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PARTIAL ORDERS ON THE TYPES IN ßN

BY

MARY ELLEN RUDIN

Abstract.    Three partial orders on the types of points in ßN are defined and studied

in this paper. Their relation to the types of points in ßN— N is also described.

Several natural partial orders can be given to the types of points in ßN. The

purpose of this paper is to give some of these orders wider publicity. I feel these

orders are fundamental in the study of ultrafilters on the integers. I had hoped these

orders would lead to a classification of the types of points in N*. I no longer feel

this is true, but connections with this important unsolved problem are discussed.

I. Let N denote the set of all positive integers and S the set of all subsets of N.

Let ßN denote the set of all ultrafilters on N and N* the set of all free ultrafilters on

N. For M^N let W(M) be the set of all terms of ßNto which M belongs. Then the

set of all W(M) for M<=N forms a basis for a topology on ßN and the resulting

space is topologically the Cech compactification of the integers and N* is topo-

logically ßN—N. To avoid ambiguity let ri be the ultrafilter to which the integer n

belongs and N' the set of all fixed ultrafilters; thus N*=ßN—N'.

Ifp and q are points of a topological space X, p and q are of the same type in X

provided there is a homeomorphism of X onto itself taking p into q. It is easy to see

[1] that two ultrafilters on N are of the same type in ßN if and only if there is a

permutation of N which takes the members of one onto the members of the other.

That Q and 9 are of the same type in ßN will be denoted by Q.~9 and [Q] will

denote the set of all ultafilters on N which are of the same type as Q. Clearly ~

is an equivalence relation and [D] has c members.

The problem of characterizing the types of points in N* is the problem of finding

reasonable necessary and sufficient conditions on terms O and 9 of N* so that one

can construct a permutation of S which preserves infinite intersections and takes

the members of Q. onto the members of 9.

A term O of N* is called a P-point provided, for every countable subcollection

{En}neN of ß, there is a term P of Q. such that E—En is finite for all n. In [1] Walter

Rudin proves that the continuum hypothesis [CH] implies the existence of P-points

in N* and that all P-points are of the same type in N*. Booth [3] has shown, using

Martin's axiom rather than [CH], that there are P-points in A^* without an X, base.

Received by the editors March 13, 1970.

AMS 1969 subject classifications. Primary 5453, 0415.

Key words and phrases. Cech compactification of the integers, partial order, types of

points, ßN, ultrafilter on the integers.

Copyright © 1971, American Mathematical Society

353



354 M. E. RUDIN [April

In the light of these results, classification of the types in N* seems hopeless with-

out some set theoretic assumptions. The results of this paper frequently use [CH] and

the strong structure of L-points this implies. The required background reading is [1].

II. A sequence {pn}neW of terms of ßNis called discrete if there exists a sequence

{En}neN of disjoint subsets of A^ such that En e p¡ if and only if n =j. Let D be the

set of all such discrete countable sequences of terms of ßN. If X= {pn}neN e D and

6 e ßN, define 6X = {M^N \{n\ MePn}e 6}. That is 6X is the image of 6 under the

natural homeomorphism of ßN onto the closure of X which takes n to pn. Observe

that, if X belongs to D and Q. to the closure of X, there is a unique 6 such that

0X = Q.

In [2] Z. Frolik says 6 produces 6X. Then he proves that 6 e ßN implies that 6

produces 2C terms of ßN but is produced by at most c terms. Frolik also observes

that if X e D and X*=-N*, then there are at most c terms of X which have the same

type in N* and hence there are 2° types of points in A^*.

A. Let us prove that Frolik's producing relation is a partial ordering of the types

inßN.

1. 6~Q. implies that 6 produces Ü. For, if 7r is a permutation of N such that

M e Q. if and only if v(M) e 6, then X={n(n)}nEN is such that 6X = Q.

2. If <f> produces 6 and 6 produces Ü, then <f> produces Q.. Suppose Xe D and

{pn}neN= Ye D and <j>Y=6 and 6x = il. For each neN define /¿„ = (/>„)* and let

Z={p.n}neN- Then Q. = <f>z.

