
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 152, December 1970

ON THE COHOMOLOGY OF STABLE TWO STAGE

POSTNIKOV SYSTEMS

BY

JOHN R. HARPER

Abstract. We study the cohomology of certain fibre spaces. The spaces are the

total spaces of stable two stage Postnikov systems. We study their cohomology as

Hopf algebras over the Steenrod algebra. The first theorem determines the cohomology

as a Hopf algebra over the ground field, the algebra structure being known previously.

The second theorem relates the action of the Steenrod algebra to the Hopf algebra

structure and other available structures. The work is in the direction of explicit

computations of these structures but is not quite complete with regard to the action

of the Steenrod algebra. The ideas of Massey and Peterson [7], Mem. Amer. Math.

Soc. No. 74, are used extensively, and mod 2 cohomology is used throughout.

Introduction. Let F-> E-> B be a two stage Postinkov system with stable k-

invariant. Under several special assumptions (listed in §3) we study the mod 2

cohomology of Ü.E over the Steenrod algebra A. We shall suppress further mention

of the coefficient group, since mod 2 cohomology is used exclusively.

A complete description of H*(£IE) as an algebra overZ2 is available in [3], [11],

[6] and [7]. These papers also contain certain information about the other structures.

What has been missing are methods for explicitly calculating coproducts for the

Hopf algebra structure and the action of the Steenrod algebra. Theorem 3.2,

combined with results of [6] and [7], solves the first of these problems and gives

partial information about the second.

We use the work of [6] and [7] as our starting point. Our main contribution is

Theorem 3.2. It gives coproducts for a certain subset of H*(D£). The fundamental

sequence of the two stage Postnikov system gives one a systematic means of

extending the information of Theorem 3.2, to obtain the coproduct for H*(Q.E).

The fundamental sequence also provides a systematic means of using the H-

structure to obtain information about the ^-structure. It would be instructive to

have the connection between the //-structure and /1-structure expressed in a

functorial manner.

The paper is organized as follows. In §1 terminology and definitions are given.

In §2 we study special cases.

The proof of Theorem 3.2 appears in §3. Essentially the proof is a reduction of

general cases to one of the special cases of §2. In §4 we use the //-structure to gain
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results about the /i-structure. §5 contains examples. The reader may prefer to look

at §5 prior to §4.

A recent paper of Milgram [8] contains results for cases included in this work.

His method is inference from the 7/-structure to the /i-structure. This method has a

fairly long history, see [1], [5] and [10].

Kristensen [4] has announced a method which determines the ^-structure of two

stage spaces. His methods are different from those used here. Different methods are

also available in [9].

It is a pleasure to acknowledge information obtained from Donald Anderson,

William Massey, Frank Peterson and Hans Salomonsen. Peterson made several

helpful remarks about early versions of this work. Salomonsen aided me in

improving the proof of Theorem 3.2. Anderson suggested example D of §5. Massey

made a number of suggestions and comments about earlier drafts of this paper.

His remarks were especially helpful in directing the exposition into its present form.

C. K. Cheng has informed me that he has obtained the lemmas of §2 as part of

his study of unstable two stage Postnikov systems.

1. Unstable ^-modules and fibre spaces. In this section we review some of the

ideas and results of [7]. We obtain lemmas and constructions which are used in the

proofs of the main theorems. We assume the reader is familiar with [7].

Let A denote the mod 2 Steenrod algebra. Let M be a module over A. We assume

all modules are graded by the nonnegative integers, are locally finite and defined

over Z2. M is called unstable if

Sqn x = 0,       n > grade x.

An algebra over A is unstable if it is unstable as a module and

Sq" x = x2,       n = grade x.

Let %{M) denote the free unstable yl-algebra on M as defined in [12]. We let Fn

denote the free unstable ^-module on a single generator of grade n. Fn is a cyclic

^4-module and can be expressed (F„)( = (AIB(n))i-n where B{ri)<^A is the left ideal

of cohomology operations which annihilate all «-dimensional classes. It is useful

to recall from [12] that a Z2-basis for Fn consists of all Sq / where / is admissible

with excess ^n. If K(n, n) is an Eilenberg-Mac Lane space, then H*(tt, n) = <%(X)

for some unstable ^(-module X. See [7, p. 36] for a detailed description of the cases

that interest us.

