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ON THE DOMAIN OF NORMALITY OF AN

ATTRACTIVE FIXPOINTO)

BY

P. BHATTACHARYYA

Abstract. It is proved that an entire function of order less than i has no unbounded

immediate domains of attraction for any of its fixpoints. Estimates for the growth of

functions with large infinite domains of attraction (e.g. including half planes) are

obtained. It is shown that an entire function mapping an infinite domain into itself

has polynomial growth in such domains.

1. Definitions. If/(z) is an entire function of the complex variable z, then the

sequence of "iterates" {/„(z)} of/(z) are defined inductively by

fo(z) = z,   f(z)=f(z),   ./; + i(z)=/(/n(z)),        n = 0,1,2,...,

and are also entire.

If co =f„(z), then co is called a successor of z and z is called a predecessor of o> in

each case of order n.

If fn(a) = a but fp(a) =¿ a for p<n, then a is called a fixpoint of order n of f(z).

fn(a) is called the multiplier of a. Every point of the cycle {a,f(a),.. .,/n_i(«)} is a

fixpoint of order n and since f(a) =nS = o f'(fk(a)), every fixpoint of the cycle has

the same multiplier.

A fixpoint a of order n is called attractive, indifferent or repulsive according as

l/ií(a)| < L =1 °r >1 respectively. If fñ(a) = e2"""", p,q integer, we say that a is

rationally indifferent.

The set & = (£(/) consists of those points z of the complex plane, in whose neigh-

bourhood the sequence {fn(z)} is normal, in the sense of Montel. Its complement is

denoted by ^ = ^F(f). From the definition it is clear that (£ is an open set, whose

boundary is contained in &.

It is easy to see that an attractive fixpoint belongs to a component of the set (£,

which is a maximal domain of normality of {fn(z)}. We introduce the following

definitions.

The immediate domain of attraction Da of a first order attractive fixpoint a of

f(z) is the maximal domain of normality of {/„(z)} which contains a. In Da, we have

lim„^eo/„(z) = a locally uniformly.
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Let {ak} be an attractive cycle of order n. Then the immediate domain of at-

traction D{0¡k) of the cycle is defined by {¿>œJ= (J£=i Atfc> where Dak is the domain

of normality containing ak.

The rationally indifferent fixpoints play a role, rather similar to that of attractive

fixpoints. It is known [6] that a rationally indifferent fixpoint a belongs to the

boundary of a domain of normality of {/„(z)} in which limn^w/n(z) = a locally

uniformly.

The immediate domain of attraction Da of a rationally indifferent fixpoint a is

the union of those maximal domains where {/„(z)} is normal and limn^xfn(z) = a,

each of which has a as a boundary point.

2. On bounded immediate domains of attraction of an attractive fixpoint.    For a

polynomial, clearly the point at infinity can be considered as an attractive fixpoint.

Thus for a polynomial, the immediate domain of attraction Da of any finite

attractive fixpoint a is bounded. This is, however, not necessarily true for entire

functions. For example, if f(z) = es + a — ea, a<0 real, then z = 0 is an attractive

fixpoint of/(z). Also Re z<0 implies Re/(z)<0. Clearly then the left half plane

Re z < 0 belongs to a domain of normality and hence to ¿>0, the immediate domain

of attraction of 0.

We wish to show that a result analogous to that for polynomials does, however,

hold for "small" entire functions.

Theorem 1. Let f(z) be a nonconstant entire function of growth (i, 0) and let

{ak}, k= 1,..., n, be an attractive cycle of order n. Then D{ak), the immediate domain

of attraction of the cycle {ak} is bounded.

Proof, (i) We first consider the case when c^ = a is a first order fixpoint. We show

that in this case Da is bounded.

Let L be a continuum lying entirely in Da. Then since/„(z) -*■ ce locally uniformly

in Da it follows that for arbitrary e > 0 and for n > n0, we have

(1) \fn(z)~«| < e   forallz£¿.

Let m(r) denote the minimum modulus of/(z) on |z| =r. Then we have [see e.g.

(5)]

(2) lim sup m(r) = oo.
r-+ oo

Let/(z) = a0 + a1z+ • ■ ■ +anzn+ ■ ■ -, a„^0, n> 1. Then

(3) g(z) = (/(z)-/7(z))/z" + 1

where />(z) = Z" = o anzn; g(z) = 2r°°=i an + rzr_1 is also of growth (%, 0). From (3) we

get

|/(z)f > -\p(z)\ + \zn + 1g(z)\ = 0(rn) + r" + 1\g(z)\ > 0(r») + 2rn + 1   (say)
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for some arbitrarily large r by (2). I.e. for some large r we have

(4) m(r) > rn + 1 > r.

