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DIFFEOMORPHISMS
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RUFUS BOWEN

1. Introduction. We shall study the distribution of periodic points for a class of

diffeomorphisms defined by Smale [16, §1.6].

We recall some of the definitions. Let /: M'-*■ M be a diffeomorphism of a

compact manifold. A point x e M is wandering under /if it has a neighbourhood

U such that U n (Jm*ofm(U)= 0 ; the set of other (i.e. nonwandering points)

forms the nonwandering set Cl(f) which is closed and/-invariant. One sees that all

periodic points off are in Q(f) and that any finite/-invariant measure on M has its

support in 0(/). A closed/-invariant subset A of M is hyperbolic under/if the tan-

gent bundle of M restricted to A, TA(M), has a continuous splitting TA(M)

=ES+EU which is invariant under Df and such that Df: Es -> Es is contracting

and Df: Eu-> Eu is expanding (see [16, p. 758] for the meaning of these terms).

f satisfies Axiom A if

(Aa) 0(/) is hyperbolic and

(Ab) the periodic points off are dense in ü(/).

Smale's Spectral Decomposition Theorem [16, p. 777] states that for such an/

we can write Í2(/) = Í2X u • • • u ùr where the Í2, are disjoint closed /-invariant sets

and/|Q, is topologically transitive (the £2, are called basic sets). Our main result is

that the periodic points of/|fí, have a definite limiting distribution as the period

becomes large; this distribution is given by a measure p.¡ on Í2,. In the algebraic

case pf turns out to be Haar measure.

We show that p¡ is ergodic, positive on open sets and zero on points (unless D,

is finite). In a subsequent paper [7] it is shown that (/|£2,, pf) is a TC-automorphism

in the C-dense case (in fact that it is isomorphic to a Markov chain) and that p.,

is the unique invariant normalized Borel measure on Ü, which maximizes entropy.

The Russian school has done much work on the measure theoretic aspects of

Anosov diffeomorphisms (i.e. all of M hyperbolic under/); as a sampling we refer

the reader to the papers [2], [14] and [15]. We also mention the papers [3], [9] and

[11] where various measures are constructed for expanding maps; our methods are

easily modified to give results along this direction also.

We now sketch our construction of p¡. First we decompose Í2, = Xx u • • • u Xm

into disjoint closed pieces X¡ such thatf(XA = Xj+X andfm\X¡: X¡ -> Xf is C-dense

for all 1 èjèm. We do not define C-density here but it implies topological mixing
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and the existence of periodic points of all sufficiently large periods ; for Markov

chains this is the well-known decomposition into transitive pieces.

One then restricts attention to the C-dense case; i.e. assume/: Qj-^-Q, is C-

dense. What we want is a measure pf such that (letting An(F) be the number of

fixed points of/" lying in E)

Nn(E)/Nn(aA^pt,(E)

as « -> co for many subsets E of 0( (we save precision for later). A priori we do

not know that such a limit exists; using a diagonalization process we can choose

sequences of integers {nk} and measures pfAnk) such that

Anfc(F)/An(i2f)^M/.(nk,(F)

for many FsQ¡. We then show that all these measures pf,{„k} are ergodic and

equivalent; the Radon-Nikodym theorem tells us that they are all equal. When

enough subsequences converge to a common limit, the sequence itself converges.

Thus we get our desired Nn(E)/Nn(Q.t) ->■ pf(E).

Conversations with W. Parry, S. Smale, P. Walters and R. F. Williams were

helpful in preparing this paper. The author wishes to thank the referees for many

ideas which improved this paper.

2. Axiom A* and C-density. Let g:M->M be a diffeomorphism satisfying

Smale's Axiom A. Let X=Q.(g)^M and f=g\X. Define, for xeX=Q.(g) and

8>0,

Wl'x) = {yeX: difnix),fniy)) ^ 8 for all n ^ 0}.

WSix) = {yeX: d(fn(x),fn(y)) è 8 for all n Ú 0}.

Ws(x) = {yeX: d(fn(x),fin(y))-* 0 as n-> +co}.

Wv(x) = {yeX: d(fn(x),fin(y)) -» 0 as n -* - co}.

Then (Smale [16, pp. 780-782] and Hirsch and Pugh [10]) the following are true:

Al. The periodic points off are dense in X.

A2. For each 8 > 0 there is an e(8) > 0 such that W¡(x) n W%(z) ̂ 0 whenever

d(x,z)<e(8).

A3. There are S* > 0, 0 < A < 1 and c ̂  1 such that for all n ̂  0,

d(fin(x), fn(y)) è c\*dix,y)   ifyeW^x)

and

dif-nix),f-»iy)) Ú c\ndix,y)   if y eW^ix).

The above statements are about / and do not refer to g or M. Any homeo-

morphism / of a compact metric space (X, d) we shall say satisfies Axiom A*

provided that Al, A2, and A3 hold.

(2.1) Standing hypothesis. We shall assume throughout the remainder of the

paper that/: X-*- Zis a homeomorphism satisfying Axiom A*.
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(2.2) Easy facts, (i) fnWtí(x)=Wu(fn(x)).

(ii) For « ̂  0, /" » W%(x) s WXf- n(x)).

(iii) Ifye W6l(x), then Wi2(y)zWôl+Ô2(x).

(iv) Letfm(x)=x and S g 8*. Then fm(-k+1)W%(x) =>fmkW%(x) and (by A3)

OO

W\x) = (J fmkWt(x).
fc = 0

The following fact is due to S. Smale and M. Shub:

(2.3) Lemma [6]. 8* is an expansive constant for f (i.e. if x^y, then

d(fn(x), fn(y)) > 8* for some n e Z).

(2.4) Lemma. For any e>0 there is a D(e) so that d(x,y)<e whenever

d(fn(x),fn(y)) í 8* for all \n\ í D(e).

Proof. This is a property of expansive homeomorphisms [18].

(2.5) Periodic point construction. For any e>0 there are >/)(e)>0 and R(e) such

that, if m^R(e) and d(fm(y),y)ú<l>(e), there is a point zeX with/m(z)=z and

d(fk(z),fk(y)) è e for all 0 í k ¿ m.

Proof. This is a translation of [6, Proposition 3.5] using [6, 3.4(h)].

(2.6) Definition. / (satisfying Axiom A*) is C-dense if Wu(p) is dense in X for

every periodic point peX.

We permute ideas of Smale [16, pp. 780-782] to obtain

(2.7) C-Density Decomposition Theorem. X= Xx u • • • u Xm where the X¡

are disjoint closed sets, f(X¡) = Xgm where g is a permutation of (I, ..., m), and

/r: A", ->- Xt is C-dense when gr(i) = i.

Proof. For p a periodic point let X(p) = Cl (Wu(p)).

(a) X(p) is open.