3. Suppose Q. produces 6 and 6 produces Í2. Then 6~ £2. Suppose X={r¡n}neN e D

and Y={p„}nENe D and 6X = Q. and £2y=0. For neN, define p.n = (pn)x and let

Z={p.n}neN. As in 2, M e O if and only if {« | M e p.n} e Q. Let {Ln}neN be a set of

disjoint subsets of N with En e pn. Define a two-valued function f: N-> {0, 1} as

follows. Define/(1) = 0 and, if n e Ey and n> 1, define f(n)= 1. Assume ;> 1 and

f(n) has been defined for all n < i and all n e E¡ where y < i. If f(i) has been defined

as 1 and n>i and neEu define/(«) = 0. If f(i) has not been defined as 1, define

f(i) = 0 and, if«>i and neEu define/(«)= 1. Exactly one of/_1(0) and/_1(l)

belongs to O. Suppose f~\0) e O. Let M=f~1(0) n {n |y-1(0) e p,n}; Me a If

ne M, then the finite set/_1(0) n En e p.n; hence jtt„ is not free. But p.n is not free

implies p.„ e X, and we can define 77: M -> A^ by /in = 7jH(n). We can find L<= M such

that L e Q, A* — E is infinite, and N— tt(E) is infinite. Then tt/L can be extended to a

permutation p of N onto JV. It is easy to check that B e Q. if and only if /.(ß) e 6.

Thus 0~ Ü.

Now for D and 0 in ßN, define [0] á [Í2] if 0 produces Q. By 1, 2, and 3, fi is a

partial order on the types in ßN.

B.IfQ e ßN, the set of all types in ßN which precede [Q.] in fi is totally ordered

by fi. For suppose [</>] fi [Q.] and [0] á [Q.]. There is X= {pn}neJV e D and Ye D such

that <f>Y = 6x = Q. Temporarily ignore the order of terms of D and just use them

as sets with closures in ßN. And use X for the closure of X in ßN. We need the
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fact [4] that if Ve P and Q e ßN and Q. e V and Vx n V2= 0 and VX\JV2= V,

then Í2 belongs to one and only one of Vx and V2. In our case Q. e X

and X=(Xn Y)v(X-Y) and ùeY and Y=(Y n X) u (Y- X). Since

V=(X— Y) u (7— X) is countable and discrete, using the fact again we have that

Q belongs to the closure of In 7or Yn X. Say Ü belongs to the closure of

Iny. Let P = {n | pne Y}; then Le 9. For n e P, define pn to be the unique term

of ßN such that (pn)Y = pn', if ne N—L define pn = ri. Then Z = {/in}neN e D and

<£z=0.

C. The Frolik order ¿ has been studied extensively and we have a great deal of

information. The fixed ultrafilters form a type in ßN which precedes all other types.

In N*, types of P-points are obviously minimal in this order. For X<=ßN, let

X* = X—X. K. Kunen [5] has shown that [CH] there is a non-P-point in A'* not

in X* for any countable subset X of N* and [CH] there is a countable subset X of

N* and a point of X* which is not in Y* for any Y in D. Types of both of these

points are clearly minimal in A^* under 5[. By B the order is tree-like and knowing

that any term is preceded by at most c terms but followed by 2° terms gives us the

picture of a fast branching tree.

In his thesis [3] Booth defines the product [9] ■ [Í2] for ß and 6 in ßN to be [9X]

where X={pn}neN e D and p„~iî. Obviously [0]<[ö]-[£2] and it is easy to show

that [6]-[Q] is well defined. For n> 1, [9]n is defined inductively as [9]- [Of"1; then

[d]a-[9f = [6]a + ''. Among other things Booth uses these definitions to construct

infinite well-ordered increasing and well-ordered decreasing sequences in ^.

If Q. and 8 are of the same type in N*, then the types which precede [O] by ^

must be precisely those which precede [8] by ^. In [4] I showed that the condition

is also sufficient if both Q and 8 are limit points of countable sets of P-points [CH].

But by Kunen's examples there are minimal elements [8] and [</>] in N* such that 8

and <f> are of different types in N*. So the condition is clearly not sufficient. Also

if A is any member of N*, it is easy to show, using the methods of B, that [A] is

maximal in the set of predecessors of both [A]-[0] and [A] •[<£]. Hence the pre-

decessors of [A] ■ [9] and [A] • [</>] are exactly the same but none of their terms have

the same type in N*.

III. A more general partial order on the types of ßN will now be discussed. Let

P be the set of all functions from A^ onto N. If Qe ßN and fe F, define

/(D)={/(M)|MeO}.

