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PARTIAL ORDERS ON THE TYPES IN BN

BY
MARY ELLEN RUDIN

Abstract. Three partial orders on the types of points in BN are defined and studied
in this paper. Their relation to the types of points in BN— N is also described.

Several natural partial orders can be given to the types of points in BN. The
purpose of this paper is to give some of these orders wider publicity. I feel these
orders are fundamental in the study of ultrafilters on the integers. I had hoped these
orders would lead to a classification of the types of points in N*. I no longer feel
this is true, but connections with this important unsolved problem are discussed.

I. Let N denote the set of all positive integers and S the set of all subsets of N.
Let BN denote the set of all ultrafilters on N and N* the set of all free ultrafilters on
N. For M< Nlet W(M) be the set of all terms of BN to which M belongs. Then the
set of all W(M) for M< N forms a basis for a topology on SN and the resulting
space is topologically the Cech compactification of the integers and N* is topo-
logically BN— N. To avoid ambiguity let »’ be the ultrafilter to which the integer n
belongs and N’ the set of all fixed ultrafilters; thus N*=BN—N".

If p and q are points of a topological space X, p and q are of the same type in X
provided there is a homeomorphism of X onto itself taking p into q. It is easy to see
[1] that two ultrafilters on N are of the same type in SN if and only if there is a
permutation of N which takes the members of one onto the members of the other.
That Q and 6 are of the same type in BN will be denoted by Q~ 8 and [Q] will
denote the set of all ultafilters on N which are of the same type as Q. Clearly ~
is an equivalence relation and [Q] has ¢ members.

The problem of characterizing the types of points in N* is the problem of finding
reasonable necessary and sufficient conditions on terms Q and 6 of N* so that one
can construct a permutation of S which preserves infinite intersections and takes
the members of Q onto the members of 6.

A term Q of N* is called a P-point provided, for every countable subcollection
{E}nen of Q, there is a term E of Q such that E— E, is finite for all #. In [1] Walter
Rudin proves that the continuum hypothesis [CH] implies the existence of P-points
in N* and that all P-points are of the same type in N*. Booth [3] has shown, using
Martin’s axiom rather than [CH], that there are P-points in N* without an X, base.
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In the light of these results, classification of the types in N* seems hopeless with-
out some set theoretic assumptions. The results of this paper frequently use [CH] and
the strong structure of P-points this implies. The required background reading is [1].

I1. A sequence {p,}..y Of terms of BN is called discrete if there exists a sequence
{E}nen of disjoint subsets of N such that E, € p, if and only if n=j. Let D be the
set of all such discrete countable sequences of terms of BN. If X={p,},.y € D and
0 € BN, define O, ={M<N | {n | M € p,} € 6}. That is 0 is the image of 6 under the
natural homeomorphism of BN onto the closure of X which takes n to p,. Observe
that, if X belongs to D and Q to the closure of X, there is a unique 6 such that
0x=Q.

In [2] Z. Frolik says 6 produces 0x. Then he proves that 8 € SN implies that 6
produces 2¢ terms of BN but is produced by at most ¢ terms. Frolik also observes
that if X € D and X< N*, then there are at most ¢ terms of X which have the same
type in N* and hence there are 2° types of points in N*.

A. Let us prove that Frolik’s producing relation is a partial ordering of the types
in BN.

1. 0~ Q implies that 6 produces €. For, if = is a permutation of N such that
M e Q if and only if m(M) € 0, then X={n(n)},y is such that 65,=Q.

2. If ¢ produces 0 and 6 produces €, then ¢ produces Q. Suppose X € D and
{pulnen=Y € D and ¢y=0 and 05=Q. For each ne N define p,=(p,)x and let
Z={pin}nen. Then Q=4¢;.