Massey and Peterson introduce the idea of a A-module, which is useful in our

work.

Definition. Let X be an unstable y4-module, X={Xn}. Define A: X^- X by

A|Afn = Sq\

We refer to [7, p. 33] for the theory of A-modules. In particular we use the fact

[7, p. 33] that any locally finite A-module X is a direct sum of cyclic A-modules.

This allows us to obtain a useful decomposition of the vector space X.
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Let A- be a locally finite unstable ^-module. Express

X = 2 y«        ^cyclic on yt.
t

Then a Z2-basis for X consists of all elements

\>yi,       I < order yt.

We define a collection of subbases, {Ck}k¿0 by

Co = {>-,},       Ck = XCk^,       Jtil.

We let 7"k be the vector space spanned by Ck and note the vector space isomorphism

Tk^ XkX¡Xk + 1X,       Xo = 1.

When X is a free unstable ¿(-module, this decomposition can be given in terms

of admissible monomials. We do this for Fn, the extension to direct sums being

obvious.

C0 = {Sq lu | ex / < n},

Ck = {Sq lu | / = (/, /'), Sq I'u eCt.1,ex/= n}.

In this notation, m denotes a generator of grade n of Fn and / is admissible.

We next recall the definition in [7] of the functor Í2.

Definition. Let X be an unstable j4-module. Define Ü.X by D.X={(Q.X)n}

where (£lX)n = (XIXX)n + 1.

Recall that the image and kernel of A are y4-submodules, thus Q.X is an A-

module. It is easily checked to be unstable. A map <r: X-> Q.X of degree — 1 is the

projection.

If If is a simply connected generalized Eilenberg-Mac Lane space with

H*{W) = <%(X), then H*(QW) = W(£1X) and the suspension in the path-loop

fibration S1W->PW^ If is just a: X-+CIX.

We conclude this section with a definition of a map which is useful for describing

coproducts. It is not intended as a structure preserving map. <g> means <g)z¡¡ through-

out this paper.

Definition. Let X be an unstable ^-module and {Ck} be a Z2-basis as described

above. Define D: X-> X <g) Xby D(x) = x ® x on basis elements; Z>(2 *) = 2 D(x)

on sums of basis elements.

2. Coproducts in certain //-spaces. Let Bx and B2 be generalized Eilenberg-

Mac Lane spaces such that Bx has the weak homotopy type of Q.B2. We write

H*(B2) = '%(X). Let G2 be the principal fibre space over B2 induced by a map

h:B2-+ Kn. Here as elsewhere Kn denotes K{Z2, n). Let 0n be the fundamental

class of Kn and assume h*(6n) e X. Let G, = OG2. If Gx has the weak homotopy

type of B1xKn.2 then it follows that h*(6n) e XX. Of course if h*(6n) = 0, then this

holds with respect to the //-structure on G, via loop multiplication. However if
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A*(0n)/O, then Gx need not have the /T-structure displayed by the splitting when

considered with its loop multiplication. See [1] and [10] for examples.

The following lemmas calculate coproducts on a certain class ij„_2 e Hn~2(G1).

This class restricts to the fundamental class of the fibre. The results are used in §3.

We use the vector space decomposition of X described in §1,

x = 2 Tk-
fcSO

By hypotheses, h*(9n) s^kn Tk. We distinguish three possibilities,

Owel. A^eLJeTi;

Case 2. h*(9n) has nonzero components in both Tx and ^,ki2Tk;

Case 3. h*(9n) e 2fcg2 Tk.

Let a- be the suspension in Bx -*■ PB2 -> B2. Note that under the hypotheses on

A*(0n) both p* : H*(B2) -> H*(G2) and (£2/»)* : H*(BX) -> H*(Gj.) are monic on T0

and QT0 respectively. Let q = £lp.

Lemma 2.1. In Case 1 we can write h*(9n) = 2¡ Áx¡ with each xte C0. The coproduct

A on r¡n_2 is

A0?„-2) = 1 ® Vn-2 + Dq*(yoxi\+rln_2 ® 1.ŒaXi)+rln-

Proof. Let x = 2i xt. Look at the Serre spectral sequence for G± -> PGX -> G2.