A. Let us prove that P induces a partial order on the types of points in ßN.

1. 7/0 and 8 belong to ßN and Í2~ 8, then there is anfe F such thatf(£l)=9. For,

by definition, there is a permutation/of A/such that Mefl if and only if/(M) e 9.

2. IfO.,(j> and 8 belong to ßN and f and g to F and f(Q) = 8 and g(8) = <f>, then

g°m)=4>-
3. Suppose that Q. and 8 belong to ßN and fand g to F andf(Q) = 8 and g (8) = Q.

We    prove    Q~9.     Let    P = {n | (g °f)(n)>n},     M={n | (g °f)(n) = n}    and
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Q = {n\ (g °f)(n)<n}. Suppose Me Q; then//Mis one-to-one. There is a subset E

of M belonging to £2 such that A''—L and N—f(E) are infinite, and f/E can be

extended to a permutation p of N onto N. Thus B e £2 if and only if p(B) e 6 and

£2~0.

If M $ £2 one of L and Q must belong to Q. Suppose Le Q. If « and /c belong to

L, let us say /.e/c provided that, for some nonnegative integers i and j,

(g °/)'(w) = («? °fy(k) where (g °/)° is the identity map. Clearly e is an equivalence

relation. Let E be the set of all equivalence classes of subsets of L related by e. From

each A e E select A0 e A. Then define a two-valued function t : L «■*■ {0, 1} as follows.

If ne A e E and (g °f)*(n) = (g af)'(^o) then define t(n) as 0 if \i—j\ is even and

1 if \i—j\ is odd. The function t is well defined and only one of/_1(0) and r_1(l)

belongs to £2. Suppose t-\Ç>) e £2. By 2, (g °f)(t~l(0)) e £2. But

(go/Xí-'ÍO^í-Hl)

and this is a contradiction.

As before, if £2 and 0 belong to ßN, define [£2] > [6] provided there is anfe F such

that /(£2)= 6. By 1,2, and 3, > is a partial order on the types of points in ßN.

B. We make several very simple observations.

1. If £2 and 6 belong to ßN and [0]á[£2], then [£2]>[0]. For [0]^[£2] implies

there is X={pn}neN e D such that 0X = £2. And X e D implies there is a set {En}neN

of disjoint subsets of N such that En e pn. If n> 1 and i e En, deñnef(i) = n; and if

i $ En for any n > 1, define f(i) = 1. Then fe F and /(£2) = 0.

2. If 0 e ßN, in > [6] is greater than at most c types but less than 2° types. The

first follows from the cardinality of F being c. The second follows from 1 and

Frolik's result in §11. In fact using Frolik's proof one shows that if both 6 e ßN and

fe Fare given and, for all n, f~\n) is infinite, there are 2° terms £2 of ßN such that

f(Q)=6. By contrast recall that if 0 e ßN and X e D are given there is a unique £2

such that 6X = £2.

3. If 0 and <j> belong to ßN, there is an £2 in ßN such that [£2] > [6] and [£2] > [</>].

Select fe F such that/-1(i) is infinite for each i e N. Now select g e F such that,

for each i and j in N, g_1(j) Ci/_1(/) is infinite. Then select pifeN* such that

«?_1(j) n/_1(0epir For ieN define pi = <j>x where Xt={pu}m; and for

X={pi}ieN let £2=0Z. Then/(£2) = 0 and g(£2) = f

4. SH/7/wje 0 and <f> belong to ßN. Let B={[ü] | [£2] > [0] W [O] >[¿]}. L%n

[£2] e B is minimal in B if and only if, for all f and g in F such that /(£2) = 0 and

g(Q) = <f>, there is an M e Ü. such that for i and j in N, /_ 1(;) n g~ 1(j) n M is at

most a singleton. To prove the only if, suppose / and g are given and let

Q = {(i,j) e NxN\f-\i) ng-^j)^ 0}. If Q is finite, [0] and [<f>] and [£2] are N';

if Q. = m', M={m) has the desired properties. If Q is infinite there is a one-to-one

function «7 from N onto Q; define k e F by k~1(n)=f~1(i) n g"l(«/) where (/,/)

=c7(n). Hence if, for neN, we define f*(n)=f(k~1(n)) and g*(n)=g(Ä;"1(«)), then

/* andg* belong to Land/*(/c(£2))=0andg*(Â:(£2)) = <£. But £(£2)~£2 only if there
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is an M e Q such that k/M is one-to-one. Now to prove if suppose / g and h

belong to F and f(h(Q)) = 9 and g(h(Q)) = </>. Then/o h(Q) = 9 and g o n(ü) = <¿. So

assume also that there is an M such that, for all (' and j in N,

(foh)-1(i)n(goh)-1(j)nM

is at most a singleton. Then /¡/M is one-to-one and thus n(ü)~fí.

