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LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH

BOUNDARY CONDITIONS ON ARBITRARY POINT SETS

BY

MICHAEL GOLOMB AND JOSEPH JEROMEC)

Abstract. Boundary-value problems for differential operators A of order 2m

which are the Euler derivatives of quadratic functionals are considered. The boundary

conditions require the solution F to coincide with a given function fe 3fL(R) at the

points of an arbitrary closed set B, to satisfy at the isolated points of B the knot

conditions of 2/w-spline interpolations, and to lie in Jft(Ä). Existence of solutions

(called "A-spIines knotted on B") is proved by consideration of the associated

variational problem. The question of uniqueness is treated by decomposing the

problem into an equivalent set of problems on the disjoint intervals of the complement

of B', where B' denotes the set of limit points of B. It is also shown that A, considered

as an operator from Sf2{K) to £P2(R), with appropriately restricted domain, has a

unique selfadjoint extention AB if one postulates that the domain of A8 contains only

functions of JfdK) which vanish on B. I+AB has a bounded inverse which serves to

solve the inhomogeneous equation AF=G with homogeneous boundary conditions.

Approximations to the A-splines knotted on B are constructed, consisting of A-splines

knotted on finite subsets Bn of B, with yj Bn dense in B. These approximations Fn

converge to F in the sense of ^¿R).

1. The boundary-value problem. Suppose 77 is a closed set of real numbers and

/a (real-valued) function defined on 77. In a previous article Golomb and Schoen-

berg [1] considered the problem of extending the function/to the real line in

such way that the extended function F has a square-integrable zzzth derivative

(more precisely, FeJfr&R)). Of special interest is the extension that minimizes

¡R (DmF)2. It is readily seen that the minimizing extension satisfies the differential

equation D2mF(x) = 0 in intervals that are free of points of 77, and that F has a

continuous derivative of order 2m —2 at isolated points of 77. In the same article

it was shown that, conversely, the solutions F of this differential equation problem

are extensions off that minimize j"Ä (DmF)2. In this way, the original extension prob-

lem (which is also an interpolation problem) becomes a boundary-value problem

in differential equations, but one of an unusual kind, since the boundary involved

is not that of a finite or infinite interval, but that of an arbitrary open set in R.

In this paper such boundary-value problems are considered, not for the operator

D2m, but for general linear differential operators A with variable coefficients that
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are the Euler derivatives of quadratic functionals. The existence of solutions is

proved even for cases where there is no uniqueness. With some restrictions on the

operator A and/or the set B uniqueness of the solution is then proved. The usual

proofs for existence and uniqueness are not applicable here since the conditions

E(x) =/(x) for x e B are equivalent to an infinite system of linear equations for

the unknown coefficients in the linear combinations of a fundamental set of

solutions (if B is an infinite set). It is then shown that the operator A, with domain

essentially restricted by the boundary conditions F(x) = 0 for xe B and some

condition on the behavior at infinity, when considered as an operator from ¿¡f2(R)

to 3?2(R) has a unique selfadjoint extension (the closure of A), which is explicitly

described. In connection with this, it is proved that the problem AF=G, F(x) = 0

for xeB, has a unique solution for every Geáf2(R).

2. Existence of solutions.    The differential operator to be considered in this

section is of the form A—L*L, where

(2.1) L = arnDm + am-1Dm-i+---+aiD + ao

with (real-valued) coefficient functions ak e (€m{R) (k = 0, 1,..., m), L* denoting

the formal adjoint of ¿. Throughout it will be assumed that am(x)3:a>0 for all

x e R, so that every finite point is a regular point for A, but the boundary-value

problem to be considered is singular since the boundaries are at infinity. There is

one global condition which the solutions F are expected to satisfy in all cases :

(2.2) f (¿F)2 < co.
JR

We say that Fis in 2^h(R), which is a Hubert space with norm to be defined below,

the main term of which is given by (2.2).

Let fe JfL(R) be a given function, B a closed set on R (bounded or not), B'

the set of limit points of B. The complete boundary-value problem for the unknown

function Fis posed by the following set of conditions:

(Ai) AF(x) = 0, xeR-B,

(Rii) F(x)=/(x),xeA
(Äiii) Fe¿eL(R) n <ÍZ2m(R-B) n rtf2m-2(R-B').

Condition (Ri) requires that F satisfy the differential equation AF=0 of order 2m

on the open set R — B. (Rii) demands that, at the boundary points of this set, F

coincide with the given function/ (Äiii) is the boundary condition (2.2) at infinity

(F e 3tCL(R)), and specifies that the solution possess continuous derivatives of

order ^2w at interior points (Fe ^2m(R — B)) together with continuous deriva-

tives of order ^2m — 2 everywhere except at accumulations of boundary points

(fe ^m~\R-B')). If / is defined only on B then any ^.-extension of / to R

will result in the same boundary-value problem. Necessary and sufficient conditions

for the existence of such an extension are discussed in [1].

The main existence theorem is the following:

Theorem 1. There always exists a solution of the boundary-value problem (Ri, ii, iii).



1971] LINEAR ORDINARY DIFFERENTIAL EQUATIONS 237

Proof. For F, G in J^L(R), let the inner product be defined as

m-1 f.

(2.3) iF,G)L=   'S  DkF(Q)DkG(0) +     LFLG.

fc = 0 J«

It is readily seen that $fL(R) is a Hubert space if its elements are taken to be functions

F which have absolutely continuous derivatives of order ^m—l and for which

LF is square-integrable. We now quote a lemma from [2], which is useful here.

Lemma. Suppose ¿tfj, J^2 are Hilbert spaces; R is a bounded linear transformation

with nullspace JÍ that maps JFj onto JF2; and <^0 is a subspace of Jffj. If' Jf' + c?/0 is

closed then R^0 is closed.

For the proof of the above theorem we use this lemma with Jtf[ = Jl(i'L(R), J^2

= ^C2(R), and R=L. R is onto since Lf=h has (locally) a solution /for every

(locally) integrable h, and clearly/ e #FL(R) if he ¿Jf2(R). For ^0 we use the subspace

of ¿PL(R), consisting of the functions that vanish at the points of B; it is clearly

closed, and since the nullspace of L is zw-dimensional, we conclude that 7_/^0 is

closed. Then also L°U is closed, where °U = allij+f, i.e. <% is the (nonempty) flat

(2.4) <W = {Fe jeL(R) : F(x) = f(x), x e B}.

Therefore, there exists F* e °li such that

(2.5) f (LF*)2 = inf f (LF)2.
Jr f<=v Jr

We now show that F* is a solution of the boundary-value problem. Clearly,

F* e J4?L(R), and F* satisfies (7?ii). From (2.5) it follows immediately that

(2.6) f LF*LG = 0

for every G e <^0. Suppose 7 is an open interval in R — B. The orthogonality condi-

tion (2.6) holds for every G e (€'X(R) with compact support in 7. Integration by

parts in (2.6) gives j", F*L*LG = 0. Thus, F* is a weak solution of L*LF=0, and

considering the assumptions made on the coefficients of L, one infers by familiar

arguments (see, e.g. [3, §8]) that F* is indeed a classical solution of L*7.F(;c) = 0,

for x e I. Thus, F* satisfies (Ri) and F* e ^2m(R-B).

Next, suppose / is an open interval in R — B' containing exactly one point x*

of 77. Then (2.6) holds for every function G e c€'a(R) with compact support in J

and vanishing at x*. Since the functions F'-Jf (z< = 0, 1,..., m— 1) are continuous

at x*, integration by parts in (2.6) gives

0 = £ (LF*)(LG) = (DG){[a2LF*]-[Da3LF*] + - ■ ■ +(-\)m-2[Dm-2amLFif\}

+ (D2G){[a3LF*]- ■ ■ ■ +(-ir-3[Dm-samLFit,]}

(2.7) .

+ (/)"- 2G){[am _ iLF*] - [DamLF*]}

+ (D"-1G)[amLF*].
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Here, (F) stands for F(x*), and [F] stands for Fix* — 0) — F(x* + 0). By choosing

G so that (DG) = (D2G)=- ■ ■ =(Dm~2G) = 0, while (¿)m"1G)=l, we conclude

(al)[DmF*] = 0, hence [DmF*\ = 0. Then we choose (DG) = ■ ■ ■ = (Dm ~ 3G) = (Dm ~ XG)

= 0, (¿>m"2G)=l, and conclude (a2)[¿>m + 1F*] = 0, hence [¿>m + 1F*] = 0. Continuing

this way, we obtain

(2.8) [T)mF*] = [¿>m + 1F*] = • • • = [D2m~2Fjf} = 0,

hence F* e ^<2m-2)(¿).

Altogether we have proved that F=F* satisfies conditions (Ri, ii, iii).

Suppose the set B is bounded from one or both sides. Then the solution F*

given in the proof of Theorem 1 is of " lower degree at infinity." This is the content of

Corollary 1.1. Suppose F= F* is a solution of problem (Ri, ii, iii), as determined

in the proof of Theorem 1. If inf B = a> — co then LFjf(x) = Qfor x<a. If'sup B=b

< oo then ¿F*(x) = Ofor x>b.

