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THE CONVERGENCE OF RATIONAL FUNCTIONS
OF BEST APPROXIMATION TO THE

EXPONENTIAL FUNCTION

BY

E. B. SAFF

Abstract. The object of the paper is to establish convergence throughout the

entire complex plane of sequences of rational functions of prescribed types which

satisfy a certain degree of approximation to the function aeyz on the disk \z\ S p. It is

assumed that the approximating rational functions have a bounded number of free

poles. Estimates are given for the degree of best approximation to the exponential

function by rational functions of prescribed types. The results obtained in the paper

imply that the successive rows of the Walsh array for aeyz on |z|áp converge

uniformly to aerz on each bounded subset of the plane.

1. Introduction. A rational function rnviz) of the complex variable z is said to

be of type in, v) if it can be expressed in the form

-  M     a0zn + ajZn-1+'--+an        f,,,   ,fl

'nv(z) = boZV+biZ*-i+...+b;     1 %\ * o,

where the a,, A¡ are complex constants. The possibility that a0 = 0 or A0 = 0 is not

excluded so that a rational function which is of type (n, v) is also of type (m, p) if

m^n and p^v.

Let the function/(z) be continuous on the closed disk Ap: \z\ S p. Then for each

pair of nonnegative integers (n, v) there exists a rational function Wnv(z) of type

(n, v) which is of best Tchebycheff (uniform) approximation to f(z) on Ap in the

sense that the inequality

EnÁfi; P) = [max \f(z)- Wnv(z)\ ; z on Ap] S [max \f(z)-rnv(z)\ ; z on A„]

holds for every rational function rnv(z) of type (n, v). Best approximating rational

functions need not be unique [1, §12.4] but any particular determination of them
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will suffice for our purposes. The Wnv(z) form a table of double entry

W00(z) Wxo(z) W20(z) ■■■

W01(z) Wxx(z) W21(z) ■■■

W02(z)    W12(z)      .

known as the F«, Walsh array [2] for/(z) on Ap. The first row of the array, which

consists of best approximating polynomials, has been the object of considerable

study. Comparatively little is known, however, of the behavior of the other rows

of the array or of other sequences of rational functions which may be formed from

the array.

If the function f(z) is analytic on Ap and meromorphic with precisely v poles

in the open disk \z\ <a, p<a¿oo, J. L. Walsh has shown [3, p. 3] that the (v+ l)th

row of his array converges to/(z) at each point of \z\ < a. In a recent paper [4] the

author established the convergence of certain other rows of the array for the case

where/(z) has a multiple pole on |z|=a. However, the two results mentioned

yield no information about the convergence of the successive rows of the Walsh

array for a function /(z) which is entire and transcendental.

It is the aim of the present paper to establish the first such convergence theorem,

namely, for the function f(z) = ez. In §2 we prove that for fixed v and n sufficiently

large each of the rational functions Wm(z) of best approximation to e* on A„ has

precisely v finite poles and these poles approach infinity. Consequently we deduce

that every row of the Walsh array for ez on Ap converges uniformly to e* on each

bounded subset of the plane. Analogous convergence theorems are then established

for the columns of the Walsh array. To prove these results it is first shown (com-

pare [5, p. 168]) that for fixed v the degree of best rational approximation Fnv(e3; p)

to e2 on A„ satisfies

(1) 0 < Ax Ú (n + 2v+l)\p-nEnv(ez; P) Ú A2 < oo,       n ^ 0.

In §3 we establish the convergence of sequences of rational functions which are

of least pth power line integral approximation to e* on \z\ =p. The results obtained

here and in §2 are stated not merely for best approximating rational functions but

for any sequence of rational functions of prescribed types which satisfy a certain

degree of approximation to ez.

The Walsh array is analogous to the much applied table of Padé [6, §73], which

consists of interpolating rational functions. The Padé rational function of type

(«, v) for the function e* is defined to be the rational function Rnv(z) with the prop-

erty that among all rational functions of type (n, v) the difference e2—Rnv(z) has a

zero of highest order at z = 0. We shall write Fnv(z)=Pnv(z)/gnv(z), where Pny(z)

is a polynomial of degree «, Qnv(z) is a polynomial of degree v, and ßnv(0) = l.

