMA 2.3. Let the real numbers d_0, d_1, \ldots, d_m satisfy the same hypothesis as in Lemma 2.1. If $f \in C^m(-\infty, \infty)$ and $D^k f \in L^2(-\infty, \infty)$, $k = 0, 1, \ldots, m$, then

$$\int_{-\infty}^{\infty} \sum_{k=0}^{m} d_k (D^k f(s))^2 ds \ge 0.$$

Proof. This result is almost an immediate consequence of Lemma 2.1. Let $\varphi(t)$ be a real valued function defined and of class C^{∞} on the real line such that $\varphi(t) = 1$ for $t \leq \frac{1}{2}$ and $\varphi(t) = 0$ for $t \geq 1$. For each positive integer n let θ_n be the C^{∞} function defined by

$$\theta_n(t) = 1, 0 \le t \le n,$$

$$= \varphi(t-n), n < t,$$

$$= \theta_n(-t), t < 0.$$

Let $f_n = \theta_n f$ for $n = 1, 2, \ldots$ Since $D^k \theta_n$ is bounded independently of n for $0 \le k \le m$ there exists a fixed constant L such that

$$(D^k f_n)^2 \leq L \sum_{j=0}^m (D^j f)^2$$

for k and n in the same range. For each fixed $t \in (-\infty, \infty)$, $\lim_{n\to\infty} D^k f_n(t) = D^k f(t)$ so by the dominated convergence theorem

$$\int_{-\infty}^{\infty} \sum_{k=0}^{m} d_k (D^k f(s))^2 ds = \lim_{n \to \infty} \int_{-\infty}^{\infty} \sum_{k=0}^{n} d_k (D^k f_n(s))^2 ds.$$

Since for each n, f_n has compact support, it follows from Lemma 2.1 that

$$\int_{-\infty}^{\infty} \sum_{k=0}^{n} d_k (D^k f_n(s))^2 ds \ge 0.$$

This proves the lemma.

3. **Proof of Theorem 1.** In addition to the preliminary lemmas the proof of Theorem 1 will depend on a certain identity which we first establish.

For each solution y of (1) we define a function F[y] on $(-\infty, \infty)$ by the formula

(12)
$$F[y](t) = \sum_{k=1}^{m} \sum_{j=0}^{k-1} (-1)^{j+k} (D^j y)(t) (D^{k-j-1} a_k D^k y)(t).$$

According to (1)

$$\int_0^t y(s) \sum_{k=0}^m (-1)^k (D^k a_k D^k y)(s) \, ds = 0$$

so by the integration by parts formula

$$\int_0^t y D^k z \, ds = \sum_{j=0}^{k-1} (-1)^j (D^j y) (D^{k-j-1} z) \Big]_0^t + (-1)^k \int_0^t z D^k y \, ds,$$

we obtain the important identity

(13)
$$F[y](t) = F[y](0) - \sum_{k=0}^{m} \int_{0}^{t} a_{k}(s)(D_{k}y(s))^{2} ds.$$

The proof of Theorem 1 will be broken up into several lemmas.

LEMMA 3.1. Let the coefficients $a_k(t)$ be bounded below on $(-\infty, \infty)$ and assume that the numbers c_k satisfy the hypothesis of Theorem 1. Let v be a solution of (1) such that for some number T>0,

(14)
$$D^k v(T) = 0, \quad 0 \le k \le m-1,$$

and for some fixed integer j with $0 \le j \le m-1$,

(15)
$$D^k v(0) = 0, \quad k \neq j, 0 \leq k \leq m-1.$$

There exists a number M > 0 independent of both v and T, such that

(16)
$$\sum_{k=0}^{m} \int_{0}^{T} (D^{k}v(s))^{2} ds \leq MF[v](0).$$

Proof. Since the polynomial $p(\lambda) = \sum_{k=0}^{m} (-1)^k c_k \lambda^{2k}$ has no zero or purely imaginary roots it follows that if $Q(\omega) \equiv p(i\omega) = \sum_{k=0}^{m} c_k \omega^{2k}$ then $Q(\omega) \neq 0$ for all $\omega \in (-\infty, \infty)$. According to assumption (6) $c_m > 0$ and hence

(17)
$$\lim_{\omega \to +\infty} Q(\omega) = +\infty.$$

Thus $Q(\omega) > 0$ for all real ω and in particular $Q(0) = c_0 > 0$. This together with (17) implies the existence of a number $\delta > 0$ such that if

$$(18) d_k \equiv c_k - \delta, 0 \le k \le m,$$

then

(19)
$$q(\omega) \equiv \sum_{k=0}^{m} d_k \omega^{2k} \ge 0, \qquad \omega \in (-\infty, \infty).$$

