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CENTRAL SEPARABLE ALGEBRAS WITH PURELY
INSEPARABLE SPLITTING RINGS OF EXPONENT ONE

BY

SHUEN YUAN(')

Abstract. Classical Galois cohomological results for purely inseparable field

extensions of exponent one are generalized here to commutative rings of prime

characteristic.

Given a commutative ring extension C over A of prime characteristic p, there

are three variants for the Brauer group BiC/A) of central separable /1-algebras

split by C: the Amitsur cohomology group H2iC/A, Gm), the Chase-Rosenberg

group ss/iC/A), and Hochschild's group <^(C, g) of regular restricted Lie algebra

extensions of C by the Lie algebra g of all ^-derivations on C. In this paper we

show that if C is finitely generated projective as an A -module and C[g] = EndA (C),

then H\C/A, Gm)s<?(g, C)^^iC/A). As a corollary we show that H%C/A, Gm)

is zero for all z>2. When C is a field, these are the results of Berkson, Hochschild

and Rosenberg and Zelinsky [4], [11], [12]. As in [11] we show that the Lie algebra

extensions which arise from central separable algebras are trivial extensions when

regarded as ordinary extensions so that the essential structural elements are here

precisely those which differentiate the restricted extensions from the ordinary ones.

We also show that if R is a commutative C-algebra which is finitely generated,

projective as a C-module, then the Brauer group BiR/A) is mapped onto the Brauer

group BiR/C). The last result is also due to Hochschild when C is a field [10].

§1 contains the background on projective modules which came into the picture.

Due to their peculiar behavior all relevant automorphisms turn out to be inner

which explains why instead of some exact sequences we get two isomorphism

theorems. In §2 the isomorphism of <f(g, C) with s^iC/A) is proved. §3 and §4

provide the preliminary materials for §5. §3 contains an exposition on the theory of

differentials in rings of prime characteristic. Its application to Amitsur cohomology

is given in §4. The main results are given in §5.

Throughout this paper C over A always denotes a commutative ring extension of

prime characteristic p such that C is finitely generated projective as an A-module
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and C[c\} = YLndA(C) where q = q(C/A) denotes the Lie algebra of all A-derivations

on C. By a Lie algebra or a Lie algebra homomorphism we mean a Lie algebra or a

Lie algebra homomorphism over A. The p-map of a restricted Lie algebra is

denoted by x -> xp, except for two fleeting instants in Lemma 8 and in the dis-

cussion preceding Theorem 4. Tensor product signs without subscripts will denote

tensor products over A. If 0 is a subring of a ring S, by the ©-module H we mean

the left ©-module given by the scalar product 0 x S -> S, (9, f) -> 0£. If AT is a

0-module, then for any 9 in 0, we will denote by A0 the map M -> M produced

by left multiplication by 9. If AT is a right ©-module, the endomorphism on Af

produced by right multiplication by 9 will be denoted by Pd.

1. Projective modules

Lemma 1. Let R be any commutative A-algebra such that the kernel of R ® ß ->

R, x (g) y -> xy, is a nilpotent ideal in R <g> ß. Then H°(R/A, P)=P(R), H'(R/A, P)

= 0for alli>0.

Proof. As usual, we denote by Rn the tensor product ß (g) • • • (g) ß (« factors).

Since the kernel of the map p.: Rn -*■ R, Xx <8> ■ ■ • <8> xn -*■ Xx ■ ■ -xn, is nilpotent, we

have an isomorphism P(Rn)^P(R) given by M-^ Af <8>B» ßsAT/(kernel p)M

[3, p. 90]. Now let %: ßn-^ßn+1 be the map Xj ®• • • ® xn->Xi <g>- • -<g> x¿_i ®

1 (8> Xi <g> • • • <8> x„. From the commutativity of

R

we conclude the commutativity of

ß(ßn) -^X ß(ß" + i)

F(ß)

This shows the Amitsur complex

<ê(R/A, P) : 0 -> P(R) *f P(R2)
is isomorphic to

0 10 1
0 —> P(R) —> P(R) —> P(R) —> P(R) —>...,

whence the lemma.

Corollary. Let M be any rank one projective C-module. Then there is an

additive group isomorphism T:C®Af->-C<8)A/ such that A(c (g> c')T =

TA(c' <g> c), c, c' e C.
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Proof. The corollary says that every rank one projective C-module is a 0-cocycle

in the Amitsur complex ^iC/A, P) which is indeed the case because the kernel of

C ® C-+ C, x ® y^- xy, is nilpotent.

Definition. Let R be a central separable /4-algebra. By a splitting subalgebra of

R we mean a maximal commutative subalgebra C of R such that the C-module

R = CR is projective. It follows from [8, Proposition 2.4] that the map w. C ® R° ->

Endc (i?) given by a>ix <g) y)u=xuy, xeC, y,ue R, is an isomorphism.

Lemma 2. Let R be a central separable A-algebra containing C as a subalgebra.

If i?q contains Cq as a splitting subalgebra for every prime ideal q in A, then R

contains C as a splitting subalgebra.

Proof. Put C'={xe R \ xc=cx for all c in C}. The inclusion map C—>C is

onto because it is onto at every prime ideal q in A [5, p. Ill, Theorem 1]. So C is

a maximal commutative subalgebra of R. Similarly the map co : C ® R° -> Endc (Ä),

c ® x -> iAc)iPx), is an isomorphism because locally it is. Now C <g> R0^ Endc (i?)

implies that (the rank of the ^q-module R^) = [R: A]q = [R:C]q[C: A\ is equal to

[R:C]2. This shows [R:C]o,= [R:C]o.nA=[C:A]o.nA is locally constant for äQ in

Spec C because [C:/4]q is locally constant [16, Lemmas 1 and 3]. Since R is finitely

generated as an yi-module, it is certainly finitely generated as a C-module [2,

Theorem 2.1]. It follows from [5, p. 138, Theorem 1] that R must be a projective

C-module.

Let R he any /4-algebra which contains C as an ,4-subalgebra. We regard R as a

(C ® C)-module via the scalar product (x ® y)v=xvy.

Lemma 3. If R is a central separable A-algebra which contains C as a splitting

subalgebra, then R is a rank one projective (C (g> C)-module.

Proof. By definition, R is a projective module over C. So R ® R° i=cR ® R°c)

is a projective (C (g> C)-module. So R is a projective (C <g> C)-module because R

is a projective (i? (g> J?°)-module.

To show R is a rank one projective (C ® C)-module, we note that the ^-module

structure on R is obtained from the (C <g> C)-module structure on R by restricting

scalars. So for any prime ideal Q in C <g> C, if we write q= ß n yi, we have

[i? :/!]<, s (rank of Rq over /4q)

= [Ä:C $ C]Q[C ® C:^]q = [Ä:C ® C]Q[C:^]?.

Now C <g) Ä° = Endc (Ä) implies that

[R:C]2 = [ä:^], = [Ä:C]q[C:/l]q.

So [R:C]„ = [C:A]<t and [i?M]q = [C:^]?. This shows [R:C ® C]Q=1 as desired.

Lemma 4. Lei R be a central separable A-algebra which contains C as a splitting

subalgebra. Let J denote the kernel of p: C ® C -> C, x ® j -> xj. FAen there is
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an  additive  group  isomorphism  Y: C <g> (ß//ß)-» ß  such   that  YA(c eg c') =

A(c' ® c)Y for all c, c' in C.

Proof. Since J is nilpotent, p. induces an isomorphism P(C Cg> C) -> ß(C),

M^M/JM [3, p. 90]. Now the map C-^C®C, x^x®l, followed by p. is

the identity on C. So any rank one projective (C (g C)-module AT must be

isomorphic to C 0 (M/JM) — (C ® C) ®c®,4 (M/JM). The rest of the lemma is

trivial.

Lemma 5. Fei Rbe a central separable A-algebra with C as a splitting subalgebra.

If the rank one projective class group P(C/A) is trivial, then every automorphism a

on R which leaves C pointwise fixed must be inner by some element z in C.

Proof. We make ß into an (ß (g ß°)-module by defining (x (g y)v = (ox)vy.