Padé established [6, p. 434] a convergence theorem for the Rnv(z) which, in partie-
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ular, implies that for fixed v we have lim„_„ QnÁz)~^ and limn_œ Fnv(z)=ez

uniformly on each compact subset of the plane. This result plays an important part

in the proofs to follow.

2. Rational functions of Tchebycheff approximation.    To establish the inequalities

(1) we prove two lemmas.

Lemma 1. Let Fv be the set of all ordered v-tuples x = (xlt x2, ..., xv) of real

numbers and let

Ln¡k(x) = \/(n + k)\+ 2xJ(n + k-iy..
i = i

If 1 fip^v+1, then for each « (^v) the system of v linear equations Lnk(x) = 0,

l^k^v + l, k=£p, has a unique solution xnll and

(2) IFUOI = 0*-!)!(" +!-/*)!»!/(« + /*-l)!(» + "+l)!-

Proof. Let Dl£\ be the determinant of the matrix A$, obtained by deleting the

iith row from the (v+ l)-by-v matrix

■   1/«! l/(«-l)!

1/0+1)! 1/n!

l/i/i+l-v)!-

1/0 + 2-»)!

Ll/(« + v)!     l/(« + v-l)!

It is known [9, §769] that

(3)

\/(n+\)\   J

ja-rtf--*
and the same method used to derive this formula can be used to show that for

1 <p<v+\ we have

„-2

(4) "*•*-       O-l)!       ¡J (« + i)!'

Indeed, if from they'th column (/= 2, ..., v) of A*g\, 1 < p, we subtract the (j— l)th

column multiplied by the factor n—j+2, then we obtain

(5) />&  =  *!/>&--!»_!//! ¡0-1).

Repeated application of the reduction formulae (5) then leads to (4). Since

Dn,tli = ß»li,v it is clear that no D^v is zero and hence the system Ln¡k(x) = 0,

l^kfív+1, k^p, has a unique solution xnu.
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It is easy to verify that

-Z-'n.v

l/(»+M-l)!

1/n!

IHn+p-v)\

1/in+l-v)]

l/in + p-l)\    \/in+p-2)\

1/in + p+l)]       1/in + p.y.

■    I/in+p--l-v)l

■■    \/in+p,+ \-v)\

l/(n + v+l)!       l/(n+v)! !/(«+!)!

and hence \LntU(xm)\ = Dn1X+j/Dnu^v. Using equations (3) and (4) the last expression

may be evaluated to obtain (2) which completes the proof.

Lemma 2. The function fn(x) = 25Í1 \Ln,k(x)\, x e Rv, n^v, has anabsolute mini-

mum at the point *n>v+1 so that

(6) fn(x)^v\n\l(n + v)\(n + v+\)\,       xeR>

Proof. We first show that fin(x) has an absolute minimum in Rv. Let m =

inf {fn(x) | x e Rv} and let S= DUi {x | |Fn,fc(*)| Sm+1}. Since fn(x)>m+1 for

x $ S we have that m = inf{fn(x) \ x e S}. Note that the set S is a closed convex

polyhedron. Furthermore S must be bounded, for the contrary assumption implies

that S contains a ray, i.e., there exists a vector ue S and a nonzero vector v such

that u+Xve S for every A ̂  0. Since the homogeneous system Ln¡k(x) — 1 /(n + A) ! = 0,

1 ̂ k^v+1, has only the trivial solution, there exists an integer A*, 1 ̂ A* ¿¡v+1,

for which b=Ln¡k.(v)— l/(n + A*)!^0. But then we have

|Fn,fc.(«+At?)| = |Ln,fc.(«) + AA| Sm+l,

for all A ä 0 which is impossible. Thus S is bounded and since S is also closed the

continuous function fn(x) attains its absolute minimum zn on S.

