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Abstract. The paper considers the nonlinear system x'=f(t,x,y), y'=g(t, x, y)

with linear and nonlinear two point boundary conditions. With a Lipschitz con-

dition, an interval of uniqueness for linear boundary conditions is determined using

a comparison theorem. A corresponding existence theorem is established. Under the

assumption of uniqueness, a general existence theorem is established for quite general

nonlinearities in the functions and in the boundary conditions. Examples are provided.

The results extend previous work on second order scalar differential equations.

Introduction.    Questions of the existence and uniqueness of solutions of the two

point boundary value problem

(i.i) y"+f(t,y,y') = o,
(1.2) yia) = A,

(1.3) yib) = 77,

where f(t, y, y') satisfies a Lipschitz condition, have a long history, going back to

Picard [9], 1893. The problem is to determine, in terms of the Lipschitz constants,

the best possible interval [a, b] on which there exists a unique solution of (1.1), (1.2),

(1.3). Recent results and references on this problem can be found in [2], [3]. A

second question of interest is, given that solutions of (1.1), (1.2), (1.3) are unique, i.e.

given that there exists at most one solution, when does this imply that there exists

at least one solution. The first results along this line are due to Lasota and Opial

[6] and Jackson [3].

This paper investigates these two types of questions for the second order system

(1-4) x'=f(t,x,y),       y'=f2(t,x,y)

subject to more general boundary conditions

(1.5) gi(x(a), y(a)) = cu

(1.6) g2(x(b),y(b)) = c2.
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In §2 the Lipschitzian problem is treated and in §3 the question of proving existence

given uniqueness is explored. The theorems are illustrated in §4. When a Lipschitz

condition is assumed, as in [2], we take it to be of the form

Fi(x! - x2) ^ fi(t, Xi, y) -fi(t, x2, y) ^ ¿2(x! - x2) if xx ^ x2,

A(yi-y2) ^fi(t,x,yx)-fi(t, x,y2) ^ K2(yi-y2) if yx ä y2,

Mi(xi-x2) ^ f2(t, Xx,y)-f2(t, x2,y) ^ Af2(x!-x2) if xx ^ x2,

Ni(yi -y2) Ú f2(t, x, yi) -f2(t, x, y2) ^ N2(yi -y2) if yi ^ y2.

If/(r, x,y), i'=l,2, are continuous on [a, b}xRxR and satisfy (1.7), solutions of

the initial value problem are unique and can be continued over [a, b]. The advan-

tage of using (1.7) instead of the usual Lipschitz condition with absolute value is

that the added information in (1.7) can lead to sharper estimates on the allowable

size of b — a.

Many of the arguments used in this paper take place in the x—y plane. By

making the substitution x = p cos d,y = p sin 6, one obtains a new set of differential

equations for p and 6. The functions d(t), the polar angle, and p(t), the polar radius,

play an important role.

2. Existence and uniqueness of solutions for Lipschitzian problems. Consider the

boundary value problem

(2.1) x' = fi(t, x, y),       y' = f2(t, x, y),

(2.2) Ax(a) + By(a) = clt

(2.3) Cx(b) + Dy(b) = c2,       b > a,

where the/(r, x, y) satisfy a Lipschitz condition of the form (1.7). Theorem 2.1

deals with the problem of finding the best possible bound on the size of b — a,

given the Lipschitz constants, for there to exist at most one solution. An existence

theorem for this case is given as Theorem 2.2. The conditions (2.2) and (2.3) can

be replaced by a class of nonlinear boundary conditions and it is shown that

Theorem 2.1 can be extended to this case at the expense of increased computa-

tional complexity.

A principal tool in the approach here will be a comparison theorem of Perov

[5, p. 177] (see also [8]). Solutions of (2.1) will be compared with those of an

auxiliary system

(2.4) x' = fi(t, x, y),       y' = f2(t, x, y),

where the/A x, y), 1=1,2, will be constructed from the Lipschitz constants. First

of all, define {/./¡Jäi/^/a} in a region D if the following inequality is satisfied

there.