3. Suppose Q produces 0 and 6 produces Q. Then 0~ Q. Suppose X={n,}ney € D
and Y={p,},ex € D and 05;=Q and Qy=0. For ne N, define n,=(p,)x and let
Z={ptp}nen- Asin 2, M e Qif and only if {n | M € u,} € Q. Let {E,},.y be a set of
disjoint subsets of N with E, € u,. Define a two-valued function f: N — {0, 1} as
follows. Define f(1)=0 and, if n € E; and n> 1, define f(n)=1. Assume i>1 and
f(n) has been defined for all n<i and all n € E; where j<i. If f(i) has been defined
as 1 and n>i and n € E,, define f(n)=0. If f(i) has not been defined as 1, define
f()=0 and, if n>i and n € E,, define f(n)=1. Exactly one of f~(0) and f~*(1)
belongs to Q. Suppose f~1(0) e Q. Let M=f"*0)N{n|f Y 0)ep,}; MeQ. If
n € M, then the finite set £~*(0) N E, € p,; hence p, is not free. But p, is not free
implies u, € X, and we can define w: M — N by p, =0, We can find E< M such
that E € Q, N— E is infinite, and N —#(E) is infinite. Then #/E can be extended to a
permutation p of N onto N. It is easy to check that B e Q if and only if p(B) € 6.
Thus 6~ Q.

Now for Q and 6 in AN, define [6] <[Q] if 6 produces Q. By 1,2, and 3, S isa
partial order on the types in BN.

B. If Q € BN, the set of all types in BN which precede [Q] in £ is totally ordered
by <. For suppose [¢] < [Q] and [0] <[Q]. There is X={p,},ex € D and Y € D such
that ¢y=0,=Q. Temporarily ignore the order of terms of D and just use them
as sets with closures in BN. And use X for the closure of X in BN. We need the
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fact [4] that if Ve D and QeBN and Qe Vand V, N V,=@ and V, U V,=V,
then Q belongs to one and only one of ¥, and ¥V, In our case Qe X
and X=(XNnY)u(X-Y) and Q€Y and Y=(YnX)uU(Y-X). Since
V=(X-7Y) U (Y—-X) is countable and discrete, using the fact again we have that
Q belongs to the closure of XN Y or Y N X. Say Q belongs to the closure of
XN Y Let L={n| p, € Y}; then L € 6. For n € L, define p, to be the unique term
of BN such that (u,)y=p,; if n€ N—L define p,=n’. Then Z={u,},y € D and
$z="0.

C. The Frolik order < has been studied extensively and we have a great deal of
information. The fixed ultrafilters form a type in BN which precedes all other types.
In N*, types of P-points are obviously minimal in this order. For X<8N, let
X*=X-X. K. Kunen [5] has shown that [CH] there is a non-P-point in N* not
in X* for any countable subset X of N* and [CH] there is a countable subset X of
N* and a point of X* which is not in Y* for any Y in D. Types of both of these
points are clearly minimal in N* under £. By B the order is tree-like and knowing
that any term is preceded by at most ¢ terms but followed by 2°¢ terms gives us the
picture of a fast branching tree.

In his thesis [3] Booth defines the product [6]-[Q2] for Q and 8 in BN to be [64]
where X={pn}pey € D and p,~ Q. Obviously [0]1=<[6]-[€2] and it is easy to show
that [6]-[Q] is well defined. For n> 1, [0]" is defined inductively as [6]-[6]*~; then
[0]e-[0]°=[6]>*°. Among other things Booth uses these definitions to construct
infinite well-ordered increasing and well-ordered decreasing sequences in <.

If Q and 0 are of the same type in N*, then the types which precede [Q2] by =
must be precisely those which precede [0] by <. In [4] I showed that the condition
is also sufficient if both Q and 6 are limit points of countable sets of P-points [CH].
But by Kunen’s examples there are minimal elements [0] and [¢] in N* such that 8
and ¢ are of different types in N*. So the condition is clearly not sufficient. Also
if A is any member of N*, it is easy to show, using the methods of B, that [A] is
maximal in the set of predecessors of both [A]-[6] and [A]-[¢]. Hence the pre-
decessors of [A]-[0] and [A]-[¢] are exactly the same but none of their terms have
the same type in N*.

ITI. A more general partial order on the types of BN will now be discussed. Let
F be the set of all functions from N onto N. If QeBN and feF, define
SQ={f(M) | MeQ}

A. Let us prove that F induces a partial order on the types of points in BN.

1. If Q and 0 belong to BN and Q~ 0, then there is an f € F such that f(Q)= 0. For,
by definition, there is a permutation f of N such that M € Q if and only if /(M) € 6.