Proof. Suppose inf B=a> — oo and ¿F*(x)#0 for some x<a. Then ¿F*(x)/0 in

some interval contained in ( — oo, a). If we determine a function Fa from the conditions

¿Fa(x) = 0, x < a,

DkFa(a) = DkF*(a),       k = 0, 1,..., m - 1,
and set

F(x) = FJx),       x ^ a,
(2.11)

= Fa(x),        x < a,

we have a function Fef for which J*Ä (LFa)2< JÄ (FF*)2. This contradicts the

definition of F*.

For the case where the set B has a finite bound that is not a limit point the

preceding corollary leads to a "natural" boundary condition.

Corollary 1.2. If B is a point set in Ra = [a, oo) and a£ B' then there exists a

solution of the boundary-value problem

(Rai) AF(x) = 0,xeRa-B,

(Raii) F(x)=f(x),xeB,

(Raiii) Fe3eL(Ra) n V2m(Ra-B) n ^^(Ä.-fT),

(A» DkLF(a) = 0, k = 0, l,...,m-2.

Proof. By Corollary 1.1 we have a function F defined on R which satisfies

conditions (Ri, ii, iii) and for which ¿F(x) = 0, x<a. Clearly, its restriction to Ra

satisfies the above conditions.

If B belongs to Rb = ( — oo, b} and b $ B', then Corollary 2.2 holds with Ra re-

placed by Rb, and (l?aiv) replaced by DkLF(b) = 0(k = 0,1,..., m — 2). If B belongs

to Iab= [a, b} and a$ B',b $ B' then there exists a solution of the problem

(Iabi) AF(x) = 0,xelab- B,

(Taoii) F(x)=/(x),xeA

(Aiii) F e <i?2%A -B)n V2m ~ 2(Iab -B'),

(Iabiv) DkLF(a) = DkLF(b) = 0, k = 0, 1,..., m - 2.
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3. Decomposition of boundary-value problem. Let the point sets B, 77' be

defined as in the preceding section. The open set R — B' is the union of disjoint

intervals /„ which we refer to as the discrete components of 77. We show now that

the boundary-value problem (Äi, ii, iii) breaks up into a number of such problems,

one for each interval Jv.

The intervals Jv are of three different types. We say the discrete component J

of 77 is of type I if J is finite, J=(a, b). In this case, a e B' and b e 77', and since the

solution F of problem (Äi, ii, iii) coincides with/e <êm~1 at the points of B, we have

F(k)(a)=f(k)(a), F{k\b)=fik\b) (jfc = 0, 1,..., m-\). Thus, the restriction of F to

J=ia, b) satisfies the following conditions:

(Ii) AFix) = 0,xeJ-B,

(Iii) F(x)=f(x),xeJnB,
(lui) FeV2m(J-B) n V2m-2(J),

(Iiv) DkF(a) = Dkf(a), DkF(b) = Dkf(b), k = 0, 1,..., m -1.

The discrete component J of Bis of type II if / is semi-infinite, either Ja = (a, co)

or Jb = ( — oo, b). In the first case a e 77', in the second case b e B'. Considering the

first case only, we conclude as above that DkF(a)= Dkf(a) (k = 0, 1,..., m— 1) for

any solution F of (Äi, ii, iii). Hence the restriction of F to Ja satisfies

(Hi) AF(x) = 0,xeJa-B,

(Ilii) Fix)=fix), xeJanB,

(Iliii) F e J^L(Ja) n (€2m(Ja - 77) n ^2m " 2(Ja),

(Iliv) DkF(a) = Dkf(a), k = 0, 1,. . ., m- 1.

The discrete component J of B is of type III if J is infinite, J=R = ( — oo, oo).

This is the case if and only if the set B is discrete (finite or infinite, bounded or

unbounded). The restriction of F to J is F itself, which satisfies the conditions

(Uli) AF(x) = 0,xeR-B,

(Iliii) F(x)=f(x), xeB,
(Illiii) Fe JfL(R) n <$2m(R-B) n ^2m~2(R).

Now if, for each discrete component Jv of 77, we have a solution F,v of (Ii, ii, iii,

iv), (Hi, ii, iii, iv), (Uli, ii, iii) depending on whether Jv is of type I, II, or III, then

the function F on R, defined by

F(x) = f(x), x e 77',
(3.1)

F(x) = FJv(x),       xe/„v=l,2.

is clearly a solution of boundary-value problem (Äi, ii, iii). Thus, the problem is

indeed decomposed into independent problems, one corresponding to each discrete

component Jv of B.

It is also clear that the restriction of the function F* of Theorem 1, which mini-

mizes \R (LF)2, minimizes the integral J"/v (7_F)2 among all functions in 3#Ï\JV)

that interpolate / on 77 n Jv. Conversely any function F whose restriction to Jv

(v= 1, 2,...) minimizes J"/y (LF)2 minimizes jR (LF)2.
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4. Unicity conditions. By the results of the preceding section, the solution of

problem (Ri, ii, iii) is unique if and only if the restriction of the problem to each

of the discrete components Jv of B has a unique solution. In the following we refer

to these restricted problems, as formulated in §3 in equations (Ii—iv), (Hi—iv) and

(Illi-iii), as problems (I), (II) and (III), respectively.

For a bounded component J (of type I, see §3) the solution of problem (I) is

always unique, as will be shown below. This is so even if J contains no point of

B, the reason being that we always have the 2m terminal conditions (Iiv). If J is

of type II, say J=(a, co), then we have only the m terminal conditions (Iliv), and

if/=( —co, co) there are no terminal conditions. The global condition Fe^fL(J)

is not strong enough to replace the missing terminal conditions, even in the presence

of (Iliv), as the following example shows.

Example 1. For J= (a, oo) consider the operator ¿ defined by ¿F(x) = exDmF(x).

Then ¿*F(x) = (-l)m¿>'VcF(x), and AF(x) = (-l)mT)me2jcT)mF(x). Suppose F0 is

so chosen that DmF0(x) = e-2x and ¿AF0(a) = 0 (k = 0,\,.. .,m-l). Then AFo = 0

and F0 e &?L(J). Hence, problem (II) with J n B= 0 has more than one solution.

To assure uniqueness in the case of isolated bounds of J n B we impose the

condition

(4.1) If +00 ( —oo) is an isolated point of J n B then ¿*G = 0 has no nontrivial

solution that is square-integrable near +oo ( — oo).

If B' (the set of limit points of B) is empty and B contains no Tchebychev set

of the operator ¿, then (Ri, ii, iii) has more than one solution since any nullfunction

of ¿ that vanishes at the points of B may be added to a particular solution to

produce a new solution. For example, if L = Dm (m^l) and B has fewer than m

points, then (Ri, ii, iii) clearly has more than one solution, although condition (4.1)

is satisfied in this case. We are led to require additionally

(4.2) If B' = 0 then B contains a Tchebychev set of ¿.

By a Tchebychev set here is meant a finite subset B0 of B such that no non-

trivial nullfunction of ¿ can vanish for each point of B0.

That (4.2) cannot replace (4.1) is clear from Example 1, where B'^0. Another

example where we have nonuniqueness, although B contains a Tchebychev set of

¿, is the following:

Example 2. For J=R consider the operator ¿ defined by LF(x) = ex2DmF(x).

Let B be an arbitrary set of m points and let F0 be the solution of T)mF0(x) = e"2*2

that vanishes at the points of B. Then AF0 = 0 and F0 e 2^h(J). Hence, problem

(Ri, ii, iii) has more than one solution although F is a Tchebychev set of ¿.

In the remainder of this and in the following section it is assumed, without

further mention, that conditions (4.1) and (4.2) are satisfied. Under this assump-

tion, uniqueness of the solution of problems (I), (II), (III) of §3 will be proved.

However, problems (II) and (III) must be modified somewhat when +oo (and/or

— oo) is a limit point of J n B. Then we have a more complex situation in regard

to uniqueness since there are knots (discontinuities of the (2m— l)th derivative)
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arbitrarily close to +co or — oo. It is not impossible that there is more than one

solution in such cases (although conditions (4.1) and (4.2) are satisfied), but we

have not been able to produce such an example. Be this as it may, we impose for

these cases a terminal condition that singles out the unique solution which mini-

mizes (j iLF)2. We set

m-l      m

(4.3) 77[F, G] =  2    2    i-D)l-k~xalLFDkG
fc=0¡=fc+l

and we require

lim      B[F, G]ix) = 0   if +00 ( — oo) is a limit point of J n 77,
X-. + 00 (-00)

(IV)     lim  B[F, G]ix)- lim   B[F, G](x) = 0
X-* + CO X-+ - oo

if +00 and — oo are limit points of J C\ B

for every function G e 3^L(R) that vanishes at the points of B. This condition is

clearly a linear condition on the unknown function F, and it restricts the behavior

of F only at the points +oo and/or — oo, if these are limit points of J n 77.

We show that condition (IV) does not restrict the class of problems for which

solutions exist. Indeed, we have

Theorem 2. The restriction to J of the solution F* of problem (Äi, ii, iii) which

minimizes JÄ (7.F)2 satisfies condition (IV).

Proof. Because of the minimizing property of F*, we have

(4.4) (lF*LG = 0
Jj

for every function G e J^L(J) which vanishes at the points of .7 n 77. Suppose first

J=(a, oo) and / n 77={x„}, lim xn = oo. Then (4.4) becomes

.(4.5) lim   i* LFfLG = 0
X-.CO    Ja

and integration by parts, as in (2.7), gives

(4.6) lim B[Fm, G](x) = B[F*, G](a).