Write M={v e R \ (ox)v = vx for all x in ß}. By [2, Theorem 3.1] the map ß ® AT ->

ß, x (g) v -*■ xv, is an isomorphism. This shows ATß = ßAT=ß. But Cis a C-module

direct summand of ß [5, p. 176, Exercise 4]. So there is a C-module homomorphism

■w : R -*■ C such that tt(c) = c for all c in C. Now AT is an /1-submodule of C because

vc = cv for all c in C and v in AT. We have ATC=tt(MR) = tt(R) = C. So AT is a rank

one projective ,4-moduIe split by C and hence must be a free ^-module because

P(C/A) is trivial. Let z be a generator for AT. It is clear that <x(x) = zxz_1 for all

x in ß because z is a unit in C.

Now let r be a positive integer. For any ring X, we shall denote by X the ring

X[t}/(tr+1) of truncated polynomials. Let ß be an /1-algebra and S an ^-sub-

algebra of ß. By a higher /i-derivation (of rank r) of S into ß we mean an

^4-algebra homomorphism cp: S^ R, u^> (<pou) + (<Pxu)t+ • • • +('Pru)tr> <PtU e F,

such that cpQu = u for all u in S. A higher A -derivation of ß into itself is inner if it

is an inner automorphism of ß.

Lemma 6. Let R be a central separable A-algebra containing C as a splitting

subalgebra. Then every higher A-derivation cpofC into R can be extended to an inner

higher derivation of R.

Proof. As usual we make ß into a new (C <8¿ ß°)-module „ß by defining

(u <g) v)x = (cpu)xv. Write D = C®^ß°. By [5, p. 181, Exercise 18] the map

Homn (ß, 0R) ®5I-> «pß, / (g) u ->/(«), is an isomorphism because Q. is iso-

morphic to Endc (ß). Now each element of Homn (ß, „,ß) is determined by its

action on 1 e R which must go to an element of M—{u e R | (cpx)u = ux for all

xeC} because in ß, (x <g> 1)-1 =(1 ® x)-1 for all x in C. Put U={c e C \ c + Uxt +

• —I- urtr e AT for some u¡ e R}. We claim that U=C which of course says cp can be

extended to an inner automorphism of ß. From AT ̂ cF^^ß, it is clear that

UR = R. But Cis a C-module direct summand of ß [5, p. 176, Exercise 4]. So there

is a C-module homomorphism v. R-> C such that irc = c for all c in C. We have

¿7= c7C=7r(C/ß) = Tr(ß) = C as asserted.
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Remark. Given a central separable ,4-algebra R containing C as a maximal

commutative subalgebra, if every d e g can be extended to an inner derivation of

R, we will show in Theorem 2 that C is actually a splitting subalgebra of R.

2. Regular extensions and central separable algebras. We shall regard C as an

abelian restricted Lie algebra with the /?-map c -> cp. A regular extension of C by

g is an exact sequence of restricted Lie algebras

ifi cp
L:0—>C—*I-^-*g—>0

such that the following conditions are satisfied :

(i) ^_1[x, >pc] = ipx)ic) for all x in I and c in C.

(ii) I has a C-module structure for which both cp and </> are C-linear.

(iii) [ex, c'x'] = cix-c')x' — c'ix' c)x+cc'[x, x'] for all c, c' in C and x, x' in I

where x-c = i/j~1[x, 0c].

(iv) icx)" = c"xp + D%x1i¿)x for all c in C and x in I, where Dx for any x in I

denotes the map c -> x • c on C.

Two regular extensions L, L' are equivalent if there is a C-linear restricted Lie

algebra homomorphism £: I -*■ V making the diagram

*/

C

I

fl

I'

commutative. The set of equivalence classes of regular extensions will be denoted

by *(g, C).

We now define an addition on «f(g, C). Given two extensions L and L', let D

denote the subalgebra of the direct sum I + V which consists of all elements (w, v)

in which cpu = cp'v. Let J be the ideal of D consisting of the elements ( —i/oc, >/i'x)

for x in C. Since the (pointwise) p-map on D maps J into itself, so by Jacobson's

formula [7, p. 199, Lemma 2] it induces a well-defined p-map on D/J. The exact

sequence
I H II I H It

0—>C—+D/J-?->q—>0,       x—->i4>x,Ç>)+J,       iu,v)+J—^cpu

is a regular extension of C by g and is defined to be the sum of L and L'. It is a

straightforward matter to verify that <?(g, C) form an abelian group with respect

to this addition. The 0 element is the trivial extension 0 -> C-> C+g -> g -*■ 0

where C+g is the C-module direct sum of C and g with the commutation

[ix, d), ix', d')] = idx'-d'x, [d, d']) and the />-map (x, d) -> ixp + dp~1x, dp). The

negative of a regular extension L is just 0-*■ Ct^ I^> g-^ 0.

Now let JÎ be a central separable /l-algebra containing C as a maximal com-

mutative subalgebra such that every d in g can be extended to an inner derivation
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on ß. Let I denote the set of all elements s of ß for which DS(C)<^C where Ds

denotes the derivation of ß which is given by Dsx=sx — xs for all x in ß. Let cp(s)

denote the restriction of Ds to C. The C-module I carries a restricted Lie algebra

structure with [ii, s2} =SxS2 — s2Sx and the p-map s^-sp. The C-linear restricted

Lie algebra homomorphism s -»> cp(s) maps I onto all of g and clearly the kernel of

9 coincides with C. So we have an exact sequence of restricted Lie algebras

FiO—^Cc^-I-^g—^O. It follows from [11, Lemma 1 ] that F is a regular extension.

Theorem 1 (Weak Form). If there is an A-derivation d on C such that C[d} =

End¿ (C), then every regular extension ¿¡O-^-Cc^l-^g-^O admits a C-linear Lie

algebra homomorphism p: g ->1 such that cpp is the identity map on g. For any such

p, the map 9: g -> A, cT-> p(d)p — p(dp), is additive and 9(ud) = up(9d)for all u e C.

Proof. We observe that given any idempotent e in A, I = el + (1 —e)l is a direct

sum of restricted Lie algebras. In view of the argument given in [15, Corollary 2.5]

we may therefore assume, without loss of generality, that the projective ^-module

C has a rank pn. It follows from [15, Theorem 2.4] that d satisfies a polynomial

X=a0t +-hajr"'H-+ an_1tp'l~1 + t1"1, cq e A, and any polynomial / in C[r]

satisfied by d is divisible by X. Let g0 denote the abelian Lie subalgebra Jí^o1 Ad"'

of g. Let s be any element in I such that cp(s) = d. It follows from the identity

Fv = Dp that 2<™ o As"' is an abelian Lie subalgebra of I. Let p : g0 -*■ I be the A-

module homomorphism given by dpl -*■ sp'. Since dp\ i = 0,..., n— 1, are linearly

independent over C, p is well defined and is clearly a Lie algebra homomorphism.

Moreover, cpp is the identity map on g0. Now the C-module monomorphism

C ® g0 -> g, h (g cT -> ud, is actually onto because locally it is always onto [15,

p. 44, Proof of Lemma 2.2]. We may therefore extend p to a C-module homo-

morphism (still denoted by p) from g to I by setting ud -*■ u(pd), ueC, d e g0. It

follows from the first and third regularity conditions assumed on L that p : g -> I

is a Lie algebra homomorphism. That p followed by <p is the identity map on g is

of course clear. We claim that 9: d-^ p(d)p — p(dp), de g, takes its values in A.

We have for any cT' e g,

-d'(9d) + P[dp,d'} = ZW^OO = DpidlP(pd') = Dpid)(pd') = p(Dpd(d')).

So d'(9d) = 0 because [cTp, d'} = Dd(d') by definition of restricted Lie algebra. This

shows 9(d) e A for all cTin g. Next, given dand d' in g, according to [7, p. 199-200,

(22), (28)], (d+ d')p — dp — d'p is a certain sum of commutators formed from cT and

d'. So p(d+d'y-p(d)p-p(d')p = P((d+d')p)-p(dp)-p(d'p) from which we con-

clude that 9(d+d') = 9(d)+9(d'). Finally for any u in C, we have, by Hochschild's

formula [11, Lemma 1] and the C-linearity of p,

9(ud) = p(ud)p - P((ud)p)

= (up(pd)p+((ud)p - hîfod)) - P(updp+((ud)p 7 xu)d)

= up((Pd)p - P(dp)) = up(9d).

This completes the proof of the theorem.
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Corollary. If C admits a p-basis over A, then every regular extension L:0^-

C—?. Ii> g_j. 0 admits a C-linear Lie algebra homomorphism p: g -»> I such that cpp

is the identity on g.