5. K. Kunen has a beautiful proof [5] that >; is not a total order. The same

proof shows that there are c types no pair of which are ordered. And using the

continuum hypothesis it is easy to show that there are 2° pairwise unordered types

in >:, even 2° minimal in N* types.

6. Together 3 and 5 imply that, unlike 11 B, this order is not treelike. That is, there

are types in ßN whose predecessors are not totally ordered by >. In fact >; is more

rootlike; that is, things get together near the top.

C. In addition to the facts in B, what can we say about > ? Again A^', the type

of all fixed ultrafilters, is less than all other types. If [Q] is minimal in A'* under >,

then fl is a P-point by definition. If 9 is a P-point and [9] > [<p], then </> is a P-point

or a fixed ultrafilter. It is not hard to prove [CH] that there are types which are

minimal in N*. This was first proved by J. Keisler [6] and will be a corollary of the

example given in IV C. We prove [CH] that above every P-point type is another

P-point type. Thus two types of the same type in N* may or may not be ordered

under >; for two P-point types which are minimal under > are not ordered.

Suppose 9 e ßN is a P-point. Then [CH] there is a P-point Q. such that [Í2] > [9]

but [Ci] ¿[6].

Proof. Clearly [CH] implies that both P and S have cardinality Xx; hence let

F={fa}a<ai and S={Sa}a<a¡í. Let/be a term of Psuch that, for each n,f~\ri) has

n terms. We build fl so that/(A) = 0 by induction on the countable ordinals. Let

sí be the set of all A<=-N such that for some a e N and all ne N, the number of

terms of/_1(«) n A is less than a; observe that sí is closed under finite union.

For each a e wx, we define a countable subset Oa of subsets of N such that

(1) For ß<a, QßciQa. Also Í2„ is closed under finite intersection.

(2) If a = ß+ 1, there is a term X of L\ such that (a) X<=SB or X<=N-S,¡ and

(b) for some neN, X^ff1^), or, for all neN, Xn/j-1(n) is finite.

(3) ForPeö, M e Qa, and A e se, M C\f-\E)$.A. By (1), there exists üeßN

such that Û^IJiKffli &a- By (2(a)), Leu. implies P=>A/e Q.a for some a<u>x. By

(3),/(Q) = 0 but Dou0. By (2(b)), O is a P-point (or a fixed ultrafilter but this is

impossible since /(O) = 0).

So it will suffice to define the QK.

Define C10 = {N} and, for limit ordinals a, define ßa = Ui<a ^V Then (1), (2), and

(3) are trivially satisfied.

Suppose a = ß+ 1 for some /3<co1. We find an X<=N satisfying (2(b)) such that,

for all Le üß and M—L n X, (3) is satisfied. If for all P e Clß, (3) is satisfied with

M=L n X n Se define Y = Xn Se. Otherwise since £l0 and 8 are closed under
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finite intersection and sé under finite union, (3) is satisfied with M=L n X

n (N-Se); and in this case define Y=Xn (N—SB). We then define £2K = £2a_1

\J {Y C\L\LeQ.a_y} and (1), (2), and (3) are all satisfied. We define X by cases.

Case 1. There is an neN such that, for all L e Çle, L e 0, and A est,

fz~\ri) C\L nf~1(E)<^A; then X=fl(n) has the desired properties.

Case 2. For each neN there exists Ln e £2i; Ene 6 and Anesé such that

fe'^n) n Ln n/_1(Ln)cyin. Without loss of generality we assume that An<=-An + 1,

En=>En + 1,Ln=>Ln + 1 and, forL e £2á, there is an« such that L^>Ln. ForjeN, define

Dj = {e e N \f~1(e) n LJ-/Ä_1(1, 2,...,/) has more than y terms}.

Observe that D¡ e 0. Otherwise D' = (N- D,) n L; e 0. And by the definition of D,

there is a term ^ of sé such that/_1(/V"—/),) c\Lj—fe(l,.. .,j)^A. But by our

assumption/-1^) n L, n/f^l,.. .,j)^A¡. Hence/"\D') r\ Lj^(Aj u A) e sé.