The transgression t satisfies r(q*ax) =p*x. Since/?*(\x) = (p*x)2 = 0, Z='2,iq*o-{x¡)

(g> p*x¡ must be killed by an element which for dimensional reasons comes from

the fibre. The only possiblity is an element in H*(G1) of the form rjn_2 + '£q*ßj,

where ß} are decomposibles under the cup product from 7:/*(7i1). By making an

appropriate change of basis in the cohomology algebra H*(G1), we can take r?n_2

as the class killing Z. The coproduct formula now follows from the fact that the

Serre spectral sequence is a spectral sequence of Hopf algebras.

In the next two lemmas we drop the q* and p* to simplify the notation. We

place complicated superscripts and subscripts in [ ]. A [ ] following d is a sub-

script, otherwise a superscript.

Lemma 2.2. In Case 2 we can write A*(f7n) = 2¡e/Ax{ + 2ye/A[^j]j/ wAere k^2,

and{x¡}, {y¡\ are contained in C0. The coproduct onr¡„_2 is

HVn 2)= 1 ®'?n-2 + L>|'2«A+7/»l-2® L

Proof. We look at the same spectral sequence as before. In H*(G2) we have

2/ Axj = 2j H.k^y^O. Let r and {rj be integers such that

drioxi) = x,   and   dfrfay,) = y,.

Since i^2 we have r¡<r for all7. Since

d[rj](oyj®yj[m-l]) = y¡[m\ = Af/c,]^,
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where m=2[k}], we have

{2 AI*,]*} = 0
in ET of the spectral sequence. Now

4J2 *x, <8> xX = J2 A*,} = {2 X[kt]y^ = 0.

Hence this class must be killed and as before the dimensions involved imply it must

be killed from the fibre. The argument is completed as in Lemma 2.1.

Lemma 2.3. In Case 3 we can write A*(0n) = 2/ Af&Jj, with k^2 and yteC0.

Then r¡n_2 is primitive.

Proof. We again look at the sequence for Gx -*■ PGi -* G2. Let {r¡} be integers

such that
d[ri\{ay,) = y,.

Let r=max/{ri}. Then

^{2 °y, ® y,lm-1]\ = J2 yAm-1]\

= j 2 W-)\yi \ = °   in Er, where m = 2[kf].

Let Z={JiJoyJ ®yj[m — l]} in £r. Since Z cannot survive through the spectral

sequence, it must eventually be killed. It is not obvious that Z is hit from the fibre.

However, that is still the case. Consider the commutative diagram of fibre spaces

(G)

(/?).

The naturality of the Serre sequence allows us to determine differentials on those

elements in the sequence for (G) which come from the sequence for (B). The lowest

dimension in which H*{Gl) has an element not in the image of q* is n — 2. The first

such dimension in H*(G2) is ^ n. Furthermore, for s ̂  r, {Z} in ES(G) does not come

from ES(B). Thus, {Z} must be killed in the sequence for (G) by something which

does not come from the sequence for (B). The only possibility is {^n_2} (making

the same modifications in the cohomology algebra as in Lemma 2.1 if necessary).

Let t be the integer such that

dfan.J = {Z}.

The primitivity of r]n_2 will be a consequence of the size of t. Since h*(6n) = Xx we

have that n is even. Since kj'£2, we have *>•£(«—2) +1. Suppose A(ijn_2) has

middle terms 2 ß' ® ß"- In each summand, one of ß' or ß" has dimension

<K"—2). Hence there is an integer «^i(« —1)+1 such that either du on {/}'} or
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{/?"} is nonzero. Thus none of the terms {ß' ® ß"} survive to Et in the spectral

sequence for

G1xG1->/>G2x7,G2->G2xG2       (GxG).

Thus the commutativity of

Et(G) -£* H*{GX)

/ ^*    a x i)*
Et(GxG) ^-^ //»(GíxGí)

implies that {^„_2} is primitive.

