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REGULARITY CONDITIONS IN NONNOETHERIAN
RINGS()

BY
T. KABELE

Abstract. We show that properties of R-sequences and the Koszul complex which
hold for noetherian local rings do not hold for nonnoetherian local rings. For
example, we construct a local ring with finitely generated maximal ideal such that
hdz M < but M is not generated by an R-sequence. In fact, every element of M — M?
is a zero divisor. Generalizing a result of Dieudonné, we show that even in local (non-
noetherian) integral domains a permutation of an R-sequence is not necessarily an
R-sequence.

Introduction. A fundamental theorem of local algebra states that for a noetherian
local ring R with maximal ideal M the following are equivalent: (i) M is generated
by a regular sequence (also called R-sequence or prime sequence), (ii) hdy M <.
If these conditions are satisfied, R is called regular. A natural question to ask is:
Is the theorem true if we remove the noetherian hypothesis (but still assume M is
finitely generated)? In this paper we answer this question in the negative (§3,
Example 3) and investigate several alternate “‘regular conditions.”

Once and for all, all rings are commutative with unit. We use the phrase “(R, M)
is local”” to mean R is any commutative ring with unique maximal ideal M.

Let R be aring, J=(x,, ..., x,) an ideal of R. Let X}, ..., X, be indeterminates.
Following Grothendieck, we say x=(x;);<i=n IS a regular sequence iff, for 1 <i<n,
x; is not a zero divisor of R/>5Z1 Rx,. We say x is a quasi-regular sequence iff the
canonical surjection o: R/J[X,, ..., X,]—>> > J!J'*! defined by «(X;)=x;+J? is
bijective [5, 15.1.7, p. 15]. We let K(x, R) or R(X,>:0X;=x; denote the Koszul
complex; that is, the exterior algebra generated by { X7, . . ., X,,} with boundary map
0X;=x;. The homology groups of K(x, R) are denoted by Hy(x, R). The symbol hd,
means homological dimension.

We introduce the following new terminology:

DEeFINITION 1. A sequence x=(x;);zi=, is called Koszul-regular (resp. H,-
regular) iff H(x, R)=0 for all i=1 (resp. Hy(x, R)=0).

DEerFINITION 2. Let (R, M) be local with M finitely generated. We say (a) M is a
regular ideal (resp. (b) Koszul-regular, (b") Hi-regular, (c) quasi-regular) iff M is
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generated by some regular (resp. Koszul-regular, H,-regular, quasi-regular)
sequence.

ReMARk. Grothendieck [6, 16.9.2, 16.9.7, p. 46] and Berthelot [2] give similar
definitions of regular ideal for finitely generated ideals in an arbitrary ringed space.
They use their concepts to define regular immersions.

The concept of Koszul-regular sequence (or ideal) seems to be most suitable in
the nonnoetherian case (cf. [2]). It, unlike regularity, is independent of order (see
[4] and §3, Examples 4 and 5) and, unlike quasi-regularity, implies that the ideal
generated by the sequence has finite homological dimension (see §3, Examples 1
and 2).

In §1 we show that for the maximal ideal M of a nonnoetherian local ring R we
still have (a) = (b) = hdy M <o = (b") = (c) and (b), (b’), (c) are “independent
of base.” In §2 we show (c) is invariant under completion. In §3, using a class of
local rings invented by Nagata, we show (Examples 1, 2, 3) that (a) < (b) <= (b") < (c)
do not hold and that (a) depends on both order and choice of minimal generating
set (Example 4). In our last example (Example 5) we show that even in local integral
domains regularity of a sequence of generators of the maximal ideal depends on
order. This generalizes [4] and contradicts the converse part of Lemma 2 in [8,
p. 42].

This paper was inspired by a problem posed by Gerson Levin [7]. The author
wishes to express his deep appreciation to his thesis advisor Professor E. Matlis for
suggesting this problem and for encouraging and inspirational advice.

1. Basic facts. Here we prove a generalization of a theorem of Eilenberg and,
putting this together with some obvious generalizations of classical results, we
conclude

THEOREM 1.1. Let (R, M) be local with M finitely generated. Then, with the
notation of Definition 2,

(1) (@) = (b) = (b") = (o).

(ii) M satisfies (b) (resp. (b"), (c)) iff every (some) minimal generating set of M is a
Koszul-regular (resp. H,-regular, quasi-regular) sequence.