Proof. Let a=e(8*). We show that

X(p) => Ba(X(p)) = {yeX: d(y, X(p)) < a}.

Since X(p) is closed, it suffices to show that periodic q e Ba(X(p)) are in X(p) because

of Al. Let xe Wv(p) with d(x,q)<a and set M=ordpordq. By A2 choose

z e Wf.(x) n W¡.(q). Then z e Wu(p) and

d(fkM(z), q) = d(fkM(z),fkM(q)) -> 0   as k -► + oo.

Since fkMWu(p)<= Wu(p), we get q e Cl (Wu(p)) = X(p). (Note: We use 2.1 without

explicit mention.)

(b) X(p) = X(q) or X(p) n X(q) = 0.

Proof. Suppose z £ X(p) n X(q). By (a) X(p) is a neighborhood of z and so

there isawe Wu(q) n X(p). LetM=ordfp-ordfq. Then as A:-»- +co,f~kM(w)^-q.

But /" MX(p) = X(p) since /" M W*(p) = W\p). Thus q e Cl (X(p)) = X(p). By (a) we

have *■(»=> WZ(q). Since

W\q) c Q fkMWl(q)
k = 0



380 RUFUS BOWEN [February

and fkMX(p) = X(p), we get Wu(q)^X(p). Hence X(q)^X(p). Symmetrically

X(p)^Xiq).

Now by compactness, let X= X(j)y) u• • - u X(j)m) with Xip^^Xipj) for /#/

Set Xi = Xipi) and define g by/(p¡) g Xg(i). That/is a homeomorphism and (c) below

show that g is a permutation.

ic)fiXi) = Xgii).
Proof. As / is a homeomorphism, fXipi) = Xifiipi)) follows from fWuip)

= W\f(p)). Since fi(p) g X(f(pA) n Z(p9(i)), Z(/(pi)) = ^(F9(i,) by (b).

(d) Ifgr(i)=i, thenf: Xt-+ X, is C-dense.

Proof. Suppose p e Xx is periodic. It is an easy exercise to check that Wf(p)

= Wfr(p). Note that/r: X^~ X satisfies Axiom A* whenever/: X->- A'does.

(2.8) Lemma. Let f: X^- X be C-dense and a>0. Then there is an N such that

fmW%(x) n W&y) j- 0 whenever x, y e Xandm^N.

Proof. Set 8=min{8*,^a,^e(^a)} and choose pt, ...,pr periodic such that

every xelis within %e(?a) of some pk. Let tk be the period of pk. By 2.2 and

Cl (W"(pk)) = X, there is an mk such that every y e X is within e(8) of/""* W%(pk)

for m^mk. Let A=(m1r1)- • (»y,). Then ¿(j./^CPzc))^^) for all A: and all

Suppose x, v g X Then d(x, p¡) < \e(\a) for some / and d'y, z) ^ e(8) for some

zefiNWX(Pj). Let w 6 »7(z) n %). Then /"*(»£= WStj~"(.z))c WUpi) and

^(/"w(w),P^^Ki«); thus d(f-N(w),x)^e(^a) and there is a v e Wsal2(fi~N(w))

r\Wual2(x). Then fN(v)efNW^(x) and /*(») g W2,aO*0<= W&y). Therefore

f WRx) n IFJGv) ^ 0, Vjc, y e X. If m ̂  A, then

/-"^W n Wliy) ̂ fNW»aifm-Nix)) n WJOO * 0.

(2.9) Definitions. Let Pern (U)={x e U : finix)=x}, Nn(U) = card (Pern (£/)),

andAn(/) = AnW.

A G-time is a finite collection t={/1( .. .,/m} of disjoint (finite) intervals of

integers. We let Tim (t) = (J/Ei I, F(t) = card (Tim (t)), and F(t) be the length of

the shortest interval containing Tim (t). A map P: Tim (t) -> A' is (/ r)-admissible

if/'a-'i, P(í1)=P(í2) whenever rx, t2eler (i.e. P(/) is part of an /-orbit). A

specification is a pair î=(t, P) with t a G-time and P an (/ T)-admissible map; set

Lis)=Lir) and Tim (*) = Tim (t); we also write sometimes t = t(s) or P=PS. For

«TiOwe say that t is n-delayed if there is an interval of length at least n between

every pair of invervals belonging to t ; s is n-delayed if t(j) is. Notice that while

Tim (t) does not determine r, it does if t is «-delayed with n > 0.

Finally, for e > 0, let

Uis, e) = {x e X : d(fl(x), Ps(t) < e for all t e Tim is)}.

(2.10) Theorem. Suppose f: X^- X is C-dense and e>0. There is an M(e) such

that U(s, e)^= 0 whenever s is an M(e)-delayed fi-specification. In fact M(e) can be

chosen so that Perd U(s, e)=£ 0 for all d^M(e)+L(s).
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Proof. We tend s to a new specification s' as follows. Let ax be the smallest integer

in Tim(i). Set t(s') = t(s)u {{ax + d}} and define Ps. by Ps.(ax + d)=Ps(ax) and

Ps\Tim(s)=Ps.

Set |3=^min {¡/J(ie), e, 8*} (</> defined in 2.5) and a=ß/3c; let N be the integer

given by 2.8 for this a. Choose M=M(e)^ma\ {N, RQe)} (R defined in 2.5) large

enough so that 2™= o Aw<2. Assume d^M(e) + L(s); then s' is M-delayed.

Let 7i = [ax,bx], I2 = [a2, b2], ..., Im= [am, bm] = {ax + d} be the members of t(s')

in their natural order. We set Zi = xx and define zk (for 1 ̂  k ^ m) recursively as

follows. Suppose zk has been chosen for some lSi<m. As s1 is M-delayed,

ak+i-bk>M^N and so by 2.8 there exists a point

vef'x+i-hWXPKZk)) n Wi(P.i(flk+,)).

Set zfc+1=/-«*+1(t>); than/M**+i) e W»a(f»*(zk)) and f°*+i(zk+x) e fF2(/V(afc+1)).

By induction on r we show that

/»»(Zfc+r) £ ^ + caAM + ... + c^M<r-"(/i,K^)).

For /•= 1, this was seen above (since c^ 1). Assume the statement is true for some

r^l. Since j1 is M-delayed ;/3te+r —Z^ärM; because/6*+'(zfc+r+x) e H/î(/i''c+,(zfc+r))

we get

(*) /M**+r+l)e»fc»KfN*+r)).

(Here we use A3: If xe Wua(y), then d(f~n(x), f~n(y))^caXn for n^O and so

f~m(x)e W%h™(f~m(y)) for m^O.) Applying (*) and our inductive hypothesis, it

follows that (see 2.2(ii))

/Mzk+r+1) e w?a+...+caMfbk(z*))

and so our induction is done.