(2.5) x/2(i, x, y)-yfi(t, x, y) ^ xf2(t, x, y)-yfi(t, x, y),       (/, x, y) e D.



1971] NONLINEAR DIFFERENTIAL EQUATIONS 225

Let cp(t) be the polar angle (see Introduction) for (x(t), y(t)) a solution of (2.1);

cp(t), the polar angle for (x(t), y(t)), a solution of (2.4).

Perov Comparison Theorem. Suppose (x(t),y(t)) and (x(t),y(t)) exist over

[a, b], neither vector being zero there. Let D=[a,b]xRxR. Suppose fit, ex, cy) =

cf(t, x,y), c> 0, i=l, 2, and suppose that solutions of the initial value problem for

(2.4) are unique. If{f,f2}^{fi,f2} and cp(a)^cp(a), then cp(t)^cp(t), te [a, b]. The

inequalities may be reversed throughout.

First, define

P\(u, v) = Lxu + Kxv if uv Si 0,

= L2u + Kxv if uv < 0;

P2iu, v) = M2u + N2v if uv Si 0,

= M2u + N]_v if uv < 0;

Qi(w, z) = L2w + K2z if wz ^ 0,

= Lxw + K2z if wz < 0;

Q2(w, z) = Miw + NyZ if wz ^ 0,

= M-tW + N2Z if wz < 0.

The comparison system will be

(2.6) u' = P¿u, v),       v' = P2(u, v)

and

(2.7) w' = Qi_(w, z),       z' = Q2(w, z).

The systems (2.6) and (2.7) can have a discontinuity in the right-hand side at a

change of quadrant. If differentiability of solutions is not required at these points

(left and right derivatives exist but are unequal), solutions exist and are uniquely

defined by their initial conditions. Within a quadrant, the right-hand sides are

linear and solutions may be computed explicitly.

Let y = ax and y=ßx be two lines in the x—y plane. Define p(a, ß) to be the

time it takes for a solution of (2.6) which begins at t = 0 at a point on y = ax to first

reach a point on the line y = ßx (if a solution does reach it) or to be +oo if no solu-

tion beginning on y = ax at ? = 0 reaches y=ßx for any iäO. Since (2.6) is piecewise

linear and homogeneous, p(a, ß) is independent of the choice of the initial condition

on y = ax and of the initial "time" Z = 0. This definition can be interpreted in terms

of the polar angle w(t) of (2.6), i.e. if oi(0) = a, -n/2 ̂  a ^ — 7r/2, and co(b) = ß (mod n),

7r/2^/8^ — 7r/2, where b is the first nonnegative time that co(t)=ß (mod n), then

pia, ß) = b. Since the equation has piecewise constant coefficients, /?(«> ß) can oe

determined explicitly if needed. Define qia, ß) in the same way for the system (2.7).

Note that pia, a)=q(a, a) = 0.
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Theorem 2.1. Let f(t, x, y), i'= 1, 2, be continuous on [a, b}x Rx R and satisfy

(1.7) there. Ifb — a<M, where

M = min [p(tan ~1 - A/B, tan -1 - C/D), q(tan "1 - A/B, tan "1 - C/D)},

there is at most one solution of the boundary value problem (2.1), (2.2), (2.3). This

result is best possible.

Proof. Suppose there were two solutions (xi(t), yt(t)), (x2(t),y2(t)) of (2.1), (2.2),

(2.3). Let x(t) = x2(t) — Xi(t) and y(t)=y2(t)— yi(0 and suppose labeling is chosen

so that x(a) > 0 or if x(a) = 0, y(a) > 0. Such a choice is possible since (x(a), y(a)) #

(0, 0) by uniqueness of solutions of initial value problems. Then (x(t), y(t)) satisfies

the following:

(2.8) x' = Fi(t, x, y),       y' = F2(t, x, y),

(2.9) Ax(a) + By(a) = 0,

(2.10) Cx(b) + Dy(b) = 0,

where Ffj, x, y)=/(i, x + x^r), y+yi(0)-/A *i(0» yi(0), i= U 2. Note that the

F¡(r, x, y) satisfy the same Lipschitz condition (1.7) as the/(i, x, y).

