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PARTITIONS WITH A RESTRICTION ON THE

MULTIPLICITY OF THE SUMMANDS

BY

PETER HAGIS, JR.

Abstract. Using the circle dissection method, a convergent series and several

asymptotic formulae are obtained for p(n, t), the number of partitions of the positive

integer n in which no part may be repeated more than t times.

1. Introduction. If n and t are positive integers we shall denote by p(n, t) the

number of partitions of n in which no summand appears more than / times. In

particular p(n, 1) is the number of partitions of n into unequal parts. Several authors

have already studiedp(n, 1) (see [3], [6], [7]), and a convergent series and asymptotic

formulae for this partition function are well known. In the present paper our ob-

jective is to generalize these results and obtain a convergent series representation

and asymptotic formulae for p(n, t) subject only to the restriction that n^t. Our

attack is based on the familiar circle dissection method of Hardy-Ramanujan-

Rademacher.

2. The transformation equation. Since the time of Euler it has been known

that the generating function of p(n), the number of partitions of the positive integer

n, is

(2. i) f(x) = n o - *m) - l = 2 PWX"-
m=l n=0

The reciprocal of F(x) is

#(*) = fl (i-*m)= 2 p^xn
m=l n=0

where P(n) represents the number of partitions of« into an even number of distinct

parts minus the number of partitions of n into an odd number of distinct parts. We

note (see Theorem 10.4 in [9]) that P(n) = (-iy if n = (3j2±j)/2 for some

j=0, 1, 2,... and P(n) = 0 otherwise.

The generating function of p(n, t) is easily seen to be

(2.2)      G(x, t) = fl O +xm + x2"+ ■ ■ ■ +**») = S =  2 /*«. 0xn-
m=l r\X       ) n=o
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For each of the three functions just mentioned we have convergence in the interior

of the unit circle.

If A and k are relatively prime integers with k > 0 and z is a complex number with

positive real part then it is known (see [5] or [10]) that

F (exp {2mh¡k - 2-n-z/k})

= zll2oj(h, k) exp {77(l/z-z)/12/V}-L(exp {2«ih'/k-2wfkz}).

hh'= — 1 (mod k) and w(h, k) = exp {nis(h, k)} where s(h, k) is a Dedekind sum

defined by s(h,k) = ZÏ = 1((u/k))((hu/k)). ((«;)) = 0 if v is an integer and ((v))

= v — [v] — \ otherwise.

With the aid of (2.3) we shall now derive a similar transformation equation for

G(x, t). In what follows D = (k, t+l), k = DK, t+l = DT where, of course,

(K,T)=l. If we take

(2.4) x = exp{2Trihlk-2nz/k}

then xt + 1 = exp {2mThlK-2nTz/K}.

Since G(x, t) = F(x)¡F(xt + 1) it follows from (2.3) that

G(x, t) = T~ll2w(h, k, t) exp {tt(/z + (L- D)/Tz)/I2k}

■F(exp {2nih'/k-2n/kz})H(exp {2mh*/K-2w/TKz}).

Here Thh*= -1 (mod K), and

(2.5) w(h, k, t) = w(h, k)/w(Th, K).

If TT'= 1 (mod isT) where T is kept fixed and we let

(2.6) y = exp {2iriT'h'/k-2w¡Tzk},

then we verify without difficulty that yD = exp {2-nih*\K— 2ttJTzK), and

exp {277/A7A:- 2-n¡kz) =yT exp {2nih'(l - TT')/k}. If h' = b (mod D) and M= d

(modD),wherel-TT' = MK,then exp{2mh'(l-TT')/k} = exp{2TribdlD} = e(b,d,D).

Thus, we can write exp {2-nih'\k — 2-n¡kz) = e(b, d, D)yT. If we define

J(y, t) = F(e(b, d, D)yT)H(yD) = f P(n)e"(b, d, D)yT* ¿ P(n)yDn

(2.7)
= ■2 c(n,b,d,D)yn,

71=0

we have, finally, the following:

Theorem l.Ifx and y are defined by (2.4) and (2.6), respectively,

(2.8) G(x, t) = T-ll2w(h, k, t) exp {tt(íz + (T-D)/Tz)/l2k}J(y, t).

3. An exponential sum. In what follows we shall require an estimate of the

magnitude of a certain sum involving w(h, k, t). We begin by stating a proposition

concerning w(h, k) whose proof appears in [4].
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Proposition 1. Ifkis odd then

(3.1) oj(h, k) = (h\kyk-™2 exp {2mq(h-h')/gk}.