Since 2f=0Aw<2 and a=ß/3c we have f""(zm) e WSei3(fb«(zic)) and

d(f(zm),f(zk)) <2ß/3 for any t e Ik and any ke[l, m}. Since f**(zk) e W&P¿(ak))

(by the definition of the zks) we have

/5/3 ̂  a ^ d(f(zk),f-°«(PAak)) = d(f\zk),PAt))

for any t e Ik. Combining inequalities,

d(f(zm), PAO) < ß   for all / e Tim (s1).

Thus zm e U(s\ ß).

Now let z*=fai(zm). Then z*, fd(z*)e B„(Ps(ax)), and so rf(z*. fd(z*))<>>/>(&).

Now d>M(e)^7?Qe) and by 2.5 there is a z e Perd (JST) with

d(f(z), f(z*)) g i«   for all 0 û t Ú d.

Letting z1=/_ai(z) we get

d(ft(zí),f(zm)) Ú h   for all ax ú t Ú ax+d.
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Applying the triangle inequality to this and zm g Uis1, ß),

z1 e Uis1, ß+ie)^ Uis1, e) ^ Uis, e);

also z1 g Perd (TAT).

(2.11) Remark. The above theorem is a statement about the freedom one has

in specifying the approximate orbit of a periodic point. The remainder of this paper

shall be derived from this freedom (together with expansiveness).

3. Counting.   Throughout this section/: X-> X is a C-dense map.

(3.1) Definition. For e>0, F<= X is an (n, e)-separated set if for any distinct

x, y e E there is a t for which 0 á t < n and d(f\x), .fiiy)) > e. We let N(n, e) denote

the maximum cardinality of an (n, e)-separated set.

(3.2) Lemma, (i) Ife£8*, then N(n,e)^Nn(f).

(ii) If e i£ a, then N(n, a) ^ N(n, e) ; for any e > 0 there is an ms such that N(n, e)

^N(n + me, 8*) for alln^O.

(iii) N(lni,e)^UN(ni,ie).

Proof, (i) By 2.3 e is an expansive constant; i.e. if p¥=q, then d(ft(p),fit(q))>e

for some t. If p, q e Pern iX), then t can be chosen so that 0^t<n; i.e. Pern (X) is

in, c)-separated.

(ii) The first statement is obvious; if E is an (n, e)-separated set, then/~D(e)F is

an in + 2D(e), S*)-separated set (use 2.4).

(iii) We prove the following stronger statement for later use: Suppose E<=-X

and «¡, m% (1 ̂  i^s) are integers (w¡ > 0) such that, when x, ye E and x¥= y, there is

a r g Uf=i [mt, mK+n) for which d(Jtix),fitiy))>e; then card (E)SU'.i JV(»f, &)■

Proof. Choose Rtcz X so that/m'A¡ is a maximal (mh, Ls)-separated set. Construct

a map g=]~[ g¡: E^ Yl Äf by requiring that d(f\x), figix)))^ for all t e [m¡,

Wj + Wj). Such a gt(x) exists by the maximality of/m'/?¡—otherwise fim>(Ru{x}) would

be an (n, ^-separated set.

If g(x)=g(y) the triangle inequality would give us d(fi%x), fiy)) í¿e for all

t e (J [mt, w(+«j); thus g is injective and we are done.

Two specifications s and i1 are p-separated if d(Ps(t), Ps^(t))>p for some

t e Tim (s) r\ Tim (s1) ; a set of specifications is p-separated if every two members

are. An S-set Ais a set of specifications with the same G-time ; let t(A) denote this

common G-time, T(A) = T(r(A)), L(A)=L(r(A)), and U(A, e) = (jseA U(s, e).

3.3 Lemma, (i) If s and s1 are p-separated, then Uis, \p) n Uis1, \p)=*z>.

(ii) If A is a 2e-separated S-set, riA) is M(e)-delayed, and d^L(A) + M(e), then

Nd(U(A,e))^card(A).

Proof, (i) Trivial, (ii) Follows from (i) and 2.10.

Two specifications s and s1 are disjoint if Tim 's) n Tim is1) = 0. In this case we

define a new specification íAí1 by t(s a s1) = t(s) u rfi1) and

PuAO = PI*)   for t e Tim (s),

= Psi(i)   for t g Tim (i1).
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Notice that U(s A j1, e) = U(s, e) n [/(a1, e). We call a G-time t an m-time if card r

= «/; j is an ///-specification if t(s) is an «/-time.

(3.4) Lemma. If t is an n-delayed m-time and N^L(t), there is a t1 such that

(a) Tim (t) n Tim (tx)= 0,

(b) t u t1 z\y n-delayed,

(c) ¿(tUt1)^, a«i7

(d) T(r1)^N-2mn-T(r).

Proof. Let a! be the smallest integer in Tim (t). Set

Tim (t1) = {r e [oj, ax + N) : \t-r\ > «   for all r e Tim (t)}.

This determines a G-time r which satisfies our condition.

(3.5) Remark, t1 could be empty.

(3.6) Lemma. If risa time specification and e>0, there is an e-separated S-set A

with t(A) = r and card (A) à TvYTIt), 2e).

Proof. Let t = {Ix, ..., 7m} and rk = {Ik} for 1 ̂ k^m. Let /lfc be an e-separated

S-set with r(Ak) = Tk and card (Ak) = N(T(rk), e). Then

A = Ax A • • • A A, = {ij A-'Aî,:it641 ^ /c g m}

is    e-separated    with    tL4) = tj a • • • A rm = t    and    card (/I) = F] N(T(rk), e)

ZN(Z T(rk), 2e) = N(T(r), 2e) by 3.2(iii).

(3.7) Theorem. Suppose B is a 2e-separated S-set with t(B) an M(e)-delayed m-

time. Then
K(m,e) card (B)N(d, Se)

NÁU{B' £)) = -N(T(r(B)),4e)-

for all d^L(r(B)) + M(e) where K(m, e) > 0 depends only on m and e > 0.

Proof. Let N=d-M(e)~^L(t(B)). Let t = t(7?) and choose t1 as in Lemma 3.4.

By Lemma 3.5 let A be a 2e-separated S-set with r(A)= t1 and card (A) § N^t1), 4e).

Now A A B is a 2e-separated S-set with M(e)-delayed time tat1; d^N+M(e)

^L(r hr1) + M(e). Hence, by 3.3(H), we have

Nd(U(A A B, e)) ^ card (AaB) = card (.4) card(ß).

Since U(B,e)^U(AAB,e),

Nd(U(B, e)) ^ card (A) card (5).

Now r^^max {0, N-2mM(e)-T(T)} (see Remark 3.5). Thus

card ,4 £ ma\{l, N(N-2mM(e)-T(r),4e)} = W

(taking 1 in case N-2mM(e)-T(r)èO). Recalling that N=d-M(e) and 3.2(iii)

we get
N(d, 8e) <: W-N((2m+l)M(e), 4e)N(T(r), 4e)
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(the inequality is good in the exceptional case we have been noting). Thus

Nd(U(B,e)) ^ card (B): W

K'm, e) card (B) N(d, 8e)>
N(T(r), As)

where K(m, e) = N((2m + l)M(e), 4s)"1.