In fact, (i) follows from 1.4(i) and 1.6; while (ii) follows from 1.4(ii) and 1.5.

ReMARK. Using a result of Tate [12, Theorem 8, p. 27] and Northcott [10, p.
239], Levin [7] has shown hdp M <o = (b’). Trivially, (b) = hdy M <oo. If M is
generated by two elements, Levin has shown (b) <> hdy M <co.

1.2. Let R be any ring and J=(x,, ..., x,) an ideal of R. Let X3, ..., X, be in-
determinates. The following are equivalent: (i) x;,..., x, is a quasi-regular se-
quence; (ii) for every integer s=0 and for every form (X, ..., X,) of degree s,
P(xy, ..., x,) €5 implies the coefficients of ¢ are in J; (iii) for every form
o(X;, ..., X,) of arbitrary degree, ¢(xy,..., x;)=0 implies the coefficients of ¢
are in J.
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In fact, (i) <> (ii) = (iii) are trivial, while (iii) = (ii) follows by modifying a
proof of Northcott [11, 4.4, pp. 67-68]. When J=M and (R, M) is a local
noetherian ring, quasi-regularity is equivalent to analytic independence.

The next remark follows from the definition of the Koszul complex. We call an
nxn matrix C=[c;;] skew-symmetric iff ¢;=0 and ¢;;= —c;;.

1.3. Let R be a ring with x,,..., x, € R. Let E denote the Koszul complex
R{Xy,..., Xpp:0X;=x;. Let T=[x;---x,] and A=[a,---a,], where a, € R, be
1 x n matrices. Then >?_; a;x; is a one-cycle (resp. one-boundary) of E iff AT*=0
(resp. A=TB for some n x n skew-symmetric matrix B). Thus H,(E)=0iff AT*=0
implies A=TB.

1.4. Let R be a ring, x=(x;);5;=, a sequence of elements of R, and J# R the
ideal generated by x. Consider the following conditions: (a) x is regular, (b) x is
Koszul-regular, (b’) x is H;-regular, (c) x is quasi-regular. Then (i) (a) = (b) = (b")
and (a) = (c); (ii) if x satisfies any of the above regularity conditions, then it
minimally generates J.

In fact, (i) is [6, 19.5.1, p. 204] while (ii) follows from 1.2 and 1.3.

If (R, M) islocal and J a finitely generated ideal, then [9, 5.1, p. 13] every minimal

generating set of J has the same number of elements and mod JM forms a free base
over R/M. Thus 1.5 carries over from the noetherian case.
" 1.5. Let (R, M) be local with J an ideal minimally generated by x=(x;);<;<, and
Y=(¥)1=i=n- Then (i) x is quasi-regular iff y is quasi-regular, (ii) the Koszul
complexes K(x, R) and K(y, R) are isomorphic. Thus x is Koszul-regular (resp.
H,-regular) iff y is.

Part (ii) is proved by the same method used by Tate in [12, p. 23]. Part (i) follows
from the commutative diagram (cf. [6, 16.9.3, p. 46]):

RIIX, ey Xa] <2 > JHJ

7 ll

RUYy,..., Yal BN ZJi/Ji+1

If x,=2}-1 ai;y;, then the vertical isomorphism is defined by ¢(X;)=>7_, a,,Y;
where a;;€ R; X, and Y, are indeterminates. We set « (X;)=x;+J2 and o, (Y)
=y,+J2

The following theorem is a generalization of a theorem of Eilenberg [12, p. 26].
We prove it by using a method of indeterminates employed by Northcott [11,
Theorem 3, p. 68] to prove that every system of parameters of a noetherian local
ring forms an analytically independent set.

THEOREM 1.6. Let (R, M) be a local ring with J an ideal generated by x =(x,), <;<n.
Then x is H,-regular implies x is quasi-regular.

We need some preliminary lemmas.
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LEMMA 1.7. Same hypothesis on R, J, x as in 1.6. If x is H;-regular, then
cx$ € (xg, . . ., X,) implies c € (xg, . . ., X,), where ¢ € R and s is a positive integer.