Let (u(t), v(t)) and (w(t), z(t)) be solutions of (2.6) and (2.7) with initial con-

ditions (u(a), v(a)) = (w(a), z(a)) = (x(a), y(a)). Let cp(t), co(t), cb(t) denote the polar

angles of (x(i), y(t)), (u(t), v(t)) and (w(t), z(t)), respectively. Pu P2, Qu Q2 are

positive homogeneous and one verifies that {Pu P2}^{Fi, F2}g{Qi, Q2}- Since

cp(a) = w(a) = >p(a) it follows from the Perov Comparison Theorem that w(t)^

cp(t)^ifi(t) and in particular a>(b)^cp(b)ät/>(b).

Now, b — a<M says that no solution of (2.6) or (2.7) which begins on a line

through the origin with slope tan-1 — A/B at t = a can reach a line through the

origin with slope tan-1 —C/D at or before t = b. The comparison theorem says

that if neither co(r) or </>(f) crosses a line with slope tan-1 C/D, then neither does a

solution of (2.8), (2.9). Hence (x(b),y(b)) cannot satisfy (2.10) unless (x(r),y(0) =

(0, 0). Such is not the case and this contradiction establishes the theorem.

The result is "best possible" since if b — a = M, either (2.6) or (2.7) has a non-

trivial solution satisfying (2.9) and (2.10) as well as the trivial solution.

If the lines given by (2.2) and (2.3) are parallel, then AT=0 and Theorem 2.1 does

not apply. That the theorem is not true in this case may be seen from the problem

y"+y' = 0, y'(a)=y'(b) = 0 which has any constant as a solution. In the important

special case x(a) = cu x(b) = c2 this can be remedied by assuming A>0 (which is

always the case for second order equations). Then it can be shown that at 6= ± tt/2,

O'(t)<0. That is, solutions cross 8= ±tt/2 moving counterclockwise in the plane

so that nontrivial solutions of (2.8) can move from x(a) = 0 to x(b) = 0 only by

passing through an elapsed angle of w. (Fory(a) = c1,y(ib) = c2 this can be remedied

by assuming M2<0.) Then the comparison equations can be used to determine

an interval so small that 6(t) cannot pass through such an angle.
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The existence theorem corresponding to Theorem 2.1 is

Theorem 2.2. If the hypotheses of Theorem 2.1 hold, then there exists a solution

0/(2.1), (2.2), (2.3).

Proof. Let (xx(t), yj(t)) he an arbitrary solution of (2.1), (2.2). If (2.3) is not

satisfied, then either Cx1(b) + Dy1(b) = 8<c2 or >c2. We suppose the former; a

similar argument applies in the second case. The idea of the proof is to find

initial conditions for a solution which lies on the opposite side of the line Cx+ Dy =

c2. This will be done using (2.8) and (2.9). In particular, we seek a solution

(rit), sit)) of (2.8), (2.9) with Cr(b) + Ds(b) < c2 - 8, so that (x2(t),y2(t)) =

(r(t) + xx(t), sit)+yj.it)) satisfies (2.1), (2.2) and Cx2ib) + Dx2ib) > c2.

Let (u(t), v(t)), (w(t), z(t)) be solutions of (2.6), (2.7) with polar angles co(t), <fi(t),

with a>(a) = ^(a) = tan-1 —A/B. The rays co(b) and </>(b) are not parallel to Cx+

Dy = 0 so co(b) and >/j(b) intersect the line Cx+ Dy = c2 at points whose radii in

polar coordinates we label Ra and 7?„,. Let 7? = max [Ra, R^]. We need the following

very elementary lemma.