Ifkis even then

(3.2) u>(h, k) = (k\h)ibik+1)/2 exp {2niq(h-h')/gk}.

g = (3, /c) or g = 8(3, k) according as k is odd or even, h' is any solution of hh'= — 1

(mod gk), and q is any solution of fq=l (mod gk) where f =24/g. In (3.2) b=h'

(mod 8), and the branch 0fib(-k + 1V2 is that corresponding to the principal value of the

logarithm. (a\c) is the Jacobi symbol.

Our immediate objective is to obtain a result similar to this proposition for

w(h, k, t). We shall utilize some elementary properties of the Jacobi symbol (see

Theorems 3.5, 3.6, 3.7 in [9]) and the fact that Proposition 1 obviously holds if

h, h', k, g,f q, b are replaced by Th, h*, K, G, F, Q, B, respectively. Three cases

must be considered.

If k is odd then, of course, Pis also odd. It follows from (2.5) and (3.1) that

w(h, k, t) = (h\k)(Th\KYk-™2 exp {27riq(h-h')/gk} exp {-2mQ(Th-h*)/GK}.

If T is chosen so that TT'= 1 (mod GK) we easily verify that h* = T'h' (mod GK).

If g=JG (J= 1 or 3) then F=Jf and Q=Aq (mod GK) where JA= 1 (mod GK).

Also, (h\k)(Th\K) = (h\D)(h\K)(h\K)(T\K) = (h\D)(T\K). We conclude that

(3.3) w(h, k, t) = (h\D)(T\Kyk-™2 exp {2-niq(Uh+ Vh')/gk}

where

(3.4) U = l-JA(t+l),        V = JAT'D-l.

Note that (n|P)(P|P) has absolute value one and depends only on k and t if we

impose the restriction h = a (mod D) where (a, D)=l.

If k and K are both even then from (2.5) and (3.2) we have

w(h,k,t) = (k\h)(K\Th)ibUc+1>l2i-B(K+1>12

■ exp {2niq(h-h')/gk} exp {-2mQ(Th -h*)/GK}.

Choosing T so that TT'= I (mod GK) we have h* = T'h' (mod GK) and B=h*

= T'b (mod 8) (since 8|G). If g=JG (J= 1 or 3) then P=P^and Q = Aq (mod GK)

where A is defined as above. Also, if D = 2"D* where a^O and D* is odd, then

(Â:|A)(P|Pn) = (P|P)(2a|n)(P*|n) = (P|P)(2a|n)(n|P*)(-l)(',-l)(D,-1)/*; where (2a\h)

= 1 if a is even and (2a\h) = (-1)'"2-"'8 if « is odd. Therefore,

w(h, k, t) = (K\T)(2a\h)(h\D*)(-lJh-1^D'-lvnb{k + 1)i2i-T'biK + 1)l2

■exp{2mq(Uh+Vh')/gk}

where   U   and    V  are   given   by   (3.4).   We   note   that   the   coefficient   of
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exp {2TTi'q(Uh+ Vh')/gk} has absolute value one and depends only on k and t if we

impose the restrictions h=a (mod D) where (a, D)=l, and A = ii(mod 8) where dis

odd.

If k is even and K is odd then

w(h,k, t) = (k\h)(Th\K)im+™2i-«-1)!2

■ exp {2mq(h - h')/gk} exp { - 2mQ(Th - h*)/GK}.

As before h* = T'h' (mod GK). If g=JG (L=8 or 24) then F=Jf and Q=Aq

(mod GK) where JA= 1 (mod GK). Writing D = 2aD* we have

(k\h)(Th\K) = (Z>|A)(*|A)(A|tf)(r|*)

= (D\h)(T\K)(-iyh-^K-xw

= (T\K)(2a\h)(h\D*)(-iyh-1)W'-1)li(-l)ih-^K-1)li

= (L|/0(2a|A)(A|Z)*)(- iy-i)«-o-w.

We conclude that

w(h,k, t) = (T\K)(2a\h)(h\D*)(-iy-1XK-D'wi>'ik + lwi-iK-1'12

■exp{2mq(Uh+Vh')lgk)

where U and V are given by (3.4). The coefficient of exp {2-!riq(Uh+ Vh')/gk} has

absolute value one and depends only on k and t if A = a (mod Z)) where (a, D)=l,

and A=«/(mod 8) where d is odd.

We summarize (3.3), (3.4), (3.5), (3.6) in the following proposition. All undefined

symbols have the meanings given earlier in this section.

Proposition 2. w(h, k, t) = C(h, k, t) exp {2niq(Uh + Vh')/gk} where \C(h, k, t)\

= 1. Furthermore, C(h, k, t) depends only on k and t if A=a (mod D) where (a, D)=l

and also, if k is even, h=d (mod 8) where d is odd. If g=JG (J= 1, 3, 8, 24) and

JA=l (mod GK), then U= 1 -JA(t+1) and V=JAT'D-l.