Proof. Suppose cx§ € (xs, .. ., X,). Then cx§ =27, a;x; for some a; € R, and so
cxi™1X,— Dt 2 a1 X, is a one-cycle of the Koszul complex R(X;, ..., X;D>:10X;=x;.
By 1.3 cxi~t € (xg,. .., X,). By induction we prove the lemma.

LeMMA 1.8. Let R be any ring with Z,,...,Z, indeterminates and let R*
=R[Z,,...,2Z,). If I is an ideal of R, let IR* denote the ideal of R* generated by I.
Then (i) an element fin R* is in IR* iff all coefficients of f are in I; (i) if P is a prime
ideal of R, then PR* is a prime ideal of R¥; (iii) if f € R* is a zero divisor, then there
exists ¢#0 in R such that cf=0.

Statements (i) and (ii) are proved by Northcott [11, Lemma 2, Proposition 2,
p. 66, p. 81]. Northcott proves (iii) for noetherian rings but Nagata [9, 6.13, p. 17]
gives a proof in the general case.

Proof of Theorem 1.6. To prove x is a quasi-regular sequence, it suffices to
verify condition (iii) of 1.2. Let p(x)=¢(x4, . . ., X,) =0, where ¢ is a form of degree
s; we have to show all coefficients of ¢ are in J. If ¢ is the coefficient of x§ in ¢,
then from ¢(x)=0 we get cx§ € (X, ..., x,). By Lemma 1.7 c € (x5, . . ., X,)<=J.

Following Northcott, we extend this result to all coefficients of ¢ by introducing
n? indeterminates Z;,(1<i<n,1<j<n). We put R*=R[Z,]. By Lemma 1.8
M*=R*M is a prime ideal. Since R is local, 1.8(iii) implies that no element of
R*— M* is a zero divisor in R*; so we can form the ordinary ring of quotients Q’
of R* with respect to M*. Q' is local with maximal ideal M'=Q'M*=Q'M.

As in Northcott det |Z,| is a unit in Q’, so by Cramer’s rule we can define
Uy, ..., U, € Q' such that x;=>7%_, Z,u,. Since Hy(x, R)=0 and since R* is a free
R-module, we see, using remark 1.3, that H,(x, R¥*)=0 and H,(x, Q')=0. By a
direct calculation, or by 1.4(ii), x minimally generates J'=JQ’. Since |Z,| is an
invertible matrix, #=(u;);<;s, minimally generates J’; and thus 1.5 shows
H,(u, Q")=0. As in Northcott, the first part of the proof shows that the coefficients
of o(Z,,, Zs, ..., Z,,) are in J. This proves 1.6.

2. The completion. In this section we show that quasi-regularity of a minimal
generating set is preserved when we take the completion.

Let (R, M) be a local ring. Taking {M "};°_, to be a base of neighborhoods of 0,
we define a topology on R, called the M-adic topology. If (-1 M ™={0}, then {0}
is closed in the M-adic topology, and R is Hausdorff. We can then form the M-adic
completion of R. The following is a result of Cohen [3, Theorem 2, Theorem 3,
pp. 59-61].

2.1. Suppose (R, M) is a local ring with M finitely generated and (-, M "*=0.
Let R* be the M-adic completion. Then R* is a noetherian local ring with maximal
ideal MR*. Further, M'R*/M***R*=M‘/M**? for every i=0.
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Note. Since MR*/M2R*= M|M?2, every minimal generating set for M is also a
minimal generating set MR*.

Using 2.1 and a result of Nagata [9, 18.3, p. 59], we have the following interesting
corollary (cf. [9, 31.8)):

2.2. Same hypothesis as 2.1. The following are equivalent: (1) X) R* is exact,
(2) AR* N R=A for every ideal 4 of R, i.e. every ideal is closed, (3) R is noetherian.

THEOREM 2.3. Let (R, M) be a local ring with M finitely generated. Let (S, N) be
the completion of R/(\i-1 M", and let : R— S be the canonical map. Then a
minimal generating set X, . . ., X, of M is a quasi-regular sequence in R if and only if
o(xy), . . ., p(x,) is a quasi-regular sequence in S.

Proof. We have induced maps

¢1: RIM — SN,

®s: Z MM+t — z NN+,
i=0 i=0

(Pa:R/M[TI,. ..y Tn]'—>S/N[T1,-.., Tﬂ.]’

where T, are indeterminates and g is the obvious extension of ¢, ; we set @3(T)=T.,.
By 2.1 the maps ¢, and @, are bijective. The map g is also bijective. Thus, the
theorem follows from the following commutative diagram:

RIMITy,...,T,] "% > M M'*!