3. The main theorem. We first set down our notation. Let f = (E, p, B, F, B0, i, F)

denote a stable two stage Postnikov system;/»: E-> B,f: /?-> 7i0 is the classifying

map, and /: F^- E is the inclusion of the fibre in the total space. We shall use

i, K=p*(i), 9 and r¡ generically as fundamental classes of B, E, B0 and F respectively.

Subscripts on fundamental classes denote dimension.

We make the following assumptions on £.

(0) F and B are simply connected.

(1) Fand B are finite products of Eilenberg-Mac Lane spaces.

(2) The nonzero homotopy groups of the factors of 7i are infinite cyclic or cyclic

of order 2", k= 1, 2,....

(3) The nonzero homotopy groups of the factors of B0 (and F= C1B0) are Z2.

(4) E is the principal fibre space induced by an H-mapf: 2?-^ B0.

We let W, X, Y, Z and V denote free unstable /4-modules such that H*(B0)

= <%(V), H*(B) = <%(W), Y=QV,Z=QWand X=Q.Y.

Our main theorem is concerned with the coalgebra structure of H*(Q.E) induced

by loop multiplication. Let A: H*(CIE) -»■ H*(£IE) <g) H*(CiE) be the coproduct.

Let g=fy: &B -> QB0 and q = Çlp:Q.E-+ Q.B. Let V and Y' denote ker/* and

ker g* respectively. Let W' and Z' denote coker /* and coker g* respectively. R

and ^UiZ') are used interchangeably and are isomorphic to J¥*(Qß)/ker q* [2]. Let

orM be the cohomology suspension associated with the path-loop fibration

QM -»■ PM -> M. M will generally be one of F, E, B or B0. Let X' be the kernel of

the transgression in the fibration £2F—> ííis—^ QB.

Consider the following sequences and diagrams of unstable A modules. The

squares are commutative.

c
X' Y'IXY'<- r -> Y
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Here a is an isomorphism [7], n, p, p are natural projections, c is inclusion and a

is the obvious map induced by aB.

We associate with each homogeneous element x e X' an element z e Z' as follows.

Let y e Y' such that ccn(y)=x. Let ve V such that oBa(v) = c(y). Since oBf*(v)=0

we have/*(r>) = Aw for some we W. Let z=a'p(w), zeZ'.

Lemma 3.1. z is a uniquely determined element ofZ'.

Proof. aBo is a map of degree — 1 and A doubles degrees. Hence pf*\oB¿(X Y)=0.

This and looking at the choices involved in obtaining z give the result.

Theorem 3.2. For each homogeneous element x e X', there exists an element

e e H*{D.E) such that Q.i*(e) = x and the coproduct is given by

A(e)= 1 ®e+Dq*(z)+e®l.

Proof. Let n=degree*. Define a map h: B0^-Kn+2 by h*(yn+2) = v, where

yn + 2 is the fundamental class and v is as above. We note that neither v nor h are

uniquely determined. The effects of this will be discussed later. Consider the

following commutative diagram:

Q.F
£li

cTi

Q.E Q.B0

\ V
Q.B

u \
Kn + \

Í2A      g2

E Bo

B

An+ 2

G2 is the principal fibre space over B with fibre Kn+1 and classifying map hf. The

map g2 exists because (hf)p is homotopically trivial. Every space and map to the

left of and including Í2A is obtained by applying D to the corresponding space or

map on the right. Hence g, is an //-map. Let ??„ e Hn{Gx) be any class which

restricts to the fundamental class of Kn. Then Q/*gf(i?n) = ;c. Since f*(v) = Xw, we

have (i2Ag)*(yn + 1) = 0. Thus Gi~Q#x Kn and our lemmas of §2 apply. Hence we

can choose a class r¡n whose coproduct has Dq*(z) as its middle terms. We define

e=q*(T]n). Since qf is a map of Hopf algebras, the theorem follows.

For completeness we discuss the influence of the various choices in the proof.

First consider the situation where i^ and v2e V such that oBa{v^)=y, i =1,2. Then

v1 = v2 + Xv3. Since/*(f,) = Aw, we have w1 = w2+f*(v3). Thus the variation in the

middle terms of the coproduct of r¡n given in the argument is

Dq*oBf*(v3) = DqïClf*oBo(v3).

Hence the coproduct of e is unaffected.