We are now prepared to prove the main result of this section.

Theorem 2. If (k,t+l) = D, h=a (mod D), (a, D)=l; AA'=-1 (mod k),

s y Ss h' < s2 (mod k), 0 S Sy < s2 fí k ; t f£ n ; and M is a fixed integer, then the sum

Y =    2'    w(h,k,t)exp{- 2m(hn - h'M)¡k}
h mod k

is subject to the estimate 0(nll3k213 + s) where the multiplicative constant implied by

the O-symbol depends only on t. The symbol 2' indicates that the variable of summa-

tion runs through a reduced residue system of the given modulus subject, perhaps, to

some other stated restrictions.

Proof. Since w(h, k, t) has period k when viewed as a function of A, if we change
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the modulus in Y to gk and select n' so that hh'= — l (mod gk), then by Proposi-

tion 2

Y = g~1    2'    C(h,k,t)exp{2nif(h)/gk}
h mod gk

where/(n) = (qU-gn)h + (qV+gM)h'.

If k is even we split Y into four parts, Yx, Y3, Ya, Y7, so that in Yd we have

h=d (mod 8) (as well as h=a (mod D)). Then Y= Yx+ Y3+ Yà+ Y-, where

(3.7) Yd = Cd    2'    exp {2«/(n)/gA:}
h mod gk

with \Cd\=g-1 èl.

If k is odd then (3.7) holds if we identify Y with Yd and ignore the restriction

h=d (mod &).

If we define the function m(s) for all integers s by requiring that m(s) = l if

sx^s<s2 (mod &), and m(s) = 0 otherwise, then m(s) has period A. From the theory

of finite Fourier series we have m(s) = 2?= o <*/ exp {2Trisj/k} where a¡ =

k'1 2?=o rn(s) exp { — 2-nisj/k}. It is not difficult to prove (see §10 in [8]) that

J,J=o a^OQogk) so that £*-o a, = 0(Ä:e) for any e>0.

We can now drop the restriction sx^h'<s2 (mod k) and write

Yd = Cd    2'    m(h')exp{2mf(h)/gk}
h mod gk

= Cd2ai    2'    exP{27ri((«7£/-Än)A + (?^+gAf+Ä/)Ä')/y*}.
y = 0        ft mod fffc

If fc is odd then 2' is a Kloosterman sum. If k is even we write D = 2aD* where

a^O and D* is odd. It is easy to see that if a^ 1 then the two conditions (I) h = a

(mod D) and (II) h=d (mod 8) are equivalent to a single condition of the form

h=a* (mod 8D*). If a = 2 and a^ti(mod 4) then 2' is empty. If a=d (mod 4) then

(I) and (II) are equivalent to h=a* (mod 8P*). If aS: 3 and a^d (mod 8) then 2'

is empty, while if a=d (mod 8) then (I) and (II) are equivalent to h = a (mod D).

Thus, we see that in each case either 2' is empty or 2' is a Kloosterman sum. Using

a theorem of Salie [12] it follows that

(3.8) \Y\ < C0k2l3+c(qU-gn,gk)113

where C0 is a constant which is independent of all the parameters involved.

Since (f,gk)=l, we have (qU-gn,gk) = (fqU-fgn,gk). But/g = 24 and fqU

= U+mgk where m is an integer. Therefore, (qU—gn, gk) = (U—24n, gk)

^Dg(U-24n,K). From Proposition 2 we see that U=l-(t+l)(l+pGK)

= -t+PK, so that (qU-gn,gk)SDg(t + 24n, K)^Dg(t + 24n)S25Dgn. The con-

clusion of the theorem now follows from (3.8).
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4. A convergent series for p(n, t).   Applying Cauchy's integral formula to

G(x, t) we have

2irip(n, t) =      x~n-1G(x, t) í/x = 2' I     x-n_1G(x, i) dx.

Here 0 ¿ A < k ¿ N, (A, k) = 1, and £hk are the Farey arcs of order N of C, the circle

|x|=exp { — 2-n-N'2}. If, on the arc £hk, we let x = exp{2mh¡k — 2TTZ¡k) where

z = wk, w=N~2 — i6, we obtain

(4.1) p(n, t) = 2' exP {-2mnh¡k} ) G(exp {2mh/k-2irz/k}, t) exp {2-nnw} d6.
h,k J

The limits of integration are — l/k(k + ky) and l/k(k + k2) where ky, k, k2 are the

denominators of consecutive terms of the Farey series of order N.