Now by (14) and (12) it follows that F[v](T) = 0 and so by (13)

$$F[v](0) = \sum_{k=0}^{m} \int_{0}^{T} a_{k}(s) (D^{k}v(s))^{2} ds.$$

From (2) $a_k(t) \ge c_k$, $0 \le k \le m$, so by using (18) we have

$$F[v](0) \ge \sum_{k=0}^{m} \int_{0}^{T} c_{k}(D^{k}v(s))^{2} ds = \sum_{k=0}^{m} \int_{0}^{T} d_{k}(D^{k}v(s))^{2} ds + \delta \sum_{k=0}^{m} \int_{0}^{T} (D^{k}v(s))^{2} ds.$$

From (14), (15) and (19) we observe that the function v and the numbers d_k satisfy the hypothesis of Lemma 2.2 and hence

$$\sum_{k=0}^m \int_0^T d_k(D^k v(s))^2 ds \ge 0.$$

The assertion of the lemma follows by setting $M = 1/\delta$.

LEMMA 3.2. Let the hypothesis of Lemma 3.1 hold. For each integer j with $0 \le j \le m-1$ there exists a solution v_j of (1) such that

(20)
$$D^{k}v_{j} \in L^{2}[0, \infty), \qquad 0 \leq k \leq m, \\ D^{k}v_{i}(0) = 0, \qquad k \neq j, 0 \leq k \leq m-1,$$

and

$$(21) D^t v_t(0) \neq 0.$$

Proof. Let z_i , $0 \le i \le 2m-1$, denote the solution of (1) defined by the initial conditions

(22)
$$D^{k}z_{i}(0) = \delta_{ik} = 0, \quad i \neq k, \\ = 1, \quad i = k.$$

The solutions $z_0, z_1, \ldots, z_{2m-1}$ obviously form a basis for the vector space S.

Let $0 \le j \le m-1$. By a well-known result of algebra, for each positive integer n there exist m+1 numbers, which we denote by b_n^j , b_n^m , b_n^{m+1} , ..., b_n^{2m-1} , not all zero such that

(23)
$$b_n^j D^k z_j(n) + \sum_{i=m}^{2m-1} b_n^i D^k z_i(n) = 0 \quad \text{for } k = 0, 1, \dots, m-1.$$

By a suitable normalization we may further assume that for all $n=0, 1, 2, \ldots$,

(24)
$$(b_n^j)^2 + \sum_{i=m}^{2m-1} (b_n^i)^2 = 1.$$

For each positive integer n consider the solution

(25)
$$v_{jn} = b_n^j z_j + \sum_{i=m}^{2m-1} b_n^i z_i.$$

From (22) and (23) $D^k v_{jn}(0) = 0$, $k \neq j$, $0 \le k \le m-1$, $D^k v_{jn}(n) = 0$, $0 \le k \le m-1$. Thus if M is defined as in Lemma 3.1, it follows that for all n = 0, 1, 2, ...,

(26)
$$\sum_{k=0}^{m} \int_{0}^{n} (D^{k}v_{jn}(s))^{2} ds \leq MF[v_{jn}](0).$$

Condition (24) implies the existence of a sequence of integers $\{n_h\}$ and m+1 numbers b^i , b^m , b^m , b^{m+1} , ..., b^{2m-1} such that $\lim_{h\to\infty} b^i_{n_h} = b^i$, i=j, $m \le i \le 2m-1$, and

(27)
$$(b^{j})^{2} + \sum_{i=m}^{2m-1} (b^{i})^{2} = 1.$$

We will show that the solution

(28)
$$v_{j} = b^{j}z_{j} + \sum_{i=m}^{2m-1} b^{i}z_{i}$$

fulfills the assertion of the lemma.