Now let Jt={xeRy \fn(x) = m} and we show that there exists a vector in M

which satisfies v of the equations Lnk(x) = 0, kel={l,2, ...,v+l}. For each

xeJi put I(x) ={k e I \ Ln,k(x) = 0} and let x* eJt he a vector for which I(x*)

has maximum order. It is clear from Lemma 1 that the set J=I— I(x*) is nonempty

so that x* is an interior point of the closed polyhedron

Kx=r){xeR»\ Ln¡k(x*)Ln¡k(x) ^ 0}.
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If I(x*) is nonempty, we set

K2 m   H   {x e R> | Ln,k(x)=0}.

Otherwise let K2=RV. Now note that on the set K=KX n K2 the function fn(x)

is the sum of a linear function plus a constant and hence is concave in K. Since x*

is an interior point of Kx, it is easy to see that for each vector y e K there is a vector

we K and a scalar 8, 0<S< 1, such that x* = 8y + (\ -8)w. Thus from the con-

cavity offn(x) we deduce as in [7, p. 194] that fn(x) = m for every xe K. Since the

order of I(x*) is maximal, we therefore have Ln,k(x*)Lnk(x) > 0 for xe K and keJ.

Hence K=K° n K2, where

Ki = fi {x e A" | Ln,k(jc*)Fn>fc(x) > 0},

and so the set A' is both open and closed relative to K2. Consequently K= K2 and

we deduce that K2 c K[°. Now if the order of I(x*) is strictly less than v, then at

least one of the points xm of Lemma 1 lies in K2 but not in A'". Thus x* must be

equal to one of the points xnu and from (2) it is easy to see that x* = xUyV+x which

completes the proof.

We may now prove

Theorem 1. Let a and y be nonzero complex numbers. For fixed v ( ä 0) íAe degree

of best rational approximation Env(aeyz; p) to the function aeyz on the disk A0

satisfies

(7) 0 < Ax <> (n + 2v+l)!(p|y|)-nFnv(ae''2; p) Ú A2 < co,       n ^ 0.

Here and below constants A are independent of n and z and may change from

one inequality to another.

Proof. It suffices to prove the inequalities (7) for the case where a = y=\. To

obtain an upper bound on the degree of best rational approximation to ez we

consider the Padé rational functions Rnv(z)=Pnv(z)/Qnv(z). From the known

identity [6, p. 436]

e*Qm(z)-Pm(z) = l   y f ë>V(\-tydt,
\n + v)\      jo

it follows that

I e* ßnv(z) - Pm(z) | ^ eV + v + h> \n !/(« + v) !(n + v +1) !,       z on Ap.

Since limn_ œ Qnv(z) = 1 uniformly for z on A,,, we deduce that for n sufficiently large

(8) \e*-Rnviz)\ í Aj\e*Qnviz)-Pnviz)\ ^ A2pn/in + 2v+l)\,       z on A„

and hence Fnv(ea ; p) ^ Apn/in + 2v +1) ! for n ^ 0.

To obtain the lower estimate indicated in (7) we consider the rational functions

Wnviz) of respective types (n, v) of best Tchebycheff approximation to e3 on Ae.
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Since the poles of lVnv(z) lie in \z\ > p we may write Wnw(z) =ftn(z)/yn(z), where fin(z)

is a polynomial of degree « and fn(z) is of the form

V V

i = l ¡ = 1

where |Anj| < l/p for i = 1, ..., v. Note that |f„(z)| ^2V for zonf,,: |z| = p and hence

F2v(e2; p) = [max \ez- Wnv(z)\ ; z on Yp]2

(9) ^Oir»)-1 f   l^-lF^z)!2!^!

^ Op)"^"2" f   |^n(z)-/n(z)|2|cTz|.

Now set

&n.k = l/(« + A:)!+ 2a«+^-0!.