But since a e 77', we have DkG(a) = 0 (£ = 0, 1,..., m— 1), hence the term on the

right-hand side of (4.6) vanishes.

Next, assume J=(a, oo) and J n B is a bisequence ■ • .x_2<x_i<Xi<x2< • • •

with lim x_„ = a, lim x„ = co. By Lemma 2a, §5, below, we can find, for £>0 and

x ej given, a function Ge e JfL(a, x) which vanishes near a and at the points of 77

in (a, x), which equals G near x, and which is such that

(4.7) i* LFfLG- i*LF*LGe   < e.
I Ja Jo
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But   jxLF*-LGe = B[F*, Ge}(x) = B[F*, G}(x),   hence  (4.5) and (4.7)  give (IV)

again. The case J=( — co, b) is disposed of in the same way.

Suppose now J=( — oo, co) and B is the sequence Xi<x2<---, limxn = oo.

Then by (Ri) ¿*¿F*(x) = 0 for x<x1; ¿F* square-integrable near — oo, and since

we assume (4.1), ¿F*(x) = 0 for x^xx. Hence, also A¿F*(xi) = 0 (k = 0, 1,...,

m — 2), and (4.4) gives

(4.8) 0 = lim   i* LF*LG = lim B[F*, G](x).
X-»CO    JXl Ä-. CO

Finally, if /=( — oo, oo) and B is the bisequence   • • •x_2<x_1<x1<x2< • •-,

lim x_n= —oo, lim xn = oo, then (4.4) gives

(4.9) 0=        lim        P ¿F*-¿G = lim B[F,G}(y)-  Urn   B[F, G](x),
X-> — oo;y-* + oo Jx 3/-.00 x-* - 00

hence (IV) again. Thus Theorem 2 is proved.

5. Uniqueness of solutions. As stated in §4, only problems (i.e., operators ¿ and

sets B) will be considered for which conditions (4.1) and (4.2) are satisfied. J will

denote any one of the discrete components of B (see §3). To make possible inte-

gration by parts in the presence of infinitely many discontinuities in the interval

of integration, we establish first some approximation lemmas. The first one is

based on a result concerning the behavior of a function F e Jtf¡.(J) at a boundary

point of J if this boundary point is a limit point of zeros of F (for a special case of

this result, see [1, Lemma 1]).

Lemma 1. Suppose Xi>x2> ..., limxn = 0, T=(0, Xj), w^l, ¿ a differential

operator of order m, F e3^L(I), F(xj = 0 (n= 1, 2,...). Then, as x^O,

(5.1) Dm~kF(x) = o(xk'112),       k = 1, 2,..., m.

Proof. We prove the lemma first for m=\. In this case the operator L = Li is

of the form aiD + a0, and ai(x)^a>0 for xeT. Assume (5.1) does not hold for

m = k=\. Then there is a sequence li>f2>-->0, lim£v = 0, and a constant

C>0 such that

(5.2) |F(|V)| ^ CI1'2,       v=l,2,....

We may assume that each interval (xn+i, x„) contains no more than one fv, say

(5.3) -*n(v) + l  <  6v < *n(v>> •* =  1, 2, . . ..

Let TT be the function which is defined by 0 outside of the intervals [xn(v) + 1, x„(v)]
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(i>=l, 2,...) and by

Hix) = [ß(x) JÄp]/[ß(^-) f'p\,       xnw + j Sx<Í„

=  1, X =  £„

(5.4) = [ß(x) J"* p] / [ß(£„ + ) £' p] ,       £v < x á xyM;

ß(x) = exp [- I   (flo/ûi) , . ,
L        JX. J X   7e   ?v,

^ = iajQ)-2,

inside [xn(V)+1, xn(V)J, wherex*=xn(V) +1 it xn(V)+1 â x < çv and x*=x„(V)it i,<xs x„(V).

77 is a solution of the problem

LfLjHix) = 0, xe7-X,

77(xn) = 0,    H(iv) = 1,       «,*=» 1,2,...,

He<^(I)n^2(I-X),

where X is the union of xlt x2,... and ¿¡j, £2,.... Therefore, the function F*

defined on 7 by

F*ix) = F(èv)H(x),       xn(v) + i Ú x Ú xnW iv = 1,2,...),

= 0, otherwise,

is a solution of the boundary-value problem

LfLjF*ix) = 0, xg7-Z,

(5.6) F*(x) = Fix),       x e X,

F*eVir)nV2iI-X),

and it is easily seen that the solution of (5.6) is unique. It then follows from the

proof of Theorem 1 that

(5.7) f (AF*)2 ̂   f (LiF)2.
Ji Ji

But

r- ew-(p   *.Mftv
(5-8) = F*(ív)ai(^){LiF*(|v - 0) -¿^„(f „ + 0)}

= af(ív)f2(ív)kfv-)(íÍV       p)_1-P(ív + )(fV   P)"1].

Clearly, there is a positive constant y such that

a?(x)P(x) ^ y,   P(x) ay-1,       XMv)+1 ̂  x á xn(v),   x # fv
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Thus (5.8) together with (5.2) gives

(5.9) ^C2ydf*       P)'1

2; CV,       ,= 1,2,...,

hence J", (¿1F*)2 = oo, in contradiction to (5.7).

We now proceed by induction. We assume the lemma is proved for differential

operators of order m—\ (mt2). Let Y0 be the solution of ¿7=0 for which

7(0) = 1, 7'(0) = • • • = F(m-1,(0) = 0. Then¿F=M¿>(Fr71F), where M=bm^Dm~x

+ ■ ■ ■ +b0, with certain coefficients bk e ^""(T), and bm-i=amY0. Clearly, A-iW

^ß for some positive ß, at least in some interval A=[0, xN}. Since F(xn) = 0

(n = N, N +1,... ) we conclude that there is a sequence xN > yi > y2 > ..., lim yn = 0,

and that T>(70"^(y«) = 0. As Fe¿eL(I), D(Yö1F) is in Ji?M(IN). The induction

assumption implies that, for x -»> 0,

Dm-1~kD(Y0-1F)(x) = o(xk-112),       k = 1,2, ...,m-l,

and this gives immediately

(5.10) Dm~kF(x) = o(xk'1'2),       k = 1, 2,..., m-l.

Moreover, F(x) = ¡x DF=o(xm~112), hence (5.10) also holds for k = m, and the

lemma is proved.

Lemma 2a. Suppose the hypotheses of Lemma 1 are satisfied. Then there exists,

for each e>0, a function $>e e 3^L(I) which vanishes at xu x2,... and near 0, and for

which

(5.11) f (¿F-FQ\)2 < e2.

Proof. Let 0 = F= 1 be an infinitely differentiable function for which

E(x) = 0,       x = 0,
(5.12)

= 1,       x à 1,

and set, for n=l, 2,...,

(5.13) Fn(x) = F(x)E(nx-\).

Then Fn(x) = F(x) for x^2n"1, and Fn(x) = 0 for x^nA Thus, FneJfL(I) and Fn

vanishes at Xi, x2,..., and near 0. We have

LF(x)-LFn(x)

(5.14) = LFfâH-EQuc-i)] - J   2 ak(x)(k)niDk-íF(x)D'E(nx-l).
k = i ¡ = i \J i
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The first term in (5.14) is 0 for x ä 2« "x, and as n -> oo

(5.15) \{LFix)[I-Einx-\)]}2dxú\        {LF(x)}2 í/x = o(l).

The sum term in (5.14) is 0 for xázz"1 and for xä2n_1. Thus, by Lemma 1, as

Tz-»-oo

[ {Dk-1Fix)DiEinx-\)}2 dx = n'1 Í {Dk-,F(n-x(x+\))DiE(x)}2 dx

(5-16) = ^k-am-ai) = o(n-vyf

j = \,...,k;k = \,...,m.

Using (5.15) and (5.16) in (5.14) gives

i (LF-LFn)2 = o(l)   as zz -> oo,

and this proves (5.11), for <Pe = Fn, with zz sufficiently large.

If DkF(xj) = 0 (k = 0, 1,..., m— 1) in the preceding lemma, then also Dk<I>e(xj)

= 0. This follows immediately from the construction of <I>S. An obvious extension

of Lemma 2a is

Lemma 2b. Suppose ■ ■ x_2<x_i<Xi<x2< • • -, limx_n=a> —oo, limx„

= b<oo, I=(a,b), FeJeL(I), F(x_n) = F(xII) = 0 («=1,2,...), and e>0. There

exists a function Oe eJfL(I) which vanishes at • • -x_2, x_i, x1; x2, • • • and near a

and b, such that

(5.17) i (LF-L<be)2 < E2.

We can now prove the uniqueness theorem for bounded discrete components

of P.

Theorem 3a. The solution of boundary-value problem (I) on the bounded interval

J is unique.

Proof. Let G be the difference of two solutions. Then by (I):

(i) AG(x) = 0, xeJ-B,

(5 18)    (ÍÍ) GW = °> xeJnB,

(iii) Ge^2m(/-77)níí2m-2(.7),

(iv)       DkGia) = DkGib) = 0, k = 0, 1,..., m-1.