The corollary is an immediate consequence of the following:

Lemma 1. If C admits a p-basis uu líkiúr, over A, then the A-derivation on C

given by duj=\, 8uí = (uj- •  Mj-i)""1, z>1, satisfies the equation C[d] = EndA(C).

Proof. Let 5 be the set of all monomials Uj1- ■ -up, 0^e¡<p. We impose an

order on S as follows : zzj1 • • • u'/ < u?1 ■ ■ -u?r if and only if for some A, lk < mk and

li = mi for all z>A. Let to be the one-to-one order-preserving function from S into

the set of all positive integers given by o>(l)= 1, co((uj- ■ ■ur)"~1)=pr. For any j in S,

we assert that 8m^s=0, dm^-1(s) e{l, 2,.. .,/>-1}. This is clear if co(s)=l. If

co(s)> 1, then s is of the form 14» Ylm<i6r «f with em>0. We have

r

ds = e^duju^-1   n   «f'+   2    e^duM^V'1     Yl     «?'•
m<iSr y = m + l i*i;m<iSr

Put t = (durn)uernm~1 YlnKisrUf- It is clear that a)(t) = co(s)-l. It is also clear that

monomials occurring in the summation sign are strictly less than t. So by an

inductive argument, we see that 8ais)s = 0, d""«-^ e {1, 2, ...,p-1}.

Now let a be any ideal in C. We claim that if 2osi<Pr cldi=f for some c{ in C and

fin aEndA (C), then c( belongs to a for all i. Assume c( belongs to o for all i<l.

Let îe5 be the monomial with co(s) = l+l. It follows from cl(d's)=f(s) —

2i<i Cii&s) e a that c¡ belongs to a also because d's is invertible. If we take a to be

the zero ideal in C, we see that C[d] = Ji0ái<pr Cd' is a free C-module based on d\

0^i<pr. Moreover the canonical map C [8]/aC [8] -> End4 (C)/a EndA (C) is a

monomorphism for any ideal a in C. If a is a maximal ideal of C, then C [d]/aC [d] -*■

End¿ (C)/a End4 (C) is an isomorphism because both sides are vector spaces over

C/a of the same finite dimension pr=[C:A]. In particular C[d] = EndA (C) when

C is a local ring [5, p. 109, Corollary]. So the inclusion map C[d] -> EndA (C) is

always onto because locally it is [5, p. Ill, Theorem 1].

Remark, (a) The restriction in Theorem 1 that there is a single derivation 8

with C[8] = EndA (C) will be removed later in §5.

(b) In case C is a field, the above corollary is due to Hochschild [11, Theorem 4].

Our proof is somewhat easier because we make no use of the cohomology of

restricted Lie algebras.

Let I be a restricted Lie algebra with the p-map x -> xlpl and denote by J the

ideal of the universal enveloping algebra Ri of I generated by the elements of the

form xp — xlp: with x in I. It follows from the definition of restricted Lie algebras

that these elements are in the center of R¡. We define the restricted enveloping

algebra of I to be C/j = Rx/J. Let 1(1) denote the ideal in Ui generated by the canonical

image of I. Then we have an ^-algebra homomorphism e: Ui -*■ A = Ufl(l). So

Ui is a supplemented algebra in the terminology of [6].
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Lemma 8. Let I be a restricted Lie algebra such that I is a finitely generated free

A-module based on Al5..., A,. Then the monomials A*1- ■ -A*', 0^et<p, form an

A-module basis for U\.

Proof. By [6, p. 271, Theorem 3.1], the monomials XI1---Xp, e¡aO, form an

A -module basis for ßi over A. Put p¡ = A? — AJ"3. A simple verification shows that

the monomials A?1- • ■Á'f'pl1- ■ -p?, 0^mt<p, «(^0, form a basis for ßi over A.

So the monomials Af1- • -A*', 0^ef</?, form a basis for U\ over A.

Lemma 9. Let I be a restricted Lie algebra such that I is finitely generated pro-

jective as an A-module. Then U\ is also finitely generated projective as an A-module.

Moreover, I is a direct summand of 1(1).

Proof. Since I is finitely generated projective over A, given any maximal ideal

q in A there is somefe A — q such that lf is a free ^-module of finite dimension.

Now (Ui)f may be identified as the restricted enveloping algebra of lf over A¡ so it

must be a finite dimensional free /^-module. This implies tVi is finitely generated

projective over A.

Next the canonical map I -»■ U\ is a monomorphism because it is a mono-

morphism locally. So we may regard I as an ,4-submodule of T(I). In view of [5,

p. 114, Corollary 1] to show I is a direct summand of T(I), it suffices to show T(I)/I

is finitely presented as an ^4-module. But 1(1) as a direct summand of Ui is finitely

generated projective over A, so there is a finitely generated projective A-mod\ile

J such that the direct sum T(I) +J is a free ^-module. It follows from the exactness

of the sequence

0 -* Ï+J^ I(l)+J-+ T(I)/I -> 0,       (x, y) -* x + I,

that T(I)/I is finitely presented because 1+/ is finitely generated as an ^-module.

Now letF:0_^Cl>I^>g^0bea regular extension. Let T(I) be the ideal of

the restricted enveloping algebra Ci of I which is generated by the canonical

images x' in U\ of the elements x in I. Let J be the ideal of T(I) which is generated

by the elements (4>c)'x' — (ex)' where ce C, xel, (>pc)'x' denotes the product of

(t/ic)', x' in U\, ex denotes the scalar product in I. Put VL = I(l)/J. It is clear that

VL is essentially determined by the equivalence class of F.

Theorem 2. Let F:0-^C^>I±>g_>0Z»ea regular extension. Then the canonical

map of I into VL is one-one, and its restriction to C is a ring-homomorphism by means

of which we identify C with a subring of VL. Then VL is a central separable A-algebra

containing C as a splitting subalgebra. Furthermore I becomes identified by the

canonical map with the set {xeVL\ xc — cxeC,VceC} and the corresponding

regular extension coincides with L. Conversely, if R is a central separable A-algebra

containing C as a maximal commutative subalgebra such that every d in g can be

extended to an inner derivation of R and ifL is the corresponding regular extension,

then VL is isomorphic to R.
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Proof. Given any prime ideal q in A it is easy to verify that iVL\ is isomorphic

to VLq where Lq is the regular extension 0 ->- Cq =->■ Iq -> gq -> 0. It follows from

Lemma 2 that all the assertions in the theorem are local in nature, it suffices to

prove the theorem under the assumption that A is a local ring. So C admits a

/>-basis Ui, \¿i^r, over A [16, Lemma 7 and Theorem 10]. Let 8t he the ^-deriva-

tion on C given by d(Uj = BfjUf. By the corollary to Theorem 1 there is an ordinary

Lie algebra homomorphism p : g -* I which is C-linear and such that for every

8 eg, i<pp)8 = 8 and pi8)p-Pi8p) e A. Write si = p(8i). Then jf = ji + ai with a, e A

because 8f = 8¡. In the polynomial ring A[tj,..., tr] where the t¡ are indeterminates

over A, let / be the ideal generated by the elements tf — zt — <x¡. Put Z=A[tj,..., tr]/I.

Then if z¡ denotes the cosets of t¡ modulo /, we have Z=A[zj,..., zr], z? = zt+ai

and the monomials zf1 • • -zerr with 0áe¡</? constitute a basis for Z over A. Now

put W= C (g> Z. Let yt be the ^-module endomorphism 8t <g> 1 +1 <g> Az¡ of W

where Az¡:Z->Z is the map produced by left multiplication by z¡. Let i? =

C[j>i, ■ • •» Jr]cEndA (IF) be the ring of ^-endomorphisms of IF which is generated

by the scalar multiplications with elements of C and the _y,'s. We have Jijy=>'yji,

jf=Ji + 0:i and f°r ceC, ytc = cyi + (8ic). Furthermore, the monomials y^-'-yi'

with 0¿¡et<p are a C-module basis for R. Now every element of I can be written

uniquely in the form s = c0 + 2f=i c(i, with c, g C. We define £(s) = c0 + 2í=i e¡j( 6 i?.

If we regard R as a restricted Lie algebra in the usual way, we see at once that

(,:1->R is a restricted Lie algebra monomorphism. Hence £ can be extended

uniquely to a homomorphism of 1(1) onto R which we shall still denote by £.