(3.8) Definition. For U<= X let

<p(U) = lim inf ̂ 4^7   and   6(U) = lim sup ̂ Q-
„-.<*,    An(/) n~*    Nn(f)

(3.9) Corollary, (i) For any a > 0

lim inf ^y\ > 0.
(¡-.m    N(d, a)

(ii) <p(V)>0 when V^ 0 is open.

(iii) There is a K*>0 such that cp(U)^K*8(V) whenever U and Vare open in X

and U=> V.

(iv) There are m0 andS>0such that Nm+n(f)^ SN(m, 8*)N(n, 8*)^SNm(f)Nn(f)

provided that m^m0.

(v) There are m0 and S > 0 such that, ifm^m0 and U<= X satisfies diam fk( U)^8*

for all0^k<m, then 6(U)Ú l/SNm(f).

Proof, (i) and (ii). Let xeV and choose o0 so small that Bs(x)^V and

8egmin {a, 8*}. Let 5 be given by T(s) = {{0}} and Ps(0) = x; B={s}. Then V^ U(s, e)

and by the theorem

Na(f) 2* Nd(V) ̂  K(\, e) N(d, %e)/N(l, Ae)

for d^l+M(e). As N(d,8e)^N(d,a), (i) follows immediately. As N(d, 8e)"g

N(d, 8*)^Nd(J), so does (ii).

(iii) Choose £>0 so that U^>BEiV) and let F>(e) be given as in 2.4. Consider

«>2F)(e). For each pGPern(F) form the 1-specification sip) with r(i(p))

= {[-Die),n-Die))} and PsUf)=f(p)- Bn = {s(p) : p ePern(V)} is 8*-separated

(see the proof of 3.2(iii)). By the definition of e and D(e) we have U(Bn, S*)<= U.

Trivially, U(Bn, %8*)c U; so by the theorem

Nd(U) ^ K(l, ^8*)Nn(V)N(d, 8*)/N(n, |8*)

for d ̂  n+M(\8*). By (i) above there is an n0 and a AT», such that N(n, $8*) g KyNn(f)

when «än0; also N'd, 8*)^Nd(fi). Thus for n^n0 and d~^n + M(\8*) we have

Nd(U)/Nd(f) Z K*Nn(V)/Nn(f)

where A"*=A"(1, i8*)/Ky>0. Then <p(U)^K*6(V).

(iv) Set m0 = 2M(\8*). Let ^ be a ^-separated S-set with t(A)={[0, n)} and

card A = N(n, $8*); B   a   iS*-separated   S-set   with   r(B)={[n + MQ8*), n + m
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-M(i8*))} and card B = N(m-m0, $8*). Now A A Bis |S*-separated with M(¿8*)-

delayed time.

By 3.3(H) we have

Nn+m(f) Z card (A A B) = N(n,\8*)N(m-m0,\8*).

By Proposition 3.2(iii) we have

N(m, 8*) S N(m-m0, $8*)N(m0, $8*)-

Taking S=N(m0, $8*)~\ Nn+m(f)^SN(n, 8*)N(m, 8*).

(v) Let «/0 and S be as above. Since Pern+m (U) is an (n + m, 8*)-separated set

and diam fk(U)^8* for 0^k<m,fm Pern+m (U) is an («, S*)-separated set; thus

Nn+m(U)^N(n, 8*). By (iv) we have, since m^m0, Nn+m(f)^SN(n, 8*)N(m, 8*)

and so

Nn+m(U)/Nn+m(f) Ï l/SNm(f).

Letting n ^ co, 8(U) ̂  l/SNm(f).

(3.10) Definition. For A<^X let N(n,e,A) be the largest cardinality of an

(n, e)-separated set contained in A.

(3.11) Proposition. For each e with 0<e<^8* there are constants ce>0 and

0 < ts < 1 for which the following holds. If A <= X, 0 á kx < k2 < ■ ■ ■ < km, are integers

and wki, ..., wkm e Xsatisfy fk'(A) n Be(wkr)= 0 for r=l, ..., m, then N(n, e, A)

^ ceTmN(n, e) for all n > km.

Proof. Let M=M(\e) as in 2.10. Let jx<j2< ■ ■ ■ <jq be a subsequence of

kx< ■ ■ ■ <km such that jl+ x —_/',>2M and q^m/(2M+ 1). Let n>km and En^A be

an («, e)-separated set. For each I^J={jx, .. .,jq} and each x e En we define the

specification s(x, I) by requiring that it be an M-delayed specification with

Tim s(x, I) = ([0, n)\ U Ut-M.Jt+MJj u I,

Psix. /¡(O = /'(*)   for t i I   and   PsixJ)(ji) = «V,   for7t e r-

Set d=n+m. By Theorem 2.10 choose

p(x, I) e U(s(x, I), i«) n Per, (X).

Let F; = {//(x, I) : x e En}. If 7i ̂ 72 and x, y e En, then s(x, Ix) and s(y, I2) are £-

separated ; for if 7, e IX\I2, then jt e Tim s(x, Ix) n Tim i(y, 72) and

d(Ps(x.MlPs<y.UJi)) = <Kwit,f<y))>:

By lemma (i) we have/>(x, Ix)¥=p(y, I2); thus 7i^72 implies 7^ nF,=0.

Suppose z=p(x,I)=p(y, I) and x#j. For / 6 Tim i(x, J)\J> we have Psix.n(t)

=f(x) and P«,Jf)-f(y); so rf(/i(z),/i(x))<ie and d(f(z), f(y))<\e, hence

d(fl(x), P(y)) < e. Since x, y e En, an (n, £)-separated set, we must have

d(ft(x),f(y))>e for some

t e [0, «)\(Tim s(x, I)\I) = U Ui-MJi+M].
Us'
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By the proof of 3.2(iii), {xeEn: p(x,I)=z} has at most goara7 elements where

g=N(2M+1, %e). Thus F, has at least card Fn\gcard/ elements.

As the F/s are disjoint

Nd(fi) -5 2 card F, ^ 2 "¿Î7 card En
l^J i<=j s

>
°^J /card J\ 1        , /     ncardj

Since 2e< 8*, by 3.2(i) and 3.2(iii)

Nd(fi) = Nn+m(f) Ï N(n + M, 2e) í N(n, e)N(M, e).

Also cardy=(7^A77/(2Af-|-l). Thus

N(n, e, A) = card En ^ [(1 + Jg)1'/2M+1]m A(«, e).

