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1. Introduction. We shall study the distribution of periodic points for a class of
diffeomorphisms defined by Smale [16, §1.6].

We recall some of the definitions. Let f: M — M be a diffeomorphism of a
compact manifold. A point x € M is wandering under f if it has a neighbourhood
U such that UN Upxof™U)= o ; the set of other (i.e. nonwandering points)
forms the nonwandering set Q(f) which is closed and f-invariant. One sees that all
periodic points of fare in Q(f) and that any finite f~invariant measure on M has its
support in Q(f). A closed f~invariant subset A of M is hyperbolic under fif the tan-
gent bundle of M restricted to A, To(M), has a continuous splitting T,(M)
= E°+ E* which is invariant under Df and such that Df: E®— E® is contracting
and Df: E* — E* is expanding (see [16, p. 758] for the meaning of these terms).
f satisfies Axiom A if

(Aa) Q(f) is hyperbolic and

(Ab) the periodic points of f are dense in Q(f).

Smale’s Spectral Decomposition Theorem [16, p. 777] states that for such an f
we can write Q(f)=Q, U---U Q, where the Q; are disjoint closed f-invariant sets
and 1|, is topologically transitive (the Q, are called basic sets). Our main result is
that the periodic points of f|Q; have a definite limiting distribution as the period
becomes large; this distribution is given by a measure u, on ;. In the algebraic
case u, turns out to be Haar measure.

We show that u, is ergodic, positive on open sets and zero on points (unless Q;
is finite). In a subsequent paper [7] it is shown that (f|Q;, u,) is a K-automorphism
in the C-dense case (in fact that it is isomorphic to a Markov chain) and that u,
is the unique invariant normalized Borel measure on Q; which maximizes entropy.

The Russian school has done much work on the measure theoretic aspects of
Anosov diffeomorphisms (i.e. all of M hyperbolic under f); as a sampling we refer
the reader to the papers [2], [14] and [15]. We also mention the papers [3], [9] and
[11] where various measures are constructed for expanding maps; our methods are
easily modified to give results along this direction also.

We now sketch our construction of u,. First we decompose Q;=X; U-.-U X,
into disjoint closed pieces X; such that f(X;)= X,,, and f™| X,: X; — X, is C-dense
for all 1 =j<m. We do not define C-density here but it implies topological mixing
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and the existence of periodic points of all sufficiently large periods; for Markov
chains this is the well-known decomposition into transitive pieces.

One then restricts attention to the C-dense case; i.e. assume f: Q; — Q, is C-
dense. What we want is a measure p, such that (letting N,(E) be the number of
fixed points of /™ lying in E)

N.(E)/N(Q) — p/(E)

as n— oo for many subsets E of Q, (we save precision for later). A priori we do
not know that such a limit exists; using a diagonalization process we can choose
sequences of integers {n,} and measures y,, (,,, such that

Nnk(E)/Nn,c(Qi) g f"f.(nk)(E)

for many E<Q;. We then show that all these measures p, (,, are ergodic and
equivalent; the Radon-Nikodym theorem tells us that they are all equal. When
enough subsequences converge to a common limit, the sequence itself converges.
Thus we get our desired N,(E)/N,(Q;) — u,(E).

Conversations with W. Parry, S. Smale, P. Walters and R. F. Williams were
helpful in preparing this paper. The author wishes to thank the referees for many
ideas which improved this paper.

2. Axiom A* and C-density. Let g: M — M be a diffeomorphism satisfying
Smale’s Axiom A. Let X=Q(g)=M and f=g|X. Define, for x e X=Q(g) and
8>0,

Wix) ={ye X : d(f(x),f"(y)) < éforalln = 0}.
Wix) = {ye X : d(f*(x),f"(y)) < éforalln = 0}.
Wix) = {ye X : d(f"(x), f(y)) — 0 as n — +0}.
Wi(x) = {y e X : d(f"(x), f"(y)) > 0 as n > —0}.
Then (Smale [16, pp. 780-782] and Hirsch and Pugh [10]) the following are true:

Al. The periodic points of f are dense in X.

A2. For each §>0 there is an £(8)>0 such that W§(x) N W¥(z)# @ whenever
d(x, z) < (8).

A3. There are 6*>0,0<A<1 and ¢=1 such that for all 20,

d(f™(x), fr(»)) £ cX*d(x,y) if y e Wi(x)
and

d(f~"(x),f7"(») £ edd(x,y) if y e Wi(x).

The above statements are about f and do not refer to g or M. Any homeo-
morphism f of a compact metric space (X, d) we shall say satisfies Axiom A*
provided that Al, A2, and A3 hold.

(2.1) Standing hypothesis. We shall assume throughout the remainder of the
paper that f: X — X is a homeomorphism satisfying Axiom A*.



1971] AXIOM A DIFFEOMORPHISMS 379

(2.2) Easy facts. (i) f*W*(x)= W*(f"(x)).

(ii) For n20, f~"W¥(x)< W¥(f~™(x)).

(iii) If y € W,,(x), then Wy, (») S Wy, 4 5,(%).

(iv) Let f™(x)=x and 8 £ 8*. Then f™**+*VWk(x)2 fmW¥(x) and (by A3)
W) = ) frws).

The following fact is due to S. Smale and M. Shub:

(2.3) LemMA [6]. 8* is an expansive constant for f (ie. if x#y, then
d(f™(x), f™(»))> 8* for some n e Z).

(2.4) LeMMA. For any ¢>0 there is a D(e) so that d(x,y)<e whenever
d(f™(x), f*(y)) £ 8* for all |n| < D(e).

Proof. This is a property of expansive homeomorphisms [18].

(2.5) Periodic point construction. For any >0 there are ¢(¢) >0 and R(e) such
that, if m= R(¢) and d(f™(y), y) <4(e), there is a point z e X with f™(z)=z and
d(f*), f¥(y))Sefor all 0k <m.

Proof. This is a translation of [6, Proposition 3.5] using [6, 3.4(h)].

(2.6) DEFINITION. f (satisfying Axiom A*) is C-dense if W*(p) is dense in X for
every periodic point p € X.

We permute ideas of Smale [16, pp. 780-782] to obtain

(2.7) C-DensitY DECOMPOSITION THEOREM. X=X, U---U X,, where the X,
are disjoint closed sets, f(X,)= X,., where g is a permutation of (1, ..., m), and
S": X, — X, is C-dense when g'(i)=i.

Proof. For p a periodic point let X(p)=Cl (W*(p)).

(a) X(p) is open.