Variation in v is also possible as a result of different choices of y such that

air(y) = x. Arguments similar to Lemma 3.1 show this choice does not affect the

coproduct of e.
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The //-map gx is not uniquely determined by the construction. However one sees

that different choices satisfy (gi—gí)*(>?„) = primitive from H*(Ü.B). Thus the

corresponding e's differ by primitives leaving the coproduct formula unchanged.

The possibility of adding primitives to e will be used in §4.

Our next remark concerns the relation of Theorem 3.2 to the known splitting

H*(C1E)^R <g) ̂(X') as algebras over Z2. This isomorphism is not natural. Let

one be denoted by y. R ® °U(X') —> H*(CIE). In general the coproducts of <p(x)

and e given in Theorem 3.2 differ by terms of the form <p(a) ® <p(ß)+<p(ß) <8> <p(°0;

a#/?; a, ß e R. This ambiguity is similar to that encountered in the spectral

sequence arguments of §2.

Finally we indicate one way to use Theorem 3.2 to describe the coalgebra

structure of H*(£IE). Let {xt} be a homogeneous Z2-basis for X' and {ej be elements

of H*{Q.E) satisfying Theorem 3.2. Then by [6], {1} u {ej form a simple system of

generators for H*(ßE) as an algebra over R. Hence Theorem 3.2 is enough to

calculate coproducts for any element in H*(QE).

4. The action of the Steenrod algebra. Massey and Peterson have reduced the

problem of determining the action of A in H*(QE) to the determination of the

.¿-module extension represented by the fundamental sequence of 0|,

q*                Qi*
0->R-^-^P(£10->X' ^0.

Here we treat the problem of calculating the action of A in P(£ïi) as follows.

First note that the class e e H*(QE) of Theorem 3.2 actually lies in />(Q£). Let

{xt} be a homogeneous basis (over Z2) for X'. Let {e^c^O^) be such that

Qi*(ei)=xt and coproducts on {ej are given by Theorem 3.2. Let 0eA and con-

sider £2/*(f7e() = 2 Xj. Then 9ei + ^,ei=q*{r) for a unique r e R. The problem is to

calculate r. Let e' = 0e( + 2 e¡- We use the following diagram of [7, p. 63], A's denote

coproducts with terms of the form 1 ®x+x® 1 subtracted. Only positive

gradings are considered.

(5)     0-

y

P(0

°E

x\è)

+ P(Q0-—-> Z'(O0 ■

A,

->0

^0

0-> R(C1¿; x Q£)-> P(Q{ x Q£)-> X\Q.£ x Of)-> 0

This diagram expresses the naturality properties of fundamental sequences useful

in this section.
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One can obtain information about r by studying AB(e') and onE(e'). The idea is

to determine the action of A through an inductive sequence of deloopings, be-

ginning with an easy low dimensional case. But we caution the reader that our

results are not complete. Theorems 4.2 and 4.3 indicate the delooping process. In

order to use diagram (5) for these theorems, we shift our emphasis from the system

Q£ to the system £. Thus we assume we have Theorem 3.2 for the system f and

that we are calculating the action of A in H*(E). This shift of emphasis involves

nothing new. The assumption (3) on f implies there exists a system r¡ satisfying

(0)-(4) such that £=Qjj, [7, p. 38].

Let S^ /?(Qf) denote the ¿-submodule of primitives and consider AB : R(Q.£)IS

-> /?(Df) <g> R(C1Ç) as an ¿-map.

Theorem 4.1. A unique element [r]e R(£l£)IS is determined by the formula

(q*®q*)&B([r])=ÄE(e').

Proof. H*(Q.B) and hence /?(üf) are primitively generated as Hopf algebras

over Z2. This implies AB is a monomorphism. The theorem follows by chasing

around the lower two lines of (5).

Theorem 4.2. Let /?(£) be an exterior algebra over Z2. Let r + S denote the coset of

R(£) determined by Theorem 4.1. A unique element se r + S is determined by the

formula q*oB(s) = oE(e'). With no assumptions on the type of algebra of R($)> the

same formula determines a unique element [s] e r + 5/(ker aB n S).