If D runs through the positive divisors of t+l, and a runs through a reduced

residue system modulo D, we have

(4.2) p(n, i)=2      2'   2  S(L\ a, d)
D|i+1  amoûD d = l

where S(D, a, d) denotes the sum of all those terms in (4.1) which satisfy the con-

ditions (k, t+ l) = D, h=a (mod D), and M=d(mod D) where l-TT' = MK(see

the remarks just preceding (2.7)). Notice that if ab= — 1 (mod D) and hh' = — 1

(mod k), then h' = b (mod D) in S(D, a, d). Now either S(D, a,d) = 0 or we have

from (2.8), (2.7), (2.6)

S(D, a, d) = T~112 2' ve(A, k, t) exp {- 2mnh/k}
h.k

CO

2 c(j, b, d, D) exp {2-nih'T'Jlk}Íi=0

exp {-(77//V2wL)(2/-(L-Z))/12)-r-7nv(2« + i/12)} dO.

The limits of integration are as before, l^k^N, (k, t+l) = D, M=d, h=a,

h' = b (all modulo D) and l-LL' = MJs:. We note that c(j, b, d, D) depends only

on j here.

We now split S(D, a, d) into two parts, Q(D, a, d) and R(D, a, d), according as

j<(T—D)/24 or /à (T— D)/24, respectively. Employing Rademacher's argument

[11] and making use of Theorem 2 we find that

(4.3) R(D, a, d) = 0(nll3N-ll3 + s exp {>«#"2}).

Here, and in the remainder of this section, the multiplicative constant implied by

the O-notation depends at most on t.

In Q(D,a,d) the condition that j<(T-D)/24 implies that Q(D, a, d) = 0 if

TfkD. Since £>L=/+1 this will occur if, and only if, D^(t+ I)112. We therefore

consider only those D such that D<(t+1)112.



1971] RESTRICTION ON MULTIPLICITY OF SUMMANDS 381

Proceeding as in [11] we obtain

Q(D, a,d) = 2nT-122 C(J> b' d> DWk> f> n>J> a- T')L*(k, t, n,j)
(4.4) k   '

+ 0(nll3N -ll3+s exp {27mN -2})

where 1 ̂ k^N, 0^j<(T— D)/24, and the other restrictions mentioned earlier are

still in force.

A(k, t, n,j, a, T') =    2'    w(h> ̂> 0 exP { — ̂■■"i(nh — T'jh')/k}
h mod k

where h=a (mod D).

L*(k,t,n,j) = k-x{(T- D-24j)/(24n + t)}112

■ Ix{n(24n + t)ll2(T- D - 24j)ll2/6kT112}

where Ix(x) is the Bessel function of order one.

Since D<T we see from (2.7) that if j<(T- D)/24 then c(j, b, d, D)=P(j/D) if

D\j and c(j, b, d, D) = 0 if D\j. Therefore, if we let j= Dm and write

(4.5) J = (T-D)/24D,       r = i/24,

we have from (4.2), (4.3), (4.4), first summing over d, a, and D, and then letting N

approach infinity,

Theorem 3. The number of partitions of the positive integer n in which no part

appears more than t times has the following infinite series representation:

(4.6) p(n, t) = 2n(t+1)"1 22 2 F(m)A(k, t, n, m)L(k, t, n, m).
D    k    m<J

Here P»|(r+1) and P<(i+1)1'2; (k, t+l) = D; P(m) = 0, I, -1, according to the

rule given at the beginning o/§2;

(4.7) A(k, t, n, m) =   2'   W(A» k> 0 exP {-2W(nn-DT'mh')/k};
h mod k

L(k, t, n, m) = D^k-^J-m^n + r)}112

■ Ix{4irDk - \(J- m)(n + r)/(t +1))112}

where J and r are given by (4.5).

We remark that Theorem 3 can be given a different interpretation. For according

to a theorem of Glaisher [1] p(n, t) also represents the number of partitions of n

having the property that no part is divisible by t+l. From this point of view we

also observe that Theorem 9 of [2] is the special case of Theorem 3 when t+l is an

odd prime.

5. Some special cases. If t ^24 and t=p'— 1, where p is a prime and 7= 1 or 2,

then in (4.6) only D= 1 and m = 0 appear. Also, T=p' and J=r = t¡24 so that we

have
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Corollary 3.1. If t fl 24 and t =p' - 1, p a prime andj= 1 or 2, then

p(n, t) = 2t7/>-' 2 k-1{t¡(t + 24n)}ll2A(k, t, n, 0)Iy{7r(t2 + 24nt)ll2/(6kp>12)}
k

where (p, k) = 1.