Proof. Let a=¢(8*). We show that

X(p) > B(X(p)) = {ye X : d(y, X(p)) < a}.
Since X(p) is closed, it suffices to show that periodic g € B,(X(p)) are in X(p) because
of Al. Let xe W*(p) with d(x,q)<a and set M=ord p-ordq. By A2 choose
z € Wi(x) N Wi(g). Then z € W¥(p) and
d(f*™(2), q) = d(f**(2),f**(g)) >0 ask — +oo.

Since f*™W*(p)< W*(p), we get g € Cl (W*(p))= X(p). (Note: We use 2.1 without
explicit mention.)

(b) X(p)=X(q) or X(p) N X(q)=2.

Proof. Suppose z e X(p) N X(g). By (2) X(p) is a neighborhood of z and so
thereis a w € W¥(g) N X(p). Let M=ord, p-ord, q. Then as k — +o0, f~*M(w) — q.
But f~MX(p)= X(p) since f~MW*(p)= W*(p). Thus q € Cl (X(p))= X(p). By (a) we
have X(p)> W¥(q). Since

L

wHq) = U f*™Wxq)

k=0
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and f*™X(p)=X(p), we get W*(g)< X(p). Hence X(g)< X(p). Symmetrically
X(p)= X(q).

Now by compactness, let X=X(p,) U---U X(p,) with X(p,)# X(p,) for i#j.
Set X;= X(p;) and define g by f(p;) € X,4- That fis a homeomorphism and (c) below
show that g is a permutation.

(©) f(X)= Xy

Proof. As f is a homeomorphism, fX(p,)=X(f(p;)) follows from fW*(p,)
=W f(py). Since f(p;) € X(f(p)) N X(pywy), X(f(p))=X(Pgwy) bY (D).

(d) If g'(i)=1i, then f7: X; — X, is C-dense.

Proof. Suppose p € X; is periodic. It is an easy exercise to check that W}(p)
= W¥r(p). Note that f7: X — X satisfies Axiom A* whenever f: X — X does.

(2.8) LEMMA. Let f: X — X be C-dense and o>0. Then there is an N such that
f"Wix) N W(y)# @ whenever x, y € X and m= N.

Proof. Set d=min {6*, 1«, te(3«)} and choose p, ..., p, periodic such that
every x € X is within 4e(3«) of some p,. Let ¢, be the period of p,. By 2.2 and
Cl (W*(p,))= X, there is an m, such that every y € X is within &(8) of f™xW¥(p;)
for m2m,. Let N=(mt,)- - -(m,t,). Then d(y, f¥W¥(p,)) <&(8) for all k and all
yeX.

Suppose x, y € X. Then d(x, p;) <}e(3«) for some j and d(y, z) <(8) for some
zef"Wi(p). Let we Wi(z) 0 Wi(y). Then f~N(w)e Wi(f~"(2))= Wi«(p,) and
d(f~"(w), pj) S $e(3); thus d(f~N(w), x)Se(3«) and there is a ve Wgu(f~V(w))
N Wey(x). Then fY)ef¥"W¥x) and [fY(v)e Wi (w)= Wi(y). Therefore
fYWEx) N W) # 3, Vx,ye X. If m= N, then

FrWax) 0 W) 2 W) N Wey) # 2.

(2.9) DeFINITIONS. Let Per, (U)={xe U : fY(x)=x}, N,(U)=card (Per, (U)),
and N,(f)=N,(X).

A G-time is a finite collection 7={I,, ..., I,} of disjoint (finite) intervals of
integers. We let Tim (7) =, I, T(7)=card (Tim (7)), and L(7) be the length of
the shortest interval containing Tim (7). A map P: Tim (v) — X is (f, 7)-admissible
if ft2=4, P(t;)=P(t,) whenever t,, t,ele 7 (ie. P(I) is part of an f-orbit). A
specification is a pair s=(7, P) with = a G-time and P an (f, v)-admissible map; set
L(s)=L(7) and Tim (s)=Tim (7); we also write sometimes 7=7(s) or P=P;. For
n20 we say that 7 is n-delayed if there is an interval of length at least n between
every pair of invervals belonging to 7; s is n-delayed if =(s) is. Notice that while
Tim (7) does not determine 7, it does if = is n-delayed with n>0.

Finally, for ¢>0, let

U(s, &) = {xe X : d(fi(x), P(t) < ¢ for all t € Tim (s)}.
(2.10) THEOREM. Suppose f: X — X is C-dense and >0. There is an M(e) such

that U(s, €)# @ whenever s is an M(e)-delayed f-specification. In fact M(e) can be
chosen so that Pery U(s, €)# @ for all d= M(e)+L(s).
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Proof. We tend s to a new specification s as follows. Let @, be the smallest integer
in Tim (s). Set 7(s")=7(s) U {{a, +d}} and define P, by P.(a;+d)=Pya,;) and
P, |Tim (s)=P,.

Set B=1% min {(3¢), &, 6*} (¥ defined in 2.5) and a=p/3c; let N be the integer
given by 2.8 for this «. Choose M = M(c) = max {N, R(3¢)} (R defined in 2.5) large
enough so that 32, AM <2, Assume d= M(e)+ L(s); then s’ is M-delayed.

Let I,=[ay, b,), I,=[a,, b,), ..., I,=[an, bn]={a, +d} be the members of =(s’)
in their natural order. We set z; =x, and define z, (for 1 <k =<m) recursively as
follows. Suppose z, has been chosen for some 1<k<m. As s' is M-delayed,
ay,1—b,>M2= N and so by 2.8 there exists a point

v € [ 1 % Wi(f*(zi)) N Wa(P(ays1))-

Set 241 =/"%+1(v); then f°x(z¢+1) € WE(f*(2x)) and f%+1(zx1 1) € We(Py(ay+1))-
By induction on r we show that

fb-"(zk+ r) € Wb car™ 4 ...t carM '”(fb"(zk))-

For r=1, this was seen above (since ¢ 1). Assume the statement is true for some
r21. Since s' is M-delayed; b, ,— b, = rM ; because [k +1(z; 1 ;1 1) € W(fO% +1(241))
we get

* SOz r41) € Weenmr(fo:(zpc.r))

(Here we use A3: If x e W¥y), then d(f~™(x), f~"(y))ScaA" for n=0 and so
f™(x) € Wa(f~™(y)) for m=0.) Applying (*) and our inductive hypothesis, it
follows that (see 2.2(ii))

LO%(Zisri1) € Weasooh can (f(2,))
and so our induction is done.