Since the «th section of the Taylor development for e?f n(z) about z = 0 is the poly-

nomial of degree n of least squares approximation to ezyn(z) on Yp, there follows

for n^v the inequalities

|cTz|k>„(z)-/n(z)|2|cTz| ^ J J2?».*z* +

(10) ^ 2-np2^   2   |^,*|V
/c = l

^2Vn+1(v+i)-1(2 \**Attf\
2

the last inequality is a consequence of the Cauchy-Schwarz inequality. From (9)

and (10) we deduce that Env(ez; p)^Apnfn(xnl, xn2, ..., xnv), nTtv, where xni

= Rean(. Hence the desired lower bound follows from (6) and the theorem is

proved.

Theorem 1 implies that with each successive row of the L«, Walsh array for aeyz

on Ap the degree of approximation by the «th entry of the row is improved by a

factor of 1/w2.

Estimates on the degree of best approximation by rational functions of respective

types (v, n) follow immediately from Theorem 1 and the identity

(11) \aeyz-sm(z)\ = |a-1e-«-rnv(z)|/|a-1e-^nv(z)|,

where rnv(z) = l/sm(z). We obtain

Corollary 1. For fixed v the degree of best rational approximation Em(aeyz; p),

a^0,y^0, satisfies

(12) 0 < Axú(n + 2v+\)\(P\y\)-nEm(aeyz;p)ú A2<co,       n ^ 0.
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We now state our main result.

Theorem 2. Suppose rnviz) is a sequence of rational functions of respective types

in, v), v fixed, which satisfy

(13) [max \aeyz-rnv(z)\ ; z on Ap] = oipn\y\n/'(n + 2v-2)!)   as n -> oo,

where a^O, y#0. Then for n sufficiently large each rnv(z) has at least v—\ finite

poles andas n becomes infinite the finite poles of the r„viz) approach infinity. Further-

more, the sequence rnviz) converges to aeyz uniformly on each bounded subset of the

plane.

Proof. It suffices to prove Theorem 2 for the case where a = y= 1. If some sub-

sequence of the rnviz), say z-fcv(z), possesses v — 2 or fewer finite poles, then Theorem

1 implies that

[max |e2-rfcv(z)|; z on A,] ^ ApkHk + 2iv-2)+I)\,

which contradicts (13). Hence for n large enough each rny,iz) has at least v— 1

finite poles.

Now write rnviz) =pniz)/qniz), where pniz) is a polynomial of degree n and qniz)

is the polynomial of the form qniz) = Y]¡ = j (1 — <*niz) whose zeros are the finite poles

of rnv(z). Note that since each ani is in modulus bounded by \/p the <7n(z) form a

normal family in the whole plane C. We shall show in fact that qniz) -> 1 uniformly

on each compact subset of C. Let q(z) he any limit function of the qn(z) and suppose

that q(z) is nonconstant in C. Since q(z) must be a polynomial there is at least one

point ß, \ß\ ïïp, for which qiß) = 0. Now choose t (> |/3|) so that no zero of qiz) lies

on |z| =t. From the inequalities (8) and (13) it follows that

| rnviz) - Rnviz) | ^ EnPn/in + 2v - 2) !,       z on A0,

where En -*■ 0 as n ->- oo. Hence

(14) |/»»(z)ß„,(z)-P»Xz)?.(z)| ¿ AEnPnlin + 2v-2)\,       z on Ap,

and since the function whose absolute value appears in (14) is a polynomial of

degree n + v the generalized Bernstein lemma [1, p. 77] implies that

(15) \pniz)Qnviz)-Pnviz)qniz)\ ï AenT"/in + 2v-2)l,       \z\ = r.

Suppose now that the subsequence qkiz) of the z?n(z) converges to qiz) uniformly on

compact subsets of Cand note that for A large enough we have \qkiz)Qkviz)\ ^r¡>0

for |z|=t. Then from (15) there follows \rkv(z)-Rkv(z)\^AEkTk/(k + 2v-2)\, \z\=t,

and so from (8) (with p replaced by t) and the triangle inequality we obtain

(16) \ez-rkv(z)\ í akrk/(k + 2v-2)\,       \z\ = r,

where ak —> 0 as A -> co. It is clear that for A sufficiently large each rkv(z) has at

least one pole in p < \z\ < t, say at the point l/ak. In [8, Lemma 1] it is shown that
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the presence of such poles l/afc lying interior to \z\ =t does not help to improve

the degree of rational approximation on |z| = t. We briefly justify this fact.