2. If Q, ¢ and 0 belong to BN and f and g to F and f(Q)=0 and g(6)=¢, then
g f(Q)=4¢.

3. Suppose that Q and 0 belong to BN and f and g to F and f(Q)=6 and g(0)=Q.
We prove Q~0. Let L={n|(gof)n)>n}, M={n|(gof)(n)=n} and
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O={n| (g of)(n)<n}. Suppose M € Q; then f/M is one-to-one. There is a subset E
of M belonging to Q such that N—E and N—f(E) are infinite, and f/E can be
extended to a permutation p of N onto N. Thus B € Q if and only if p(B) € 6§ and
Q~ 6.

If M ¢ Q one of L and Q must belong to Q. Suppose L € Q. If n and k belong to
L, let us say nek provided that, for some nonnegative integers i and J,
(g of)i(n)=(g o fY(k) where (g o f)° is the identity map. Clearly e is an equivalence
relation. Let E be the set of all equivalence classes of subsets of L related by e. From
each 4 € Eselect A, € A. Then define a two-valued function ¢: L — {0, 1} as follows.
If ne Ae FE and (g o f)(n)=(g °f)(Ao) then define ¢(n) as 0 if [i—j| is even and
1 if [i—j]| is odd. The function ¢ is well defined and only one of ¢ ~*(0) and ¢ ~*(1)
belongs to Q. Suppose ¢ ~*(0) € Q. By 2, (g f)(t ~*(0)) € Q. But

(g f)t~%0)) = 17(1)
and this is a contradiction.

As before, if Q and 8 belong to BN, define [Q] > [0] provided there is an f € F such
that f(Q2)=46. By 1, 2, and 3, > is a partial order on the types of points in BN.

B. We make several very simple observations.

1. If Q and 0 belong to BN and [0]1 =[], then [Q] >[6]. For [0]=[Q] implies
there is X={p,}pex € D such that 8;=Q. And X € D implies there is a set {E } .y
of disjoint subsets of N such that E, € p,. If n>1 and i € E,, define f(i)=n; and if
i ¢ E, for any n> 1, define f(i)=1. Then f€ F and f(QQ)=4.

2. If 0 € BN, in > [0] is greater than at most ¢ types but less than 2° types. The
first follows from the cardinality of F being c. The second follows from 1 and
Frolik’s result in §II. In fact using Frolik’s proof one shows that if both 6 € BN and
f € Fare given and, for all n, f~(n) is infinite, there are 2° terms Q of SN such that
f(Q)=46. By contrast recall that if § € BN and X € D are given there is a unique Q
such that 6,=Q.

3. If 0 and ¢ belong to BN, there is an Q in BN such that [Q] > [0] and [Q] > [¢].
Select f'e F such that f~(i) is infinite for each i € N. Now select g € F such that,
for each i and j in N, g ~(j) N f~*(i) is infinite. Then select p;; € N* such that
g () Nf i) epy For ieN define p;=¢x where X;={py}en; and for
X={p;}ien let Q=0y. Then f(Q)=6 and g(Q)=4¢.

4. Suppose 0 and ¢ belong to BN. Let B={[Q] | [Q] >=[6] and [Q] > [4]}. Then
[Q] € B is minimal in B if and only if, for all f and g in F such that f(Q)=0 and
g(Q)=4, there is an M € Q such that for i and j in N, f~*()) N g~ (j) " M is at
most a singleton. To prove the only if, suppose f and g are given and let
0={(i,j))e NxN | f~*(i) N g ~%(j)# @} If Q is finite, [0] and [¢] and [Q] are N';
if Q=m’, M={m} has the desired properties. If Q is infinite there is a one-to-one
function ¢ from N onto Q; define k € F by k~*(n)=f"() N g ~*(j) where (i, j)
=g(n). Hence if, for n € N, we define f*(n)=/f(k ~(n)) and g*(n)=g(k~*(n)), then
f* and g* belong to F and f*(k(Q))= 6 and g *(k(Q2)) =¢. But k(Q)~ Q only if there
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is an M € Q such that k/M is one-to-one. Now to prove if, suppose f, g and A
belong to F and f(h(Q))=0 and g(h(Q2))=¢. Then fo h(2)=0 and g o h(Q)=4¢. So
assume also that there is an M such that, for all / and j in N,

(fe DN (g )NM

is at most a singleton. Then A/M is one-to-one and thus A(£2)~ Q.