Since >, A <2 and o=B/3¢c we have fU(z,)e Wi a(f(z,)) and
d(f(zx), f1(z,)) <2B/3 for any ¢ € I, and any k € [1, m]. Since f%(z,) € Wi(Ps(ay))
(by the definition of the z,’s) we have

B3 2 « 2 d(fY(zy), '~ *(Ps(a)) = d(f'(zy), Ps:(t))
for any ¢ € I,. Combining inequalities,
d(f'(zn), Pa(t)) < B for all ¢t € Tim (s?).
Thus z,, € U(s?, B).

Now let z*=f%(z,). Then z*, f4z*) € Bs(P,a,)), and so d(z*, f4(z*)) < (3e).
Now d> M(e) 2 R(3¢) and by 2.5 there is a z € Per, (X) with

d(f4(2), f{(z¥)) £ 4¢ forall0=t=d.
Letting z'=f~%(z) we get

d(fi(zY), f(zy) £ %e foralla, <t < a,+d.
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Applying the triangle inequality to this and z, € U(s?, B),
2t e U(s', B+3e) = U(sh, &) = U(s, €);
also z* € Per, (X).
(2.11) REMARK. The above theorem is a statement about the freedom one has

in specifying the approximate orbit of a periodic point. The remainder of this paper
shall be derived from this freedom (together with expansiveness).

3. Counting. Throughout this section f* X — X is a C-dense map.

(3.1) DeFINITION. For ¢>0, EC X is an (n, ¢)-separated set if for any distinct
x, y € E there is a ¢ for which 0=t <n and d(f%(x), f'(y)) >e. We let N(n, ¢) denote
the maximum cardinality of an (n, ¢)-separated set.

(3.2) LemMA. (i) If e 8*, then N(n, £) = N,(f).

(ii) If e< e, then N(n, «) < N(n, ¢); for any e>0 there is an m, such that N(n, ¢)
= Nn+m,, 8*) for all n=0.

(iii) N(Z n;, ) =TT N(n;, 32).

Proof. (i) By 2.3 ¢ is an expansive constant; i.e. if p#q, then d(f(p), f%(q))>¢
for some ¢. If p, g € Per, (X), then ¢ can be chosen so that 0=¢<n; i.e. Per, (X) is
(n, £)-separated.

(ii) The first statement is obvious; if E is an (n, ¢)-separated set, then f~P©F is
an (n+2D(e), *)-separated set (use 2.4).

(iii) We prove the following stronger statement for later use: Suppose E< X
and n;, m, (1 £i<s) are integers (n; > 0) such that, when x, y € E and x #, there is
a te -, [mi, my+n;) for which d(fi(x), f%(y)) > e; then card (E)<[]i-1 N(n;, 3¢).

Proof. Choose R;< X so that f™ R, is a maximal (m;,, 4¢)-separated set. Construct
a map g=[]g: E— 1R, by requiring that d(f*(x), f(gi(x))) <3 for all ¢t e [m,,
m;+n;). Such a gy(x) exists by the maximality of /™ R,—otherwise f™(Ru{x}) would
be an (n, 4¢)-separated set.

If g(x)=g(y) the triangle inequality would give us d(f%(x), f{(y))<e for all
te [my, my+n,); thus g is injective and we are done.

Two specifications s and s' are p-separated if d(P(t), Pa(t))>p for some
t € Tim (s) N Tim (s*); a set of specifications is p-separated if every two members
are. An S-set A is a set of specifications with the same G-time; let 7(4) denote this
common G-time, T(4)=T(7(A4)), L(4)=L(7(A)), and U(4, &)=ses U(s, ¢).

3.3 LemMA. (i) If s and s* are p-separated, then U(s, 1p) N U(s*, 1p)= 2.

(ii) If A is a 2e-separated S-set, 7(A) is M(e)-delayed, and d= L(A)+ M(e), then
Ny (U(A, ¢)) =card (A).

Proof. (i) Trivial. (ii) Follows from (i) and 2.10.

Two specifications s and s* are disjoint if Tim (s) N Tim (s*)= & . In this case we
define a new specification s A s* by (s A s*)=17(s) U 7(s*) and

P,,a(t) = P(t) for teTim (s),
= Pa(t) for te Tim (s?).
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Notice that U(s A s, €)= U(s, ¢) N U(s%, £). We call a G-time = an m-time if card =
=m; s is an m-specification if =(s) is an m-time.

(3.4) LeMMA. If = is an n-delayed m-time and N = L(7), there is a v* such that
(a) Tim (v) N Tim ()= &,

(b) 7V 7! is n-delayed,

(©) L(rV )= N, and

(d) T(+Y) = N-2mn—T(7).

Proof. Let a, be the smallest integer in Tim (7). Set
Tim () = {te[ay, a;,+N) : [t—r| > n for all re Tim (7)}.

This determines a G-time = which satisfies our condition.
(3.5) REMARK. ! could be empty.

(3.6) LeMMA. If ris a time specification and ¢> 0, there is an e-separated S-set A
with 7(A)=r and card (4) 2 N(T(7), 2¢).

Proof. Let 7={[,, ..., I;} and =,={[} for | Sk <m. Let A4, be an e-separated
S-set with 7(4,)= 1, and card (4,)= N(T(7,), ¢). Then

A=A1 /\“'AAm={S1 A-‘-Asm:SkGAk,1§k§m}

is e-separated with 7(4d)=7, A---A T,=7 and card (4A)=[] N(T(z}), ¢)
2 NG T(y), 2¢)= N(T(7), 2¢) by 3.2(iii).

(3.7) THEOREM. Suppose B is a 2e-separated S-set with (B) an M(¢)-delayed m-
time. Then
K(m, ¢) card (B) N(d, 8¢)
N(T((B)), 4¢)

for all dz L(7(B))+ M(e) where K(m, €)>0 depends only on m and > 0.