A. Topological entropy. Suppose sé is a finite open cover of X. E<= sé x ■ • ■ xsé

(n-times) is an n-cover for (/ sé) if for every ze X there is an (AQ, ..., An_y)e E

such that/k(x) g Ak for all 0^ k < n. Let Mn(f, sé) denote the minimum cardinality

of an n-cover for (/ sé). Then (see Adler, Konheim and McAndrew [1]) the limit

/z(/^) = limilogMn(/^)
n~* co IÏ

exists and the topological entropy off is defined by

h(f) = sup h(fi sé).
sí

(The above definitions and 4.1 and 4.2 below do not depend on our standing

hypothesis that / satisfies Axiom A*; they work for any continuous map of a

compact Hausdorff space.)

(4.1) Definition. /: X-> X has completely positive topological entropy (c.p.t.e.)

if h(fi {C, D}) > 0 whenever {C, D) is an open cover of X with CV X+ D.

(4.2) Proposition. Suppose f: X^ X has c.p.t.e. Then h(f)>0 unless X is a

single point, and it is topologically transitive. If g: Y —> Y and h: X—*■ Y are con-

tinuous maps with h surjective and g ° h = h°fi then g has c.p.t.e.

Proof. Unless X is a single point an open cover {C, D} as in 4.1 can be found and

so/z(/)>0.

Iff is not transitive, then there is an open set Cj= 0 with/_1(C)c: C and C^X.

Let B+ 0 be open with B<=C and set D = X\B. Then {C, D} is as above. Let

En = {(C, ..., C, D, ...,/)): i+j = n, i,j ^ 0}.
z times      j times

We claim En is an n-cover for (/ {C, /)}). For, if x e X, then either fk(x) e D for all

0 ̂  k < n or there is a largest k, denoted k(x), such that 0 ^ k < n and fik(x) <£ D.
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In the latter case fkix\x) e C and so fm(x) e C for all m^k(x) as/_1(C)c:C;

fm(x) eDform> k(x). As card En = n +1, Mn(f {C, D}) ̂  n +1 and h({C, D}) = 0—

a contradiction.

Suppose {C, D} is an open cover of Y with C+ Y+D. Then {h'\C), h'\D)}

satisfies the condition of 4.1 also, h and h'1 induce a bijection between «-covers for

(/ {h-\C),h-\D)}) and (g, {C, D})=h(fx{h-\C), «"H^)})>0.

(4.3) Theorem. Iff: X^* X is C-dense, then f has c.p.t.e.

Proof. Let {C, D} be a cover as in 4.1. Choose e>0 and p, qeX such that

Be(p)Œ C\D and Be(q)<= D\C. Let M(e) be the integer given by 2.10; set N= M(e) +1.

Then rn={{kN} : 0^k<n} is M(e)-delayed.

For (a0, .. .,an.x)e\~\lzl{p,q} define a specification í = j„(o0, ...,a„_i) by

r(s) = Tn and Ps(kN) = ak. By 2.10 choose points

xn(a0, ..., a„-i) e f/(jn(a0, .. .,a»-i), e).

Let £„ be an «W-cover for (/ {C, D}); for x e X let T^x) = (F£(x), ..., F^-^x))

e En be such that/J(x) e Fl(x) for 0 ^y < «zV. Suppose (a0, ..., an _ x) / (b0, ..., 6„_i);

say aJC=/7 and bk=q. Then

/™(xn(ao, ...,aB.1))6 2iï0')^C\i)

and so Ff(xn(a0, ..., an_1)) = C; similarly FkN(xn(b0, ..., Vi)) = £ and so

F„(xn(b0, . ..,bn-x))^Fn(xn(a0, ...,an.-,)). It follows that card £n^2n and

MnW(/,{CJi)})è2»;thu8

h(f {C, D}) ̂  lim jl log 2" = I log 2 > 0.

(4.4) Remark. Now/: A'-»- A' satisfying Axiom A* could not be topologically

transitive unless the permutation g in ¡ts C-dense decomposition (2.7) is a cycle,

i.e. if the decomposition X=XX U- • -u Xm satisfies X=\JfkXx; with 4.2 and 4.3

one sees that this is a sufficient condition for transitivity. It is now clear how 2.7

is just another version of Smale's Spectral Decomposition [16, p. 777]. We also see

that «(/)>0 unless X is finite; this result was proved before in [6]. The following

is an improvement of the main result of [6].

(4.5) Theorem. Iff: X-> X is C-dense, then

«CO = Hm \\ogNn(f).
n-* oo n

Proof. Let sé be a finite open cover of X with diam (,4) < 8* for all A ese and

let ß>0 be a Lebesgue number for sé (i.e. every closed /3-ball B$(x) lies inside some

member of sé).

Let Q be a maximal («,/3)-separated set. For z e Q choose B(z) = (A0(z),

..., ^n_i(z)) with Ak(z) e sé and

Ak(z) a Cl (Be(fk(z)))   for all 0 ^ k < n.
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We claim En = {B(z) : ze Q} is an n-cover for (/ sé). For each xeX there is a

zxe Q for which d(fk(x),fk(zk))^ß for all 0^k<n; otherwise Q u {x} would be

an (n, ft-separated set bigger than Q. Since fk(x) e AJzA, En is an n-cover. We

have shown MJ.fi sé)^N(n, ß).

Let E be an n-cover for (/ sé) and R an (n, 8*)-set. For x e R choose g(x)

= (A0(x), ...,An_y(x))eE such that fk(x) e Ak(x) for all 0^k<n. If g(x)=g(y),

then Ak(x) = Ak(y) and d(fk(x),fk(y))Sdiam ylk(x)<8* for 0^/:<n; x=>» as R is

an (n, S*)-separated set. As g: R -> F is injective, card FS:card Ä and AFn(/ ¿/)

^N(n,8*)^NJfi).
By 3.9(i) there is an S>0 and n0 such that NJf)^SN(n,ß) for n^n0. Hence

SMJfi .jé)^NJf)^MJfi sé) for all n^n0. Since (1/n) log A/n(/ sé) approaches

the limit «(/ sé), so does (1/n) log NJf). As this is true for every sé with diam sé

< S* and in calculating h(f) we need only consider h(fi sé) with j/ having small

diameter,

h(f) = h(fi sé) = lim UogNJf).
n-*oo   /2

(4.6) Remark. Let

y Ab) = lim sup - log A(n, e).
n

The proof above shows that, for any map / a compact metric space, h(f)

= lim£_0 yje). Suppose/is a homeomorphism and 8 is an expansive constant; if

£^8, then 3.2(ii) goes through, i.e.

A(n, 8) S Nin, e) S A(n + m£, 8)

for some me, and so y/(e) = y/(S). In this case we have yfio) = hif).

(4.7) Theorem. Supposefi: X^ X is C-dense and A<=X is closed with 0 # A ̂ X

andfiA) = A. Then hif\A)<hif).