But by (3) of our induction hypotheses, if D' e 6,f'1(D') n Lt is not a subset of

any term of sé. Hence, since 0 is a L-point, there is a D e 6 such that, for ally e N,

D — Dj is finite. If e e D n Dx, select xel ef~1(é) n Lj (^fe"i(n) with n maximal.

And fory> 1 and j e N, if e e D n D¡ select

*«>■ e/_1(e) n Ly n/f ^-(x^, xe2,..., xeJ.y)

with n maximal. Let X={xe,}.

Fix neN and let us show that X nff1^) is finite. By the definition of Df and

xej, if e e Z)y and xey efgx(n), then «>/ Similarly, if e e Dn and xej is defined,

xeJ effx(m) for some w>«. So since xey is only defined for e e D and D — Dn is

finite, there are at most finitely many j and e such that xej eff\n).

Now suppose Ee 6 and L e Q,e. Clearly E=>D n E and, for some i, L^L^ For

some j>i, let A = {xek | k<j}; then ^ e«s/. By (3) of our induction hypotheses

f~\D r\ E) n Lj<$A. But this implies that {e e D n E \ xej is defined}# 0 for any

/>/. And this implies that f~\D n E) n L¡ n X is not a subset of any term of sé.

Hence/"\E) n L n X is not a subset of any term of sé and (3) is satisfied with

M=L n X.

IV. Let us describe a third partial order on ßN which is between the other two.

For £2 and 0 in ßN, let us say that £2 is essentially greater than 6 through f if there is

an/eLsuch that/(£2) = 0 and, for Me Q, {neN\f~\n) n M is infinite} # 0.

A. 1. Suppose £2~ A and 0~<£ and £2 is essentially greater than 6 through f. Let

77 and p be permutations of A^ such that 77(A) = £2 and p(6) = <j>. Then

p of o n e F,p of o tt(A) = <j> and, for Le A,{ne N \ tt~x of'1 o p~\ri) o L is in-

finite} =£ 0. Hence A is essentially greater than <f>.

2. For £2 and 0 in ,8yV, define [£2]3[0] if either [£2] = [0] or £2 is essentially

greater than 0. By 1, 3 is well defined. Clearly Zl is transitive and, by III A3, it is

antisymmetric. Hence Z| is a partial order on the types in ßN.

B. 1. Suppose £2 and 6 belong to ßN. Then [£2]^[0] implies [£2]ZJ[0] which

implies [£2] > [0].
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2. By almost the same proofs, Theorems III B 2, 3, 5 and 6 are true with ZJ

replacing X However III B4 is false.

3. Observe that, if 8 and Ü. belong to ßN andf and g to F andf(ü) =g(D.) = 8,Q.

may be essentially greater than 8 through f but not through g. To see this choose any

8 e N* and select a g e F such that g" 1(ri) has precisely n terms xXn, x2n,..., xnn.

DeñnefeFbyf~1(i) = {xln | neN}. Recall that x e Nimplies x' is the fixed ultra-

filter to which x belongs. Define Xx = {x'Xn}neN e D and for n > 1 define Xne D as

x'xx, x22,..., x'nn, *;,„ + !, x'n>n + 2,.... For each n e N,let pn= 8Xnand X={Pn}neN e D

and D. = 6X. Theng(fi) = 0 and/(u) = 0 and O is essentially greater than 9 through

/ but not through g.

4. By definition [Û] is minimal in N* under ZJ if and only ifQ is a P-point. Clearly

N' is again minimal under ZJ m ßN-

5. The general character of ZJ is more like that of > than that of ä. However

it has one nice property of £. Ifü. and 9 are of the same type in N*, then the set of

all predecessors ofQ. under Z is precisely the set of all predecessors of 8.

C. Together B 4 and 5 raised hope that the position in ZJ of a type in ßN might

determine its type in N*; 2 destroys this hope. It also gives a constructive method

of finding non-P-point types minimal in N* under ^. Using > and ZJ together

does not look useful as seen in 1.

1. Suppose O and 8 are P-points in N*. Then [CH] Q and 8 have the same type

in N*. And neither [Ü] nor [8] has any predecessors under ZJ. But [CH] [D] and

[8] may be ordered by >; or not ordered by >. One can use sequences of P-points

to show [CH] that there are two types in ßN which (a) are of the same type in N*,

(b) have the same nonempty set of predecessors under Z, and (c) are comparable

under > ; by the same method one can construct two types which satisfy (a), (b),

and not (c).