Proof. Let N=d— M(e) = L(7(B)). Let r=7(B) and choose 7! as in Lemma 3.4.
By Lemma 3.5 let 4 be a 2e-separated S-set with 7(4)=7* and card (4) = N(T(!), 4¢).
Now AAB is a 2e-separated S-set with M(e)-delayed time 7 A 7'; d= N+ M(e)
> L(7 A %)+ M(¢). Hence, by 3.3(ii), we have

Ny(U(A A B, €)) = card (4 A B) = card (A4) card(B).
Since U(B, €)= U(AA B, ¢),
N4(U(B, ¢)) = card (A) card (B).
Now T(v*) 2 max {0, N—2mM(e)—T(7)} (see Remark 3.5). Thus
card A = max {1, N\N-2mM(e)—T(7),4e)} = W

Ny(U(B, ¢)) 2

(taking 1 in case N—2mM(e)—T () £0). Recalling that N=d— M(e) and 3.2(iii)
we get
N, 8¢) = W-N(2m+1)M(e), 4e)N(T(7), 4¢)
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(the inequality is good in the exceptional case we have been noting). Thus
Ny(U(B, ¢)) =z card (B): W

> K(m, ¢) card (B) N(d, 8¢)
= N(T(r), %)

where K(m, &)= N((2m+1)M(¢), 4¢) 1.
(3.8) DEerinITION. For U< X let

¢(U) = lim inf 7\,(((;)) and  6(U) = lim sup ]IVV(U)U)

(3.9) CoroLLARY. (i) For any «>0

“},‘1 jonf ]x‘ifz) > 0.

(ii) (V)>0 when V+# & is open.

(iii) There is a K* >0 such that o(U)= K*(V) whenever U and V are open in X
and UDV.

(iv) There are my and S >0 such that N, .(f)= SN(m, 8*)N(n, %)= SN ()N.(f)
provided that mz m,.

(V) There are my and S >0 such that, if m 2 my and U< X satisfies diam f*(U) < 6*
for all 0 £k <m, then 8(U) = 1/SN,(f).

Proof. (i) and (ii). Let xe ¥ and choose >0 so small that B/(x)<V and
8z <min {e, 8*}. Let s be given by 7(s)={{0}} and P((0)=x; B={s}. Then V> U(s, ¢)
and by the theorem

No(f) =2 No(V) = K(1, &) N(d, 8¢)/N(1, 4¢)

for d=z1+M(s). As N(d, 8¢)= N(d, o), (i) follows immediately. As N(d, 8¢)=
N(d, %)= N4(f), so does (ii).

(iii) Choose ¢>0 so that U> B(¥) and let D(e) be given as in 2.4. Consider
n>2D(¢). For each pePer, (V) form the l-specification s(p) with =(s(p))
={[— D(e), n— D(¢))} and P,,(f)=1*(p). B,={s(p) : p € Per, (V)} is &*-separated
(see the proof of 3.2(iii)). By the definition of ¢ and D(¢) we have U(B,, 6¥*)<U.

Trivially, U(B,, +8*)< U; so by the theorem

No(U) 2 K(1, $8*)N(V)N(d, 8*)/N(n, 38*)

for d = n+ M(}6*). By (i) above there is an n, and a K; such that N(n, 16*) < K; N,(f)
when n=ny; also N(d, %) 2 Ny(f). Thus for n=n, and d=n+ M(38*) we have

Ny(U)INf) 2 K*N(V)INf)
where K*=K(1, $6¥)/K,>0. Then (U) = K*4(V).
(iv) Set mo=2M(318*). Let A be a }6*-separated S-set with =(4)={[0, n)} and
card A=N(n, 16*); B a 48*separated S-set with 7(B)={[n+M(38*), n+m
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— M(%8*))} and card B= N(m —my, %8*%). Now A A Bis 16*-separated with M(}6*)-
delayed time.
By 3.3(ii) we have

Nuin(f) 2 card (4 A B) = N(n, $8*)N(m—mo, $5%).
By Proposition 3.2(iii) we have
N(m, 8*) = N(m—mg, $8*)N(m,, 18*).

Taking S'= N(mq, 18*)71, N, n(f) = SN(n, 8*)N(m, &*).

(v) Let m, and S be as above. Since Per,, , (U) is an (n+m, 8%)-separated set
and diam f*¥(U)< 6* for 0k <m, f™ Per,.» (U) is an (n, 8*)-separated set; thus
Noim(U) S N(n, 8%). By (iv) we have, since m=mqy, N, ()= SN(n, $*)N(m, &*)
and so

NoslU)[ Ny s n(f) £ 1SNu(f).
Letting n — oo, (U) < 1/SN,.(f).

(3.10) DeriNiTION. For A< X let N(n, e, A) be the largest cardinality of an

(n, ¢)-separated set contained in A.

(3.11) PrOPOSITION. For each ¢ with 0<e<18* there are constants c¢,>0 and
0<7,<1 for which the following holds. If A< X, 0=k, <k, < --- <k,, are integers
and wy, ..., wy, € X satisfy f(4) N B(w,,)=2 for r=1, ..., m, then N(n, ¢, A)
<c.™N(n, ¢) for all n>k,,

Proof. Let M=M(3e) as in 2.10. Let j;<j,<---<j, be a subsequence of
ki< <k, such that j,,,—j>2M and g=2m/2M +1). Let n>k,, and E,< A4 be
an (n, ¢)-separated set. For each I<J={j,, ..., j,} and each x € E, we define the
specification s(x, I) by requiring that it be an M-delayed specification with

Tim s(x, I) = ([0, n)\ jgejl [j,-—M,j,+M]) (O

Py, () = fUx) fort¢l and Py, (j}) =w, forjel
Set d=n+m. By Theorem 2.10 choose
p(x, I) e U(s(x, I), &) N Per, (X).
Let Fi={p(x,I): xe E,;}. If [,#1, and x, y € E,, then s(x, I,) and s(y, I,) are e-
separated; for if j; € I;\I,, then j, € Tim s(x, I,) N Tim s(y, I,) and
A(Psie,1(J)s Pscy,15(j)) = d(wy,, f1(y))>e.

By lemma (i) we have p(x, I,) #p(y, I;); thus I; #I, implies F;, N F;,= &.

Suppose z=p(x, I)=p(y, I) and x#y. For t e Tim s(x, I)\I, we have Py, (t)
=f4x) and Py, n(t)=f"(»); so d(fX(z), f'(x))<}e and d(f*(z), f(y))<3e, hence
d(fi(x), fY(y))<e. Since x, yeE, an (n,e)-separated set, we must have
d(f'(x),f'(y)) > ¢ for some

t € [0, W\(Tim s(x, ND\I) = jEEJI [i—M, ji+M].
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By the proof of 3.2(iii), {x € E, : p(x, I)=z} has at most g/ elements where
g=N(@2M+1, ). Thus F, has at least card E,\g®*"’ elements.
As the F;’s are disjoint

Nz ScardFz > Ecéa—, card E,

I1cJ 1<J
cardJ d cardJ
2 Z (car J) l,card E, = (l +l) card E.
r=0 r 4 g

Since 2¢ < 8*, by 3.2(i) and 3.2(iii)
Nu(f) = Npym(f) = Nn+ M, 2¢) < N(n, e)N(M, e).