Proof. If /?(£) is an exterior algebra then aB is a monomorphism and the first

statement follows by a diagram chase in (5). The second statement is clear.

Theorem 4.2 is useful for studying H*(E) if H*(QE) is known as a Hopf algebra

over A and one can calculate aE. We now show how aE can be calculated. Choose a

Z2-basis for X'(i) such that aF maps this basis onto a subbasis of X'{Q.Ç). Let

ifki^Pd) and {e¡}<= P(Cïê;) correspond to these bases as in the beginning of this

section.

Theorem 4.3. There exists a set {fk}cP(0 such that i*(fk) = i*(fk) and the

coproducts of{fk) are given by Theorem 3.2 and further:

°F<Jk) = e.   if°FÎ*(fk) = Û/*(«i)

and

^C4) = 0   ifoFi*(fk) = 0.

Proof. Note that if Í2i*(e¡) e Im o> then e¡ is primitive. Hence there is a primitive

element s e R(¡¡) such that q*aB(s) = e¡- aE{fk) (in case aE{fk) = et). Setfk =fk +p*(s).

The other case is similar.

The results of this section can be summarized by saying that if H*(QE) is known

as a Hopf algebra over A, then the action of A can be calculated in H*(E) up to

primitives in ker aB. We denote such primitives as type DP (for decomposible and
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primitive). Terms of type DP are the only obstruction to an inductive determination

of H*(E) as a Hopf algebra over A.

5. Examples. Our examples will illustrate theorems of §§3 and 4. We work

with minimal sets of generators and relations in the sense of [1]. Some simple

techniques are used to determine terms of type DP.

We first consider a series of related spaces. Let En be the principal fibre space over

K(Z2,n) with fibre K(Z2,n+l) and ^-invariant Sq2. We keep the same symbols

used in describing a system £.

When «= 1, Lemma 2.1 applies and we have

Proposition 5.1. //*(/i'1)^//*(Z2, 1) <g> H*(Z2, 2) with A(^2) = l ® V2+

Ki ® Kx + *?2 ® I and the splitting holding with respect to the action of A.

When n = 2, we have an example already completely worked out in [7]. Since our

methods are somewhat different, we do this case for the sake of comparison. In the

following subsection A, we have deleted subscripts from many fundamental

classes. The understood dimensions are as follows : r¡ has dimension 3, t and k have

dimension 2.

A. Since r¡ transgresses to t2 we have

r(SqIr¡) = (Sq/t)2,   I=2J,

= 0, otherwise.

Here as elsewhere symbols Sq / denote admissible monomials. As in Milgram [8],

this implies that ker r is generated as an /i-module by Sq1 -n and Sq3 r¡.

The transgression on ?j also shows that

<2T(Z') S E(Sq I, excess / < 2),

where E denotes an exterior algebra. Thus there are no terms of type DP. We

write a vector space basis for <^(Z') in various dimensions :

dim 4 and 6. <Bf(Z')=0,

dim 5. «r-Sq1«, Sq2 Sq1 k,

dim 7. k ■ Sq2 Sq1 k,

dim 8. Sq1/cSq2Sq1K.

Thus we can take e4 = 1 ® Sq11? and e6 = 1 ® Sq3 -q.

Direct computation gives the relations

Sq1 e4 = Sq1 e6 = Sq2 e4 + Sq2 e6 = 0

in the cohomology of the fibre. In fact one can prove [7] that these are the generating

relations.

Since Sq3 Sq2 = 0 we have e6 primitive. Since Sq1 Sq2 = Sq3, Lemma 2.1 gives

A(e4) = 1 <8> e4 + /c <g> *+e4 <g> 1.
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In H*(E2) we have the relation

0 = Sq1 e4 + A(/c • Sq1 «c)+^(Sq2 Sq1 k),       X,p.eZ2.

Theorem 4.1 implies A = 1. To determine /* we look at a: H*(E2) -*■ H*(E1). The

restriction to the fibre of <x(e4) is Sq1 r¡. Since a(e4) is primitive, and there are no

primitives in dimension 3, we have

a(e4) = Sq^ + zcSq1«-.

Hence »(Sq1 e4) = Sq2 Sq1 k and p.= 1.