Now suppose there is a z0 g Da such that \a\ <r1 < \z0\ where rx is a value for

which (4) holds. There is a continuum L (say an arc) lying in Da and joining a, z0.

Then the curve/(T.) which begins at a leaves \z\ &rt, for there exists a A gL such

that |A| =rx, \f(X)\ >r^ + 1; n> 1 (by (4)). We now apply the same argument to the

curve f(L) and we see that/2(L) begins at a and leaves \z\ ^rx at some point. We

note that all fn(L), n = \, 2, 3,..., exist and are continua. By induction we can

show that each fn(L) begins at a and leaves |z|^r, at some point. Now since

rx > \a\, we see that (1) is never satisfied, i.e. L cannot lie in the immediate domain

of attraction of a. Hence Da contains no points of \z\ <rlt i.e. Da is bounded.

(ii) We now consider the cycle of fixpoints {au .. .,<«»_!}. We have/n(ai) = aj,

L/n'(«l)| < 1 and a2=/(«l), • • -, an=/n-i(«i)> «n + l=/n(«l) = Oil-

Now a-, is mapped by f(z) to a2 and, since a± is an attractive fixpoint, a small

neighbourhood A^ of ai is mapped into a small neighbourhood/X/V) of a2 and so on.

Dak is the immediate domain of attraction of ak as a fixpoint offn. Thus/nm(z) -> ak

(m -> co) in Daic. It is clear that the domain of normality Da¡c, which contains ak, is

mapped by/(z) to the domain of normality Dak+l containing ak + 1. For suppose z0

is any point in Dak and that/(z0) <£ Da¡c . Since Dak is a domain, we can join ak to

z0 by a continuous path, say y in 7)a)c<=(£ and/(y) is a connected set. Furthermore,

fir) joins f(ak) = ak + 1 to f(z0). Now ak + 1eDak+l and f(z0) $E>«k+1- Hence f(y)

must cross the boundary 8Dak +1 at least once, say at p=f(q), qey. But ycg and

(cf. [6])/((£)<=:6, so that p=f(q)e<i, while qe8Dak+1^^ also holds, which is

impossible.

Let now R be so large that \z\ = R contains all the points ak, k= 1,..., n. We can

choose 7?i > R suitably so as to satisfy (4).

Suppose there is a point Zi such that zx g Dai and \z1\>R1>R. Let L, he a

continuum (e.g. a curve) lying in Dai and joining ax to zx. Since m(R±)> Rl + 1 (by

(4)), we see as in case (i)f(L1)=L2 begins at a2 and must leave \z\ ^R1 at some

point. We thus have a path L2 joining a2 to a point, say z2, such that |z2| >Rt.

By repeating the argument, we see that some points of 7_3 =f(L2) =f2(L1) will lie

outside \z\ =RU while also a3 eL3. Similarly fn(L{) joins a% to some points outside

|z|=7?i. Hence we see that fnm(z) (m—>co) does not tend to a1 uniformly for

z eL-L^ Dai. Hence Dai must be inside |z| ^7?i and continuum lying in Dai. Hence

Dai must be inside \z\ ^ Rx and so bounded. Similarly each Dak must be bounded,

i.e. D{ak) = \Jl = 1 Dak is bounded.

Remark. By exactly similar arguments, we can easily show that Theorem 1

applies to rationally indifferent fixpoints.

One can show that Theorem 1 is best possible in the sense that for any Z>0

there exists an entire function of growth (%, t) for which the immediate domain of

attraction   of   an   attractive   fixpoint   is   unbounded.   The   function  /(z) =
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cos (e2z + 9tt2I4)112 is entire and of growth (\, e) and for 0 < e < (3t7)1/2, z = 0 is an

attractive fixpoint. By simple computation it can be shown that the immediate

domain of attraction D0 of 0 contains the positive real axis [4].

One also has [8]

Theorem A. For any t > 0 there exists a function f(z) of growth (J, t)for which all

the infinitely many first order fixpoints are attractive.

and [3]

Theorem B. Let a be a first order fixpoint of f(z) such that Da is bounded. Then

there exists a repulsive or rationally indifferent fixpoint of order one on the boundary

8DaofDa.

Theorem A and Theorem B show that Theorem 1 is best possible.

3. On functions with infinite domain of normality. In this section we consider

the following problem :

Let/(z) be an entire function and let a be a first order attractive fixpoint such

that Da is unbounded. What can we say about the growth of |/(z)| as |z| —> oo in

this domain of attraction?