Also card J=g=m/(2M +1). Thus
NM, &)

= <
N(n, g, A) card En = [(1 + l/g)1/2M+1]m
4. Topological entropy. Suppose <7 is a finite open cover of X. EC.o/ x - - - X &
(n-times) is an n-cover for (f, &) if for every z € X there is an (4o, ..., Ay_,) € E
such that f*(x) € A, for all 0< k <n. Let M,(f, &) denote the minimum cardinality
of an n-cover for (f, &/). Then (see Adler, Konheim and McAndrew [1]) the limit

N(n, ).

h(f, &) = lim %log M. (f, )

exists and the topological entropy of f is defined by
h(f) = sup h(}, ).

(The above definitions and 4.1 and 4.2 below do not depend on our standing
hypothesis that f satisfies Axiom A*; they work for any continuous map of a
compact Hausdorff space.)

(4.1) DEFINITION. f: X — X has completely positive topological entropy (c.p.t.e.)
if h(f, {C, D})>0 whenever {C, D} is an open cover of X with C# X# D.

(4.2) PROPOSITION. Suppose f: X — X has c.p.t.e. Then h(f)>0 unless X is a
single point, and it is topologically transitive. If g: Y — Y and h: X — Y are con-
tinuous maps with h surjective and g - h="h o f, then g has c.p.t.e.

Proof. Unless X is a single point an open cover {C, D} as in 4.1 can be found and
so h(f)>0.

If fis not transitive, then there is an open set C# @ with f~}(C)< C and C# X.
Let B# @ be open with B C and set D= X\B. Then {C, D} is as above. Let

E,.={C,....,C,D,....,D):i+j=mn,ij= 0}
i times J times

We claim E, is an n-cover for (f, {C, D}). For, if x € X, then either f*(x) € D for all
0<k<n or there is a largest k, denoted k(x), such that 0<k<n and f*(x) ¢ D.
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In the latter case f**(x) e C and so f™(x) e C for all m<k(x) as f~C)=C;
S™(x) € D for m>k(x). As card E,=n+1, M,(f, {C, D})=n+1 and h({C, D})=0—
a contradiction.

Suppose {C, D} is an open cover of Y with C# Y# D. Then {h~Y(C), h~}(D)}
satisfies the condition of 4.1 also. 4 and A~ induce a bijection between n-covers for
(/s {h=(C), =X (D)}) and (g, {C, DY) =h(fi{h~*(C), h=*(D)})>0.

(4.3) THEOREM. If f: X — X is C-dense, then f has c.p.t.e.

Proof. Let {C, D} be a cover as in 4.1. Choose ¢>0 and p, g € X such that
B,(p)= C\D and B,(q)< D\C. Let M(¢) be the integer given by 2.10; set N=M(e)+ 1.
Then r,={{kN} : 0=k <n} is M(e)-delayed.

For (ay, ...,a,-1) € 1223 {p, q} define a specification s=s,(ao, ..., a,_1) by
7(s)=7, and P(kN)=a,. By 2.10 choose points

xn(ao, ey an—l) € U(sn(am RS ] an—-l)a 6).

Let E, be an nN-cover for (f, {C, D}); for x € X let F,(x)=(F(x), ..., F*¥~(x))
€ E, be such that f7(x) € Fi(x) for 0< j<nN. Suppose (o, . . ., @ 1) #bos - - -» bn_1);
say a,=p and b,=q. Then

S(x(ao, - .., a,-1)) € B(p) < C\D

and so F¥¥(x.(ao, ..., a,_1))=C; similarly F¥(x,(b, ..., b,_1))=D and so
Fo(xp(bo, - - .y bp_1))# Fo(xn(ao, ..., a,-1). It follows that card E,=2" and
M.x(f,{C, D})22"; thus

1 L1
h(f,{C,D})gllleogZ —N10g2>0.

(4.4) REMARK. Now f: X — X satisfying Axiom A* could not be topologically
transitive unless the permutation g in its C-dense decomposition (2.7) is a cycle,
i.e. if the decomposition X=X, U---U X, satisfies X={) f*X;; with 4.2 and 4.3
one sees that this is a sufficient condition for transitivity. It is now clear how 2.7
is just another version of Smale’s Spectral Decomposition [16, p. 777]. We also see
that A(f)>0 unless X is finite; this result was proved before in [6]. The following
is an improvement of the main result of [6].

(4.5) THEOREM. If f: X — X is C-dense, then

h(f) = lim rlllog N.(f).

Proof. Let < be a finite open cover of X with diam (4) < 8* for all 4 € &/ and
let 8> 0 be a Lebesgue number for &7 (i.e. every closed B-ball B,(x) lies inside some
member of ).

Let Q be a maximal (n, f)-separated set. For ze Q choose B(z)=(A4,(2),
ev vy Ap_1(2)) with 4,(z) € & and

A(2) © Cl(Bs(f*(z))) forall0 <k < n.
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We claim E,={B(z) : z€ Q} is an n-cover for (f, 7). For each x € X there is a
z, € Q@ for which d(f*(x), f*(z,)) =B for all 0=k <n; otherwise Q U {x} would be
an (n, B)-separated set bigger than Q. Since f*(x) € A (z,), E, is an n-cover. We
have shown M, (f, &)< N(n, B).

Let E be an n-cover for (f, &/) and R an (n, *)-set. For x € R choose g(x)
=(Ay(x), ..., An_1(x)) € E such that f*(x) € A,(x) for all 0=k <n. If g(x)=g(»),
then A,(x)=A,(y) and d(f*(x), f*(y)) < diam A,(x) < * for 0<k<n; x=y as R is
an (n, 8*)-separated set. As g: R — E is injective, card E=card R and M,(f, &)
2 N(n, %) 2 No(f).

By 3.9(i) there is an $>0 and n, such that N,(f)=SN(n, B) for n=n,. Hence
SM.(f, &)< N(f)S M, (f, &) for all n=n,. Since (1/n) log M, (f, &) approaches
the limit A(f, &), so does (1/n) log N,(f). As this is true for every & with diam &/
< &* and in calculating h(f) we need only consider A(f, &/) with &/ having small
diameter,

h(f) = h(f, &) = lim %log N.(f).
(4.6) REMARK. Let
y;(e) = lim sup % log N(n, ¢).

The proof above shows that, for any map f a compact metric space, A(f)
=lim,_ ¢ y,(¢). Suppose fis a homeomorphism and & is an expansive constant; if
<3, then 3.2(ii) goes through, i.e.