Lemma. Let p(t) be the polar radius of (2.8). Then p(t) satisfies

p(a)e-"(t-a} ^ p(t) < p(a)ea(t-a\

aútúb,       a = 2 i\Ki\ + \U\ + \Mt\ + |7V,1).

Proof of lemma. The equation for rit) is

r' = F jit, r cos 6, r sin 6) cos d + F2it, r cos 6, r sin 9) sin 6.

Using the Lipschitz condition, (1.7), it follows that orTzr'^ — or and an integration

establishes the lemma.

Proof of theorem (continued). Choose an initial radius pia) such that pia)>

Re*\b-ai_ Let (r(t),s(t)) be a solution of (2.8), (2.9) such that r2ia) + s\a)^p2ia).

We know then that dit), the polar angle of this solution, satisfies

(2.11) </.(£>) ^ Bib) Ú coib)

and the polar radius satisfies pib) ä R. Any point (x, y) which satisfies

(2.12) Cx+Dy < c2-8

lies on the origin side of Cx+Dy = c2 — 8. (Note that c2 — 8>0 in the case we are

considering.) Hence any points of the sector (2.11) which satisfy (2.12) have

pib) < R. Thus

(2.13) Cr(b) + Ds(b)^c2-8.

Let x2(t), y2(t) he a solution of (2.1) with initial conditions x2(a) = r(a) + Xj(a) and

y2(a)=s(a)+yj(a). This solution satisfies (2.2) and from (2.13)

c2-8 á C(x2(b)-Xj(b))+D(y2(b)-yj(b)) = Cx2(b) + D2(b) - S
or

Cx2(b) +Dy2(b) ä c2.
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Let / denote the segment of Ax + By = Ci between (xx(a), yx(a)) and (x2(b), y2(b)).

The set of solutions of (2.1) evaluated at b given by

[x(b),y(b)\(x(a),y(a))el]

is a connected set (by a simple strengthening of Kneser's theorem, see [12]). Thus

there exists an initial condition on /, i.e., a point on / such that the solution of (2.1)

with these initial values satisfies (2.3).

We indicate now an extension of Theorem 2.1 to the boundary value problem

(2.1) x' = fL(t, x, y),       y' = f2(t, x, y),

(2.14) gi(x(a),y(a)) = Ci,

(2.15) gÁx(b),y(b)) = c2.

The gi(x, y), i'= 1, 2, are assumed to satisfy a Lipschitz condition like that of the

/(r, x, y), i.e., to satisfy

Ai(x-y) Ú gi(x, z)-gi(y, z) ^ A2(x-y)    if x ä y,

Bi(x-y) ^ gi(z, x)-gi(z, y) ^ B2(x-y)    if x ^ y,
(2.16)

Cx(x-y) ^ g2(x, z)-g2(y, z) ^ C2(x-y)   if x ^ y,

A(x-y) ^ g2(z, x)-g2(z,y) á A(*~y)   if x ^ y.

The situation is considerably more complicated than that of Theorem 2.1. Let

Gi denote the region (possibly null) in the two sectors

A2x+B2y ^ 0,       Aix + Biy -¿0,       x^0,y^0;

A2x+Bxy ^ 0,       Axx + B2y ^ 0,       x è 0, y ^ 0.

Let G2 denote the union of the following four sectors :

C2x+Ay^0, dx+Ay^0, x^0,y^0;

C2x+Ay ^ 0, dx+Ay ^ 0, x ^ 0, y ^ 0;

Ax+Ay^0, C2x+Ay^0, x^0,y:S0;

CjX+Ay^O,    C2x+Ay ^ 0,        x^0,y^0.