Evidently £ maps the ideal / of 1(1) to 0, and since it maps I monomorphically we

have/ n 1 = 0. Hence we may identify I with its canonical image in VL. Furthermore,

£ induces a homomorphism y of VL onto R which (with the identification we have

made) leaves the elements of C fixed. Since the cosets modulo J of the ordered

monomials in the s¡ with nonnegative exponents less than p form a basis for VL

over C, y:VL-^R is an isomorphism. Hence we may verify the remaining

assertions concerning VL by operating on R.

We write the elements of R as polynomials in the y¡ with coefficients in C, the

degree in each y¡ being at most p—\. We claim that if x e R and xut — u<x e C, then

the degree of x in _y¡ is at most 1. In fact, write x — x0 + Xjyi+ ■ ■ • +xmy? where

xf do not contain yt and m<p. Then from yiui = ui(l +yt), y{ui = ut(l +yty, we find

m m

xuí-UíX = 2 CXjylUi-UiXjyl) = 2 ^(J;í"í-"íJ;0
i=o i=o

m m-2

= 2 ^"¡((l+Jiy-JU = mxmulyf-1+ J M

where A, do not contain y{. This shows that our condition on x implies that xm = 0

when m> 1, and thus establishes our claim. By a similar computation, it is easy to

show that if x e R and xu( — u(x e C for all i = 1,..., r, then x must be of the form
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Co + Z( = i c¡Ji with c> e C. So I is precisely the set of all x e VL for which xc — cxeC

for all c in C. We conclude also that the center of VL is contained in I and since the

only elements of I which commutes with all elements of C are the elements of C,

we find that the center of VL is contained in C and hence it coincides with A. Now

let I be any nonzero two-sided ideal of ß = ß/qß where q is the maximal ideal of

A and let x be a nonzero element of I. Write üt = w¡ 4- qß and compute xüi — ¿7¡x

as above. Our computation shows that if we repeat this a suitable number of times

and with suitable indices i, we finally obtain a nonzero element of T n (C/qC). But

the ideal In(C/qC) is stable under g/qg. Since C[q} = EndA (C) implies

(C/qC)[g/qg] = EndA/q (C/qC) which in turn implies no nontrivial ideal in C/qC is

stable under g/qg, we must have In (C/qC) = C/qC So T=ß. This shows ß is

central separable over A because ß is central simple over A/q [5, p. 180, Exercise

14]. It follows from our construction of VL that the inner derivation effected by an

element s in I coincides with <p(j) on C, and hence F is indeed the regular extension

which is derived from the central separable ,4-algebra VL with the splitting

subalgebra C.

There remains to prove the last part of the theorem. In the notation used there

it is clear that the canonical homomorphism of T(I) into ß annihilates the ideal /

and hence induces a homomorphism y of VL into ß. This homomorphism y leaves

the elements of C fixed and in particular is not 0. Since VL is central separable, y

therefore must be monomorphic. Regarding ß as a two-sided FL-module via y,

we have by [2, Theorem 3.1] ßs VL (g>¿ R*vO = VL because Ry<y'-) = {x e R \ xy=yx

for all y e y(VL)} is just A.

Remark. The above proof for Theorem 2 is adapted from [11, pp. 484-485]

with only minor changes.

Let ß and S be two central separable ,4-algebras both with C as a splitting

subalgebra. We say ß is equivalent to S if and only if there is an /1-algebra iso-

morphism a: ß -*- S such that a(c) = c for all c in C. Let ¿/(C/A) denote the set of

all equivalence classes of such algebras. Chase-Rosenberg [8, Theorem 2.14] show

that s#(C/A) form an abelian group with respect to the product RS=

Endsg>s (ß (gc S) where ß <gc S is regarded as a right (ß <g 5)-module, ß and S

are regarded as left C-modules (i.e., ß rg>c S=(R <g)c S)B®S, R = 0R, S=CS).

Theorem 3. The map v : <?(g, C) -> ¿¡/(C/Ä), L -*■ VL, is an isomorphism of groups.

Proof. It follows from Theorem 2 and Lemma 6 that v is an isomorphism of

sets. So it suffices to prove that v is a group-homomorphism. We interrupt the

proof with a lemma.

Lemma 10. Let R and S be central separable A-algebras both with C as a splitting

subalgebra. Then the map from R ■S=Y.ndB,ss (R ®c S) into

t = |2 "i <g "ie r <gc s 12 Ui° ®Vi = 2Ui ® vicf°r Qttc m w

given byf—>f(l) is an A-algebra isomorphism which leaves C pointwise fixed.
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Proof. It is clear that given fin R ■ S, f is determined by its action on 1. Write

/(1) = 2 ut ® i>¡. Then 2 w¡c ® vt = 2 "i ® fiC, for all ceC, because in Ä ®c -S,

c ® 1 = 1 ® c. It is also easily verified that given any element 2 u\ ® v> m R ®c S

such that 2 ui° ® z>¡ = 2 M¡ ® y¡c f°r a^ c in C, then the left multiplication by

2 m¡ ® f(, x ® j> -> 2 "t* ® ft J7» ¡s a well-defined map on R ®c S and belongs

to J? • 5. This completes the proof of the lemma.

Now return to the proof of Theorem 3. Let F:0_>C—^I-?>g—^0 and L':

O—;* C«-^ Vf^ g—=»0 be regular extensions. We would like to show that the

regular extension H:0->C^-l)-^Q^-0 associated to

F = |2 wt ® Vi e VL ®c VL. | 2 ui° ® y¡= 2 "' ® y'c *°r a'^ c in ^}

is equivalent to L+L': 0 -^ C^>- ï ^ g -> 0. By Lemma 10 and Theorem 2, this

will prove that v is a group-homomorphism(2).

We have the following diagram

0->C<^&-^g->0
A

v

0^C->ï->g^0

where r¡ is the map is, s') -*■ s ® 1 +1 ® s'. To see 17 is well defined, we first note

that for all c in C

isc ® 1 +c ® sO-(i ® c+1 ® j'e) = isc-cs) ® 1 +1 ® ics'-s'c)

= [s, c] ® 1 -1 ® [s', c] = 0

because [j, c] = <p(s)(c) = <p'(.y')(c) = [ä', c]. This shows r¡is, s') is an element of F.

Now

is ® 1 +1 ® s')ic ® l)-(c ® l)(i ® 1 +1 ® s') = isc-cs) ® 1 = [j, c] ® 1 e C

for all c in C. So 17(5, s') is actually in i). The last computation also shows that the

right-hand side square in the above diagram is commutative. That the left-hand

side square is commutative is of course clear. It is also readily verified that -n is a

C-linear restricted Lie ring-homomorphism. By the five lemma, r¡ must be an

isomorphism.

Remark. Theorem 3 may be regarded as a generalization of [11, Theorem 6]

because when C is a field, séiC/A) is exactly the Brauer group BiC/A) [8, Theorem

2.14].

3. Differentials. In order to produce a map from the Amitsur cohomology

group H\C/A, Gm) into the group «?(g, C), it is necessary to put our earlier work

(2) We are indebted to the referee for the following argument which replaces a lengthier

argument used in the original proof.
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[15] on logarithmic derivatives in an invariant form. The following exposition on

differentials is based on that of Carder's [7, pp. 187-204]. The proof for Lemma

14 is taken from [15, Theorem 2.6].

We shall write fí1 = Homc (g, C), and denote by Q.1 the ¡th exterior product

O1 a • • • A Q.1 (i factors). The exterior algebra Q of O1 over C is the direct sum

C+Cl1 + Q2 + •••. It follows from [16, Theorem 10] that for any multiplicatively

closed subset S of A, gs may be identified with the Lie algebra q(Cs/As) of all

^-derivations on Cs. Consequently Q.s may be identified with the exterior algebra

of HomCs (q(Cs/As), Cs) over Cs. For any x in C, we shall denote by dx the map

g -*■ C, given by d -> dx. The map d: C -> Ü1, x -*■ dx, is ¿l-linear and we have the

identity

d(xy) = xdy+ydx,       x,yeC.

Lemma 11. There is a unique A-linear map d: Q, -> Q, called the exterior dif-

ferentiation on Ci which satisfies the following conditions:

(i) d(oj Aco') = dojAco' + (-l)icoA dco' (co e Q', co' e Q),

(ii) d(da>) = 0 (w e Q.),

(iii) d is the extension of the map C -> Q.1, x -*■ dx.