Fix t>0. Since by (25) the sequences $\{D^k v_{jn_h}\}$ converges uniformly to $D^k v_j$, $0 \le k \le m$, on bounded intervals

$$\sum_{k=0}^{m} \int_{0}^{t} (D^{k}v_{j}(s))^{2} ds = \lim_{h \to \infty} \sum_{k=0}^{m} \int_{0}^{t} (D^{k}v_{jnh}(s))^{2} ds.$$

For $n_h \ge t$ it follows by (26) that

$$\sum_{k=0}^{m} \int_{0}^{t} (D^{k} v_{jn_{h}}(s))^{2} ds \leq \sum_{k=0}^{m} \int_{0}^{n_{h}} (D^{k} v_{jn_{h}}(s))^{2} ds \leq MF[v_{jn_{h}}](0).$$

From (12), (25), and (28) we see that

$$\lim_{h\to\infty} F[v_{jn_h}](0) = F[v_j](0).$$

Hence

$$\sum_{k=0}^{m} \int_{0}^{t} (D^{k}v_{j}(s))^{2} ds \leq MF[v_{j}](0).$$

Since t>0 was arbitrary this implies that $D^k v_i \in L^2[0,\infty)$ for $0 \le k \le m$ and

$$\sum_{k=0}^{m} \int_{0}^{\infty} (D^{k}v_{j}(s))^{2} ds \leq MF[v_{j}](0).$$

Finally, suppose contrary to the lemma $D^i v_i(0) = 0$. By (22) and (28) $D^k v_i(0) = 0$, $0 \le k \le m-1$, so by (12) $F[v_i(0)] = 0$. Hence

$$\sum_{k=0}^{m} \int_{0}^{\infty} (D^{k} v_{j}(s))^{2} ds = 0$$

and $v_j(t)=0$ for all t. This, however, contradicts (27), (28) and the linear independence of the solutions $z_j, z_m, z_{m+1}, \ldots, z_{2m-1}$. Hence $D^j v_j(0) \neq 0$ and the lemma is proved.

From this lemma the first assertion of Theorem 1 follows immediately. For each j with $0 \le j \le m-1$, let v_j be the solution whose existence was established above. If v_0, v_1, v_{m-1} were not linearly independent, there would exist numbers $\gamma_0, \gamma_1, \ldots, \gamma_{m-1}$, not all zero such that

$$\sum_{i=0}^{m-1} \gamma_i v_i(t) = 0$$

for all t. But $D^k v_j(0) = 0$, $k \neq j$, $0 \leq k \leq m-1$, $D^j v_j(0) \neq 0$, so $\gamma_j = 0, j = 0, 1, \ldots, m-1$. This contradiction proves that the set $\{v_j\}_{j=0}^{m-1}$ is linearly independent and hence dim $A^+ \geq m$.

The proof that, under the hypothesis of Lemma 3.1, dim $A^- \ge m$ follows easily from the inequality dim $A^+ \ge m$ by means of a convenient artifice. For k = 0, $1, \ldots, m$, define functions $\tilde{a}_k(t) = a_k(-t)$, $t \in (-\infty, \infty)$. Clearly $\tilde{a}_k \in C^k(-\infty, \infty)$ and inf $\tilde{a}_k = \inf a_k = c_k$. Therefore, by what we have just shown, there exist m linearly independent solutions $\tilde{v}_0, \tilde{v}_1, \ldots, \tilde{v}_{m-1}$ of the differential equation

(1')
$$\sum_{k=0}^{m} (-1)^k D^k (\tilde{a}_k D^k y) = 0$$

such that $D^k \tilde{v}_j \in L^2[0, \infty)$ for $0 \le k \le m$, $0 \le j \le m-1$. If for $j=0, 1, \ldots, m-1$, $\omega_j(t) = \tilde{v}_j(-t)$, it is easy to verify that ω_j is a solution of

(1)
$$\sum_{k=0}^{m} (-1)^k D^k (a_k D^k y) = 0.$$

Therefore, since $D^k \omega_j \in L^2(-\infty, 0]$, $0 \le k \le m$, and the set $\{\omega_j\}_{j=0}^{m-1}$ is linearly independent, dim $A^- \ge m$.

The second assertion of Theorem 1 is a consequence of the following:

LEMMA 3.3. Suppose in addition to the hypothesis of Lemma 3.1, a_k is bounded above as well as below for $0 \le k \le m$. If u is a solution of (1) such that $D^k u \in L^2(-\infty, \infty)$ for $0 \le k \le m$, then u(t) = 0 for all $t \in (-\infty, \infty)$.