If 7 contains only the finitely many (or no) points xt<x2< • • • <xn of B we write

(5.19)       \lg.lg= r+2 r+i+r
Jj Ja fc = l  Jxie Jxn

and carry out m — 1 integration by parts in each of the integrals on the right-hand



246 MICHAEL GOLOMB AND JOSEPH JEROME [January

side of (5.19). By using the fact that G satisfies (5.18), one verifies that \, (¿G)2=0,

and since ¿G is continuous, ¿G = 0. Using (5.18iv) once more, it follows that

G=0.

If J n B consists of the infinitely many points xy> x2> ■ ■ ■, then lim xn = a, and

by Lemma 2a one can find, for e > 0 given, a function <E>£ e 3^L(J) which vanishes

at the points x1; x2,..., and near a, such that

(5.20)
J>)!-I¿G-FO,

Moreover, by the remark following Lemma 2a, Dk(£>s(b) = 0 (k = 0, 1,..., m— 1).

Since the support of <l>e contains only a finite number of the sequence {xn}, we may

proceed with the integral ¡jLGL<f>s as above with the integral \¡LGLG, and we

find jjLG-L<J>e = 0. Since (5.20) holds for every e>0, we conclude j7(LG)2 = 0,

and G = 0, as before.

The case where Jr\ B = {xn}, xx<x2< ■ ■ -, is disposed of in the same way. If

Jr\ B contains the bisequence • • •x_2<x_1<x1<x2< • •-, then limx_n = a,

lim xn = b, and we use Lemma 2b in place of Lemma 2a, to establish (5.20). Again

we conclude G = 0.

We turn to the case where the discrete component / of B is unbounded, either

of type II or III (see §3). We first assume / n B is bounded and prove

Theorem 3b. The solution of problems (II) and (III) is unique ifJ n B is bounded.

Proof. Let G be the difference of two solutions. If J=(a, co) and Xj<x2< • • •

< x„ are the points ofBinJ, then L*LG(x) = 0 for x ä xn, and since ¿G is square-

integrable near oo, it follows by (4.1) that ¿G(x) = 0 for x = x„. In particular,

(5.21) DkLG(xn) = 0,       k = 0, 1,..., m-2.

We write

r rxi     V2 f**+i      r*»
LGLG = +2 +

JJ Ja jc = i Jxk A„-i

and carry out m integration by parts in the integrals on the right-hand side. Using

AG(a) = 0 (k = 0, 1,..., m-1) and (5.21), we find ¿G = 0, hence G = 0.

If Xi > x2 > ■ ■ ■ are the points of B in J then lim x„ = a, and by Lemma 2a there

is, for every e>0, a function i>£ e J4?L(J) which vanishes at x1; x2,... and near a,

such that \§j(LG)2 — J7¿G-¿Oe|<e2. The support of i>e contains only a finite

number of the x1; x2,..., and integration by parts can be carried out for the

integral \jLGL<&s in the same way as above. Using the fact that A¿G(xj) = 0 for

k = 0,\,..., m-2 (compare (5.21)), one obtains j} LGL<&e = 0, hence J, (LG)2 < e2,

¿G = 0, thus again G = 0.

The case J=( — co,b) is disposed of in the same way. If/=( —co, oo), then

J n B=B is necessarily a finite set, which by (4.2) includes at least m points. If
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Xj<x2< ■ ■ ■ <xn are the points of B, we conclude as above that DkLG(xj) =

DkLG(xn) = 0 for k = 0, 1,..., m — 2. We use integration by parts again to find

jR (LG)2 = 0, hence 7_G = 0, and because of (4.2), G = 0.

There remains the case of an unbounded discrete component J of B containing

points of B that converge to +oo and/or -co. In this case condition (IV) (§4) is

made use of.

Theorem 3c. Problems (II), (IV) and (III), (IV) have unique solutions if J n B

contains a sequence that converges to +oo and/or — oo.

Proof. Let G be the difference of two solutions. If J=(a, oo) and Xi<x2< • • ■

are the points ofJnB, then lim x„ = oo and G satisfies (II), (IV) with/=0. There-

fore,

(5.22) f (LG)2 = lim   f* LGLG = lim B[G, G](x) = 0.
Jj X-.CC    Ja X-.CO

From (Iliv) it follows that G = 0. If J=(a, oo) and • ■ x_2<x_i<Xi<x2. • • are

the points of J c\ B, then lim x _ „ = a and lim xn = oo. Given e > 0 and x > a, there

is by Lemma 2a a function G£ e JtL(a, x) which vanishes near a and at the points

of B in (a, x), and which equals G near x, such that

(5.23) (LGf-
I Ja Ja

LGLGP <£-

But }xaLGLG£ = B[G, Gs](x) = B[G, G](x), hence ¡xa(LG)2 = B[G, G](x). As before,

we find by use of (IV) and (Iliv) that G = 0. The case/=( — oo, b) is disposed of in

the same way. If / = ( —oo, oo) and Xi<x2< • • • are the points of Jn B, then

limx„ = oo and G satisfies (III), (IV) with/=0. Therefore, L*LG(x) = 0 for x^Xi,

and since LG is square-integrable near -oo, it follows by (4.1) that LG(x) = 0 for

x^Xi, hence DkLG(xi) = 0 (zc = 0, I,.. .,m-2). Integration by parts gives

I*"   (LG)2 = lim   P LGLG = lim B[G, G](x) = 0,
J- CO X-.CO    Jx¡ X-.CO

hence 7_G = 0, and because of (4.2), G = 0. Finally, if /=(-oo, co) and •••x_2

<x_i<Xi<x2- • • are the points of B, then lim x_„= —oo and limx„= +oo. By

(IV),

i""   (LG)2 =       lim        [VLGLG
(5 241 y-.to-.x-.-co  Jx

= lim B[G, G](y)- lim B[G, G](x) = 0,
y-.co X-.CO

hence LG=0, and because of (4.2), G = 0.

We add another uniqueness theorem for the case where J r\ B contains points

that converge to +oo and/or — oo. In this theorem condition (IV) is replaced by a

different one:

(V) lim       DkF(x) exists if +oo ( — oo) is a limit point of J n B
X-. + 00 ( — oo)
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(k = 0, 1,..., m— 1) and we make the additional hypothesis:

(5.25) The coefficients ak (k = 0, 1,..., m) of ¿ are bounded.

To prove uniqueness for this case, we establish another approximation lemma.

Lemma 3a. Suppose (5.25) holds, xx < x2 < • • •, lim xn = oo, T= (x1; co), F e J^L(I),

F(xn) = 0 (n=l, 2,...), lim^^oo ¿AF(x) = 0 (k = 0, 1,..., m-l), and e>0. There

exists a function <&e e^fL(I) which vanishes at Xi, x2,..., and near +oo, and for

which

(5.26) f (¿F-¿<D£)2 < e2.

Proof. We use the function E defined in (5.12) and set E(x)= 1 -E(x),

(5.27) Fn(x) = F(jc)£(n +1 - x),       n = 1, 2,....

Then F„(x)=0 for x = n +1, Fn(xv)=0 (v=l, 2,...), and F„ e œL(I). Clearly,

(5.28)

and

S^-^ry'^'jLFry+ii Q

x | Í      a2(x)[ A'kF(x)DkE(n +1 -x)]2 j'

f a2(x)[TJ>i-'cF(x)TAF(n+1 -x)]2

,, 0Q, = sup a2(x)f     [A-fcF(x)T)'cF(n+l-x)]2iTx
I;)-zyJ xe/ Jn

= sup a2(x)-  sup   [AF(x)]2-f   [¿»'""Fix + n)]2 ax,
œl xe[0,l] Jo

/ = 0,..., m ; k = 0./.

But for l—k<m the sequence of functions {D'~kF(x + n)} is bounded and con-

verges to 0 on 0 = x=l, hence JJ [A"fcF(x + n)]2 <Tx = o(l) for l—k^m. Also, of

course, _f"+1 (¿F)2 = o(l). (5.28) and (5.29) together prove (5.26) for 0£ = Fn with n

sufficiently large.

If AF(xj) = 0 (k=0, 1,..., m-1) in the preceding lemma then also ¿)fc<I)£(x1)

= 0. An obvious extension of Lemmas 2a, 2b and 3a is

Lemma 3b. Suppose (5.25) holds,  • • •x_2<x_i<x1<x2< ■ •-, limx_n=x_M

= -co, lim xn = xM goo, T=(x_œ, x«), FeJifL(I), F(x_n) = F(x„) = 0 (n= 1, 2,...),

limx_ + 00 (_„, AF(x) = 0(/c = 0, 1.m— 1) i/Xa. (-»>= +( — )°o, and e>0. Fnen

r/iere exista a function Oe e ^L(R) which vanishes at .. .x_2, x_a, xu x2,... anci

near x_ „ and xœ, síic/i rnar

(5.30) i (¿F-¿<5£)2 < e2
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Theorem 3d. Problems (II), (V) and (III), (V) for an operator L satisfying

(5.25) have unique solutions if J n B contains a sequence that converges to +co

and¡or — oo.

Proof. We present the proof only for one of the possible cases : /= (a, oo) and

J n B is the bisequence ■ • x_2<x_i<Xi<x2- • -, with limx_„ = a, limxn= +oo.

Let G be the difference of two solutions. Because of (V), the limits lim*.. + «, DkGix)

(k = 0, 1,..., m — 1 ) exist. Since G(x„) = 0 (zi = 1, 2,... ), we conclude lim G(x) = 0.