N(n, 8) < N(n,¢) = N(n+m,, )
for some m,, and so y,(¢)=y,(8). In this case we have y,(8)=h(f).

(4.7) THEOREM. Suppose f: X — X is C-dense and A< X is closed with & # A+ X
and f(A)=A. Then h(f|A) <h(f).

Proof. By the remark above, hA(f|A4)=y/4(e) for e<8*. Choose we X\4 and
>0 so small that 4 N B,(w)= 3. Recall 3.11, N(n, &, A)<c, 77, for n>m where
7.<1. Then

1(e) = lim sup + log N(n, ¢, 4)

< lim }llog ¢, IN(n, )

< log 7. +y,(e) = log 7.+ A(f) < h(f).

5. Construction of a measure. Let § be a countable base for the topology of
X which is closed under finite union. Assume w: 3 — R satisfies, for B €,

w(B) 20, o) =1,
w(B;) 2 w(B;) when B; > B,
w(B,U---U B) £ > w(B),
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and
w(Bl ) Bz) = w(Bl)+w(Bz) When El N Ez = J.

For U open in X define m(U)=sup {w(B): B< U and B € y}.

(5.1) LemMmA. If U<, U, then m(U)S>m(U). If UNnV=g, then
m(U v V)=m(U)+m(V).

Proof. Let B ey with B< U. By compactness let Us, . .., U, cover B. For x€ B
choose B, € so that B,<U, for some i satisfying 1<i<n. Let B,, ..., B,,
cover B and set A;=\ {B,, : B, < U}. Then

w(B) = o U 4) < éwuo < imwi).

Now vary B.
By the first part of the lemma, m(U U V)<m(U)+m(V). Suppose B,, B,y
with BycU and B,< V. Then Cl (B, U B))cU U Vand B, N B,=3; so

m(U U V) 2 w(By Y By) = w(B,)+ w(By).

Varying the B; we obtain m(U U V)2 m(U)+m(V).
For any E< X we define

m(E) = inf {m(U) : U > E, U open}.

One sees easily that this definition agrees with the earlier one on open sets and that
m(K)=inf {w(B) : B> K, B €y} when K is closed. We let

M ={E< X:m(E) = sup{m(K) : K < E, K closed}}.
With standard arguments we get

(5.2) PROPOSITION. M =M, , is a o-field containing the Borel sets of X and
m=my, , is a complete normalized regular measure on M.

Proof. One can, for example, use 5.1 and imitate the proof of the Riesz Repre-
sentation Theorem given in Rudin [19, p. 40].

(5.3) LeMMA. If w;:¢; — R and w,: , — R are as above and there is a K>0
such that wy(B;)2 Kw,(B,) when B,> B, and ,(B,) = Kw,(B;) when B,> B,, then
'ﬂ%.m ="/{W2.w2 and Km'h,an =My,,0, é(l/K)mthr

Proof. For U open and B,=U with B, ey; we can find B, €, such that
B,=B,=B,=U. Hence my, ,,(U)Zwy(By)2Kwy(B,). Varying B, my, ,.(U)
2 Kmy, o, (U). Similarly my, . (U)2=Kmy, ,,(U). These inequalities extend to
any Ec X.

Suppose E € A, . Letting K, = E be compact with my, ,,(K,)2Zmy, ,,(E)—1/n
we see that E=E; U |- K, where E; < F for some Borel set F with my, ,,,(F)=0.
Then my, ,,(F)=0 also and E, € .#,,,, since my,,, is complete. As ;, w,
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contains Borel sets, we finally see that E € 4, ,,. The proof of 4, , <4, .,
is the same.

We will now see how to define some w’s when we are given a homeomorphism
f: X — X which is C-dense. Let ¢ be any base as above. By diagonalization we
can find increasing sequences of integers {n,} such that

N, (B)
N, (f)

exists for every B e . The measure we obtain we denote by p; (n,,. Lemma 5.3
(with K=1) shows us that the measure does not depend on the base used.

Let p, be the measure obtained by giving each point of Per, (X) measure 1/N,(f).
Then p,,, — py,n,y Weakly (see Corollary 6.7).

w(B) = o, (B) = li;n

(5.4) THEOREM. Suppose f: X — X is C-dense. The measures p; ,, are all
equivalent in the sense of 5.3. They are positive on nonempty open sets and
s, (X)) =0 unless X={x}. f is an automorphism of (M, iy, (n,»)-

Proof. Let p, (r,) and p;, (m,, be defined using bases ¥, and ¥, respectively. By
3.9(iii) there is a K* >0 such that, if B; > B,, then

a(nk)(Bl) 2 ¢(B,) 2 K*0(B,) 2 “(nk)(Bz)-

5.3 gives equivalence.
If U# o is open, then U> B+# @ for some Be Y. Then, using 3.9(ii), py,(n, (V)
= oy,,(B)Z ¢(B)>0. Suppose x € X but X#{x}. Let

U, ={yreX:df"(y),f“(x)) < 16* for 0 < k = m}.

Let B, €Y with x € B,< U,. Then p;, ,,({x}) £ 0(,)(Bm) < 6(Uy). By 3.9(b) there
are my and S>0 with 0(U,) < 1/sN,(f) for all m=m,. By 4.3 and 4.2

W) = lim - log No(f) > O.

Thus N,(f) — o, 8(U,) — 0 and g ,,({x})=0.
Now V¥, «,,, and f¥, a,, clearly satisfy the hypotheses of 5.3 with K=1 (by
the obvious and crucial fact that f permutes Per, (X)). Hence

f:u'f.(nk) =fm'1’.a(n,,) = mf'l’.a(n,,) = m‘l’,a(nk, = s ing)e

(5.5) REMARK. Above we assumed f: X — X is C-dense. Suppose f: X —> X
satisfying Axiom A* is only assumed to be topologically transitive. Then
X=X, U---U X, with f(X)=X,,1 (Xns1=2X1) and f™: X; — X; C-dense. From
an invariant measure p for f™: X; — X; we get one p’ for f: X — X by defining
W' (f"E)=pn(E)/m for Ec X, measurable. This gives a bijection between invariant
Borel measures for f™: X; — X; and f: X — X. One sees that u’ is ergodic if and
only if p is, A(f™| X,)=mh(f) and h,(f™| X;)=mh,(f). The measures defined above,
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in terms of periodic points of f™| X, correspond to measures on X defined in terms
of periodic points of f: X — X. We shall study the C-dense case and this will give
us results also for the general transitive case.