Proof. Referring to the proof of Lemma 2.3 we see that there exists a sequence of function $\{u_n\}_{n=1}^{\infty}$ such that

(29)
$$u_n(t) = 0 \text{ if } |t| \ge n+1, \quad u_n \in C^{2m}(-\infty, \infty),$$

and

(30)
$$\lim_{n\to\infty} D^k u_n = D^k u \quad \text{in } L^2(-\infty,\infty) \quad \text{for } 0 \le k \le m.$$

Since for $n=1, 2, \ldots$

$$\int_{-\infty}^{\infty} u_n(s) \sum_{k=0}^{m} (-1)^k D^k(a_k D^k u)(s) ds = 0,$$

it follows from (29) and integration by parts that

$$\int_{-\infty}^{\infty} \sum_{k=0}^{m} a_k(s)(D^k u_n(s))(D^k u(s)) ds = 0.$$

By the boundedness of a_k , $0 \le k \le m$, (30) implies that

$$\int_{-\infty}^{\infty} \sum_{k=0}^{m} a_k(s) (D^k u(s))^2 ds = 0.$$

Let the numbers d_0, d_1, \ldots, d_m and $\delta > 0$ be defined as in the proof of Lemma 3.1. Since $\sum_{k=0}^{m} d_k \omega^{2k} \ge 0$, Lemma 2.3 implies that

$$\int_{-\infty}^{\infty} \sum_{k=0}^{m} d_k (D^k u(s))^2 ds \ge 0.$$

Therefore

$$\delta \sum_{k=0}^{m} \int_{-\infty}^{\infty} (D_k u(s))^2 ds \le \delta \sum_{k=0}^{m} \int_{-\infty}^{\infty} (D_k u(s))^2 ds + \sum_{k=0}^{m} \int_{-\infty}^{\infty} d_k (D^k u(s))^2 ds$$

$$= \sum_{k=0}^{m} \int_{-\infty}^{\infty} c_k (D^k u(s))^2 ds \le \sum_{k=0}^{m} \int_{-\infty}^{\infty} a_k (s) (D^k u(s))^2 ds = 0$$

and so u(t) = 0 for all $t \in (-\infty, \infty)$.

The second assertion of Theorem 1 now follows by a well known result in algebra. Assuming the hypothesis of Lemma 3.3 we have as an equivalent statement

dimension
$$A^+ \cap A^- = 0$$
.

Therefore

dimension A^+ + dimension $A^- \leq$ dimension S = 2m

(see for example [2, §12, problem 7(b)]). But we have shown that dim $A^+ \ge m$, dim $A^- \ge m$; hence dim $A^+ = \dim A^- = m$.

The final statement of Theorem 1 is a consequence of the following elementary fact:

LEMMA 3.4. If $f \in C^1[0, \infty)$ and $f \in L^2[0, \infty)$, $f' \in L^2[0, \infty)$, then $\lim_{t \to \infty} f(t) = 0$.

Proof. The hypothesis implies that $2ff' \in L^1[0, \infty)$. Therefore the identity $f(t)^2 = f(0)^2 + 2 \int_0^t f(s)f'(s) ds$ implies that $\lim_{t\to\infty} f(t)$ exists. But $f \in L^2[0, \infty)$ so $\lim_{t\to\infty} f(t) = 0$.

This concludes the proof of Theorem 1.

4. Equations defined on a half-infinite interval—Examples. The following statement is actually a corollary of Theorem 1:

THEOREM 2. Let a_k , $0 \le k \le m$, be real functions defined on the half-infinite interval $[b, \infty)$ with $a_k \in C^k$. Assume each a_k is bounded below and if $c_k = \inf a_k$, $0 \le k \le m$, then $c_m > 0$ and the polynomial (2) has no zero or purely imaginary roots. If A denotes the vector space of real solutions of

(1)
$$\sum_{k=0}^{m} (-1)^k D^k (a_k D^k y) = 0$$

which together with their first m derivatives belong to $L^2[b, \infty)$, then dim $A \ge m$. If each a_k is bounded above as well as below on $[b, \infty)$, then dim A = m.

Proof. Let φ be a real C^{∞} function defined on $(-\infty, \infty)$ such that

(31)
$$0 \leq \varphi(t) \leq 1, \qquad t \in (-\infty, \infty),$$
$$\varphi(t) = 0, \qquad t \leq b+1,$$
$$\varphi(t) = 1, \qquad t \geq b+2.$$

For k=0, 1, ..., m, define $a_k^* \in C^k(-\infty, \infty)$ by the formula

$$a_k^*(t) = [1 - \varphi(t)]c_k + \varphi(t)a_k(t).$$

Since for $k=0, 1, \ldots, m$

$$\inf_{(-\infty,\infty)} a_k^* = \inf_{[b,\infty)} a_k = c_k,$$

Theorem 1 implies that the differential equation

(1")
$$\sum_{k=0}^{m} (-1)^k D^k (a_k^* D^k y) = 0$$

has m linearly independent solutions which together with their first m derivatives belong to $L^2[0, \infty)$. For $t \ge b+2$ these solutions are also solutions of (1). Continuing these solutions back from b+2 to b we obtain m linearly independent solutions of (1) which are in A. This proves the first assertion of Theorem 2.