By Rolle's theorem there is a sequence yj<y2< ■ ■ -, limjn=+oo, such that

DG(yn) = 0 (n=l,2,...). It follows that lim DG(x) = 0. More generally, we con-

clude

(5.31) lim   7>fcG(x) = 0,       k = 0, 1,..., m-1.
X-* + oo

By Lemma 3b it follows now that there exists a function d>£ e J^L(J) which vanishes

at the points ofJnB and near a and + oo, such that

(5.32) |£(LG)2-£ LGL<¡>f < e<

The support of <J>e includes only finitely many of the points of J n B. Hence,

integration by parts gives $JLG-LQ>l! = 0, and (5.32) leads to LG = 0. Since DkG(a)

= 0 (k = 0, 1,..., m-1) by (Iliv), we conclude G = 0.

In certain cases equation (5.31) is implied by the hypotheses G(xn) = 0 (n= 1, 2,

...) and G e JfL(J). In these cases, condition (V) may be omitted in Theorem 3d.

We add a uniqueness theorem for problem (Iab) of §2, where Iab is a finite interval

which is not a discrete component of B.

Theorem 3e. The boundary-value problem (Iab) has a unique solution if B contains

a Tchebychev set of the operator L.

Proof. Let G be the difference of two solutions. G is in (€2milab — B), and in

particular has continuous derivatives of order á 2m in one-sided neighborhoods

of the points a and b. We define the functions Ga, Gb by the conditions

LGaix) = 0,   x < a,    DkGaia) = DkGia),
(5.33) k = 0, 1,..., m— 1,

LGbix) = 0,   x > b,    DkGbib) = 7JfcG(o),

and the function G on Ä by

G(x) = Ga(x),       x < a,

(5.34) = G(x), a^x-¿b,

= G(,(x),       x > b.

By (/<2¡>iv), G has continuous derivatives of order á 2m — 2 near a and Z>. If a $ B

then inf B = a'>a and Corollary 1.1 shows that DkLGia) = 0 for zc = 0, 1,..., m.
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Therefore, in this case, G has continuous derivatives of order fi 2m near a. The

same result holds near bifb$B. Altogether, we have

AG(x) = 0,       xeR-B,

G(x) = 0,       xeB,

Ge3tfh(R) n if2m(Ä-77) n if2m-2(Ä-ß').

Since B contains a Tchebychev set for L, we conclude G = 0, by Theorem 3a. In

particular, G = 0.

6. The selfadjoint boundary-value operator. In this section we determine the

selfadjoint operator defined by the homogeneous boundary-value problem (Äi,

ii, iii), with/=0. As the underlying space we take ^2(R) over C, with inner product

(6.1) (F, G) = £ FG.

The operator L is the same as in (2.1), except that we now assume ömx and a0,...,

am bounded (besides ak e if"(Ä)). For convenience, we consider the operator

(6.2) A = L*L + I

rather than L*L. It is clear that the selfadjoint extension and the spectral decom-

position of L*L are easily derived from those of A. As the initial domain of the

operator we take

Q>% = {Fe <£2m(R-B) n ^2m~2(R-B') : F, LF, L*LFe &2(R)

(6.3)
and Fix) = 0, x e B}.

The conditions "Fand L*7_F in SC2(R)" are added to the previous ones because

A is to act as an operator from &2(R) to ^C2(R). In (6.3) it is understood that

L*LF(x) remains undefined at the points xeB-B'. We denote by =S?f(Ä) the

subspace of functions in ¿f2(R) which vanish at the points of B (this is different

from SC2(R) only if B has positive measure). Clearly, ¿8% is dense in Jäff(Ä).

In connection with this problem, we introduce the space 3fP\(R) of functions F

with absolutely continuous derivatives of order ám-1, with Fand FF in Sf2(R),

with F(x) = 0 for x e B, and with inner product

(6.4) (F, G)L =   f  (FG+LFLG).

It is well known that this is a Hubert space. Clearly, ||F||Lä |F||, and Jff(Ä) is

densely imbedded in ü?2(Ä).

If {yv} is the family of discrete components of B (see §3) then

(6.5) Í   (FG+LFLG) = V f  (FG+LFLG)
J R V J/v

for all F,Ge jeBL(R). Thus, ¿f f(Ä) appears as the direct sum of the spaces JCf(Jv).
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The space  ¿ff(Jv) is  defined  like  Jf^R)  above,  except  that the  condition

(6.6) DkF(c) = 0,       k = 0, 1,..., m-1,

for each finite endpoint c of/„ is added.

Suppose J is one of the discrete components of B. If / is bounded, J=(a, b),

and / n B is finite, then aeB', be B', hence DkG(a) = DkG(b) = 0 (fc = 0, 1,...,

m— 1) for any G e ^ff(Ä), and integration by parts gives

(6.7) f L*LF- G =  Í LFLG,       F e 2%, Ge J^BL(R).

To establish this formula for a general component / we need another approxima-

tion lemma.

Lemma 4. Given G e J^f(R) and e > 0, there exists a function <I>£ e Jtf(J) whose

support includes only finitely many points of B nj and such that

(6.8) £[|G-0£|2+|¿G-¿<D£|2] < e2.

Proof. Assume first J=(a, b), then aeB', be B', and since G e Jtf(R), DkG(a)

= DkG(b) = 0 (k = 0, 1,..., m— 1). Then the lemma is proved by arguments exactly

like those used in the proof of Lemma 2a of the preceding section. We next assume

J=(a, oo) and a is not a limit point of J n B. Under our hypotheses on the co-

efficients of ¿, G e M'l(R) implies DkG e ££2(R) (k = 0, 1,..., ni) (see, for example,

[4, VI. 6.2]), hence as n -> oo, assuming, without loss of generality, G is real

(6.9) r (DkG)2 = o(l),       k = 0, l,...,m.

We now set

(6.10) Gn(x) = G(x)E(n+l-x),       x > a,

where F is the function defined in (5.12). Then Gn(x) = 0 for x^n+1, Gn e Jfl(J),

and the support of G„ includes no more than a finite number of points of J n B.

Clearly,

í (¿G-¿Gn)2y'2 ^  2 if a2(x)[D'G(x)(l-E(n+l-x))}2dx

(6.11)
^ 2 sup|ai(x)|{r [AG(x)(l-F(n+l-x))]2(Txy

! = 0   XeJ ^JJ J

On the other hand,

f [AG(x)A(l -E(n+1 -x))]2 dx ^  T [AG(x)]2 cTx,

f [A-kG(x)-Ty(l-F(n+l-x))]2dx =  f   [D'-kG(x + n)DkE(l-x)}2 dx

sup   [AF(l-x)]2 r [D'~kG(x)}2 dx,
e[0,l] Jn

(6.12)

/=0, l,...,m; /:= 1,...,/.
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By (6.9), the right-hand terms of (6.12) go to 0 as n->oo; hence the same is true

of the right-hand term of (6.11). This shows that (6.8) is valid for <&c = Gn with n

sufficiently large.

If /= (a, oo) and a is also a limit point of J r\ B, then a combination of the

arguments in the proof of Lemma 2a and those used above yield the same result.

This is also true of the various possible cases with /=( —oo, oo).

We can now establish formula (6.7) for a general component J. If/= (a, oo) and a

is not a limit point of J n B, then we make use of the fact that a e 77', hence

DkG(a) = 0(k = 0, l,...,m-l)ifGe JfBL(R). Using Lemma 4, we find <Pe 6 2?\(J)

which is equal to G near a, equal to 0 near oo, whose support includes only finitely

many points of J c\ B and for which (6.8) holds. Then integration by parts can be

carried out and gives jJL*LF(î>e=jJLFL<S>s, and as e—s*0, (6.7). If J=(a, oo)

and a is a limit point ofJnB, then we find, by Lemma 4 again, <I>e g Jff.(J) with

compact support in /, such that (6.8) holds. Integration by parts can be carried

out and gives jJL*LF<t>s=(JLF-L$>s, hence (6.7). By similar arguments one

disposes of the remaining cases.

Since (6.7) holds for every discrete component /=/„ of B and since it trivially

holds for J=B', it follows that (6.7) is valid for J=R. Therefore, we have proved

(6.11) (AF, G) = (F, G)L,       Fe2B,Ge JfBL(R).

In particular, (AF, F)= ||F||f ^0 for each Fe3>%, and this shows that A is a

symmetric operator.

We consider selfadjoint extensions As of A, but only such whose domain is

contained in Jff(Ä):

(6.12) dorn (AB) c jffiR).

This restriction symbolizes the boundary condition for our problem. We prove

Theorem 4. The operator A=L*L + I from 3?2(R) to 3?2(R) with domain (6.3)

has a unique selfadjoint extension AB with domain a subset ofJiff(R).

Proof. The construction of AB is essentially that of the so-called Friedrichs

extension (see [5; §124]). If G e JTf(Ä) and <D e £2(R) then

(6.13) |(G,<D)| <, ||G!||[<D|| è |G|U|0||

and, therefore, there exists a unique Fe Ji?f(Ä), such that

(6.14) (G, 0>) = (G, F)L,       G e Jf £(Ä).