It will be required that Gx n G2 —{(0, 0)}= 0. In the case the gt(x, y) are linear

this is taken care of in the nonparallel condition on the lines inherent in the

definition of M. Define

M=      min       Litan"1 -^ tan"1 -^qitan^-^-, tan-1 —£)1-
i = i,2;y=i,2 L \ A A7    \ A A/1

Theorem 2.3. Let /(/, x, y), i'= 1, 2, &e continuous and satisfy (1.7) in [a, è] x T?

x R. Let qfx, y), i= 1, 2, ¿>e continuous in RxR, and satisfy (2.16) there. Suppose

further that Gx C\ G2 —{(0, 0)}= 0. Ifb — a<M, there exists at most one solution of

(2.1), (2.14), (2.15).
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Proof. We sketch the proof which is essentially that of Theorem 2.1. Suppose

there were two solutions (xj(t), yj(t)) and (x2(t), y2(t)) and as before let (x(t),y(t))

he the difference of them where x(a)>0 or x(a) = 0 and y(a)>0. Then (x(t),y(t))

satisfies

(2.17) x' = Fj(t, x, y),      y' = F2(t, x, y),

where the T^z, x, y) are as defined in Theorem 2.1. From the Lipschitz conditions

(2.16)

A2xia) + \ A = 0'
{Bjyia) if yia) < 0)

AM+W)ifK«) < o} * °'
(c2xib) if xib) ̂  oi  m ¡f m = °\ > o
\Cjxib) if xib) < 0)    \Djy(b) if y(b) < 0)  ~   '

(Cjxib) if xib) §î 0-)     (Djy(b) if Kb) ^ 0\

\C2x(b) ifx(b) < 0)     \D2y(b) if y(b) < 0] ~    '

The first two inequalities say that (x(a), y(a)) e Gj and the last two that

ixib),yib))eG2.

To reach G2, (x(t),y(t)) must cross one of the lines bounding Gj a last time

Zi^a. Since (x(b), y(b)) e G2, so (x(t), j(z)) must cross one of the lines bounding

G2 for a first time t2^b. M is defined so that neither angle w(t) or i/r(z) of the

comparison equations (2.6) and (2.7) can pass through any angle between a

boundary line of Gj and one of G2. Hence by the Perov Comparison Theorem

neither can <p(z), the polar angle of the system (2.17).

3. Existence from uniqueness.    In this section the boundary value problem

(3.1) x' = f(t, x, y),       f = f2(t, x, y),

(3.2) gjixia), yia)) = cj,

(3.3) g2ixib),yib)) = c2,

will be considered under the hypothesis that there is at most one solution of (3.1),

(3.2), (3.3). The object is to establish an existence theorem for suitable curves (3.2)

and (3.3).

The first theorems of this sort for two point boundary value problems are due

to Lasota and Opial [6] and Jackson [3]. Other results of this kind may be found

in [1], [10], [11], [13], [14]. The conditions ongix, y), z'=l, 2, will be strengthened

as to smoothness over those imposed in §2, but there will be no condition

of the form (2.16). The major additional assumption is one which relates the

gix, y) and the f(t, x, y). We state this as
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(H) If {(xn, yn)} is a sequence of points in the plane such that g2(xn, yn) and

g^ g2(xn, yn)fl(tn, Xn, yn) + -gT (Xn, yn)/2(ín, Xn, yB)

are bounded for bounded {tn}, then {(x„, yn)} lies in a bounded region.

First it needs to be shown that (H) is satisfied in the usually studied case

z"+f(t, z, z') = 0,       z(a) = A,       z(b) = B.

In this case, gi(x,y)=g2(x,y) = x, fdjt, x,y)=y, and f2(t, x, y) = -f(t, x, y).

g2(x„, y„) bounded says that x„ is bounded. Since dg2/8x=l, 8g2/dy = 0, the second

condition becomes

l-yn + 0-/2(¿», xn,yn) = yn.

Thus the (x„, yn) lie in a bounded region and (H) is satisfied. A less trivial example

will be given in the next section.

Condition (H) can be equivalently formulated as follows: For any bounded

interval I,

gl(x, y) + [grad g2(x, y) f(x, y)]2 -> co   as x2 + y2 -> co

uniformly with respect to tel, where/=(/i,/2). (The author is indebted to the

referee for this comment and for other suggestions to improve the clarity of

presentation.)