Let Mk=akrk/(k+ 2v—2)\, Trk(z)=qk(z)/(l—akz) and note that from (16) we

have \irk(z)ez—pk(z)/(l—akz)\^AMk, |z|=t. The transformation w = Tk(z) =

t(1 — akz)/ak(r2—z/âk) maps \z\ = t onto \w\ = 1 and hence

(17) |Ft(zK(z)e*-,S,(z)| è AMk,        \z\ = t,

where Sk(z) = rpk(z)/ak(r2 — z/äk). Since the function whose absolute value appears

in (17) is analytic in \z\ ^ t, the Maximum Principle implies that (17) also holds for

z=\/ak and so |Sfc(l/o¡fc)| f¿AMk. Hence

\Tk(z)TTk(z)ez-(Sk(z)-Sk(\/ak))\ ^ 2AMk,        \z\ = r,

from which it follows that \ez — ik_i>v-i(z)| 1kAxMk, |z|=t, where jfc_iiV_i(z)

=(Sk(z) — Sk(l/ak))/Tk(z)TTk(z) is a rational function of type (k—\, v—1).

Clearly the above procedure may be repeated (at most v—l additional times)

to obtain a sequence of rational functions tk-x,v-x(z) of respective types (k—l,v—l)

which have no poles on At and which satisfy \ez — ifc_i,v_i(z)| ^AMk, z on A,.

But then Fk_i>v_i(e3; T) = o(Tk~1j(k + 2v — 2)!) as k^-oo which contradicts

Theorem 1. Hence q(z) must be constant in C and since q(0)= 1 we have q(z) = \.

From the arbitrariness of q(z) as a limit function of the qn(z) it therefore follows

that qn(z) -> 1 uniformly on each compact subset of C and so the finite poles of the

rnv(z) approach infinity.

Furthermore since qn(z)-^-1 we can deduce inequality (16) for each t (>p)

and every sufficiently large integer k. Hence rnv(z) -*■ ez uniformly on bounded

subsets of C which completes the proof.

From Theorems 1 and 2 we deduce

Corollary 2. For fixed v and « sufficiently large, each entry Wnv(z) of the

(v+ l)th row of the Lx Walsh array for the function aeyz, a#0, y ^0, on the disk Ap

has precisely v finite poles. As n becomes infinite these poles approach infinity and the

lVnv(z) converge to aeyz uniformly on each bounded subset S of the plane. //ScA„

p á t < co, then for n sufficiently large we have

[max \aeyz- Wnv(z)\ ; z on S} ^ Arn/(n + 2v+1)\.

We remark that in Theorem 2 the hypothesis concerning the degree of approxi-

mation cannot be weakened. For suppose that the points zn, n=l, 2, ..., are

everywhere dense in \z\ >p and choose constants Bn (>0) so small that

|Fn/(z-zn)| è pnl(n + 2v-2)\,       z on Ap.

Then the rational functions rnv(z)=Fn_i,v_i(z) + Fn/(z — zn), which for n^v are

of respective types («, v), satisfy

[max \ez-rm(z)\; z on Ap] ^ Apn/(n + 2v-2)\,

and have every point of \z\ >p as a limit point of poles. We thus state for reference
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Theorem 3. For v^ 1 Theorem 2 is best possible in the sense that if in (13) we

replace o(pn\y\n/(n + 2v — 2)\) by 0(pn\y\n¡(n + 2v — 2)!) rAen íAe conclusions of

Theorem 2 need not hold.