We write F=r<D, and since by (6.13), ||F||L^ ]|Oj|, we see that Y is a bounded

linear transformation from ^C2(R) to Jiff(Ä). If Y is arbitrary element of =S?2(Ä),

and we use G = YY in (6.14), we obtain

(YY, O) = (YY, F)L = (F, YY)L

= (FyT) = (»F, TO),       *, Y e ^2(R).
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This shows that Y is selfadjoint. Let YB denote the restriction of Y to J?2(/?). Of

course, YB is a bounded selfadjoint operator on 3?2(R).

If rB(D = 0 for some <t>e^B2(R), then by (6.14), (G, <5) = 0 for all G e JfB(R),

and since J^l(R) is dense in 3?2(R), it follows that O = 0. Thus, YB is injective, and

its left inverse AB, for which

(6.15) ABrB(D = <D,        <S>eJ?B2(R),

is defined. If 3>B denotes the domain of AB ( = the range of YB) then (6.14) becomes

(6.16) (ABF, G) = (F,G)L,       Fe®B,Ge jTf(Ä).

Conversely, if Fe^BL(R) is such that (G, F)L = (G, 0) for some <P e^B2(R), then

by (6.14) F=YBd\ hence d' = ABF. Thus, (6.16) defines 3>B and AB completely.

AB, as the left-inverse of the selfadjoint rB, is selfadjoint. Its domain 3>B is a dense

subspace of Jff(R). In fact, if G0 e ®¿, then 0 = (G0, F)L = (G0, ABF) for all

F e£¿B. Since the range of AB is ¿C2(R), this proves Go = 0. Comparing (6.16) with

(6.11), we conclude that AB is an extension of A. If A' is any selfadjoint extension

of A with domain S'cJ(?B(R) then by (6.14)

(6.17) (F, rBA'G), = (F, A'G) = (A'F, G) = (AF, G) = (F, G)L

for any FeS>°B,Ge 3>'. By (6.16), (AF, G) = (F, G)L. Thus, (6.17) gives

(F,rBA'G-G)L = 0

for Fe3>B, hence also for FeJff(Ä). Therefore, G=TBA'G, Ge3¡B and ABG

= A'G. We have shown that AB is an extension of A', and since A' is assumed to

be selfadjoint (hence maximal symmetric), it follows that A' = AB. The proof of

Theorem 4 is complete.

We now give an explicit characterization of the selfadjoint extension AB. Let

JífL.L(ü.) denote the class of functions F having absolutely continuous derivatives

of order ¿2n?-l on the open set Q^R and such that ¿*¿Feif2(Q). Then we

have

Corollary 4.1. The selfadjoint extension AB is characterized by

dorn (AB) = 9>B = jeB(R) n J?L.L(R-B) n ^2m~2(R-B'),

ABF(x) = L*LF(x) + F(x),       xeR-B, Fe3¡B.

Proof. Assume FeSB. We first show that Fe jeL.L(R-B). Let J be one of the

discrete components of the set B. By (6.16) we must have

(6.19) f ABFG =  f FG+ f LFLG

for every function G e Jff(R). If we denote (AB-I)F by 0, ¿F by Y, (6.19)

becomes (Q>,G) = Ç¥,LG), and by well-known arguments (see, e.g. [4, VI. 1.9]),

one concludes that Y has absolutely continuous derivatives of order i£nz — 1 in
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J— B, and that <Î>=L*Y. For Fthis means, F has absolutely continuous derivatives

of order ^2m— 1 in J—B, and ABF(x)=L*7_F(x) + F(x) for xeJ—B. Since F

and ABFare in -S?2(Ä) we conclude FeJfL.L(R-B).

We show next that Fe c£2m'2(Ä — B'). Let J he as above and assume D2m~k'F

is discontinuous, for some maximal k*, 2^k*^m, at some point x*eJnB.

Then one can show that Dm~k'LF is discontinuous at x*. We choose G e Jff.(R)

so that x* is the only point of B in its support and that Dk'~1G(xj),)^0, whereas

£>k_1G(x*) = 0 for &#£*, k= 1, 2,..., m. Then, proceeding as in (2.7), one obtains

(6.20) f LFLG- f L*LF- G # 0,

and this contradicts (6.16).

So far we have shown that 3¡B is included in JfBL(R) n ¿fL.L(R-B) n

^2m~2(Ä — P'). Assume now F belongs to the latter set and J is as above. Then

integration by parts gives immediately

(6.21) Ílf-tIg = |*f*7:fg

for every G e Jtf(J) with compact support in /. By Lemma 4, equation (6.21) is

valid for every G e 2?BL(R). Since this is true for every discrete component J=JV

of P, and trivial for J=B', we have proved

(6.22) (F, G)L = ((L*L + I)F, G),       G e JSTB(R).

Comparison with (6.16) shows that FeS)B, and this completes the proof of the

corollary.

In the proof of Theorem 4 it was shown that the range of the operator AB is

¿£2(R). Therefore, we have

Corollary 4.2. For every Gef£\(R) there exists a unique solution F=YBG

of the equation (L*L + I)F=G which belongs to

2?l(R) n JtL.LiR-B) n ^2m-2(Ä-P').

The solution operator YB is continuous.

For the boundary-value problem (7oiJi-iv) on the finite interval Iab essentially

the same analysis can be carried out. The main difference is expressed in the

"natural boundary conditions" (7a6iv) for the endpoints of the interval. Thus,

we start with the operator A=L*L +1 with domain.

3)% = {Fe^2milab-B) n ^2m-2(7a()-P') : F(x) = 0 for x e B
(6.22)

and DkLFia) = DkLFib) = 0 for k = 0, 1,..., m-2}.

The results are comprised in

Corollary 4.3. Suppose the set B is contained in the interval Iab = [a, b], whose

endpoints are not limit points of B. Then the operator A=L*L + I from &2ilab) to
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3?2(Iab) with domain (6.22) has a unique selfadjoint extension AB with domain £¿>B

a subset of^fB(Iab). Explicitly:

2B = {Fe jeB(Iab) n tf>L.L(Iab-B) n ^2m~2(Iab-B') :

(6.23) DkLF(a) = DkLF(b) = Ofor k = 0, 1,..., m-2},

ABF(x) = L*LF(x) + F(x),       x e Iab - B, F e SB.

For every G e ¿¡fB(Iab) there exists a unique solution F= YBG of the equation

(L*L + I)F=G which belongs to 2B.

In the special case where B is a finite set, the above descriptions of ' 2B and 3>B are

simplified:

S° = {Fe ^2m(Iab-B) n ^2m-2(A) : F(x) = Ofor x e B

and DkLF(a) = DkLF(b) = Ofor k = 0,1,.. .,m-2},

% = {FeJf22m(Iab-B) n <if2m-2(Iab) : F(x) = Ofor xeB

and DkLF(a) = DkLF(b) = Ofor k = 0, 1,..., m-2}.

It is clear in this case that the selfadjoint extension AB is simply the closure of A.

The same is true for each of the selfadjoint extensions in this section.

7. Approximations of the solution. Let J be a discrete component of B. We will

construct a sequence of approximations converging to the unique solution F of

(Ii, ii, iii, iv) if /is an interval of type I while if/is an interval of type II or III the

approximations will converge, respectively, to that solution F of boundary-value

problem II or III which is singled out as the unique solution of the associated

minimization problem. For the case J=R we will require that B contain a

Tchebychev set {xj < • • • <xm} for ¿. Notice that we do not require that condition

(4.1) be satisfied and, in general, the solutions of the boundary-value problems II

and III will not be unique. The convergence of the approximations takes place in

#FL(J), which implies, in particular, uniform convergence of the derivatives through

order m-1 on compact subsets of /.

Suppose then that / is an interval of type I of the form J=(a, b) and let Bn

={xi, x2,..., xn}<=^J n B if /n B is not empty. The boundary-value problem

(PÏ) AFn(x) = 0, xeJ-Bn,

(Pii) Fn(x)=/(x),       xeA,

(Piii) Fn e jfL(J) n ^2m(/- A) n <£2m ~ 2(J)

(Piv)        DkFn(a) = Dkf(a),    DkFn(b) = Dkf(b),       k = 0, 1,. .., m - 1,

has a unique solution, and

(7.2) inf   f (¿G)2 =  f (LFn)2
Ge<Wn  Jj Jj

where ^n = {G e^L(J) : G(x)=/(x), xeA, DkG(a) = Dkf(a), DkG(b)=Dkf(b),

k = 0, 1,..., m— 1}. The solution Fn is characterized by the orthogonality property

(7.3) f LFn(LG-Lf) = 0   for all G e «„.

(7.1)
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Now if P n J is an infinite point set, say P n J contains a sequence converging

to a or b, and if we write
CO

BnJ =  U Bn
n = l

where Bn^Bn + j, then we have the following:

Theorem 5. Let Fn be the solution o/(Ini, ii, hi, iv)/oz- «=1,2,.... Then Fn-*F

in J^lÍJ) where F is the solution of the boundary-value problem (Ii, ii, iii, iv) on J

(which is unique by Theorem 3a).

Proof. By (7.2) and (7.3) we have

(7.4) ^(LFnf Ú ^(LF)2,

(7.5) ^(LFn)2 Ú ^(LFN)2,       n^N,

(7.6) £ (LFN - LFn)2 = j} (LFN)2 - £ (LFn)2,        n S N.

Using the norm
m-1 f.