We first consider the case when f(z) is such that the immediate domain of

attraction contains a half plane and/(z) maps the half plane into itself. We have

Theorem 2. Let a be a first order attractive fixpoint off(z) such that Re a > 0 and

the immediate domain of attraction Da of a includes the right half plane H: Re z>0.

Further suppose f(z) maps H into itself. Then in any sector |argz| fi</><ir/2, \f(z)\

satisfies the inequality \f(z)\ <kz, where k>\ is a constant which depends on </> only.

Remark. The choice Re z > 0 for the half plane in question is clearly a trivial

normalisation.

Proof. The function w=g(z) = (z — a)/(z + a) maps FT one to one conformally

onto the unit disc W^: |w| < 1 with g(a) = 0, g(a)= —1 where a = (a — a)/2. The

conformai  map  h(w)=g °f°g-i(w)  satisfies  n(0) = 0,   |«(w)|<l   in   W.   Since

Figure 1
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n'(0) =/'(«) and |/'(«)| < 1, h(w) is not a constant multiple of w and by Schwarz's

Lemma we have

(5) \h(w)\ < \w\    for all w e W.

If y is the circle |w| =/•< 1, then the image y under z = g_x(w) is a circle in ¿T,

whose centre ß lies on the line joining a with —à (cf. Figure 1). By (5) the image

f(y') of y is a curve lying completely within y .

Let c, d be the intercepts of y on the line joining — a, a, so labelled that c

separates a from d and let the line through a making an angle ö(<tt/2) with ad cut

y inp',p of which/) lies further from a. Set p=\p — a\. Then for [</>| S=0, a + pe10

lies within y' and sof(a + pe"t') lies within y . Thus

(/(a + pe^-al < |rf-a| ik \c-a\ + \d-c\

= \c — a\ + \p — c|/cos </>' <; \c — a\ + pjcos (6 + ip)

where <j>' is the angle c/? makes with cd and ¡/< is the angle between pa and pc.

Now c corresponds to w=—r and J to vv = /', so that

•              v#V      i*          ii       /l—A (<* + <*)       „ ,
c = (-«!• + «)/(/■+1),        |c — cej = I--1 v       7-^0   asr^l,

and iT=(âr-|-c;)/(l — /")^ oo as r -> 1.

Thus, if we keep 6 fixed, and let r -> 1 we find |c —a| -> 0, i/j -> 0, p -> oo and so

1/(0+^)1 ^ |a| + |c_a|+p/cos(Ö + ^) < A>

uniformly in |<£| ̂  Ö, as p -> oo, where A' is any constant > 1/cos 6.

If we now consider z in an angle A: \argz\<<j><tt/2 and take any constant

K> 1/cos c/>, then we may take an angle 6 satisfying

(6) 4><0<j

(1) K > K' > 1/cos 9.

All but a finite part of A is contained in the angle B: |arg (z—a)\<6. Then as

z ->• oo in A (and hence in B) :

\f(z)\ = |/(a + z-a)|

S K'\z — a\    by the first part of the proof,

;£ A|z|    for large |z|.

This proves the theorem.

Remark 1. It is now possible to improve this result a little further. E. Landau

and G. Valiron [7] have proved the following result:

Theorem   C  (Landau-Valiron). ¿er  </>(z)  be  regular  and  Re<^(z)^0 for

ft=Re z>0. Then we can find c^O, so that writing </>(z) — cz = i/>(z),

(i) Re>/>(z)^0for ft>0,

(ii) for every p>0, </i(z)/z-*■ 0 uniformly in \z\ tâpê, as \z\ -»> oo.
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This shows that the constant K in Theorem 2 is the same for any angle 6 < ir/2.

Letting z-^oo along the +ve real axis, we can assume 0 = 0 and from (6) we see

that in Theorem 2 we can take any K> 1.

Remark 2. We now construct an example to show the sharpness of Theorem 2.

Consider the function

(8) f(z) = ea+z-ea + Xz,

where a < 0 is real, 0 < A < 1 — ea.

Then/(0) = 0 and 0</'(0)< 1, i.e. z = 0 is an attractive fixpoint off(z).

For Re z = x, we have

f'(x) = ea + x + X > 0,       fix) = ea + x > 0.

Thenf(x) = x has only two roots, viz. x = 0 and x = c (>0). For 0<x<c we have

f(x) < c. For any z with Re z < 0, we have

Re/(z) = Re{ea + 2-ea + Az} < |ea + 2| -ea + Xc

^  ea + o_ea+Xc =f(C) =  C.

Thus the half plane 77: Rez<c is invariant, i.e. f(H)<=H, and since z = 0 is an

attractive fixpoint, 77 belongs to the immediate domain of attraction of 0. In 77 we

have by Theorem 2

\M\ = o(\z\).