Theorem 3.1. For i'= 1, 2, let fft, x,y) be continuous on [a,b + y)xRxR,y>0,

and let g¡(x, y) be continuously differentiable. Let gi(x, y) = cu when parametrized by

arc length, leave every bounded region for sufficiently large arc length in either

direction, and let g2(x, y) = c have a real locus for all real c. If(H) holds, if all solu-

tions with initial conditions at t = a exist over [a, b + y), and if there exists at most

one solution o/(3.1), (3.2) and g2(x(s),y(s)) = c for se(b — e,b + e) some e>0 and

all c, then there exists at least one (and hence exactly one) solution q/" (3.1), (3.2),

(3.3).

Remarks. The condition that g2(x, y) = c have a real locus for every real c may

be replaced by a real locus for c in some open interval provided the conclusion is

restricted to c in that interval. A similar theorem is true if the interval [a, b + y) is

replaced by (a — y, b] and the uniqueness holds in (a — e, a + e). That the theorem

is not true if uniqueness is not required in a neighborhood has been shown by a

counterexample in [6]. Also in [6] an example is given of a second order scalar

equation with linear boundary conditions which satisfies all of the hypotheses of

Theorem 3.1 except (H) and for which solutions fail to exist.

Proof. Let F0 be an arbitrary point of gi(x, y) = cr and suppose that gi(x, y) = cx

is parameterized by arc length with F0 as initial point. Hereafter we refer to points

of this curve by a single real number denoting the parameter. For a fixed s, ar¿sf¿
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b + e, define TS(P), P egx(x,y) = Ci, to be the point set {(x(s,P),y(s,P))} where

(x(t, P), y(t, P)) denotes a solution through P at t = a, i.e. TS(P) is the funnel section

at s of all solutions through P. Since all solutions are continuable, the mapping

takes the points of gi(x,y) = cx into nonempty subsets of the plane. On the range

of TS(P) define

S(TS(P)) = {g2(x(s, P), y(s, P)) | (x(s, F), y(s, P)) e TS(P)}.

Let rs(F) = S(Fs(F)). If the range of Yb is the whole real line, there exists a solution

of (3.1), (3.2), (3.3) for every choice of c2.

Lemma 3.1. rs(T?) is connected for s e [a, b + e).

Proof. Since g2(x, y) is continuous YS(P) will be a compact connected set if

TS(P) is. That TS(P) is compact and connected is a consequence of Kneser's

theorem and the assumed continuability of solutions. In fact, if A is a compact

connected set, T(A) is also. (This is stated in [12] for the autonomous case and can

be proved in the nonautonomous case as well, following [4].)

Suppose YS(R) = A u B where A and B are separated. Let Qxe A and Q2 e B.

For i'= 1, 2 there exists a solution (xft, F¡), y(t, P¡)) such that F¡ e g±(x, y) = cu and

g2(Xi(s, Fj), y{(s, Pi))=Q¡. Let F be the arc of gi(x, y) = cx joining Pi and F2. In

view of the remarks in the preceding paragraph, YS(E) is connected. Yet Ys(Pi) e A,

A(A) e B, and A and B are separated. This establishes the lemma.

By uniqueness of solutions of boundary value problems, if se(b — e, b + e),

Ai A) n TS(F2)= 0. Hence YS(P) is an interval or a point, and the range of YS(R)

may be ordered in the obvious way.

Lemma 3.2. Ys is monotone for s e(b — e,b + e).

Proof. Let Pi<P2<P3 (ordered by arc length) and suppose r(P2)<r(A)<

T(F3) (the other cases follow similarly). Let x¡ e A(A), i = 1, 2, 3. rs([F2, F3]) is

a connected set so there exists a point F*, P2SP*^F3, such that xx e T(P*). Since

Pi<P2úP* this contradicts uniqueness of solutions of boundary value problems.

Proof of theorem (continued). If the range of r6(T?) is not all of R then r„(F) is

bounded above or below. Suppose Yb(R) is bounded above and let ij = sup rb(T?).