(7.7) Hu||g =   2 (u«Xa)f+    (Lu)2,
k = 0 Jj

it follows from (7.4), (7.5) and (7.6) that Fn converges in J(?L(J), say Fn-> G.

Since convergence in the norm (7.7) implies pointwise convergence it follows that

G e fi"=i *„■ It follows from (7.4) that

f (LG)2 =  lim   ¡(LFn)2 í  f (LFf.
Jl n-><o   J Jj

Since Fis the unique solution of the minimization problem

inf     f (7_w)2 =  f (LF)2
ne n >, Ji Ji

it follows that F(x) = G(x) for all x e/ and hence F„ -h>- F as asserted.

If J is an interval of type II, say J=(a, oo) for concreteness, and Pn<=./ n P is

chosen as before, then the boundary-value problem

(H"i) AF„(x) = 0, xeJ-Bn,

(IPii) Fn(x)=f(x),       xeBn,

(IPiii) Fn e JfL(J) n (€2m(J-Bn) n ^2m"2(/),

(n-iv) F>kFn(a) = 7)/(a),       k = 0,l,...,m-l,

has a unique solution, and J, (FFn)2 ^ j7 (LG)2, G e <%n, where now

<%n = {Ge JtL(J) : G(x) = fix), x e Bn, &k\a) = fk\a), k = 0,1.m-1).
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As before, the solution Fn is characterized by the orthogonality property

ÍLFn(Lf-LG) = 0   for all G e *„.

By using the minimizing and orthogonality properties of Fn one shows as before

that Fn -> F in JifL(J) with respect to the norm defined by (7.7), where F is the

unique solution of (Hi, ii, iii, iv) which solves the minimization problem

inf  f (¿G)2 =  f (¿F)2,
Se*   Jj JjGe*

where

(7.9) * = {Gë¿eL(J) : G(x) = f(x), xeB, Gw(a) = fm(a),k = 0,1,...,m-1}.

Now, if J=R, then let Bm = {x1< ■ ■ ■ <xm} be a Tchebychev set for B and define

a norm by

(7.10) ||G||I =  2 (G(x,))2+     (LG)2
te=i Jr

on ^.(Ä)- The norm defined by (7.10) is clearly equivalent to the norm determined

by (2.3). Consider sets Bm^Bn^Bn + 1<=B as before.

Setting £„ = minxeBnx and -qn = maxxeBnx then there is a unique solution F„ of

the boundary-value problem

(IlPi) AFn(x) = 0, xeR-Bn,

(IIPÜ) Fn(x)=f(x),       xeBn,

(IlPiii) F e jfL(R) n (€2m(R) n ^2m - 2(Ä - A),

(IlPiv)        Dk(LF)(L) = Dk(LF)(Vn) = 0,        A: = 0, 1,.. ., m - 2,

and

f (LG)2 >  f (¿Fn)2,       Ge%n,G±Fn
Jr Jr

where

^ = {G e jft(Ä) : G(x) = /(x), x e A}-

A corresponding orthogonality property holds and one concludes as before that

Fn -*■ Fin ^L(R) with respect to the norm defined by (7.10), where Fis that solution

of (Uli, ii, iii, iv) for which

and

f (LG)2 >  f (¿F)2,       G e % G # F
Ja Ja

(7.12) f = {Ge jft(JÏ) : G(x) = /(x), x e B}.

We summarize this discussion in

Theorem 6. The solutions Fn o/(IPi, ii, iii, iv) converge in ^?L(J) to that solution

F of boundary-value problem II vvni'cn minimizes j~Ä (LG)2 in the class of functions
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(7.9) if J is an interval of type II. If J=R and B contains a Tchebychev set then the

solutions Fn o/(IIIni, ii, iii, iv) converge to that solution F of boundary-value problem

III which minimizes \R (LG)2 in the class of functions (7.12).

8. More general differential operators. In this section we seek a solution F of a

differential equation A'F=0 of order 2m. In contrast with §2 it is no longer assumed

that A' is of the form L*L, but more generally we suppose that there are differential

operators Lv,p=\,2,...,q, with coefficients in ^m(R) such that

(8.1) Lp = 2 alpD',
1 = 0

(8.2) A' =  2 L*LP = a2mD2m+ ■ ■ ■ +a0,
p = i

where L% denotes the formal adjoint of Lp. Moreover, we suppose that m = mq>mp

(\-¿.p<q) and am(x) = amq(x) § a > 0 for all x e Ä.

Let 3#" = 3tf"(R) denote the class of real-valued functions G on Ä with G(m_1

absolutely continuous for which 2? = i I«(^pG)2<oo, with the quadratic norm

m-1 q       /•

(8.3) |G||'2 =  2 [G<">(0)]2+ J       iLPG)2.
k = 0 p=l JR

One verifies easily that Jff" with the corresponding inner product is a Hubert space.

Let P be a closed subset of Ä. We distinguish the two cases when P' is nonempty

and when P' is empty. In the latter case we assume that B contains a finite subset

P0 such that

(8.4) FeJf,   L„F= 0 (p = \,...,q),   Fix) = 0   (x e B0) => F = 0.

The boundary-value problem to be considered, for a given fe 3fé", is of the form,

(8.5i) A'F(x) = 0, xeR-B,

(8.5ii) Fix) = fix),       xeB,

(8.5iii) Fe3tf"(R) n ^m(R-B) n ^2m-2(R-B').

We now prove

Theorem 7. Suppose B is a closed set of real numbers, B' the set of limit points

of B, and suppose (8.4) holds if B' is empty. Let A' be the differential operator (8.2)

and let feJtf". Then there exists a solution F=F* of the boundary-value problem

(8.5i, ii, iii), where F* uniquely minimizes 2? = i Ja iEPF)2 among all functions

Fe3#" for which F(x) =/(x), x e B.

Proof. In this case we cannot make use of the results of [2] to prove the existence

of an element minimizing 22 = i Ja iEPF)2 since we do not have the analogue of the

operator L in §2. However, the existence of the minimizing element is easily
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demonstrated directly by considering the minimization problem in Jf'(R) rather

than in ¿?2(R). We seek an element F* in the flat

(8.6) y = {G e ¿r : G(x) = f(x), x e B}.

The parallel subspace f° = {6e^' : G(x) = 0, x e ß} is clearly closed in Jf". We

now introduce new quadratic norms in 3#", equivalent to (8.3):

(8.7)

m-1 Q        /•

Il G «*2 =  2 LG<fc)(a)j2+ 2        (L»G)2   iiaeB'^0,

!|G||*2=   2   [G(x)}2+2   Í (LpG)2      if^'=0.
xeBo p = i JR

Thus l^0 is closed in 3tf" with respect to the norm (8.7). Now, minimizing

2p=i §r(LpG)2 for Gei^ is equivalent to minimizing ||G||* and it follows that

there exists a unique F* e ^" such that

(8.8) ¿   f (¿„F«)2 = min   2    f OW.
¿Ti Jr Ge-r ¿^i Jr

From this minimizing property one infers

(8.9) 2   Í (L*F*)(lpg) = 0
p=i Jr

for every G e y"°. As in the proof of Theorem 1 one concludes next that F* e

<gz>»(R-B)and

(8.10) A'F*(x) =  2 AAAM = 0,       xeR-B.
v = l

Next suppose / is an open interval in R — B' containing exactly one point x*

of B, and G is an infinitely differentiable function with compact support in / and

vanishing at x*. We use the notation

(8.11) (F) = F(x*),        [F] = F(x*-0)-F(x* + 0)

introduced in §2. Then repeated integration by parts in (8.9) gives

to ,«   ° =  2   Í (V^XAO = (DG){(-\y(a2n)[D2-2Fif}+ ■ ■ ■}
(8.12) pTi Jr

+ (D2G){(-iy-1(a2n)[D2m-3F*}+ ■ ■■}+■■■ +(Dm-1G)(a2m)[D"'F*}.

The dots in each of the bracketed expressions stand for terms involving jumps at

x* of derivatives of F» of order lower than those that are written. By choosing G

so that (DG)= ■■ ■ =(Dm~2G) = 0, (Dm~1G)=l, we conclude first [T)mF*] = 0.

Recursively, we find

(8.13) [F<f>] = [Fi"1""] = • • • = [F«"-«] = 0,
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hence F* e<^2m_2(/). Altogether, we have proved that F=F* is a solution of

(8.5i, ii, iii).
Problem (8.5) decomposes into separate problems on the disjoint open intervals J

of R—B', exactly as in §3. We can then describe uniqueness conditions as in §4.

Indeed, the condition which replaces condition (4.1) is

(8.14) 2l*LpF=0,     ¿   f (LPF)2 < oo => FPF = 0,       p=\,2,...,q,
p = i p= i Ji

if In B= 0 and 7 contains +oo ( — oo).

Condition (IV) on the solution F becomes in this case:

lim        Y BP[F, G](x) = 0   if +oo (-oo) is a limit point of J r\ P,
*-> + co(-oo)   £?1

(IV)'     lim    J Pp[F,G](x)-   lim    f BP[F, G](x) = 0
X-"X       P = l X-.-CO    p = 1

if +00 and -oo are limit points ofJnB

for every function G e Jt'(R) that vanishes at the points of P. Here

mp-l     mp

(8.15) PP[F,G]=2    2    i-D)l'k-\alpLpF)DkG.
k=0 l=k+l

As in §4 the condition (IV)' does not restrict the class of problems for which

solutions exist. Indeed, we have

Theorem 8. The restriction to J of the solution F* of problem (8.5i, ii, iii) which

minimizes 2?= i J« (LPG)2 satisfies condition (IV)'.