But/(z)~A|z|, A>0 as z^ co in 77 in such a way that Re z-> — co.

We note that by taking —a very large, we get ea~0 and so A may be taken

arbitrarily close to 1.

In Theorem 2 we assumed thatf(H)^ 77. We now relax this condition and examine

what we can still say about the growth of the function.

Theorem 3. Let a be an attractive fixpoint of order 1 off(z) and let a belong to the

right half plane 77: Re z>0. Let Da the immediate domain of attraction a contain 77.

Then for any e>0,f(z) satisfies the inequality \f(z)\ < X+p.\z\2 in |argz[ <tr\2 — e,

where X and p. are constants.

(Note: We no longer assume that f(H)<= H. It is, however, necessarily true that

(Da)<=De.)

Proof. Let w=g(z) map Da conformally and univalently onto the right half

plane H: Re z>0 such thatg(a) = a. The function u = h(w) = (w — a)j(w + a) maps 77

conformally and univalently onto the unit disc U={u : \u\ < 1} with h(a) = 0.

Consider the function

(9) cf(u)   =  hogofog_1oh-1(Ú).

Clearly

(io) m = 0,       ^'(0)1 = |/'(«)| < i,
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and f> maps the unit disc U into itself since/maps Da into itself, i.e. |<£(w)| < 1 for

|m| < 1. Hence by Schwarz's Lemma, we obtainii

(ii) W)\ = l«|.
Consider the circle y: \u\=r< 1. Because of (11) we know that y is mapped by

cf(u) into a curve y, which lies completely within or on y and the interior of y is

mapped into a subset of the interior of y.

We look at the corresponding picture in the w-plane and in the z-plane.

Now h_i(u) maps y to a circle y' = h-i(y) in the w-plane, whose centre is some

point c lying on the line joining the two points a and — á, and g_± maps this circle

to some Jordan curve y"—g-i ° h-r(y) in the z-plane (cf. Figure 2). Further, the

interior of y is mapped univalently onto the interior of y" by g_x ° n_!.

Figure 2

Since <f> = h°g°f°g_i<>h-i maps the interior of y into a subset of its own

interior, it is clear that/must map y" into some curve lying completely within y".

Thus the interior A of y" is mapped by/into a bounded domain, whose boundary

lies within y", the boundary ofA. Hence

(12) /(A) c A.

Now y" is the image of y under the one to one conformai map

z = <P(u) = g-i°L,(«)

which maps the unit disc U={u : \u\ < 1} one to one onto the immediate domain of

attraction Da of a and carries the origin « = 0 to a. Let <p'(0) = X (^0). Then the

function

(13) f, = #-«)/A = U+• • •

is univalent in |w| < 1 and normalised. Applying Koebe's distortion formula to (13)

we obtain

|(cp(u)-a)/A| ^ rl(l-r)2    for \u\ ^ r ^ 1,
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and hence

(14) \>P(u)\ S H + |A|/(l-z-)2   for [u| ûr < 1.

Let a = (a — ü)¡2 and let c, d,p',p, p be defined as in the proof of Theorem 2 (see

Figure 1) where y has the same meaning as in our present theorem. Now the circle

y lies inside y" =g-i°(h-1(y)). For G(u) = h °g °g°g_i ° n_i(w) maps U=

{u : \u\ < 1} into a proper subset of itself and G(0) = 0. Thus |G(w)| < \u\ for \u\ < 1

by Schwarz's Lemma. Thus G(y) = h ° g °g °g_i ° A-i(y) lies inside y, i.e.

g ° g--L ° n_!(y) lies inside g_i o n_t(y), i.e. h-x(y) lies inside y".

Then, since for \<j>\ < 6, a + pe^ is inside y", we have f(a + pe10) inside y" and so

by (14),

\f(a + Pe^)\ < |«| + |A|/(l-r2).

We now estimate p from

U = h(w) = (w — a)/(w + a), w = (a + uä)/(\—u),

whence

(a — a\
—)

a + a \+U

\-u

Putting u = retß, E=(a + a)/2 we see that the maximum of the above expression

occurs when ß = 0, w = d, i.e. [Figure 3]

\d-a\ = E(\ +r)/(\-r).

Figure 3

Now \p — c\ = \d— c\ cos c/>. If now we let r-*-1, i.e. p -^oo and (cf. Theorem 2)

\c — a\ -+0,       \p — c\ = ap + o(\) = p + o(\).

But

\p — c\ = \d— c\ cos $ = {\d—a|+o(l)}cos c/>

= E((l+r)/(l-r)) cos 6 + o(l)   asr^l.