First of all, it will be established that r¡ $ Yb(R). Suppose that r¡ e Yb(R). Then there

exists a solution of (3.1), (x(t), y(t)), which satisfies (3.2) and g2(x(b), y(b)) = r¡. Let

Pi = (x(a), y(a)) (recall F is a parameter denoting arc length on gi(x, y) = Ci).

Choose F2 andF3 such that F2<F1<F3. Then, in view of the monotonicity, either

A(A)>A(Fj) or Yb(P3)>Yb(Pi). Since v e Y^PJ, this contradicts the maxi-

mally of 7) and hence r¡ e Yb(R) is impossible.

Since r\ is the sup Yb(R) there exist zn e Yb(R) such that zn f t¡. To each zn there

corresponds a unique point in the x—y plane F„, Pn e gi(x, y) = c, and a unique

solution of (3.1), (xn(t), yn(t)) through Pn at t = a, such that g2(xn(b),yn(b)) = zn.
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Note that Lemma 3.2 guarantees that Pn depends monotonely on n. Let </>n(t) =

g2(xn(t), yn(0), te [a, b + y). Then tpn(t) is differentiable and

Ut) = (dg2/8x)(Xn(t),yn(t))fl(t,Xn(t),yn(t))

+ i8g2/dy)(xn(t), yn(t))f2(t, xn(t), ynit)).

The object of the following argument is to select a convergent subsequence of

initial conditions, i.e. points in the plane ix„, yn). It is an adaptation of an argument

originally given by Lasota and Opial [6].

In terms of the parametrization discussed in the beginning of the proof, for

fixed t in (b — e, b + e), </>„(/) is monotone in n (either increasing or decreasing) since

{Pn} is monotone in n. Further, $,(0 = 0 or $,(/)á0 for infinitely many n—for

definiteness assume t/r„(i) is monotone increasing in n for t e(b — e, b + e) and

t/i'n(b) ̂ 0 for infinitely many «. We restrict the argument to these zz. Let t * e

[b, b + e). Then

(34)      un-ub)   un-ut)   K_minr un-*.
v    ' t* — b t* — b L       t*—b   J

Let Sn=[t\ t^b;0^<P'n(t)^K]. The sign of i/i'n(b), (3.4), and the mean value

theorem imply that Sn is not empty. Clearly, Sn is closed. Let jn = min S„. Then

b^Snúb + e, so there exists a convergent subsequence (which we still label sn),

i.e. s„^s0. Now 0^>PniSn)^K. Note that if #,(6) = 0, b=sn. If #,(£)<0, <PniO<V

until t/i'n(t) = 0 for some t>b. This t is in Sn, hence ^i(i„) < <pn(sn) < V- Rewriting

the >/<n(Sn) and ^'n(sn) in terms of (xn(sn), y'n(sn)) we are in the situation described by

hypothesis (H). Thus {(xn(sn), yn(sn))} lies in a bounded region of the plane.

Choose a convergent subsequence, i.e. let sn-+s0, Xn = xn(sn) —> x0, yn =

yn(sn) -*■ yo- Let S6 denote a sphere of radius S about (i0, x0, y0) where 8 < b + e — s0.

For large n, (sn, xn, yn) e S6. Since all solutions exist over [a, s0+ 8], there exists a

k such that x2n(a)+y2(a)<k2 [15, p. 16]. Let Pn = (xn(a), yn(a)). Let Qj >P> Q2 be

points of gjix,y) = Cj such that ||ßi||>A: and ||ß2||>^ (|-|| is Euclidean norm).

Such points exist by the assumption that gjix, y) = c does not lie in a bounded

region. From the monotonicity of Yb it follows that Y„iQj) > Yb(Pn) or ri,(ß2)>

Yb(Pn) for every n. Hence either rb(Qj)^V or Yb(Q2)^-n. This is a contradiction

of the maximality of -n. The other cases are established similarly.

Theorem 3.1 includes the theorem in [11] as a special case (which in turn includes

the theorem of this type in [1], [3], [6], [10], [14]).