Proof. We shall first prove the uniqueness of d. Assume there are two such maps

dx, d2. Let Y be the set of all co in il such that cT1a) = cT2c«. By (iii), we have C<= Y. By

(i), Y is a subalgebra of Q.. Since D as a C-algebra is generated by the elements of

Ü1, the uniqueness of d would follow if we could show that fl1 is contained in Y.

By (ii), it is clear that the C-submodule C(dC) of Q.1 generated by the image of

d: C^-il1 is contained in Y. We claim that the inclusion map C(dC) <^> Q,1 is onto.

It suffices of course to prove this is the case when A is local. But when A is local,

C admits a /»-basis xlt..., xr over A, and it is readily verified that the cTx¡ form a

C-module basis of Q1. This proves the uniqueness of d.

There remains to show the existence of the exterior differentiation on Q.. Assume

first that C admits a /»-basis xx, ■ ■ •, xr over A so that the elements of the form

dxtl A • • • AcTxia, i'i<--<is, OSs^r, constitute a C-module basis for Q. We

therefore have a map

Q-»LL

x-dxh A • ■ • A dxit -> dx A dxh a • • • A cTxis       (x e C).

It is a mechanical matter to verify that this map satisfies all the requirements of our

lemma. We shall therefore not go into the details here.

In the general case, let Ù be the associated sheaf of the A -module Q. For each q

in spec A, the fibre of Ù at q is just £2q. Since Cq admits a /»-basis over Aq, there

exists an exterior differentiation cTq on Qq. Let d: Ù -> Ù be the (set-theoretical)

map such that the restriction of cTto Í2q coincides with cTq. To see cTis continuous we

recall that for any q in Spec A, there exists somefeA — q such that Cf admits a
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/j-basis over Af [16, Lemma 7]. So there exists an exterior differentiation df on Q.f.

It follows from the uniqueness of the exterior differentiation that the diagram

Q.r-> £2p

is commutative for every p in the open set Dr = {p e Spec A \f$ p}. Let df be the

endomorphism on the ^-module Ûf induced by df. Since Ûf is just the restriction

of Q to Df [9, p. 86, Proposition (1.3.6)] and the restriction of ¿7to Ûf coincides with

df, d must be continuous. If we denote by d the ^-module endomorphism on Q

associated to d [9, p. 87, Corollary (1.3.8)], we see that d2 is zero because d2 is. For

any a> in Qf and co' in Í2, the difference dicoAco') — ideo Aa>' + (— l)'to Adco') is zero

because it is zero at every q in Spec A. Finally the restriction of d to C coincides

with the map x ^ dx, x e C, because they coincide locally. This completes the

proof of the existence of the exterior differentiation on il.

Lemma 12. If x is an element of C, then xp-1(8px)-dp-1(xp-1(8x)) = (8x)v for

any derivation 8 on C.

Proof. Let F denote the (prime) field of p elements. Let K be the polynomial ring

P[to, tu t2, . ■.] where the z¡'s are independent variables. We have a homomorphism

6: K^- C which is given by 9(t0) = x and 0(ti) = 8lx, z>0. If we denote by A the

derivation on A'given by Ari = z'j + i, we have the following commutative diagram

Now A has a unique extension to the field L of fractions of A', which we again denote

by A. Let A + Ait0-1t1): L^Lhe the map s -> A(s) + tô 1t1s. We have

A[it0-1tj)p + Ap-1it0-1t1)-tö1tp]

= iWo- 'h)" + Ap- \tö 1tj)] + Ap)-iAp + A(/0- H p))

= (A(í0- Hj) + A)p-iAp + A(t0- HA'ío])).

The second equality follows from Jacobson's formula [7, p. 201, (36)]. From

A + A(r0-1íi) = (Aí0-1)A(Aí0) we see that (A + A(r0-1í1))p = (Aí0-1)A!'(Aí0) = A"

+ A(r0-1[A%]). So (ío-1(A/0))í' + A''-1(ío-1(Azo))-ío-1(A%) = 0. Clearing the

denominators we get (At0)p + Ap -1('o_ X^'o))-'?!"1^ %) = 0. Applying 6 to the

equation, we get Í8x)p + 8p-1ixp-1i8x))-xp-1i8px) = 0 because 6A* = 8*8 for any i.

This completes the proof of the lemma.
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By formula (i) of Lemma 11, the kernel Z of d: Q, -»■ Q, is an ^-subalgebra of Q,

while the image ß of d is an ideal in Z. We have the following:

Lemma 13. The A-subalgebra Z is equal to the sum ofB and the A-subalgebra R of

Q. generated by elements of the form xv~1dx with x in C.

Proof. We have the obvious inclusion R + B^>Z. To show the map is onto, we

may assume A is a local ring. So C admits a /»-basis xu ..., xr over A. In this

situation, a slightly more specific statement holds : Z is the direct sum of ß and the

^-subalgebra of Q generated by the elements xP~1dxi. This statement appears in

[7, p. 197, Proposition 6] where the proof is given in the case where C is a field. But

the computations are formal and are equally valid in our case.

Now let H denote the kernel of cT: Q.1 -*■ Q.2. Given a» in H we have a map

Yw.q^A,

d-^oj(dp)-dp-1(oj(d))

Y is called the Cartier operator. It is not obvious that (Yw)(d) actually belongs to A.

By Lemma 13, we may write w = du + ~2, aiuP~1dui, u, uteC, ateA. Since Y is

^(-linear and Y(du) = 0, it suffices to show that (rx""1 dx)(d) = xp-1(dpx)-

d" ~ 1(xp " 13x), x e C, d e g, is an element of A. This, however, is a simple consequence

of Lemma 12. Now A may be regarded as a C-module via the scalar product CxA

-*■ A, (c, a) -> cpa. We wish to show that Yco is an element of Homc (g, A). It suf-

fices to verify the special case a> = xp_1 dx, of course. Using Lemma 12 again, we

find (rxp-1 dx)(cd) = ((c8)x)p = cp(dx)p = cp(Yxp-1 dx)(d) and

(Yxp-1dx)(d + d') = ((d + d')x)p = (dx)p + (d'x)p

= (Yxp -1 dx)(d) + (Yxp - * dx)(&)

as desired. Summarizing, we see that Y : H -> Homc (g, A) is an additive group

homomorphism. Therefore the map

Si:H-^Homc(g, A)

given by (8ico)(d) = (rco)(d) — (w(d))p, d e g, is also an additive group homomorphism.

Now let 80: C* -> H be the map x -*■ x-1 dx. It is readily verified that 8iS0 = 0.

So we have a complex

â 8
(1) 0—>A*c—> C* —% H ̂ > Homc (g, A).

Lemma 14. The group L(C/A) = (kernel 8x)/(image 80) is isomorphic to the rank

one projective class group P(C/A).

Proof. Let AT be a rank one projective ,4-module such that the C-module AT ® C

is free on one generator b. Let p be a prime ideal in A. To any generator bp for the

free ylp-module AT eg Av there is a unique invertible element wp in Cp such that the

equation b = bv(l eg «„) holds in AT eg Cp. If b'9 is another generator for AT <g Ap
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and u'p the corresponding invertible element in Cp, then u'pUp1 is in Ap. This shows

the correspondence s: p -*■ u¿1 dup is independent of the choice of b9. To see s is a

section for the sheaf Ù.1, we note that for any p in Spec A, there is some fe A — p

such that the /lrmodule M ® A¡ is free on one generator bf. So there is an invert-

ible element uf in Cf such that the equation A = A;(1 ® t/r) holds in M ® Cr. It is

clear that for any q in the distinguished open set D,, ujx duf goes to z/q~x i/z/q under

the canonical map Q.1 -*■ Cl1. So s is a section for Û1 and there is a unique element

co e Í21 such that for all fc> in Spec A, the canonical image of co in QJ is z/^1 dup.

Now both íZoj and 8ju> must be zero because locally they are zero. So w is actually

in S. If A' is another generator for the free C-module M ® Cand co' is the element

in H to correspond, then co = co' modulo image S0. So we have a well-defined map

6: P(C/A) -> L(C/A). It is readily verified that 0 is a group-homomorphism. To

show it is one to one, assume co = x~x dx for some x e C*. Then for any p in Spec A,

the equation x'1 dx = u^x dup holds in OJ. We have, for any /lp-derivation 8 on Cp,

8(upX~1) = iupX'1)iUp1dup — x'1-8x) = 0 which implies Up = xap for some av in A^

because Ap is exactly the set of all elements of Cp which are annihilated by every

^-derivation on Cp [16, Theorem 9]. It follows that (1 ® 3)(A[1 ® x'1]), a eg,

must be zero because at every p, (1 ® 8)(b[\ ® *_1]) = (1 ® &)(bp[\ ®aB]) = 0.