5. K. Kunen has a beautiful proof [5] that > is not a total order. The same
proof shows that there are ¢ types no pair of which are ordered. And using the
continuum hypothesis it is easy to show that there are 2¢ pairwise unordered types
in >, even 2° minimal in N* types.

6. Together 3 and 5 imply that, unlike I1 B, this order is not treelike. That is, there
are types in SN whose predecessors are not totally ordered by >. In fact > is more
rootlike; that is, things get together near the top.

C. In addition to the facts in B, what can we say about > ? Again N’, the type
of all fixed ultrafilters, is less than all other types. If [2] is minimal in N* under >,
then Q is a P-point by definition. If 6 is a P-point and [6] > [¢], then ¢ is a P-point
or a fixed ultrafilter. It is not hard to prove [CH] that there are types which are
minimal in N*. This was first proved by J. Keisler [6] and will be a corollary of the
example given in IV C. We prove [CH] that above every P-point type is another
P-point type. Thus two types of the same type in N* may or may not be ordered
under >; for two P-point types which are minimal under > are not ordered.

Suppose 0 € BN is a P-point. Then [CH] there is a P-point Q such that [Q] >[6]
but [Q]#[6].

Proof. Clearly [CH] implies that both F and S have cardinality X,; hence let
F={fJ}u¢<w, and S={S,},<0,. Let fbe a term of F such that, for each n, f~*(n) has
n terms. We build Q so that f(Q)=60 by induction on the countable ordinals. Let
£/ be the set of all A< N such that for some a € N and all n € N, the number of
terms of f~1(n) N A is less than a; observe that & is closed under finite union.

For each o € w;, we define a countable subset Q, of subsets of N such that

(1) For B<a, Q,=Q,. Also Q, is closed under finite intersection.

(2) If e=B+1, there is a term X of Q, such that (a) X<S; or X N—S§; and
(b) for some n e N, X<f; (n), or, for all n € N, X N f; (n) is finite.

() For Eec 9, Me Q,,and A € &, M N f~YE)¢ A. By (1), there exists Q € SN
such that Q> J, <0, Q.. By (2(2)), L € Q implies L= M € Q, for some «<w;. By
(3), f(Q)=0 but Q~ 6. By (2(b)), Q is a P-point (or a fixed ultrafilter but this is
impossible since f(Q)=0).

So it will suffice to define the Q,.

Define Q,={N} and, for limit ordinals «, define Q,=Jz <, ;. Then (1), (2), and
(3) are trivially satisfied.

Suppose «=8+1 for some B<w,. We find an X< N satisfying (2(b)) such that,
for all Le Qg and M=L N X, (3) is satisfied. If for all L € Q,, (3) is satisfied with
M=LnN XN S, define Y=XnN S, Otherwise since Q; and 6 are closed under
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finite intersection and &/ under finite union, (3) is satisfied with M=L N X
N (N—Sp); and in this case define Y=X N (¥N—S;). We then define Q,=Q,_,
U{YNL|LeQ,_,}and (1), (2), and (3) are all satisfied. We define X by cases.

Case 1. There is an ne N such that, for all LeQ; E€f, and A4 € &,
fitm) N LN f-YE)t A; then X=f%(n) has the desired properties.

Case 2. For each ne N there exists L, € Qg, E, €0 and A, €. such that
fit(m) n L, N f~YE,)<A,. Without loss of generality we assume that 4,< 4, ,,,
E,>E,.,L,2L,,; and, for L € Qg, there is an n such that L>L,. For j € N, define

D;={eeN|f~Ye)nL;—f5(1,2,...,j) has more than j terms}.