Since Sq1 ee and Sq4 e4 are primitive (Sq2« = 0) inspection gives Sq1e6 = 0

= Sq4 e4 + Sq2 ea as the relations in H*(E2).

Summarizing the above we have

Proposition 5.2. H*(E2)^E(Sq Ik, ex I<2) <g> <W(X') where X' is generated by

classes et and es restricting to Sq177 and Sq3 77 respectively. The class e6 is primitive

while A(e4) has middle term k <gt k. The basic relations are Sq1 e4 + k • Sq1 k + Sq2 Sq1 k

=0, Sq1 e6 = 0 and Sq4 e4 + Sq2 e6 = 0.

B. We now study H*(E3). In subsection B, 17 has dimension 4 and k dimension

3 or 2, which should be clear in context. An easy argument gives

imp* = E(SqlK, ex/< 2).

By considering the transgression on terms of the form Sq (I,j)r¡ with j= 1,..., 4

and (/,/) admissible, one shows that as an ¿-module, X' is generated by Sq3 77 and

Sq3 Sq1 T). For dimensional reasons we can take e7 = 1 (g> Sq3 r¡ and ee = 1 <S> Sq3 Sq1 r¡.

We have e7 primitive and the middle term of A(e8) is Sq1 k <g) Sq1 k since

(Sq3 Sq1) Sq2 = Sq5 Sq1. Calculating through low dimensions produces generating

relations in X' as follows (with an abuse of notation):

Sq1 e7 = Sq1 eB = Sq3 e7 + Sq2 ea = 0.

We do not claim these are a complete set of generating relations.

The basis elements in im p* which concerns us are

dim 8. 0,

dim 9. K-Sq2Sq1ic,

dim 10. Sq1 *-Sq2 Sq1 k, Sq4 Sq2 Sq1 k.

Thus Sq1 e7 = 0 holds in H*(E3). Theorem 4.1 applied to the next relation implies

Sq1 eB=0 holds in H*(E3). Theorem 4.1 applied to the relation

0 = Sq3 e7 + Sq2 es + AÍSq1 *-Sq2 Sq1 /c) + MSq* Sq2 Sq1 «)

implies A=l.

We now look at a: H*(E3) -» H*(E2). We have o(e7) = ee and o(eB) = Sq3 <?4.

Thus we have

0 = Sq3 ee + Sq4 Sq1 <?4+/x(Sq4 Sq2 Sq1 *) = 0
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in H*(E2). But using Proposition 5.2 shows Sq3 ee = 0 and Sq4 Sq1 e4 + Sq4Sq2 Sq1 k

=0, hence /¿= 1. We summarize this as

Proposition 5.3. H*(E3)^E(Sq Ik, ex /< 2) ® W(X'). X' is generated by e7 and

eB restricting to Sq3 r¡ and Sq3 Sq1 r¡ respectively. The class e7 is primitive and A(e8)

has middle term Sq1 k (g) Sq1 k. In low dimensions the basic relations are Sq1 e7 = 0,

Sq1 e8 = 0 and

0 = Sq3 e7 + Sq2 eg + Sq1 *Sq2 Sq1 /c + Sq4 Sq2 Sq1 k.

In the next example we shall mainly be concerned with ascertaining whether or

not terms of type DP are in relations. Let En be the principal fibre space over

K(Z2, n) with fibre K(Z2, n + 2) and ^-invariant Sq3. By our methods one can show

Proposition 5.4. H*(E3)^E(Sq Ik3, ex /< 3) <g> <W{N). N is generated by e6 and

e8 restricting to Sq177.5 and Sq3 t?5 respectively. The class e6 is primitive and A(e8) has

middle term Sq1 k3 (g> Sq1 k3. The generating relations are Sq1 e6 = 0, Sq1 e8 = 0 and

Sq5 ee + Sq3 eg + Sq1 k3 Sq3 Sq1 <c3 = 0.

C. We now study //*(£,4). In subsection C, r¡ without a subscript has dimension

6 and k without a subscript has dimension 4 or 3 as the context implies. We find

that Sq1 r¡ and Sq5 r¡ generate A" through dimensions ^15. Furthermore, through

dimensions ^12 the generating relations are Sq1(Sq1r;) = 0 and Sq1 (Sq5 r¡) = 0.