Since the sequence

0-► M ® A-► M ® C-► 2 M ® C  (direct  sum)
{i®8}

is exact, b(\ ® x'1) is therefore an element of M. If zn is any element of M, then

m ® 1 =A(1 ® x~1c) for some ce C. Now c must be an element of A because

A(l ® x~1(8c)) = (l ® d)(m ® 1) = 0 for all 8 e g. This shows M is a free .¿-module

based on è(l ® x'1), whence 6 is one to one.

There remains to show that 9 is onto. So let co e H be an element in the kernel of

8j. Let L he the trivial regular extension 0 ->■ C °> C+g ->■ g ->• 0. By Theorem 3,

L is the regular extension derived from the central separable /1-algebra EndA (C).

We have a map

r:C+g^EndA(C),

c + a-^S + A(c + o)(a)),

where Ax, x e C, is the map on C produced by multiplication by x. The assumption

that ézüj = 0, Situ = 0 says that r is a restricted Lie algebra homomorphism [7, pp.

200-201]. One verifies at once that r induces an ^-algebra homomorphism

p : VL -> EndA (C). By Theorem 2, the inclusion map C+ g ^ EndA (C) induces an

,4-algebra isomorphism y: VL -> EndA (C). So the additive group C+ has a new

EndA (C)-module structure via the scalar product End¿ (C) xC~^- C, (f, x) ->

ipy~1if))ix). Write this new module as aC. By [5, p. 181, Exercise 18], we have

HomB (C, WC)® C^mC, where F=End¿(C). It follows from [5, p. 53] that

Hom£ (C, mC) is a rank one projective ^-module. Now each element of HomB (C, aC)
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is determined by its action onleC which must go to an element of aC annihilated

by the new operation of g since in the old operation of g, SI =0 for all 3eg. Thus

HomÊ (C, „C)s fl {kernel d + A(cod) | 3 e g}. Write AT = f] {kernel d + A(cod) | d e g}

and let b be the element 2 w¡ ® c( in AT ® C such that 2 mict = 1 in C. For each

p e Spec A, pick mp e AT such that bp = mp (g 1 is a generator for the one dimen-

sional free ^-module Afp. We have, for all i, mt <g 1 =«ip ® a¡ for some at e Ap.

Now with the notations introduced earlier in the proof, Up = 2 a¡Cj. But in Cp,

mpUp = mv'£aici = '2,mici=l. So 0 = Up• dmv + mp■ dup = — upmpco + m9 dup = — co +

Up1 dup whence 9 is onto. This completes the proof of the lemma.

Remarks. (1) The ,4-module S is finitely generated projective. For if /is an

element of A such that C, admits a /»-basis over Af, then Ef is a free ,4rmodule of

dimensionp' + r—l wherepr=[C¡:A,}.

(2) If C is obtained from /I by adjoining nilpotents, then L(C/A) = 0. For any a»

in kernel S1; we have 2 »1^=1 for some «ij in AT= C\ {kernel (8 + A(œd)) \ d e g}

and c¡ in C. Pick/ in ^ such that c¡—/¡ is nilpotent in C. Then 2 ^t/i e AT as the

sum of 1 and a nilpotent 2 wi(/i —c¡) must be a unit in C. Write x_1 = 2 ^t/i. One

sees at once that w = x~l dx.

(3) It will be shown later in §5 that the cokernel of 8X : 3 -*■ Homc (g, .4) is iso-

morphic to ê(g, C).

Lemma 15. Fer cu be an element of ¿i1. Then cu is equal to dxfor some x in C if and

only if do> = 0 and Yw = 0.

Proof. If w = dx for some x in C, then of course dw = 0 and Tcü = 0. So it suffices

to show that co must be of the form dx whenever both dm and Yco are zero. Let ß

denote the image of d: C-> Í21. Let B' be the /1-submodule B+Aco of Q1. Now the

inclusion map i: ß—> B' is onto if and only if it is onto at every p e Spec A. We

may therefore assume that C admits a /»-basis xl5 ..., xr over A so that cu is of the

form cxjX-l-1 cTxi+ • • • +arxP-1 dxT + dx for some a¡ in A and x in C. For any d in

g, we have

0 = (Yoj)(d) = 2 «¡(rxf-1 dXi)(8) = 2 «¡(Ox,)".
i = l i = l

In this equation, if we let d be the ^-derivation on C given by dx¡ = 8U, we see

that a¡ = 0. This completes the proof of the lemma.

4. Applications to Amitsur cohomology. Let ß be a commutative ^-algebra such

that ß is flat as an ^-module. Since g is finitely generated projective as a C-module,

we have HomB®c (ß ® g, ß ® C)sß ® Hom0 (g, C), Homs8c (ß ® g, ß)sß ®

Homc (g, A). Write £^ = HomB(8c (ß® g, R ® C). It is clear that the exterior

algebra of ü¿ over ß ® C may be identified with ß ® O. It is also clear that with

this identification the kernel of the exterior differentiation QJ -> Q,R A ü¿ becomes

identified with ß ® S. In the sequence (1), if we replace the extension C over A by
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the extension R ® C over R, and taking into account these identifications, we get

the sequence

(2) 0 —> R* —> iR ® Cf —> R®Z —> R ® 0

where 0 stands for Homc (g, A). Replacing R by R ® R, R ® R ® Ä, ..., we get

the sequence of complexes

(3) 0 -► tf(A/¿, Cm) -* «"(* ® C/C, Gm) -> V{R/A, Ga) ® H -► íf(lt/¿, Ga) ® 0

where ^iR/A, Gm), %>iR/A, Ga) denote respectively the multiplicative and the

additive Amitsur complexes; cf. [14, pp. 284-286].

From now on we assume that R is a C-algebra which is faithfully flat as a C-

module. By Remark (2) of Lemma 14, (3) is an exact sequence of complexes. Let

Ä and S denote respectively the kernel and cokernel of ^iR/A, Ga) ® H

-> ^iR/A, Ga) ® 0. We therefore have two exact sequences of complexes

0 -► V(R/A, Gm) -+ V(R ® C/C, Gm) -+■ ft -> 0,

0 -» ft -> &ÍR/A, Ga) ® S -> e -* 0.

According to [13, Proposition 3.3], the cohomology of ^iR ® C/C, <Jm) coincides

with that of'if iR/C, Gm). According to [13, Lemma 2.2] all cohomology groups of

^iR/A, Ga) ® H of dimensions higher than zero are trivial. So we have the follow-

ing exact sequences

0 -> A* -> C* -> H°St -* H\R/A, Gm) -> H\R/C, Gm)

-*Hi8-*H*(R/A, <?»)-►••,

0 -* H°® -> S -> H°(Z -+ /Fft -> 0,

O^H<<Z-^Ht+1®-+0,        i > 0.

Now © is a subcomplex of tfiR/A, Ga) ® 0. The latter is acyclic. So

H°<£ = <£° n 0,

/F(£ = [& n B'i^iR/A, Ga) ® 0)]/5'(e)

where ©' denotes the z-dimensional cochain group of (£, B\X) denotes the i-

dimensional coboundary group of the complex X.

In the above exact sequences, if we replace R by C and denote by A the co-

boundary operator on ^iC/A, Ga), we get the following isomorphisms:

(4) A: H\C/A, Gm) £ LiC/A),

(5) i: E\C/A, Gm) s [(image 8C) n 0]/(image 8A),

(6) H" + 1iC/A, Gm) £ [(image Sc») n (A ® IXC"'1 ® 0)]/(A ® l)(image Scn-i),

The isomorphism A is given by 2 xt ® yt -> — 2 x¡dyi The isomorphism £ is given

by 2 x¡ ® y i ® z¡ -> Sc(cu) where tu is any element in C ® H with (A ® l)(co) =
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(2 xi ® J'c ® zi)_1(2 *i ® Jt ® <fe(). The groups Hn(C/A, Gm), «>2, will be shown

to be zero later.