4. Examples. In this section the theorems of the preceding two sections will be

illustrated. Consider the problem

x' = fit, x, y),      y' = f2it, x, y) ;

gjixia), yia)) = 0,       g2(x(b), y(b)) = 0.

Suppose gj(u, v) = u—v, g2(u, v) = u + v + u/\+u2, gj(u, v) is linear, and g2(u, v) is
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linear in v, so in (2.13) At = A2=l, Bx = B2= — 1, A = A=l. Further, %(u— w)S

g2(u, v) — g2(w, v)S2(u — w) as may be seen from bounding the derivative. Thus the

region Gj is the line y = x and G2 is the closed region between 2x+y = 0 and

7x + 8y=0. (The first and third sectors in the definition of G2 are null since both

lines have negative slope.) Thus if/(¿ x, y), /= 1, 2, are Lipschitzian, Theorem 2.3

applies. For example, suppose/(r, x,y) = sin y,/2(i, x,y) = x—y. Then in (1.7),

¿!=¿2 = 0, K~i= — \, K2=\, Mi = M2=l, Ni = N2=l. The comparison systems

(2.6) and (2.7) become «'= —v, v' = u — v, and w' = z, z' = w — z. These systems are

linear and can be solved explicitly. The computation of M, however, is tedious and

will be omitted, but if b — a<M, the problem has at most one solution.

To show that a solution exists, Theorem 3.1 will be applied. Except for hypothesis

(H) all of the conditions of the theorem are satisfied if b — a < M. Suppose that

(x„, yn) is a set of points such that the conditions of (H) are satisfied but that the

(x„, yn) do lie in a bounded region. If (x„, yn) are such that g2(x„, y„) is bounded,

then there exist numbers cx and c2 such that (x„, y„) are in the region between

g2(x, y) = Ci and g2(x, y) = c2. From the form of these curves, i.e. x+j> + x/(l +x2)

= c, we observe that if c is bounded, then as x —*■ ±oo, _y -»■ +oo (and as y -> +co,

x->+oo). Since every point (xn,yn) is on some such curve with Ci<c<c2, and

{(xn,yj} does not lie in a bounded region, then either x„—><x>, yn -*■ -co, or

xn -*■ — oo and yn -> co as n -> oo. However,

8g2 (v   ,,^fft „   „A,^2y„   „w/« _   .. \ _ (\ ,   \.-*L'

dx

8g /        1 — x2 \
(xn, yn)fi(t, xn, yn)+-^f fe, yn)/20, x«, y„) = 11 +n+>.n)2)sin y+^-A

is bounded. Since the first term of this expression is bounded, (x„— yn) must be

bounded and this is incompatible with xn and yn being unbounded and (eventually)

of opposite sign. Thus (xn,yn) must lie in a bounded region and (H) holds.

Theorem 3.1 then yields an existence theorem.

It is possible to apply Theorem 3.1 without using Theorem 2.3. For example,

consider the boundary value problem

x' = x+2y sin2 x,       y' = y/2 + sin2 x;

y(a) = c,       x(b)-y2(b) = c2.

The conditions of Theorem 3.1 are obviously satisfied except for the existence of

at most one solution (continuability, for example, follows from [7, p. 9]). To prove

the existence of at most one solution, note first that a line y = c± cuts each curve

x—y2 = c exactly once. Hence if (x^/), yi(t)) and (x2(t), y2(t)) were two solutions,

then labeling may be chosen so that

g2(xi(a), yi(a)) > g2(x2(a), y2(a)).

Let Gi(t)=g2(xl(t),yi(t)), i=l, 2.

G'ft) = *,(r) + 2y,(0 sin2 *,(*)- 2y,(/)[y,(r)/2 + sin2 *,(*)] = G¿t).
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Hence Git) = Gi(a)et. Since Gj(a)>G2(a), Gj(b)>G2(b) contradicting the second

boundary condition. Thus there can be at most one solution of the boundary value

problem. By Theorem 3.1 there is exactly one solution.
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