]
P3 E P2

1
i
]

Y

v
SIN[Ty,..., To) -~%» > NiN*+!

COROLLARY 2.4. Same hypothesis as 2.3. We have (a) x,,..., X, is a regular
(resp. Koszul-regular, H,-regular) sequence in R implies ¢(x,), . . ., ¢(x,) is a regular
(resp. Koszul-regular, H,-regular) sequence in S; (b) hdy M <o implies hdg N <o0.
However, the converse implications are false (the counterexample is Example 1 of §3).

Proof. Use Theorem 1.1, and note that the conditions of 1.1 are equivalent in
the noetherian case.

3. Counterexamples. We now construct counterexamples to the converse
implications of Theorem 1.1, using a class of local rings invented by Nagata
[9, E 3.1, p. 206]. We first need some facts.

PROPOSITION 3.1 (NAGATA). Let K be a field of characteristicp#0and x,,. . ., x,
be indeterminates. Set R*=K|[[x,,. .., x,]]l, R=K"[[x,,. .., x,][K]. Then R* and
R are both regular noetherian local rings with maximal ideals generated by
{*1, ..., Xa}, and R* is the completion of R. Moreover, (1) an element h of R* is in R
ifff the coefficients of h generate a finite extension of K®, (2) if [K:K?]=c0, then
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R*#R, (3) R* is integral over R; in fact, h € R* implies h* € R, (4) AR* " R=A
for every ideal A of R.

Let K be a field of characteristic p. Recall from [13, Volume I, p. 129] that a
subset B< K is said to be a p-independent set iff for every finite subset {b,, . . ., b,} =B
the monomials b}1- - -b» (where 0<v,<p) are linearly independent over K?. The
set B is called a p-base iff it is p-independent and K?[B]=K. By Zorn’s lemma we
can prove that every field K contains a p-base.

Nagata states, without proof, the following result in [9, line 14, p. 209]. To prove
it one could use the above definition of p-independent set and condition (1) of
Proposition 3.1. We shall use generalizations of the result in constructing our
counterexamples.

LEMMA 3.2. Let R, R* be as in 3.1 with n=2. Write x, y in place of x,, x,; and
let B={b,, c,}}>1<K be an infinite set of p-independent elements. Set E=3, bx'
and F=3>{, ¢;y'. Then 1, E, F, EF are linearly independent over R.

The following fact follows from a corollary of the “lying over theorem” (see
[13, Volume I, Remark 2, p. 259]).

3.3. If (R*, M*) is a local ring and if R* is integral over a ring R, then
(R, M* N R) is a local ring.

We now list some examples of nonnoetherian local rings in which the maximal
ideal is finitely generated by a regular sequence, i.e., the maximal ideal satisfies
condition (a) of Theorem 1.1 and therefore also (b), (b"), and (c). These are (i) the
ring B of germs of C®-functions of a real variable x in the neighborhood of 0, see
[4]; (ii) the ring A of [4]; (iii) the integral domain T” in [9, E 4.1, p. 207]; (iv)
Example 4; (v) Example 5.

ExAMPLE 1. A local domain (7, N) for which N is quasi-regular but not H;-
regular. (By 1.1 and remark after hd; N=00.)

Let K be a field of characteristic 2 with [K: K2]=00. Let R*=K]{[x, y]] and let
R=K?[[x, y]][K] where x, y are indeterminates. Let {5;};>, < K be an infinite set of
p-independent elements. Set E,=>, (xy)'b;, e,=E,[y", f,=E,/x". We will show
that

T = Rley, fi,- - +» €n, [, - - .1 is the required integral domain.

We have e,=yen, 1+ bnxnsfn=xfn+1 +bny ", x"fn=y"em and enfna e%’f;tz €R.
Thus, every e« €T is an R-linear combination of {1, y™e,,n, X™f, +n}, for some
convenient n (depending on «) and for all m. Therefore, we can write

0y a=agtoy"ensmt+ X rim
where «; € R. Hence,

[, R*" N T = [(x, »)T]™
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(In fact, « € [(x, y)R*]™ N T implies o, € [(x, y)R*]™ N R=[(x, y)R]™, which im-
plies « € [(x, y)T]™.) This proves T, with the N=(x, y)T adic topology, is a sub-
space of R*. T is dense in R*, because R is dense in R* and R¥*>T> R. Thus, R* is
the completion of T.