Suppose that each a_k is bounded above as well as below on $[b, \infty)$ and contrary to the second assertion of Theorem 2, dim $A \ge m+1$. This clearly implies that (1'') has m+1 linearly independent solutions which together with their first m derivatives belong to $L^2[0, \infty)$. But if each a_k is bounded above on $[b, \infty)$ each a_k^* is bounded above on $(-\infty, \infty)$ so we have a contradiction to Theorem 1. This contradiction proves Theorem 2.

We conclude with some simple but noteworthy examples:

1. Assume that both the first and second hypothesis of Theorem 1 and in addition that each a_k is periodic with the same period T>0. It is known (see for example [1, Chapter 3]) that every solution of (1) can be expressed as a linear combination of solutions of the form

(32)
$$e^{\lambda t} \sum_{i=0}^{r} p_i(t) t^i$$

where $p_j(t+T)=p_j(t)$. The numbers λ are the *characteristic numbers* of (1). If y is a solution of (1) then $y \in A^+$ ($y \in A^-$) if and only if in the linear combination of the solutions of the form (32) (comprising y) those solutions with Re (λ) \geq 0 (Re (λ) \leq 0) do not appear. Hence if E^+ (E^-) denotes the subspace of solutions tending to zero exponentially as $t \to +\infty$ ($t \to -\infty$) it follows that $E^+=A^+$, $E^-=A^-$. Hence by Theorem 1,

(33) dimension
$$E^+ = \text{dimension } E^- = m$$
,

(34)
$$\dim E^+ \cap E^- = 0.$$

From the above discussion it also follows that if $y \in E^+$ ($y \in E^-$) and y is not identically zero then y is unbounded on $(-\infty, 0]$ (on $[0, \infty)$). Thus since (33) and (34) imply that every solution y of (1) can be represented uniquely in the form $y = y_1 + y_2$, $y_1 \in E^+$, $y_2 \in E^-$ it follows that there exists no nontrivial solution of (1) bounded on $(-\infty, \infty)$. In particular, (1) has no periodic solution other than the trivial one.

2. Consider the fourth order selfadjoint differential equation

(35)
$$(ry'')'' + (qy')' + py = 0.$$

If $r \in C^2[b, \infty)$, $q \in C^1[b, \infty)$, $p \in C[b, \infty)$, inf r = R > 0, sup $q = Q < +\infty$, inf p = P > 0, and either Q < 0 or $Q^2 - 4RP < 0$, then by Theorem 2, there exist two independent solutions u_k , k = 1, 2, of (35) such that u_k , $u'_k \in L^2[b, \infty)$, k = 1, 2. For the special case r(t) = 1, q(t) = 0 for all $t \in [b, \infty)$, this result was discovered by Švec [3].

3. Finally consider the classical second order selfadjoint equation

$$(36) (ry')' + qy = 0$$

where $r \in C^1[b, \infty)$, $q \in C[b, \infty)$. If

$$\sup r = R < 0, \quad \inf q = Q > 0,$$

then by Theorem 2, (36) has a nontrivial solution u such that u, $u' \in L^2[b, \infty)$. It is easy to see that any other solution of (36) with this property must be of the form cu. Indeed if v is a solution with v(b) > 0, v'(b) > 0 then since $drvv'/dt = r(v')^2 - qv^2 < 0$, v(t) > 0, v'(t) > 0 for all $t \in [b, \infty)$. Since u and v are independent solutions of (36) any other solution v has the form $c_1u + c_2v$ and hence v, $v' \in L^2[b, \infty)$ if and only if v = 0. Thus dimension v = 1 regardless of whether or not v = 1 is bounded below and v = 1 is bounded above.

REFERENCES

- 1. Earl A. Coddington and Norman Levinson, *Theory of ordinary differential equations*, McGraw-Hill, New York, 1955. MR 16, 1022.
- 2. Paul R. Halmos, *Finite dimensional vector spaces*, 2nd ed., The University Series in Undergraduate Math., Van Nostrand, Princeton, N. J., 1958. MR 19, 725.
- 3. M. Švec, Sur le comportement asymptotique des intégrals de l'équation différentielle $y^{(4)} + Q(x)y = 0$, Czechoslovak Math. J. 8 (83) (1958), 230-245. MR 21 #167.

Whitman College,
Walla Walla, Washington 99362
Case Western Reserve University,
Cleveland, Ohio 44106