5. Regular extensions and Amitsur cohomology.    Given 9 in Homc (g, A), we

now proceed to show that the C-module direct sum C+g form a restricted Lie

algebra le with respect to the commutation [(x, d), (x', d')} = (dx' — d'x, [d, d'}) and

the/»-map (x, d)p = (xp + dp~lx+ 9d, dp), such that the exact sequence

Fe:0—>C—>le—>g-+0

x -* (x, 0)

(x, d)-+d

is a regular extension. That I„ form a Lie algebra can be seen from the fact that the

commutation on Is coincides with the one on C+ g regarded as a Lie subalgebra of

EndA (C). For any a in A, it is clear that (ax, ad)p = ap(x, d)p. Moreover, by a simple

inductive argument, we have for any positive integer n and any (x', d') in lfl, the

following formula :

D?x.d)(x',d') = (enx'+2 (-lrQd«-ld'd^x, Di(d')}.

In the special case « =/», we have

Dfx,m(x', d') = (8px'-8'8p^x, DP(8'))

= [(xp + 8p^x+9(8), 8p), (x', d')} = Dix,df(x', d').

Now to avoid confusion of notations, let us temporarily write the /»-map on I9 as

(x, 3)[p]. We would like to show that ((x, d) + (x', 8'))[pl - (x, S)[p] - (x', 3')[p3 is

equal to ((x, d) + (x', d'))p — (x, 8)p — (x', d')p in the universal enveloping algebra of

I„. By definition

((x, d)+(x', d'))w-(x, d)^-(x', a')M

= ((x+x')p+(8+d'y -\x+x')+9(d+d'), (d+d')p)

-(xp + d"-1x + (98), 8p)- (x'p + 8'" - lx' + (98'), d'p)

= ((8 + 8')p-1(x+x')-dp-1x-d'p-1x', (d + d')p-dp-d'p).

Now using the formula of Jacobson we have

((x, d) + (x', d')) " - (x, d)p - (x', d')p = ((x + x')p + (8 + 8')p - l(x + x'), (8 + 8')p)

- (xp + 8p~1x, 8p) - (x'p + 8'" - xx', 8'p).

This shows le is a restricted Lie algebra and we resume our old notation for the

/»-map on Ifl.

It is clear that Le satisfies the first three regularity requirements. The fourth

regularity condition is equivalent to the condition (cd)p~1(cx) = cp(8p~1x)

+ ((cd)p~1c)x, c, xe C, 8 e g. Now every S in g may be regarded as a derivation

of the polynomial ring C[t} by letting at = x. By [11, Lemma 1] we have (cö)p-1(cx)
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= ic8)pit) = icp8p + Hc8yc)8)t = cpi8p-1x) + iic8)p-1c)x as desired. This shows Le

is a regular extension for any B in Homc (g, A). It is readily verified that Lg+ 9, is

equivalent to Le+LB: So the map Homc (g, A) -> S (g, C), 6 -> Le, is a group

homomorphism. We claim that the kernel is exactly the image of 8j:a^-

Homc (g, A).

Suppose that 6 e Homc (g, A) such that the corresponding regular extension Le

is trivial. Then there is a C-linear restricted Lie algebra homomorphism p: g -> I9

such that cpp is the identity map on g. Write p(8) = (co(8), 8). Then cu is an element of

Q1 = Homc (g, C). Since p is a Lie algebra homomorphism, we have co([8, 8'])

= 8(co8') — d'(co8) which say dco is zero [7, p. 201, (34)] and hence co is actually in S.

Since p is restricted, we have (cu(a)p + 8P ' \co8) + 0(a), ap) = (w(a), 8)p = (tu(ap), ap).

So 0 = 8j(<u). Conversely if 0= ôVu for some to in S, it is easy to verify that the map

g -> le, a -> icoi8), 8) is a C-linear restricted Lie algebra homomorphism. So Le is

trivial.

Since we have a monomorphism £ from H2iC/A, Gm) into Homc (g, ¿)/(image §i),

composing £ with a: Homc (g, A)/Çimage 8j) -*■ ̂ (g, C), we therefore have a

monomorphism /x: H2iC/A, Gm) -*■ <?(g, C).

Theorem 4. FAe monomorphism p: H\C/A, Gm) -> «^(g, C) fc an isomorphism.

Theorem 5. Every regular extension 0_^Cc-^l^>g->0 admits a C-linear Lie

algebra homomorphism p: g -> I íz/cA zAaí 95p is the identity map on g. For any such

p, the map 9:8 -> p(8)p — p(8p)is an element of Homc (g, A).

Proof. Let F be a regular extension of C by g. Let R he the corresponding

central separable yl-algebra with C as a splitting subalgebra. The proof consists of

the following three steps :

(i) A 2-cocycle u will be attached to R and a complete description of R will be

given in terms of this u.

(ii) Let — L: 0_^ C =-> I^> g_> 0 be the regular extension corresponding to R°.

A C-linear Lie algebra homomorphism p : g -*■ I such that cpp is the identity map

on g will be constructed from the 2-cocycle u. This will complete the proof

of Theorem 5. (The second statement in Theorem 5 was proved earlier in

Theorem 1.)

(iii) Let 9: g -+A he the map 8 -» P(8)p - p(8p). The equality -B = i(u) will be

verified. Since —F = <t(0), we have piu) = at,iu) = ai—8)=L completing the proof of

Theorem 4.

(i) Put M=R/JR where J is the kernel of the map C®C^-C, x®y-> xy.

By Lemma 4, there is an additive group isomorphism Y: C ® Af-> R such that

A(c ® c')T = YA(c' ® c) for all c and c' in C. Since M is a rank one projective

C-module, the map A : C -> Endc (M), c -> Ac, is an isomorphism because locally

it is an isomorphism [5, p. Ill, Theorem 1, cf. also p. 177, Exercise 9b]. Let

■n-: C ® C -> C ® C denote the map c ® c' -> c' ® c. We have the following
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sequence of isomorphisms :

C ® ß° s Endc (ß) S EndA®c (C ® AT) £ End¿ (C) ® Endc (AT)

C®l»^(Ac)(Pí;)

/->T-1/Ï cil

Endc®¿ (C <g> C) =; EndA®c (C ® C) ~ EndA.(C) ® C

Tr-yTT^-/

where Pu denote the map ß -> R produced by right multiplication by v. Let

j8: C ® ß° -*■ Endc8A (C ® C) denote the composite of these isomorphisms. Note

that ß is a C-algebra isomorphism and

(7) ß(c ® c') = A(c ® c'),       c, c' g C.

Given any integer i, 1 ̂ i'^«4-1, we shall denote byr?¡ the map Endc»^ (Cn ® C)

~* Endcn + l0j4 (Cn + 1 ® C) given by

(V¡f)(Cl ® • • • ® Cn + 1 0C) = tTi(Cx ®/(c¡ ® • • • ® c, ® • • • ® cn + 1 ® c))

where tt,: Cn+1 ® C-* Cn+1 ® C is the map

Cx ® • • • ® Cn + 1 ® c->c2 ® • • • ® c, ® Ci ® c, + i ® • • • ® cn + 1 ® c.

If/= Az for some z in Cn+1, then rj((Az) = A(e(z) where £t is the ith face operator

for the Amitsur complex.

Following   [1],   [12],   we  define two   C2-algebra  isomorphisms  ßf:C2®ß°

-> Endc2®¿ (C2 ® C), i'= 1, 2, by putting

We ® c' ® x) = (c ® 1 ® l)vx(ß(c' ® *)),

ß2(c ® c' ® x) = (1 ® c' ® 1)t?2(/3(c ® x)).

From (7), we get

ßx(c ® c' ® c") = A(c ® c' ® c") = j82(c ® c' ® c"),       c, c', c" e C.

Since Endc2<g,¿ (C2 ® C) is a central separable C2-algebra with C3 as a splitting

subalgebra, by Lemma 5, /32^f1 is an inner automorphism by Az with z in C3

because the rank one projective class group P(CS/C2 ® A) is trivial. From its

definition this z satisfies (Az)(r¡if)(Az) ~1 = r¡2f for all / in ß(A ® R°). In other words

ß(A ® ß°) form a subring of

ß(z) = {fe End08ii (C ® C) | (Az)(1?i/)(Az"1) = V2f}.