Proof. By the remark above, hif\A) = ynJe) for e^S*. Choose w e X\A and

£>0 so small that A n BJw)= 0. Recall 3.11, A(n, e, A)^csTf, for n>m where

ts< 1. Then

yf\Aie) = lim sup - log A(n, e, A)
n-* 00       tl

^ lim - log ceT1^~1N(n, e)
71-+CO      A7

"S log TE + y,ie) = log r£+ /"</) < hif).

5. Construction of a measure. Let 1/1 be a countable base for the topology of

X which is closed under finite union. Assume cu: >/> -> R satisfies, for Bex/i,

coiB) ^ 0, a>iX) = 1,

coiBy) ̂  ojÍB2)   when By => ft¡,

«jOftu-   -u/L/J ^ ^(/F),
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and

o>(ft u B2) = oj(ft) + aj(ft)   when ft n ft = 0.

For U open in X define nz(f/) = sup {«j(ft): /?<= U and B e </<}.

(5.1) Lemma. // t7<=Ur-i *4 '"e" rn((7)^2 ^(^0- #" t/nF=0, then

miUU V) = m'U) + miV).

Proof. Let Beiji with B<^ U. By compactness let Uy, ..., Un cover 5. For xeB

choose Bxei/j so that IjC^ for some z satisfying l^z'^n. Let BXl, ...,BXr

cover B and set ^¡ = 1J {ft, : BXjcz UA. Then

«-(3) è À ü a) "S 2 ^0 = Î »K^)-

Now vary B.

By the first part of the lemma, m((7u V)-£m'U) + miV). Suppose ft, ftGi/r

with ft<= [/ and ftc K. Then Cl (ft u ft)c u u F and ft n ft = 0 ; so

m((7U F) Tg co(ft U ft) = ü)(ft) + a)(ft).

Varying the ft we obtain m(£/ u V)^miU) + m'V).

For any £<= x we define

nz(F) = inf {m'U) : U => E, U open}.

One sees easily that this definition agrees with the earlier one on open sets and that

miK) = inf {miß) : B^K,Be>b} when AT is closed. We let

M = {E <=. X : miE) = sup {w(A") : A" <= ft A" closed}}.

With standard arguments we get

(5.2) Proposition. Ji=^.a is a o-field containing the Borel sets of X and

m = m<t,a is a complete normalized regular measure on M.

Proof. One can, for example, use 5.1 and imitate the proof of the Riesz Repre-

sentation Theorem given in Rudin [19, p. 40].

(5.3) Lemma. If wy : </rx ->- R and w2: ¡/r2 -> R are as above and there is a AT>0

such that cü2iB2)^KwyiBy) when ft=>ft and ü>i(ft)TaKojJB2) when ft""3 ft, then

•^.c»! = ^2,o)2 and Kmn.aí ^m^a¡¡ S (l/K)mtuai.

Proof. For U open and ft c \] with By e ifiy we can find ft e </i2 such that

ByCzB2^B2czU. Hence mlll2.0l2(U)^œ2(B2)^Kojy(By). Varying ft, m^.œJU)

^Km^,l¡(0l(U). Similarly m^iia>1iU)^Km^2t(0JU). These inequalities extend to

anyFcjjr.

Suppose F g Jtn,ai. Letting Kn^ E be compact with m^^JKA^m^^JE^-I/n

we see that E=Ey u lj"=i Kn where Ey<=Ffor some Borel set F with m^uai(F)=0.

Then m*1>O)1(F) = 0 also and fjeJ^^ since An>ai0)2 is complete.  As <p2, w2
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contains Borel sets, we finally see that E e J(ta<(ar The proof of ltliI0¡clÍ2¡a>2

is the same.

We will now see how to define some co's when we are given a homeomorphism

/: X-+ X which is C-dense. Let t/1 be any base as above. By diagonalization we

can find increasing sequences of integers {«J such that

„(Ii) = «,».>(*) = M ^

exists for every B e </j. The measure we obtain we denote by p-fA„k). Lemma 5.3

(with K= I) shows us that the measure does not depend on the base used.

Let pn be the measure obtained by giving each point of Per„ (X) measure l/Nn(f).

Then pHk ->■ pf,inic) weakly (see Corollary 6.7).

(5.4) Theorem. Suppose f:X^-X is C-dense. The measures p!Anki are all

equivalent in the sense of 5.3. They are positive on nonempty open sets and

Hf.tnk}({x}) = 0 unless X={x}. fis an automorphism of(J¿, pfAnk}).

Proof. Let pfAUk) and p~fAmk) be defined using bases x¥x and *F2 respectively. By

3.9(iii) there is a K* >0 such that, if BX~=>B2, then

aw(Bx) 2: 9(BX) ^ K*8(B2) ^ a{nk)(B2).

5.3 gives equivalence.

If t/V 0 is open, then t/=>7»V 0 for some BeY. Then, using 3.9(H), pfAnk)(U)

ialnk)(B)^cp(B)>0. Suppose x e X but AV{x}. Let

Um = {y e X : d(fk(y),fk(x)) < iS* for 0 è k a m}.

Let BmeY with xeBm^Um. Then pfAnk}({x})^a{nk)(Bm)^8(Um). By 3.9(b) there

are m0 and S>0 with 8(Um)-¿l/sNm(f) for all m^mQ. By 4.3 and 4.2

h(f) = lim i log Nm(f) > 0.

Thus Nm(f) -* », 0(E/m) -> 0 and pfAtlk}({x}) = 0.

Now T, a{nt¡> and/Y, ainic} clearly satisfy the hypotheses of 5.3 with K=l (by

the obvious and crucial fact that/permutes Per„ (X)). Hence

fP-i,{nk) = ftn-v,alrik)  = W/*,a(ni£)  = mf.a{nk}  = M/,{nfc>-

(5.5) Remark. Above we assumed /: X ^- X is C-dense. Suppose /: X-> X

satisfying Axiom A* is only assumed to be topologically transitive. Then

X=Xxu---u Xm with/(!",) = A-,+1 (Xm+x = Xx) and/"1: Xx -> Xx C-dense. From

an invariant measure p, for fm : Xx -+ Xx we get one p.' for /: X -^ X by defining

p'(fnE) = p(E)/m for E!^XX measurable. This gives a bijection between invariant

Borel measures for/"1: Xx ->- A'i and/: X-+ X. One sees that p,' is ergodic if and

only if p. is, h(fm \ Xx) = mh(f) and hß(fm | A'i) = mhu(f). The measures defined above,
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in terms of periodic points offm\X, correspond to measures on A" defined in terms

of periodic points off: X -* X. We shall study the C-dense case and this will give

us results also for the general transitive case.