Observe that D; € 8. Otherwise D'=(N— D,) N E; € 6. And by the definition of D,
there is a term A of & such that f~Y(N—D;) N L;—f4(1,...,j)=A. But by our
assumption f~YE) N L, N f7*(1,...,j)=A; Hence f~Y(D') N L,=(A4; U A) € «.
But by (3) of our induction hypotheses, if D’ € 0, f~1(D’) N L; is not a subset of
any term of 7. Hence, since 6 is a P-point, there is a D € 6 such that, for all j € N,
D— D, is finite. If e e D N D,, select x,, €f~*(e) N L, N fz*(n) with n maximal.
And for j>1 and je N, if e D N D; select

Xes € 7He) N Ly N f (n)—(Xe1s Xeas -+ -5 Xe,5-1)

with n maximal. Let X={x,;}.

Fix n € N and let us show that X N f; X(n) is finite. By the definition of D, and
Xes if €€ D; and x,, € f5 X(n), then n>j. Similarly, if e e D, and x,; is defined,
Xej €f5 1(m) for some m>n. So since x,; is only defined for e D and D— D, is
finite, there are at most finitely many j and e such that x,, € f5 1(n).

Now suppose E € 8§ and L € Q4. Clearly E> D N E and, for some i, L>L,. For
some j>i, let A={x,, | k<j}; then 4 € & By (3) of our induction hypotheses
S~ YD N E) N L;¢ A. But this implies that {e € D N E | x,; is defined}# & for any
Jj>i. And this implies that f~*(D N E) N L; N X is not a subset of any term of <.
Hence f~1(E) " L N X is not a subset of any term of & and (3) is satisfied with
M=Ln X.

IV. Let us describe a third partial order on BN which is between the other two.
For Q and 0 in BN, let us say that Q is essentially greater than 0 through f if there is
an f'€ F such that f(Q)=0 and, for M€ Q,{ne N | f~(n) N M is infinite} # &.

A. 1. Suppose Q~ A and 0~¢ and Q is essentially greater than 0 through f. Let
7 and p be permutations of N such that n(A)=Q and p(f)=¢. Then
poefomeF,pofon(A)=¢ and, for Le A,{neN|n tof top~(n)NL is in-
finite} # @. Hence A is essentially greater than é.

2. For Q and 6 in BN, define [Q]3[6] if either [Q]=[0] or Q is essentially
greater than 6. By 1, _Jis well defined. Clearly _J is transitive and, by III A3, it is
antisymmetric. Hence 1 is a partial order on the types in BN.

B. 1. Suppose Q and 0 belong to BN. Then [Q]2=[0] implies [Q]11[0] which
implies [Q] > [0].
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2. By almost the same proofs, Theorems III B 2, 3, 5 and 6 are true with ]
replacing >. However I11 B4 is false.

3. Observe that, if 0 and Q belong to BN and f and g to F and f(Q)=g(Q)=0, Q
may be essentially greater than 0 through f but not through g. To see this choose any
0 € N* and select a g € F such that g ~'(n) has precisely n terms x;,, Xz, - - -5 Xnn.
Define '€ F by f~1(i)={x;, | n € N}. Recall that x € N implies x’ is the fixed ultra-
filter to which x belongs. Define X; ={x1,}nex € D and for n>1 define X, € D as
X115 X825+ - -> Xnns Xn.n+1> Xnn+2s - - -« FOreachn e N, let p,=0x, and X={p,}pev € D
and Q=0y. Then g(Q)=206 and f(2)=6 and Q is essentially greater than 6 through
S but not through g.

4. By definition [Q] is minimal in N* under 1 if and only if Q is a P-point. Clearly
N’ is again minimal under Z]in BN.

5. The general character of ] is more like that of > than that of =. However
it has one nice property of =. If Q and 0 are of the same type in N*, then the set of
all predecessors of Q under _1 is precisely the set of all predecessors of 0.

C. Together B 4 and 5 raised hope that the position in _J of a type in BN might
determine its type in N*; 2 destroys this hope. It also gives a constructive method
of finding non-P-point types minimal in N* under =. Using > and 1 together
does not look useful as seen in 1.

1. Suppose Q and 6§ are P-points in N*. Then [CH] Q and 8 have the same type
in N*. And neither [Q] nor [6] has any predecessors under _1. But [CH] [Q] and
[0] may be ordered by > or not ordered by >. One can use sequences of P-points
to show [CH] that there are two types in BN which (a) are of the same type in N*,
(b) have the same nonempty set of predecessors under _J, and (c) are comparable
under >>; by the same method one can construct two types which satisfy (a), (b),
and not (c).