2. There exist [CH] terms ¿1, 8, and A ofN* such that [A] is minimal in N* in >,

A is the only term of N* essentially less than Q and the only term of N* essentially

less than 9, but Ü and 9 are not of the same type in N*. In fact 8 is a limit point of a

countable discrete sequence of P-points, but Q. is not a limit point of any countable

subset of N*.

Proof. Choose fe F such that/_1(n) is infinite for each neN.

For 0<a<co1 and n e A^ select an e u>x in such a way that, if a is not a limit

ordinal, an = a— 1, and if a is a limit ordinal, {an}neN = {ß | ß<a}.

By [CH], P and S can be indexed so F={ftt}a<B>l and S={Sa}a<011. By a compli-

cated induction on the countable ordinals, we define various subsets of N and

points of N* which in turn allow us to define Q, 9, and/(0)=/(Q) = A with the

desired properties.

For each countable ordinal a we wish to select

(a) an infinite subset Ma of A^

(b) a countable ordinal a* ^ a,

(c) for each n e Ma and ß e wx, a subset EanB off~\n).
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The following conditions are satisfied for all neN:

1. There is a P-point pan = {U<=N\ for some ß e wx, U=>Eanß} and 8<ß<ojx

implies that Eanß — Ean6 is finite and Eanö — Eanß is infinite.

2. If y<a and Ean0 n Eyni is infinite, then Ean0-Eyn6 is finite.

3. If y < a, then y* < a* and Eynia. + 1)(~\ Ean0 is finite, but there exists a 8<a such

that EanQ-Eöna. is finite.

4. If a > 0 and n is the ;'th term of Ma, then

n e Maí n Mar¿ n---n Ma.    and   Eain0 n Pa2Jl0 n• • ■ n Pai„0 n Pan0

is infinite.

In all cases, once Ean0 has been chosen, choose Eanß and pan in accordance with 1.

Let M0 = N, 0* = 0 and, for all neN, E0n0=f-\n).

Assume our choices have been made for all y < a.

First suppose a is a limit ordinal. Choose nx e Mai. And, for all i> 1, choose

nt e Mai n- ■ -n Ma¡ such that Eain¡0 n- ■ -n Ea¡n¡0 is infinite and nt>nt-i- By 4,

such n{ exist. Then let Ma = {n/}ieN and ce* be the limit of {y* \y<a}. Let Ean0

= Eyna. — Eyn(a. + X), where if n = nu y is the largest of ax,..., a¡, and otherwise y = 0.

One can check that 2, 3, and 4 are again satisfied.

Suppose a = ß+1 and let g denote fB.

Case 1. X={n e MB \ pßn fg'^j) for any je N} is infinite. In this case there

exists a 8 e wx such that, for all n e X and,/" e N, Eßni n g _1(j) is finite. Let M= X.

Case 2. X is finite and there exists an i e N and an infinite subset Z of Mß such

that neZ implies Pßn^g'KO- 1° this case there is a 8 e tu, such that, for all

neZ, En^—g-^i) is finite. Let M=Z.

Case 3. Neither Case 1 nor 2 holds. Then there exist infinite subsets H'of Mß and

{aj)]eN of A^such that j<k in Wimpliespßj eg~ 1(ai) andpßk eg~\ak) and af <ak.

In this case there exists a 8 ewx such that, for all ne W, Eßn6— g'^an) is finite.

Let M= W.

In all cases consider g(M). If there is an infinite subset V of M and ave N such

that g ~1(v)=> V, then let M' = V. Otherwise there is an infinite subset M' of M such

that j and k belong to M' implies that g(j)¥=g(k).

Choose a*=j8* + S+l.

For some infinite subset M" of M', for all n e M", Q = Sß n (Pina. — PÄB(a. +1>)

is infinite or Q = (N—Sß) n (Eßna, — Eßnia. + X)) is infinite. Let Mœ = M".

Il n f Ma, let Pano = P/3na' — Eßn(a. + i).

In Case 1, if neMa, let Ean0=Q-g~1(l,.. .,n).

In Case 2, if n e Ma, let Pan0= ß n g _1(/).

In Case 3, if n e Ma, let Pœn0 = Q n g _1(an).

It is easy to check that 2, 3 and 4 are again satisfied.

Let Q. = {P e S | for some a e wx, P=> Une.w„ Pano}- By 4 and our selection of M"

and Pan0, ß is a free ultrafilter on N.