If, in particular, t= 1, we have

Corollary 3.2. The number of partitions of a positive integer n into unequal

parts is given by

p(n, 1) = 7rJtk-1(24n + l)-ll2A(k, l,n,0)Iy{7r(4Sn+2)ll2/l2k}
k

where 2\k.

This result agrees with Theorem 4 in [3]. (It is not difficult to show that

A(k, 1, n, 0) here and B(k, n) in [3] are equal.)

6. Asymptotic formulae.    In this section c denotes a positive constant, and both

c and the multiplicative constant implied by the 0-symbol depend at most on t.

If we write

(6.1) r = ?/24,

(6.2) G(m) = (r-m)112,

(6.3) L=47r(«-rr)1'2,

(6.4) s = (t+1)-112,

(6.5) W=Zm<rP(m)G(m)Iy{sEG(m)},

then from (4.6) we have, splitting off the term for which k=l,

(6.6) p(n, t) = 27TS2W(n + r)-ll2(l+S).

Here,

5 = 222 p(m)A(<k> *< ». m)D3i2(kW)-\J-my12
(6.7) D k>1 m<}

^{DEsk-^J-m)112}

where D\(t+1), D<(t+ l)1'2, (k, t+l) = D, and Jis given by (4.5).

We shall prove that for large n

(6.8) S= 0(exp{-cn1'2})

which, in conjunction with (6.6), yields

Theorem 4. As n->- oo,

(6.9) p(n, t) = 2ns2W(n + r)-ll2(l + 0(exp{-cn112}))

where r, s, W are given by (6.1), (6.4), (6.5), respectively.

For the proof of (6.8) we require two lemmas. The first is a restatement of some

well-known results from the theory of Bessel functions. We shall prove the second.
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Lemma 1. Ifxis real and positive then

(6.10) Ix(x) is a positive, monotonie increasing function of x,

(6.11) lx(x) = 0(x)ifx<l,

(6.12) Ix(x)=ex(27rx)-ll2(l + 0(x~1))ifx>l.

Lemma 2.IfW is given by (6.5) then for large n

(6.13) W = rV2Ix{sEr 1,2}(1 + Oiexp { - en112})).

Proof. We assume that i>24 since otherwise the result is immediate. From (6.5)

we have

(6.14) W = rll2Ix{sErx,2}il+    2   ^(w)(l-m/r)1,2/1{iPG(w)}//1{jPr1'2}].
V 0<m<r i

From (6.10), (6.12), (6.2), (6.3) it follows that for large n

Ix{sEG(m)}/Ix{sEr112} = 0(exp {sE(G(l)-r112)})

(6.15) = 0(exp{-4nsnll2(l+r/n)ll2(rll2-(r-l)112)})

= 0(exp{-cn112}).

Since |P(w)(l -m/r)1/2| < 1 (6.13) follows from (6.14) and (6.15), and the proof

of the lemma is complete.

From (4.7) and Theorem 2 we see that A(k, t, n, m) = 0(nll3k2l3+e). Therefore,

from (6.7), (6.10), (6.13) and the fact that \P(m)\ g 1 we have for large n

S= o(2 n^k-^ + 'hiDEsJ^k-^/hlsEr112})-

But   DsJ112 = D(t+l)~ 1/2((P- D)/24D)112 = T~ 1I2((T- D)/24)112 < (24) "1/2 = ß,   so

that

S = o(2 nll3k-il3 + °Ix{Eß/k}/Ix{sErll2}\

Splitting the sum over k into two parts according as k á [Eß] = X or k > X and

using Lemma 1 we have

5 = °( 2 "1/3¿1,6+£exp{-P(ír1/2-i8//c)})

+ o(2 «"'^-^^expi-Pyr1'2}).
\fc>X /

Since sr1i2 = ß(t/(t+l)y<2^ß/2i>2 and -ß/k^ -ß/2 we see that -E(sr1'2-ß/k)

< —en112 for large n. Also, —Esrll2< —en112. We now obtain easily

S = 0(nllll2+eexp{-cn112}),

and (6.8) follows from the observation that n = 0(exp {.5cn1/2}).

From Theorem 4 and Lemma 2 we have
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Corollary 4.1. Asn-^oo

p(n,t) = 27752r1,2(« + r)-1'2/1{sLr1'2}(l + (9(exp{-c«1'2})).

Finally, from Corollary 4.1 and (6.12) we obtain

Corollary 4.2. As n -*■ oo

p(n,t) = 121'253/2/1'4(24« + /)-3'4exp{jL/-1,2}(l+0(n-1/2)).
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