6. Ergodicity and equality of measures.

(6.1) Definition, /is said to be partially mixing with respect to the/-invariant

measure p. if there is an R > 0 such that for any E, F e Jt,

lim inf p.(Er\f~nF) ä Rp.(E)p.(F).
n-*<x>

If cx<c2< ■ • ■ <cr are integers, set I(cx, ..., cr) = min, (ci+x — c¡). f is partially

mixing in order r if there is an Rr > 0 such that, if Ex, ..., Er e JI and I(c\, ..., c¡?)

-»■ oo as « -> co, then

lim inf p(f-*Ex n- • -C\f-°nrEt) £; Rrp(Ex)- ■ -p(Er).
n-* oo

Notice that partially mixing is a stronger condition than ergodicity or weak

mixing.

(6.2) Theorem. Iff: A"-> X is C-dense, then f is partially mixing in all orders

with respect to each p = p,fArtk).

Proof. Let I(cx, ..., c?) -> oo. Let a = ^8*; by 3.9(i) choose «0 and S>0 so that

Nn(f) ^ SJV(«, 2a) for all n ̂  n0.

Suppose Ex, ...,Et are closed and V(=>Ei with J^eY. Choose e>0 so that

Bs(E^Vt. Choose k large enough so that nk>2D(e) (see 2.4) and « so that

7(cï, ..., cî)>M(a)+nk. Let t, = {[c?-D(e), cf + nk-D(e))} and for x e ?ernk (K,)

define the specification sx by t(sx) = t¡ and 7^(0 =ft'c'(x); let ,4,

={iÄ : xePern(t (F,)}. One notes now that B=AX A • ■ ■ A A, is an 8a-separated

j-set which is M(a)-delayed. Also, by 2.4, we get

U(B, a) cz Q f-^Be(EA c Q /-+K,.
i = i ( = i

By 3.7, we get

for d sufficiently large. Now

N(d, 8*) ̂  Nd(f),   card (B) = F] 7VJF,)

and, using 3.2(iii),

N(rnk, ¿8*) á AT(nfc, ¿8*)' ^ Nnk(f)*/S\

Combining all these,

= ̂n7
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where Rr=K(r, a)Sr>0. Letting d^co,

This being true for all big n,

liminf^n/^FO^ftn^TTT-

Letting nk -> co,

lim inf ̂(0 fi~c" VA £ ft n «oJVù = ̂  Yl f<Ed-
n-* co

Now suppose Vl-~>Ei open and choose the Vi above so that Pix=> V{. Then

Ç|/—TF? => Cl (Q/-c?FA,

Choose 5 g T so that

n /-**? =» e a n /_cî%
Then

Mn/-c" ^) * «(%i(ft ;> <p((]f-c?Vi)
and

liminf^(n/-c'^)^ftn^i)-
n-*oo

Now

Kn/-c[,ft) ^ /u(n/-cr^)-2^F<1^).

Letting M^ilft) -> 0 we get

lim inf Mn/-C'"ft) ̂ ,n tfPd-
n-*co

For any ft* g ^# consider F¡ e ft* closed. Then

lim infp(C]fi-c'En ^ lim inf Mn/^ft) ^ RrUrïEA.
n-*oo n-»co

Now let p(E%) -> p(Ei*).

(6.3) Corollary. Suppose fi.X^X satisfying Axiom A* is topologically

transitive. Then the measure p* on X corresponding to p;m,(nk} on one of its C-dense

factors is ergodic under f.

Proof. See Remark 5.5.

The following standard fact was pointed out to us by W. Parry.

(6.4) Lemma. Suppose f: X-> X is an ergodic automorphism of two equivalent

normalised Borel measures my and m2. Then my = m2.

Proof. Let dmy/dm2 denote the Radon-Nikodym derivative. It is /-invariant,

hence a constant (clearly 1) by ergodicity.
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(6.5) Theorem. Let f: X^-X be C-dense. Then all the p¡Ank) have a common

value pf.

Proof. 5.4, 6.2, and 6.4.

(6.6) Theorem. Letf: X^ X be C-dense. If K is closed and pr(K)=0, then

lim(Nn(K)/Nn(f)) = 0.
n-»oo

If U is open with pf(8U) = 0, then lim (Nn(U)/Nn(f))=p,(U).

Proof. Suppose {m¡} is an increasing sequence of integers so that either

Nmi(K)/Nm)(f)^a>0   or   Nm¡(U)/Nmi(f)^ b + pf(U).

Let ifi be a countable base closed under finite union and {nk} a subsequence of {m¡)

so that pfAnk) is defined with i/j.

Suppose Nm¡(K)/Nm¡(f) -* a > 0. If B=> K, B e >/>, then

Nnk(B) NnJJQ

Nnk(f)  - Nnk(f)
alnk)(B) = lim ^^ ï lim -¿^ = a.

It follows that pf(K) = inf aln¡t)(B) ̂  a > 0, a contradiction. Suppose Nm¡(U)/Nm¡(f)

->b^p.,(U). For 7i=>£7, Be>¡> we have aiJlk)(B)^b; hence pf(Ü) = pfAnk}(Ü)^b.

For B^U, Bei/>, we have a{nk)(B)^b; hence pf(U)^b. As pf(8U) = 0, b^pf(U)

=Pf(U) = b and so pf(U) = b, a contradiction.

(6.7) Corollary. Letf: X^Xbe C-dense. Then, for any Fe C(X),

-jp.     2    F(x)~* \FdH
NrSJ) xepern(J)

as n —*- oo. (We say that pf is derived from f by periodic points to mean the above

statement.)

Proof. Choose b such that — b < F(x) < b for all xe X. Let e > 0. Choose — b

= a0<ax< ■ ■ ■ <ar = b with ai+x — at<e, pf({x : F(x) = a,}) = 0 and F(x)=a{ for no

periodic point x.

Let Ut={x : a,_i<F(x)<a,}. Choose N(e) so big that

\(Nn(UxW¿T))-PÁUi)\   < e/b

for all « ̂  N(e) and each /'. This is possible since F(8U^{ai -1> a,} and so p,f(8U¡)=0

by construction; hence 6.6 applies to £/,. We also have

kc/T1    2    F(x)-^aiNn(UdlNn(f))
xePer„<7") i = l

Putting our above two inequalities together one sees that

/VX0"1    2    Hx)-2^f(Ui)   =2
xePern(/)
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Since \\ Fdp; — "2.aipf(Ux)\ -¿b, we finally get

' Ú 3efFd^-NJf)-1    2    F(x)
xePeinif)

forall»T>A(e).

7. The algebraic case. Suppose f:G—> G is an automorphism of an n-

dimensional torus G./is a hyperbolic if Df: TeG -*■ TeG has no eigenvalues on the

unit circle. Then (see [16])/satisfies Axiom A* and is C-dense because G is con-

nected (using 2.7). / of course preserves the normalized Haar measure m on G.