Let/(ü) = A; observe that A = {M<^N \ for some a e a>1; M^Ma}.
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Suppose ge F. Then g=fg for some ße wy. If a = ß+l and V= \JneMa Ean0, then

VeD.. In Case 1, for jeN, Vr\g-\j) is finite. In Case 2, g(V) = i so g(£2) = /'.

And in Case 3, g(£2)~/(£2). So if <f> e ßN and £2 is essentially greater than <j> through

g, either [<f>] = N' or [<£] = [A]. This means that [A] is minimal in >; in N* (hence

A is a L-point) and [A] is the only type in N* less than [£2] in Zl.

Select X={xn}neNe D such that xn is a L-point to which f~\n) belongs. Let

0 = AX.

Suppose g e F. Let Y—{n e N | for all k e N, g~\k) £ x„}. For ne Y we can

select Ln e xn such that Ln n g~\l,..., n)= 0 and, for all k e N, Lnn g~\k) is

finite. If Fe A, then (Jney Ln e 0; so 0 is not essentially greater than g(6) through

g if Fe A. If Y$ A, define he F by g ~x(h(n)) e xn for neN-Y and «(«)= 1 for

ne Y. Then A=/a for some a— 1 =ß e my and Ma n (TV— F) e A. By our definition

of M', either h(M') = v for some veN or h restricted to M' is one-to-one; but

M'=>Ma. So F<¿ A implies g(6) = v' e N' or g(6)~f(6). Hence, if 0 is essentially

greater than g(6) through g and g(9) e N*, [g(6)]= [f(6)]. Thus [A] is the one type

contained in N* which is essentially less than 6 or £2.

Now we show that £2 is not a limit point of any countable subset of N* ; one

implication of this is that £2 and 0 are not of the same type in N*.

Suppose that {ft}ieW is a subset of N* — {£2}. Let A = {ie N | for some a e tu, and

neN,pi=pan}. Let 2?={/e A^ | for some ne N,f~\n)e pt but pi+pan for any

aewy}. Let C = {ieN\ for all ne N,f-\n)$ Pi}. We find terms U, V, and W

of £2 such that, for i e A, px $ U, for i e B, pt $ V, and, for i e C, p¡$ W. Since

U n F n We £2 and ,4 u 5 u C=A7, £2 is not a limit point of {pi}ieN.

Choose a such that a > y for all yeaij for which there are i and « in N such that

Pi=Pyn- Let U=\JneN Ean0. If ft =/>„,, then y<a and, by 1, Lyn(a. + 1) e ft and, by 3,

EyMa- + i)-Em0 e pi and, by (c), U <£ p¡. Thus for ie A, Ue £2 but £/<£ ft.

We want to choose a sequence {ß^jeu^coy, by induction. Let /S^O. Suppose

ß''1 has been selected. If y e cuy and neN and i e 5, by 1, there is a ß e tux such

that j85S S implies Lrnd £ ft. Thus we can select ß' e ojy such that ß''1 <ß' and, for

all y faß1'1 and hêjV and i e B, ß' < 8 implies Eyn6 $ p¡. Let a be the limit of {ß'}jeN

and let V=\JneN Ean0 e £2. By 3, there is a y<a such that Ean0 — Eyna. is finite. So

for i e B, Ean0 £ p¡. But for each i e B there is an n e N such that/_1(n) e p¡. Since

V nf-1(n) = Ean0, V$Pi for any i e B.

For each j e N, since £2 ̂  p¡, there is a S7 e wy such that UneM4J Eôin0 $ ft. Choose

a limit ordinal 0: greater than 8' for ally e N. Suppose j e C. There is an ie N such

that 8' = ai. Let m be the ith term of Ma. Consider

Wi = U (Eano-E^-f-Kh ...,m).
neMa

If LUm« Ean0 e Pj then W; e Pj for 7" e C implies /-1(1,..., m) i p,- and, by 4,

n e Ma and n>m implies n e Ma¡ and ay = a¡ implies {JneMa Eain0 $ pj. Together 2

and 4 imply that, for n e Ma, W} n/_1(«) is finite. For some ß e wy, IJÍ6C W¡ = Se;
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since only finitely many W¡ intersect/_1(n), Sß n/_1(n) is finite for all neN. But

D is essentially greater than A through/ so SB$£l. Thus W=N—SBeQ. but

W $ pj for any j e C.
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