Since Sq1 Sq3 = 0 we have e7 primitive. Since Sq5 Sq3 = 0 we have en primitive.

Direct calculation in dimensions ^ 12 gives

im p* s /'(Sq Ik, ex / ^ 2, / = 27) <g> £(Sq Ik, ex / ^ 2, / ^ 23),

where P denotes a polynomial algebra. Thus we have to determine the co-

efficients in the following:

0 = Sq1 e7 + A Sq3 Sq1 K + p, Sq4 k

and

0 = Sq1 en + v SqB Sq2 Sq1 k + tt Sq6 Sq2 k.

Let a: //*(£4) -> H*(E3). We have

<j(e7) = ee + p Sq2 Sq1 k.

Let e7 = e7 + p Sq2 Sq1 k. Then o-(ë7) = e6. Applying a to the relation

0 = Sq1 (é"7) + (A+p) Sq3 Sq1 k+p. Sq4 k

gives

0 = Sq1 (e6) + (A + P) Sq3 Sq1 k.

Since Sq1 e6=0 we have X+p=0 in the modified relation.

To determine p. we observe that for all n^4 we have classes e„+3 and en+7 in

H*(En) restricting to Sq1 ijn + 2 and Sq5ijn + 2 in the fibre. We can always make
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modifications of the above sort so that

0 = Sq1en+3+/¿Sq4Kn

and

°(en + 3) = en + 2eH*(En-1).

If we apply Sq1 to this relation, we obtain

0 = p Sq5 Kn.

But for «2=5 we have Sq5 /cn = Sq4 Sq1 /cn/0. Thus for n 2:5, p. = 0. Suspending

//*(£4) then gives p, = 0.

The relation involving Sq1 exl is worked out similarly. We can arrange things

so that

a(en) = Sq4 e6 + Sq2 ea + Sq1 K-Sq2 Sq1 k.

This implies v = 0. Again looking in H*{En) for n large, we find that Sq9 *n,

Sq8 Sq1 Kn, Sq7 Sq2 k„, Sqe Sq2 Sq1 Kn span a 3-dimensional subspace of Hn + 9(En).

This implies n = 0.

D. Our final example is based on the exact sequence of groups (group operation

addition)

where a = 2k,b = 2f with k^f. Here the middle map is multiplication by a, i(l) = b/a

andj'(l)=l. I am indebted to Don Anderson for suggesting this example. It goes

with the example in [7, p. 41] in indicating the problems when the fibre fails to

satisfy condition (3) of §1.

Let E be the principal fibre space over K(Zb, n) with fibre K(Zb,n — 1) and

fc-invariant

uneHn{Zb,n;Zb).

The simplest cases illustrating the point are when /= 2, k = 1, 2. If k = 2 then

E~K(Zi, n— l)xAT(Z4, n) with this splitting holding as //-spaces. If k=l we look

at the homotopy sequence for E,

0-► 7Tn(£) —> Z4 —> Z4 —> nn^(E) —> 0.

Hence 77n(£') = 7rn_1(£)=Z2. As an algebra

H*(E) s //*(Z4, n-1) ® i/*(Z4, n).

Let un_,, t>n, wn, t;„ + x be the generators of the factors. These generators are all

primitive and the extension possibilities are represented as

Sq1 w„-i = Xun,       Sq1 vn = (Wn+i-

If n is big enough, the extension problem lies in the stable range where the Adams
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spectral sequence [2] converges to the actual homotopy of E. Then \ = p.= 1 are the

only possibilities compatible with the Adams spectral sequence.

With other choices of/and k we can obtain trivial ^-extensions and nontrivial

extensions by higher order Bockstein operators.

Massey has pointed out that a better result can be obtained by looking at the

Postnikov system of E. The /¿-invariant is either 0 or Sq2, but Sq2 Mn_!#0 so the

/¿-invariant is 0. Hence E~Kn-1 x Kn.

We have included the spectral sequence argument to indicate a way that the

homotopy of E influences the /t-structure of H*(E). The same type of argument

(with a lot of computation) gives the results of subsection C.
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