(7.1) Proposition. Iff is a hyperbolic automorphism of a torus, then pf = m.

Proof. Suppose g e G and E^G is closed. Let pf = Pr,ínk¡ be defined via the base

T. Consider BeY with B^E+g. There are B1 e Y and open V such that B1^E,

ge Vand B1+V<^B. By 3.9(H) there is an A such that An(F)>0 for all n^N. For

nk> N and gnk e Per,,, (V) we have g„k + Pernj( (ß'Jcfi. If x e Pernjc (B1), then as / is

a group automorphismfn«ignk + x) =/"<g„J +/"<*)=gnk+x;sognk+xePern)t (5).

Thus NnJB^NnJB1) for n^A and «^ft^,^1)^/, (**>(£)• Varying

B> N.,nk)(g+E)^pfAnk)(E). Using -£ instead of g, pÍAnk)(g+E)^pÍÁnk)(E). Thus

P,(E) = pf(g + E) for all g g G and F closed; it follows that p; is Haar measure.

Now let G be a torus acting freely on a compact metric space X (i.e. gyX=g2x

implies gy =g2) and let p be normalized Haar measure on G. Let ir: X^- XG= X/G

be the projection map. Now suppose XG has a normalized Borel measure mG.

Suppose F g C(X). If v(xy) = tr(x2)=y, then

F(gxy) dp =     F(gx2) dp
Jo Jg

for Xy=gyX2 for some gy e G and then F(gXy)=F(gygx2) is obtained from F(gx2)

(as a function on G) by translating the variable. Denote this common value by

HJy) ; HF e CiXG). Define a measure m on X by

F dm =        F/F i/mö.
Jz Jx0

Now suppose S: JST->- X is a homeomorphism and <r: G->-G an automorphism

such that Sigx) = oig)S(x). Then S induces a homeomorphism SG of XG such that

7T o S=SG o n. If SG preserves mG, then S preserves m and we say (S, m) is a a-

extension of (SG, mG).

(7.2) Proposition. Let (S, m) èe a o-extension of (SG, nzG) vvz'i/z o a hyperbolic

automorphism of the torus. If mG is derived from SG by periodic points, then m is

derived from S by periodic points.

Proof. Let F g CiX) and £ > 0. Choose Xy, ..., xs e X such that for each x e X
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there is an Xj such that \F(gx)-F(gXi)\ ¡£e/3 for all g eG. Since p is derived from

a by periodic points (see 6.7), there is an N(e) such that

Ú e/3NJo)-1    2    HgXi)-¡ F(gx)dp
9ePer„(ff) JG

for any n^N(e). Combining the above inequalities we get

NJo)-1    2    F(gx)-[ F(gx)dp.
gePer„(<7) JG

for any xeXand any n~iA(e).

Recall that \x F dm=\Xa HF dmG where Hf(tt(x)) = JG F(gx) t//^. As mG is derived

from SG by periodic points there is an M^N(e) such that

If   Hrdma-NJSa)-*     2     ̂ 00
I JXn 3/ePer„(SG)

<

/XG 3/ePer„(SG)

for any n^M. At this stage of the proof we need the following.

Lemma. IfiSG(y)=y, then Sn(x) = xfbr some x e 7r-1(v).

Proof. Let zew'Hy). Then Sn(z)=gyz for some gy e G, Sn(gz) = on(g)gyZ. We

want to solve Sn(gz)=gz or g=an(g)gy. In additive notation (on — I)g= —gy. Since

<t" is hyperbolic, there is such a g. Let x=gz. By this lemma for y e Pern (SG) choose

x,, g tt"1^) n Pern (S). Then

H^-NJa)-1     2     *&*»)
gePern(<j)

Now gxy g Pern (S) if and only if an(g)xy = on(g)Sn(xy) = Sn(gxy)=gxy, i.e. if and

only if g e Per„ (o). Thus

Per* (S) = {gxy : g e Pern (a), y e Pern (SG)}

(for clearly z g Pern (S) implies tt(z) g Per„ (SG)). Thus

a^s«)-1   2  ^-w1 2 fw = wa 2 F(z>-
!/ePer„(SG) gsPer„(<;) sePer„(S)

Hence, as jx F dm=\x HF dmG, we have

^   2£I fFr/nz-A^S)"1     2    F(z)
I J zePern(S)

for all n^M.

Suppose /: N/Y -> A/r is a hyperbolic automorphism of a nilmanifold (one can

see [13] or [16] for the definition). Then N/Y has a unique normalized Borel meas-

ure m which is invariant under the action of A; m is/invariant. It is well known

that (/ m) is obtained through a succession of extensions via hyperbolic toral

automorphisms with a single point as the initial base space. By 7.2 we have that m

is derived from / by periodic points.
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(7.3) Theorem. If f is a hyperbolic automorphism of a nilmanifold, then pf = m.

Proof, /satisfies Axiom A* and is C-dense since N/Y is connected (by 2.7). 6.7

says that p, is derived from / by periodic points. At most one measure can be

derived from/by periodic points.

(7.4) Remark. Conversations with W. Parry, S. Smale, and P. Walters were

helpful in finding a proof for 7.3. Parry in particular pointed out how the periodic

points of S are related to those of Sa and a. Hyperbolic automorphisms of nil-

manifolds thus distribute their periodic points uniformly with respect to the usual

measure. For this particular case §§6 and 8 yield already known facts (see [2] or

[13] for example).

8. The entropy of p,. We refer the reader to [5] for a definition of measure

theoretic entropy.

(8.1) Suppose/: A"-> X satisfying Axiom A* is topologically transitive. Then

Kt(ñ=Kf).
Proof. By 5.5 we may assume/is C-dense. Cover X by open sets Ux, ..., Ur

with diam i/,<8*. Choose disjoint Borel sets Ax, ...,Ar such that Ut=>Ai and

X=(JTi = x A¡. In [8] L. Goodwyn shows that for any/-invariant normalized Borel

measure p on X (and/: A"-* X any continuous map) we have hp(f)^//(/). We

complete our proof by showing the partition ß = {Ax, ...,Ar} satisfies //„//, ß)

¡ä h(f). For any 1 ̂  z'0, ..., im-1 ár consider the sets

m — 1 m — 1

v = n rkuik = n rkAk = tx/,, ..., *._,)■
k=0 k=0

By 3.9(v) there are m0 and S>0 such that 8(V)^l/SNm(f) for all m^m0. Then

Pf(D)^8(V)^l/SNm(f). Define the function

A-» = ¿     2     (-iog/*K0))xD
171    (¡0.im-l)

where \d is the characteristic function of D. For ra 2: m0 we have

-log p.f(D)^ log S+logNm(f).

By definition

Í   dpf^hUf(f,ß)

as « -> oo. Hence, using 4.5,

hUf(f, j3) ä lim I [log zVm(/) + log S] = //(/).
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