2. There exist [CH] terms Q, 0, and A of N* such that [A) is minimal in N* in >,
A is the only term of N* essentially less than Q and the only term of N* essentially
less than 6, but Q and 0 are not of the same type in N*. In fact 0 is a limit point of a
countable discrete sequence of P-points, but Q is not a limit point of any countable
subset of N*.

Proof. Choose f € F such that f~(n) is infinite for each n € N.

For 0<ae<w; and ne N select o, € w; in such a way that, if « is not a limit
ordinal, ¢, =a—1, and if « is a limit ordinal, {e,},ex={B | B<a}.

By [CH], F and S can be indexed s0 F={f,}¢<s, and S={Su}¢<s,- By a compli-
cated induction on the countable ordinals, we define various subsets of N and
points of N* which in turn allow us to define Q, 0, and f(0)=f(Q)=A with the
- desired properties.

For each countable ordinal « we wish to select

(a) an infinite subset M, of N,

(b) a countable ordinal «* = ¢,

(c) for each ne M, and B € w,, a subset E,,; of f~(n).
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The following conditions are satisfied for all n e N:

1. There is a P-point p,,={U<N | for some B € w;, UDE,z} and §<B<w,;
implies that E,,;— E,,; is finite and E,,;— E,,; is infinite.

2. If y<ea and E,,o N E,,; is infinite, then E,,o— E, s is finite.

3. If y<«, then y* <o* and E, e+ 1y N Eapo is finite, but there exists a 8 <« such
that E,,o— Esne is finite.

4. If «>0 and 7 is the ith term of M,, then

neM, "My, N---NM, and Eg 00 Egno N0 Egno N Eypo

is infinite.

In all cases, once E,,, has been chosen, choose E,,; and p,, in accordance with 1.

Let My=N, 0*=0 and, for all n e N, Eg,o=f"(n).

Assume our choices have been made for all y <e.

First suppose « is a limit ordinal. Choose n; € M,,. And, for all i>1, choose
n, € My, N---N M, such that E, ,o NN E,y, is infinite and n,>n,_,. By 4,
such n; exist. Then let M,={n};cy and «* be the limit of {y* | y<a}. Let E o
=FE,n0e— Eynea + 1y, Where if n=n,, y is the largest of «, . . ., o;, and otherwise y=0.
One can check that 2, 3, and 4 are again satisfied.

Suppose «=B+1 and let g denote f;.

Case 1. X={ne My | ps, ¢ g ~*(j) for any je N} is infinite. In this case there
exists a 8 € w; such that, for alln e X and j e N, Eg,; N g ~*(j) is finite. Let M= X.

Case 2. X is finite and there exists an i € N and an infinite subset Z of M, such
that n € Z implies p,, € g ~*(i). In this case there is a 8 € w; such that, for all
neZ, Eg;—g (i) is finite. Let M=Z.

Case 3. Neither Case 1 nor 2 holds. Then there exist infinite subsets W of M, and
{as}sen Of N such that j<k in W implies p,; € g ~*(a,) and pg € g ~X(a,) and a; < ay.
In this case there exists a & € w, such that, for all ne W, E;,;—g ~(a,) is finite.
Let M=W.

In all cases consider g(M). If there is an infinite subset ¥ of M and a v € N such
that g ~X(v)> V, then let M’ = V. Otherwise there is an infinite subset M’ of M such
that j and k belong to M’ implies that g(j)#g (k).

Choose a*=8*+8+1.

For some infinite subset M"” of M’, for all ne M", Q=S; N (Egpoe — Egnias +1y)
is infinite or Q=(N—S;) N (Egpes — Egpeee + 1) 18 infinite. Let M,=M".

Ifn ¢ M,, let Eqpo= Egnoar— Egnar +1-

In Case 1,if ne M,, let E,.oc=Q—g~(1,...,n).

In Case 2, if ne M,, let E,.o=0 N g ~1(i).

In Case 3, if ne M,, let E,,o=0 N g ~Ya,).

It is easy to check that 2, 3 and 4 are again satisfied.

Let Q={E e S | for some « € wy, ED ey, Euno}- By 4 and our selection of M”
and E,,,, Q is a free ultrafilter on N.