6. Ergodicity and equality of measures.

(6.1) DEFINITION. fis said to be partially mixing with respect to the f~invariant
measure u if there is an R>0 such that for any E, Fe 4,

lim inf w(E N f~"F) 2 Ru(E)u(F).
If ¢;<cy<---<c, are integers, set I(cy, ..., c,)=min; (¢;41—¢). f is partially
mixing in order r if there is an R,>0 such that, if E;, ..., E, € # and I(c}, ..., c})
— 00 as n —> o0, then
lim inf pu(f~ c'l‘El n... nf—c’} r) 2 R(Ey)- - - w(Ey).

Notice that partially mixing is a stronger condition than ergodicity or weak
mixing.

(6.2) THEOREM. If f: X — X is C-dense, then f is partially mixing in all orders
with respect to each p=py ).

Proof. Let I(c}, ..., c*) — oo. Let a=%38%; by 3.9(i) choose n, and S>0 so that
N.(f) 2 SN(n, 20) for all n=n,.

Suppose E,, ..., E, are closed and V;2E; with V;e¥. Choose ¢>0 so that
BJ(E)<V, Choose k large enough so that n,>2D(¢) (see 2.4) and n so that
I(cy, ..., P> M(«)+ny. Let my={[c}] — D(e), ¢} +n,— D(¢))} and for x e Per,, (V)
define the specification s, by +(s.)=7 and P, (t)=f""(x); let A4,
={s, : x € Per,, (V})}. One notes now that B=A4, A --- A4, is an 8«-separated
s-set which is M(«)-delayed. Also, by 2.4, we get

UB, ) < (\ fIBLE) < () [~V
i=1 i=
By 3.7, we get

K(r, ) card (B) N(d, 8*)

Nd(m f_c?Vi) ; Nd(U(B’ a)) g N(rnk, %8*)

for d sufficiently large. Now

N(d, 8*) 2 N(f), card(B) = | [ No (V)
and, using 3.2(iii),
N(rny, 38%) = N(ni, 38*) = N, (f)/S".
Combining all these,

Nd(n f— t 4) Nnk(V)
Nd(f) = R I—[ Nnk(f)
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where R,=K(r, )S">0. Letting d — o0,
—qtpy i i NV V) No (V)
‘P(m f ‘Vi) - l"‘;llglf Nd(f) = -R I—I Nnk(_f)
This being true for all big n,

lim inf o) /7)) 2 &, [T 32070

Letting n, — o0,
lim inf ¢( f “V) 2 R [ [ewp(V) 2 R | [ W(E).
Now suppose V> E, open and choose the V; above so that V!> V,. Then
NSV = Cl (ﬂf“"{' Vi)~
i i

Choose Be ¥ so that
N f-ivi= B> V.

Then
WUNSIVY 2 amy(B) Z o(N V)
and
lim inf (N f~4V}) 2 R, [ [ W(E).
Now T

WNS=TE) 2 (N Sf~4VH =3, (VA \E).
Letting w(V,\E)) — 0 we get
lim inf (N /~4E) 2 R, | ] w(E).
For any E;* € # consider E; € E¥ closed. Then
lim inf u(").f ~IEF) 2 lim inf w(M.f ~IE) 2 R, | [ W(E).

Now let u(E;) — pu(EF).

(6.3) CoROLLARY. Suppose f[: X — X satisfying Axiom A* is topologically
transitive. Then the measure p* on X corresponding to jsm (.., on one of its C-dense
Jactors is ergodic under f.

Proof. See Remark 5.5.
The following standard fact was pointed out to us by W. Parry.

(6.4) LEMMA. Suppose f: X — X is an ergodic automorphism of two equivalent
normalised Borel measures m, and my. Then m, =m,.

Proof. Let dm,/dm, denote the Radon-Nikodym derivative. It is f-invariant,
hence a constant (clearly 1) by ergodicity.
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(6.5) THEOREM. Let f: X — X be C-dense. Then all the u; ,, have a common
value p,.

Proof. 5.4, 6.2, and 6.4.
(6.6) THEOREM. Let f: X — X be C-dense. If K is closed and p(K)=0, then

lim (No(K)/Ny(f)) = 0.
If U is open with n(6U)=0, then lim (N,(U)/N,(f))=p(U).
Proof. Suppose {m} is an increasing sequence of integers so that either
Nn(K)/Nu(f)—a >0 or Np(U)/Nn(f)—b # p(U).

Let ¢ be a countable base closed under finite union and {n,} a subsequence of {m,}
so that p, (n,, is defined with .
Suppose Ny (K)/Nu(f) —a>0. If BoK, B e, then

Nu(B) _ .. Nu(K)
—— 2 lim —— =a.
No(f) = Nolf)
It follows that u/(K)=inf «,,(B)2a>0, a contradiction. Suppose N (U)/Ny(f)
— b#p(U). For BoU, Be we have o, (B)2b; hence p(U)=py,n,(U)2b.
For B U, Bey, we have o, (B)<b; hence p(U)<b. As p(0U)=0, b2 p (U)
=u,(U)=>b and so u,(U)=b, a contradiction.

(6.7) CoROLLARY. Let f: X — X be C-dense. Then, for any F € C(X),

1
— F(x) — f Fd
AT xepzw (x) s

as n— . (We say that p, is derived from f by periodic points to mean the above
statement.)

Proof. Choose b such that —b< F(x)<b for all xe X. Let e>0. Choose —b
=ay<a;<---<a,=bwith a;,;—a;<e, p({x : F(x)=a;})=0 and F(x)=gq, for no
periodic point x.

Let U;={x : a;_; < F(x)<a;}. Choose N(¢) so big that

|(NA(UD/Nu() = (U] < &b

for all n= N(e) and each i. This is possible since F(0U;)<{a;_, a;} and so p(0U;)=0
by construction; hence 6.6 applies to U;. We also have

N F0= 3 aNU)IND)

xePerp(f)

=< e

Putting our above two inequalities together one sees that

AN F(x)—zaw(v,)| < 2e.

xePery(f)
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Since || F du;— 3, au (Uy)| Se, we finally get

|[Fau—min= 5 A <3

xePern(f)

for all n2 N(e).

7. The algebraic case. Suppose f:G— G is an automorphism of an n-
dimensional torus G. fis a hyperbolic if Df: T,G — T,G has no eigenvalues on the
unit circle. Then (see [16]) f satisfies Axiom A* and is C-dense because G is con-
nected (using 2.7). f of course preserves the normalized Haar measure m on G.