Write F={/e ß(z) \fß(l ® ^r) = ^(l ® x)/for all x in ß0}. By [2, Theorem 3.1] the

map ß° ® K -^ R(z), x ® /->-/3(l ® x)f, is an isomorphism. We claim that

K=A which implies R(z)=ß(A ® ß°). Given g in F, we have gß(c ® x)

= /J(c ® l)gj8(l ® x)=/?(c ® x)g for all c in C and x in ß°. This shows g is in the

center of EndclSX (C ® C). So g= A(c ® 1) for some c in C. Now A(l ® c ® 1)
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= rli(g) = rl2(g) = Mc<811 ® 1). This is possible only if eis in ,4 because C is faithfully

flat as an ,4-module.

Put zz = (£iz)(e2z)~1(e3z). It is readily verified that Au is in the center C3 of

Endc3g,A (C3 ® C). If we recall the relation eíej = ej + 1eí for i^j, we see that u is a

2-cocycle in the multiplicative Amitsur complex. Write z = 2 ut ® b¡ ® c(, a¡, A¡,

c¡eC. Then « = (2 1 ® a¡ ® A, ® c¡)(2 ̂  ® 1® h ® c¡)_1(2 ̂  ® A¡ ® 1 ® c()

as an element in C3 ® .4 is equal to (identified with) (2 1 ® a¡ ® AjC¡)

•(2 ûi ® 1 ® Aici)"1(2 at ® A, ® c(). Put

i?(z/) = {/e Endc»A (C ® C) | (Au)(r,j.f)iAu) "» = tj2/}

and write Z = 2 «¡ ® ¿¡Cj. For any/in i?(z), we have

iAu^jHAt - 1)/(AZ))(AM) -1 = [(A£i/)(A£2Z) - 1(Az)][(A£iO - WXAy)]

•[(A.iO-HA^íXAz)"1]

= (A^O-^AzX^i/XAz)-1]^;)

= ̂ m-^fiAt)).

So (Az_1)/(Az) is an element of i?(«) for all/in Riz). Conversely for any g in i?(w),

(Ai)g(Az-1) belongs to R(z). This shows the map f. R(z) ->• R(u),f^ (At-^fi At),

is an y4-algebra isomorphism. It is clear from (7) that t leaves the splitting sub-

algebra C=ß(A ® C) in R(z) pointwise fixed, (t is thus an admissible isomorphism

in the terminology of [8, p. 38].)

(ii) Now write w = 2 x0 ® Xj ® x2 and let co he an element in C ® H whose

image under the boundary operator A ® 1 of ^(C/A, G a) ® S coincides with

(2 ^o ® *i ® x2) ~ *(2 *o ® Xj ® </x2)- For any 8 in g, we have

(At/>h(l ® a+A(<üa))-7?2(l ® 8 + Aicod))iAu)

= (Aw)(l ® 1 ® 8+ Aejiw8))-il ® 1 ® a + Ae2(ü>a))(A«)

=  - A(2 X0 ® Xj ® ax2) + AM(ei(t<jö)-ea(<üa)) = 0.

This shows 1 ® a + A(a>a) is an element of /?(«) for all 8 in g. If c is in C, then

[1 ® a +A(cua), A(l ® c)] = [l ® a, A(l ® c)] = A(l ® 8c). So we have a mapping

p: g -> I, a -> 1 ® a +A(a<a). It is clear that 93p is the identity map on g and p is

C-linear. Moreover

[l ® a+A(u>a), 1 ® 8'+Aicod')]

= [l ® a, 1 ® a']+[i ® a, a(co8')]+[A(co8), i ® a']

= 1 ® [8,8']+A((i ® a)(cüa')-(i ® s'X^))

= 1 ® [a,a'] + Aio([a,a']).

The last equality holds because dco = 0, cf. [7, p. 201 (34)]. This shows p is a Lie

algebra homomorphism. The proof for Theorem 5 is therefore complete.
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(iii) Finally, we have

9(d) = P(d)p-p(d") = (1 ® d + A(cod))"-(l ® dp + Aw(d»))

= 1 ® dp + A((l ® 8p-1)(io8) + (cod)p)-(l ® dp + Ao(dp))

= A((l ® dp-i)(u>d) + (cody-co(8p)) = -A(8ca>)(8)

completing the proof of Theorem 4.

Corollary 1. Let R be a central separable A-algebra with C as a splitting sub-

algebra. Then there is a 2-cocycle u in the multiplicative Amitsur complex for C over

A such that R is isomorphic to R(u) = {fe Endcgu (C ® C) | (Au)(-r¡if)(Au~1) = r¡2f}

by an A-algebra isomorphism which leaves C pointwise fixed.

Corollary 2. The map a: Homc (g, /l)/(image 8X) -*■ <í(g, C) is an isomorphism.

Remark. Corollary 2 for the case C is a field is due to Hochschild [11, Theorem 7].

Theorem 4 for the case Cis a field is due to Rosenberg and Zelinsky [12, Theorem 6].

Theorem 6. Hi+2(C/A, Gm)^<S(0 ® g, Ci + 1)s[C< ® Homc (g, ,4)]/(image 8C<)

is equal to zero for all i> 0.

Proof. It follows from Corollary 2 to Theorem 4 that we have the equality

(image Sc) n Homc (g, A) = Homc (g, A).

Now let £,: C1 -* Ci + 1 be the map xx ® ... ® x¡ -*■ xx ® ... ® xy_i ® 1 ® x¡

® ... ® x¡, 1 ̂ y^i'+l. If in the above equality, we replace Cover A by Ci + 1 over

efC1, and g by e}Cl ® g, we get, after identifications (e^C) ® Homc (g, A)

<=■ (image 8c¡ + i). In view of the isomorphism (6) given in §4, we therefore get

Hi + 2(C/A, Gm) s (A ® 1)(C< ® Homc (g, ^))/(A ® l)(image Sc.).

But given any 9 in C ® Homc (g, A), if (A ® 1)0 is zero, then 9 is of the form

(A ® l)(9') for some 9' in Ci_1 ® Homc (g, A). In particular 9 must belong to

(image Sc¡). If we consider the kernel-cokernel sequence of the following commuta-

tive diagram with exact rows :

0-► image Sc¡-> O , Hom0 (g, A,-► <* °ff^» —* 0

D -. (A « 1) image * -> (A « «C « Homc (fl, ,)) ->(A ^^^ ^ - 0,

we see that Hi + 2(C/A, Gm) is isomorphic to (C ® Homc (g, /4))/(image 8C>) which

is isomorphic to S(0 ® g, Ci + 1). Now the map Cn_1 -> C, xx ® • ■ • ® xn_x

->Xi • • • x„_i, is an epimorphism with nilpotent kernel. So when «>2

Hn(C/A, Gm) = cf(C"-2® g, C"-1) = H2(Cn-1/Cn~2 ® A, Gm)

= TT2(C/C, Gm) = 0.

The third equality follows from [13, Theorem 3.4].
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According to [13, Theorem 4.3] if R is a (commutative) C-algebra which is

finitely generated projective as a C-module, then there is an exact sequence

-► H^R/C, Gm) -> H\C/A, Gm) -* H\R/A, Gm) -> H\R/C, Gm) -> ■ ■ ■

In view of Theorems 3, 4, and 6, the following sequence

0 -> PiC/A) -> PiR/A) -> PiR/C) -> s4<C/A) -> s¿iR/A) -» s¿iR/C) -> 0

is therefore exact.

Corollary. Let R be a commutative C-algebra such that R is finitely generated

projective as a C-module, then the sequence of Brauer groups

0 —> BiC/A) —> BiR/A) -?-> BiR/C) —> 0

is exact where X is the lifting homomorphism, p is the restriction homomorphism.

Proof. We have a commutative diagram

BiR/A)-> BiR/C)
A

H\R/A, Gn) -^ H2iR/C, Gm)

where the horizontal maps are the restriction maps, the vertical maps are defined

as in [12, Theorem 2]. By Theorems 3, 4, and [8, Theorem 2.14] the vertical map-

pings are epimorphisms. By Theorem 6 and [13, Theorem 4.3] the lower horizontal

map is also an epimorphism. So the upper horizontal map must be an epimorphism.

The rest of the corollary follows from the definition of BiC/A).

Remark. The above corollary for the case C is a field is due to Hochschild [10,

Theorem 5]. Theorem 6 for the case C is a field is due to Berkson [4, Theorem 4].

A proof for Theorem 6 for the case C admits a /?-basis over A is given in [17,

Theorem 3.6].
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