Thus as r -> 1, p -> oo and in fact

p = E((l+r)/(l-r))cos 6 + o(l) = 2£(l+o(l)) cos 0/(1 -r).
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Thus for suitable constants F', A' and \<f>\ ^6<rr/2,

\f(a+Pé*)\ < \*\+E,2*os2()p2(l+o(l)),

i.e. l/ía-t-pe'*)! <A + X"p2 uniformly in c/> for a suitable constant A" (depending on

6). Transforming to the point z we get

|/(z)| < A + /n|z|2    in |argz| < n/2 — e

by the same argument as at the end of Theorem 2.

The proof of Theorem 3 is now complete.

We note that in the above theorem we needed the attractive fixpoint a to be in

the right half plane Re z>0. In view of the fact that Da may well contain parts of

the plane Re z < 0, this assumption is rather strong. However, we can go to more

general situations by quite simple conformai mapping arguments. Denote by an

invariant domain a domain D such that/(¿>)<= ¿>. The Da, belonging to an attractive

fixpoint a, is invariant in this sense. We prove

Theorem 4. (i) Let D be an infinite simply connected invariant domain of an

entire function (not necessarily containing an attractive fixpoint).

(ii) Let D contain an angle A : a < arg (z — z0) < a + ß, ß > 0. Then for arbitrary e > 0,

|/(z)| = 0(\z\k)   for some k = k(ß, e)

as \z\ -> oo in a + eiSarg (z — z0)<cx + ß — e.

Proof. Without loss of generality, we can assume a = — ß/2. Let Zi be any finite

boundary point of D. Then the ray z = zx + x, x^0, meets the boundary of D a last

time (i.e. for maximum x) at say z2 and meets the boundary of A at say z3. Denote

Ai (<=A) the sector {z | - ß/2 < arg (z — z3)<ß/2}. Now z — z3 = tB"z maps the right

half plane Re r>0 onto Ax. Further there is a branch i/>(z) of (z — Z2)1'4 regular and

single valued in D (by the Monodromy Theorem) and taking real positive values on

¿: arg(z —z2) = 0. Then w = i/t(z) maps D into the half plane Re w>0. [For the

image <ji(D) contains the + ve real w axis and if it contains say w' in Re w < 0, then

w' can be joined by w= 1 by a path which meets Re w=0 a last time at say w" (say)

and after that meets the positive real axis for the first time at w'".

The segment w'"w" of the path lies in >p(D) and is mapped by z — z2 = wi into a

curve (in D) joining

z'" = z2+\wmY   and   z" = z2+|w"|4

on which argz changes by 27r. This curve together with the real segment z"z"

(which is also in D) separates z2 from distant points of the boundary of D, against

the fact that the boundary cannot contain a finite isolated component.]

Now z3 + tein maps t in the right half plane Re r>0 to a value in Ai (cfl) and

further f(z3 + tmn) belongs to D and </>(t) = ifi(f(z3 + tmn)) belongs to the right half
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plane. Hence, |<tS(z)| = 0(|í|) in any angle |arg t\ ^tt/2—8, by the Landau-Valiron

result (Theorem C). Thus,

\f(z3 + t*"*)-z2\ = 0(\t\%        \fiza + t»'*)\ = 0(|i[4)

as t-> co in |argz|<7r/2-S, i.e. |/(z)| =0(\z\i*">) (since 0(\z-z3\i,llii)^0(\z\in'ß))

as z->- co in any angle of the form |arg (z —z3)| <ß/2 — e.

This completes the proof of Theorem 4.

Using Phragmen-Lindelöf methods and our growth estimate in Theorem 4, one

sees that functions having invariant domains including an infinite angular sector

must have a certain minimal order of growth. One has (see e.g. [1])

Lemma. If the order of the entire function f(z) is < y, y > 0 and if as z -> co outside a

number of disjoint angular sectors of the form D:

öi < arg z < 02,        02 - Ai. < Wy,

one has \f(z)\ =0(exp (|z|y)), y' <y. Then the order off(z) is in fact £jy'.

Application to Theorem 4. We have in Theorem 4 that 62 — 61 is 2-n — ß + E

outside of such an angle, i.e. in a slightly smaller sector than A, we have/(z) of

polynomial growth, so that y' may be taken arbitrarily small, y may be taken as any

number <-n-l(2rr — ß + e). We see then that the order of an/(z) possessing such an

invariant region as in Theorem 4 is at least -n-/(2-n-—ß). That this is sharp for ß = -n is

shown by the case off(z) = e*—l [2].

I am indebted to Dr. I. N. Baker of Imperial College, London, for his help and

suggestions in preparing this paper.
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