Let f(Q)=A; observe that A={M<N | for some « € w;, M> M,}.
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Suppose g € F. Then g=f; for some B € w;. If e=B+1 and V'=J,epm, Euno, then
Ve Q. In Case 1, for je N, ¥V N g~(j) is finite. In Case 2, g(V)=i so g(Q)=i".
And in Case 3, g(Q)~f(Q). So if ¢ € BN and Q is essentially greater than ¢ through
g, either [¢]=N’ or [¢]=[A]. This means that [A] is minimal in > in N* (hence
A is a P-point) and [A] is the only type in N* less than [Q] in .

Select X={x,}nev € D such that x, is a P-point to which f~(n) belongs. Let
0=A4.

Suppose ge F. Let Y={ne N |for all ke N, g (k) ¢ x,}. For ne Y we can
select L, € x,, such that L, ng~*(1,...,n)=@ and, for all ke N, L, N g ~X(k) is
finite. If Y € A, then U,y L, € 6; so 8 is not essentially greater than g(6) through
gif YeA If Y¢ A, define he F by g ~*(h(n)) € x, for ne N— Y and h(n)=1 for
ne Y. Then h=f; for some «—1=p € w; and M, N (N— Y) € A. By our definition
of M’ either h(M')=v for some v e N or h restricted to M’ is one-to-one; but
M'>M,. So Y¢A implies g(6)=v" € N’ or g(0)~f(6). Hence, if 0 is essentially
greater than g(6) through g and g(6) € N*, [g(0)]=[f(6)]. Thus [A] is the one type
contained in N* which is essentially less than 6 or Q.

Now we show that Q is not a limit point of any countable subset of N*; one
implication of this is that Q and 8 are not of the same type in N*.

Suppose that {p;};cy is a subset of N*—{Q}. Let A={i € N | for some « € w, and
neN, py=pun}. Let B={ie N |for some ne N, f~(n) ep, but p;#p,, for any
a€w;}. Let C={ieN|for all neN, f~*(n) ¢ p}. We find terms U, V, and W
of Q such that, for ie 4, p;¢ U, for ie B, p;¢ V, and, for ie C, p;¢ W. Since
UnVnWeQand AU BU C=N, Q is not a limit point of {p;},cy-

Choose « such that >y for all y € w, for which there are i and n in N such that
Py=Dyn. Let U= UneN Egno. If Pi=Pyn; then y<o and, by 1, Eyn(a‘+1) € pi and, by 3,
E, oo +1y— Euno € py and, by (c), U ¢ p,. Thus forie 4, Ue Q but U ¢ p;.

We want to choose a sequence {f7};cy<w,;, by induction. Let 8, =0. Suppose
B’~* has been selected. If y € w, and n e N and i € B, by 1, there is a 8 € w; such
that B< 8 implies E,,; ¢ p;. Thus we can select 8/ € w, such that 8/~! <p’ and, for
ally<p’~*andne N and i € B, p’ < & implies E,,; ¢ p;. Let o be the limit of {#},.x
and let V=nex Eano € Q. By 3, thereis a y <« such that E,,,— E, .. is finite. So
for i € B, E,,, ¢ p;. But for each i € B there is an n € N such that f~%(n) € p;. Since
VOf-Yn)=E, V¢p; for any i€ B.

For each j € N, since Q# p;, there is a & € w, such that Unem,, Es/no ¢ s Choose
a limit ordinal « greater than &’ for all j € N. Suppose j € C. There is an i € N such
that 8 =q,. Let m be the ith term of M,. Consider

Wi = U (EanO_Ea,no)'—f_l(la RS m)
neM,
If Unem, Eano € p; then W, e p; for je C implies f~(1,...,m) ¢ p; and, by 4,

ne M, and n>m implies n € M,, and & =¢; implies UneM“‘ E, .o ¢ p;. Together 2
and 4 imply that, for n € M,, W; N f~(n) is finite. For some B € w;, Ujec W;=3S;;
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since only finitely many W, intersect f~(n), S5 N f~1(n) is finite for all n € N. But
Q is essentially greater than A through f; so S; ¢ Q. Thus W=N—-S;€ Q but
W ¢ p; for any je C.
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