(7.1) ProOPOSITION. If f is a hyperbolic automorphism of a torus, then p,=m.

Proof. Suppose g € G and E<G is closed. Let u,=py, (s, be defined via the base
Y. Consider Be ¥ with B> E+g. There are B! € ¥ and open V such that B1oE,
g€ Vand B+ V< B. By 3.9(ii) there is an N such that N,(V)>0 for all n= N. For
m2 N and g,, € Per,, (V) we have g, +Per,, (B*)< B. If x € Per,, (B*), then as f is
a group automorphism f™(gy, +x) =/"(g,,) +/™(X) =gn, + X; 50 g, + x € Per,, (B).
Thus N, (B)Z N, (B*) for n,2N and e« (B)Z o (BY) 2 ks, (E). Varying
B, ps,n(8+ E) 2 1y, (n(E). Using —g instead of g, py,n,)(8+ E) = iy, n(E). Thus
puiE)=up/(g+E) for all ge G and E closed; it follows that u, is Haar measure.

Now let G be a torus acting freely on a compact metric space X (i.e. g;x=gax
implies g, =g,) and let u be normalized Haar measure on G. Let n: X — X;=X/G
be the projection map. Now suppose X; has a normalized Borel measure mg.
Suppose F € C(X). If m(x,)=n(x;)=y, then

[ Flex ds = | Flgxa)

for x,=g,x, for some g, € G and then F(gx,)=F(g.gx,) is obtained from F(gx,)
(as a function on G) by translating the variable. Denote this common value by
Hy(y); Hy € C(X;). Define a measure m on X by

f de = HF de.
X Xg

Now suppose S: X — X is a homeomorphism and o: G — G an automorphism
such that S(gx)=a(g)S(x). Then S induces a homeomorphism S of X; such that
mo §=8;om If S; preserves mg, then S preserves m and we say (S, m) is a o-
extension of (Sg, mg).

(7.2) PROPOSITION. Let (S, m) be a o-extension of (Sg, mg) with o a hyperbolic
automorphism of the torus. If mg is derived from Sg by periodic points, then m is
derived from S by periodic points.

Proof. Let Fe C(X) and £>0. Choose X, ..., x; € X such that for each xe X
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there is an x; such that |F(gx)— F(gx;)| <¢/3 for all g € G. Since w is derived from
o by periodic points (see 6.7), there is an N(e) such that

< ¢/3

N 5 Fgn)~ [ Flgx) du

gePery(0)

for any n= N(e). Combining the above inequalities we get

<e

Nyo)* > Fgx)— L F(gx) du

gePery (o)

for any x € X and any n> N(e).
Recall that [, Fdm= [, Hpdms where Hp(n(x))= [, F(gx) du. As mgis derived
from S; by periodic points there is an M = N(e) such that

f Hpdmg—Ny(So)™* > Hi(y)

yePera(Sg)

<e

for any n= M. At this stage of the proof we need the following.
LemMMmA. If SX(y)=y, then S"(x)=x for some x € 7~ (y).

Proof. Let z € #~(y). Then S*(z)=g,z for some g, € G, S™(gz)=0"(g)g.z. We
want to solve S™(gz)=gz or g=0"(g)g;. In additive notation (¢"—I)g= —g,. Since
o" is hyperbolic, there is such a g. Let x=gz. By this lemma for y € Per,, (S;) choose
x, € #~Y(y) N Per, (S). Then

He()=No(0)™* D> Flgx,)

gePery(o)

< e

Now gx, € Per, (S) if and only if ¢"(g)x,=0"(g)S"(x,)=S"(gx,)=gx,, i.e. if and
only if g € Per, (o). Thus

Per, (S) = {gx, : g € Per, (0), y € Per, (S¢)}
(for clearly z € Per, (S) implies m(z) € Per, (Sg)). Thus

Nu(Se)~* z Ny(o)™? Z F(gx,) = Ni(S)~* Z F(2).

yePerp(Sg) gePerp(0) 2ePern(S)

Hence, as [, F dm=j'XG H; dmg, we have

< 2

f Fdm—N(S)" S Fz)

zePerp(S)

for all n2 M.

Suppose f: N/T' — N/Iis a hyperbolic automorphism of a nilmanifold (one can
see [13] or [16] for the definition). Then N/I" has a unique normalized Borel meas-
ure m which is invariant under the action of N; m is f~invariant. It is well known
that (f, m) is obtained through a succession of extensions via hyperbolic toral
automorphisms with a single point as the initial base space. By 7.2 we have that m
is derived from f by periodic points.
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(7.3) THEOREM. If f is a hyperbolic automorphism of a nilmanifold, then p,=m.

Proof. f satisfies Axiom A* and is C-dense since N/I" is connected (by 2.7). 6.7
says that u, is derived from f by periodic points. At most one measure can be
derived from f by periodic points.

(7.4) Remark. Conversations with W. Parry, S. Smale, and P. Walters were
helpful in finding a proof for 7.3. Parry in particular pointed out how the periodic
points of S are related to those of S; and o. Hyperbolic automorphisms of nil-
manifolds thus distribute their periodic points uniformly with respect to the usual
measure. For this particular case §§6 and 8 yield already known facts (see [2] or
[13] for example).

8. The entropy of n,. We refer the reader to [5] for a definition of measure
theoretic entropy.

(8.1) Suppose f: X — X satisfying Axiom A* is topologically transitive. Then
ha (N =h(S).

Proof. By 5.5 we may assume f is C-dense. Cover X by open sets Uy, ..., U,
with diam U, < 8*. Choose disjoint Borel sets A4, ..., 4, such that U,> 4, and
X=Uj.1 4;. In [8] L. Goodwyn shows that for any f-invariant normalized Borel
measure p on X (and f: X — X any continuous map) we have h,(f) <h(f). We
complete our proof by showing the partition f={A4,, ..., 4,} satisfies h, (f, B)
2 h(f). For any 1 iy, ..., i,-, <r consider the sets

m-1 m-1
V=N f*U,> N f %4 = Do, - - -, in-1)-
k=0 k=0

By 3.9(v) there are m, and S>0 such that 8(V)<1/SN,(f) for all m=m,. Then
pi(D) 2 0(V)=1/SN,(f). Define the function

=2 S (~logu(Dxo

m (ios.erim=1)
where yp is the characteristic function of D. For m=m, we have

—log u (D) = log S+log N,(f).
By definition

[ g (5 )

as n — c0. Hence, using 4.5,
h (/s B) 2 lim - [log N,(f)+1og S] = h(f).
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