Corresponding to Lemmas 2a and 2b of §5 we have the following two lemmas:

Lemma 5a. Let 7=(0, xx) and let Xj>x2> ■ ■ ■ be a sequence converging to 0.

Let F eM"(l), F(xn) = 0for «=1,2,.... Then for each e>0 there exists a function

<I>e z'zz Jf'(I) which vanishes at Xj, x2,..., xn,... and near 0, which agrees with F

near Xj and for which

(8.16) 2   Í (LpF-L^s)2 < e2.
p = i Ji

Proof. By Lemma 2a there exists a function <Pe 6 J?Lq(I) vanishing appropriately

and agreeing with F near Xi such that (5.11), withr.h.s. s 2\q, holds for L = Lq and,

j¡ [LqF-LQ1\]2 < [<? JJ' JJ' [Lp6(x, i)]2 dx #] ~\2

for liip<q, where Lp operates on the function 8(-, f) and where 8(-, £) is the

unique  kernel  satisfying  Lq6(-, ¿)=S£,   Dk8(Ç, |) = Sfc>m_j   (zc = 0, 1,..., w-1).
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Using the representation

D'G(x) =  Í"1 D>x6(x, OLQG(i) ft,       j = 0,1,2,..., m-1,
Jo

valid for every G e JfLq(I) such that DkG(0) = 0 for k=0,1.m-L, we obtain

the estimate, for \^p<q,

[LPF-Lp®e}2 = ^¿pÖ(.,f)[AF(|)-F,*D£(|)]^]2

^ JJ1 [¿p0(-, f)]2 * £ [LqF-Lq<S>E}2
and

f [¿PF-FP<P£]2 ̂   f1 P [LP8(x, Ofdxdi f [LqF-Lq<S>}2 < e2/q.
Ji Jo    Jo Jl

Now <P£ e 3fLp(I) (1 g/>¿a), hence <P£ e M"(I), and (8.16) is proved.

A similar proof yields

Lemma 5b. Suppose •••x_2<x_1<x1<x2<---,

limx_„ = a > -co,   lim xn = b < co;       T= (a, ¿),   Fe^(T)

swcn rnar F vanishes at ..., x_2, x_1; x1; x2,.... F/ic?n there exists, for each e>0,

<I>£ e3#"(I) such that <P£ vanishes near a and b and at ..., x_2, x_i, xl5 x2,... and

si/cn i/iar

2   f (FPF-FP<D£)2 < e2.
P = i Ji

We now have, from Lemmas 5a, 5b,

Theorem 9a. The solution of boundary-value problem (I) for the operator A' on

the bounded interval J is unique.

Theorem 9b. The solution of problems (II) and (III) for the operator A' is unique

ifJnB is bounded.

Theorem 9c. Problems (II), (IV)' and (III), (IV)' for the operator A' have unique

solutions if J n B contains a sequence that converges to +oo and/or -co.

Condition (IV)' can be replaced by (V) if the following additional hypothesis is

assumed :

(8.17)    The coefficients alp (I = 0, 1,..., mp ; p = 1, 2,..., q) are bounded.

Lemmas 3a and 3b of §5 are replaced by the following lemmas :

Lemma 6a. Suppose (8.17) holds, x1<x2< • • :, limxn = co, T=(xi, oo), FeJf'(T),

F(xn) = 0for n=l,2,...,\imx^m DkF(x) = 0 (k = 0, l,...,m-l) and e>0. There

exists a function i>£ e^'(T) which vanishes at xl5 x2,... and near +oo and for

which

2   f (LPF-LP®E)2 < e2.
P = i Ji
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Proof. Apply (5.28) to each Lp.

In a similar way Lemma 3b is extended by

Lemma 6b. Suppose (8.17) holds, ■ ■ x_2<x_i<Xi<x2< • • -, limx_n=x_M

ä -oo,limxn = x00^oo,7=(x_œ, xœ),Fe^f"(7),F(x_n) = F(xn) = 0/oz-zî = l,2,...,

limÄ^Xoo t_m} DkF(x) = 0 (k = 0, 1,..., m-Y) if xm= +oo (x_m= —oo) and e>0.

Then there exists a function <t>e eM"(R) which vanishes at ..., x_2, x_i, Xj, x2,...

and near x_ „ and x«, such that

p=i ji
F-Lp<Ds)2 < e2.

We then have

Theorem 10. Under the hypothesis (8.17), problems (II), (V) and(III), (V)for the

operator A' have unique solutions if J r\ B contains a sequence that converges to

+00 and/or — oo.

Proof. By the proof of Theorem 3d, it follows that the difference G of any two

solutions of the given boundary-value problem must satisfy lim^ + „ (_ „, DkG(x) =

0 (k = 0, 1,..., m— 1). Lemmas 6a, 6b apply to yield Oe such that, for every e>0,

X(í(L-G>s-íL-GL-%) < e.

But 2?=i J7LpGLpOe = 0. Therefore, 22 = i ¡j (LPG)2 = 0 and it follows thatFpG = 0

for eachp= \,2,.. .,q. Thus, G = 0 since we have assumed condition (8.4). This

proves the uniqueness.

If P is bounded from one or both sides then we expect the solution of problem

(8.5i, ii, iii) to be of "lower degree at infinity." This special behavior at oo is now

to be explored. It cannot be characterized as in the case of problem (Äi, ii, iii) since

the analogue of the operator L is not available now. However, we will show now

that the characterization of the behavior at oo for solutions of (Äi, ii, iii) has an

equivalent formulation, which can be extended to the more general case. In par-

ticular, let supxsS x = b<co and suppose the solution F of (Äi, ii, iii) is unique. Then,

by Corollary 2.1, LF(x) = 0 for x>b.

Defining $PLb as the Hubert space of those functions in 2^L(R) restricted to

(b, oo), with quadratic norm

m — 1 /»oo

(8.17) MV   =  2 [gm(b)]2+      (Lg)2
6        k=0 Jb

we observe that Fb, the restriction of F to (b, oo), is in JifLb, and satisfies (Fb, g)jpLb = 0

for every geJfLb satisfying gm(b) = 0 (k = 0, 1,..., m— 1). We designate the sub-

space of all such functions g by ^g and we define Hrb to be the parallel flat

obtained by translating Wab by Fb. Then clearly FbeWbr\ W°bx. Moreover,  if
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Geifbr\ WÏ1, then for every g e W%,

r LGLg = 0,

and it follows that G solves

/•CO /»CO

(8.18) inf        (¿n)2 =        (¿G)2
fceiTs Jb Jb

and, since (8.18) has a unique solution, it follows that

(* CO /»0O

(¿G)2 =       (¿A)2 = 0,
Jb Jb

i.e., G = Fb. We have thus shown that the behavior at oo of F, characterized by

¿F(x) = 0 for x>b, is equivalent to the characterization that the restriction of F

to (b, co) lies in ~Wb n W*1-. This result generalizes in the following manner.

Suppose F uniquely solves (8.5i, ii, iii) where supxeB x = Zxco. Let Jt"b denote

the Hubert space of functions which are the restrictions to (b, co) of the functions

of 3%", with quadratic norm

m-1 Q       ¡*co

\\g\\2^ = 2 ism(bw + 2    (L^)2
ic = 0 P = l Jb

and let

W'b = {ge¿e'b: g«\b) = F™(b), k = 0,...,m-l},

with parallel subspace, of codimension m,

W'b° = {geJf'b: g™(b) = 0,k = 0,l,...,m-l}.

We have then

Theorem 11. If the set B satisfies sup*eB x = b<<x> and if the solution F of the

boundary-value problem (8.5i, ii, iii) is unique then the restriction Fb of F to (b, oo)

is of lower degree at infinity. More precisely, Fb lies in the m-dimensional subspace

"^r'b0L of 3fé"b and is the unique element in Hr'b n W'b01. There is a similar statement

ifinfxeBx = a> —oo.

Proof. Define G as the unique solution of the minimization problem

Q        /«oo Q /.oo

,8',9) ¿Ali c^-£]><*■
Notice that G is characterized by the orthogonality relation

LpGLpg = 0
Q        /»oc

2 I
P=l Jb

for all g e iT'b°, i.e. GeWbC\ ifbox.
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We show now that G = Fb. Indeed, consider the function

F+(x) = F(x),    x -¿b,

= G(x),   x > b,

and observe that F#(x) = F(x) for x e P and F* e 3tf"(R), hence now,

2       (FPF*)2 = J (LpF)2 + 2        (¿PO2
p = l JR p = i J - co p = i Jb

^ 2     (vr+2    (l»f)2
p=l   J-CO p=l   J&

by (8.19). Hence

2   f (LPF,)2 Í  2   f iLpF)2
p = l J R p = i JÄ

and since F uniquely solves

inf J   f (Lp")2 = 2   Í (L^2
l£~r fíj Jr p = i Jr

it follows that F=Fse. In particular, Fb = G. This completes the proof of the

theorem.

The approximation theory of §7 carries over here in a similar manner. We need

only assume that condition (8.4) is satisfied if J=R.
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