From Theorem 2 and the identity (11) it is easy to deduce the following analogue

of Theorem 2 for approximation by rational functions of types (v, n):

Theorem 4. Suppose smiz) is a sequence of rational functions of respective types

(y, n), v fixed, which satisfy

[max |aeTZ-ivn(z)| ; z on Ap] = o(pn\y\n/(n + 2v — 2)!)   as n ^ co,

where a^O, y^O. Then for n sufficiently large, each sm(z) has at ¡east v—l finite

zeros. As n becomes infinite the finite zeros and finite poles of the svn(z) approach

infinity and the sequence sm(z) converges to aeyz uniformly on every bounded subset

of the plane.

Consequently each column of the L«, Walsh array for aeyz on Ap converges to aeyz

uniformly on every bounded subset of the plane.

3. Line integral norms. The results and methods of §2 have immediate

application to approximation in the sense of least pth powers on Yp: \z\ =p, i.e.,

where the norm is defined by

n/(z)«p = (£ \fiz)\p\dz\y, p>o.

If /(z) is continuous on Y0 there exists for each type (n, v) a rational function

wnv(z) of that type such that Effîif; p) = \\fiz) — wnviz)\\p is a minimum for all

rational functions of type (n, v). The doubly infinite table, whose entries are the

best approximating rational functions wnv(z), is called the Lp Walsh array for /(z)

on T,,. Concerning the degree of approximation of the rows of this array for the

exponential function we have

Theorem 5. For fixed v the degree of best rational approximation E$iaeris; p) to

the function aeyz, a#0, y#0, in the sense of least pth powers on Yp satisfies

(18) 0 < Ax ^ in + 2v+iy.ip\y\)-nEnp\aeyz; p) ^ A2 < oo,       n ^ 0.

Proof. For convenience we assume that a = y=l. The upper bound in (18) is

immediate from Theorem 1 and the inequality Enp)iez; p)^(27rp)1/pFnv(e2; p).

To obtain the lower bound we assume to the contrary that for some sequence of

positive integers A we have

(19) ik + 2v+iy.p-kEkpJiez;p)^0   asA->oo.

Let wkv(z) be rational functions of respective types (A:, v) of least />th power

approximation to ea on Yp. Since

||ez-AVv+i(z)||p = oipk/ik+ 2V+1)1)   as A ̂ co,
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we deduce from (19) and the modified triangle inequalities [1, p. 93] that

\\wkv(z)-Rk,v+1(z)\\p = o(pk¡(k + 2v+1)!)   as fc^co.

Now choose polynomials -nk(z) such that the zeros of nk(z) are the finite poles of

wkv(z) — Ffc,v + i(z) and such that the 7rk(z) are uniformly bounded on each compact

subset of C. Since

||7rk(z)Okv(z)-Ffc>v+i(z))||p = o(pk/(k + 2v+1)!)   as k -> oo,

it follows by using the analogue [1, p. 92] of the Bernstein lemma that there is a

subsequence wkuV(z) and a t (> p) such that

[max \ez—wkuy(z)\ ; z on Yz] = o(Tk¡/(kl + 2v+1)!)   as kx -»■ co.

Since the last inequality leads to a contradiction of Theorem 1 the proof is complete.

We remark that if/?^2, then the lower estimate in (18) is immediate from the

proof of Theorem 1 and from the fact that ||/||p^TVT||/||2, where M is a constant

dependent on p and p.

The methods used to prove Theorem 2 also yield

Theorem 6. Theorem 2 remains valid if condition (13) is replaced by the

hypothesis

|| aeyz -rm(z) | p = o(Pn\y\n/(n+ 2v-2)\)   asn^ao.

Consequently every row of the Lp Walsh array for aerz on Yp converges uniformly

to aeyz on each bounded subset of the plane.

The proof of Theorem 2 depends on the fact that with each successive row of the

Walsh array for the exponential function the degree of approximation is significantly

improved. It thus seems likely that the methods of this paper can be used to deduce

the convergence of the rows of other Walsh arrays which have this same property.

These further applications shall be reserved for a later occasion.
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