By 3.3 Tis local, with maximal ideal (x, y)R* N T=(x, y)T.

The sequence (x, y) is quasi-regular in T, because it is quasi-regular in the
completion of T, which is R* (see 2.3).

Claim e,;/x ¢ T. If, conversely, e;/x € T, then as in (1) above we can write, for
all large n, e;/x=ag+oe,+0yf,, where o€ R. But e;=y" le,+rx where
r=>71-1 (xy)'~'b, € R. Therefore,

(" ley)/x+r = agt+aen+ogf,.

Multiplying by x", using x"f,=y"e,, and applying linear independence of {l, e,}
over R, we get (xy)* " '=a;x"+a,y" This contradicts unique factorization in R.
Thus e,/x ¢ T. Similarly f1/y ¢ T.

Let E be the Koszul complex E =T_<X, Y)>:0X=x,0Y=y. The above claim
proves H,(E)#0. In fact, Ye, — Xf; is a nonbounding cycle.

ExampLE 2. A local ring (S, N) for which N is H,-regular but not Koszul-
regular. (By remark after Theorem 1.1, hdg N=00.)

Let K be a field of characteristic 2 with [K:K2%2]=oc0. Let R*=K][x, y, z]],
R=K2[[x, y, z]][K]; and let {b;}{2 ;< K be an infinite set of p-independent elements.
Set

Y

E,= 2 (p)Ybl(xp), ey = zE,
i=n
andletT=Rle,, .. .,e,,...].LetAbethe R-module generated by{z, x"e,,y "e,,ze,}r-1.
Note that % is also a T-ideal. Then

S = T/ is the required example.

As with the previous example, we can show T is a local ring with maximal
ideal (x, y, z)T. Therefore, S is a local ring with maximal ideal (X, y)S (where ~
denotes residue class modulo %).

Since e, =xye, ,,+b,z, and e2 € R, we have that every « € T is an R-linear com-
bination of {1, e,} for every large n. Also every 8 € % is an R-linear combination
of {z, x"e,, y "e,, ze,}, for every large n.

Let E be the Koszul complex E=S<X, Y)>:0X=X,0Y=jy. Recall [1, p. 626]
H,(E) equals the S-annihilator of {X, } (i.e., the set of all s in S such that sx=0
=5y). Since xXé,=0=ye,, to prove Hy(F)#0 we need only show &, #0. If, con-
versely, e, € 2, then we can write, for some n,

e = BOZ + lenen +B2y "e,+ /3328,,



370 T. KABELE [April

where B, € R. Since e, =(xy)" e, + zr (for some r € R), we get from linear indepen-
dence of {1, e,} over R that

()"t = Bux™+Bay" +Baz.

This contradicts unique factorization in the regular noetherian local ring R/zR.
Hence, e, ¢ 2.

We claim H;(E)=0. Assume «, B € T and ax+ By € A. We must find y € T such
that a= —yy and B=yx (mod %). We can find an integer n and elements «;, 8, y; € R
such that

ax+By = yoz+y1X"en+y2y "en+yazen,
a = og+oey,

B = BotpBien.

By linear independence of {1, e,} over R, we have

X +Boy = voZ,
aX+B1y = y1x"+y2y"+vaz.
Thus,
ax+Boy =0,
(@2 =y1x" " Hx+(Bi—y2y™ )y =0 (mod zR).
Since R/zR is a regular noetherian local ring, we have 0= H,(R/zR{x+zR, y+zR)).
Therefore, for some ¢, d € R,

-y Bo = cx,
o —yx""t = —dy, Bi—y2y" ! =dx (mod zR).

o

Now e,=xye,,, and y"*le,,,=0=x"*1e,,, (mod A). Therefore, a,e,= — 8y and
Bie,=6x (mod A), where =[—yx"+y,y™+dxyle,+1. Then

a = aytae, = (8+c)(—y),
B = Bo+Pie, = (8+c)x mod (N).

REMARK. [1, Proposition 2.6, p. 632]. If R is a noetherian ring and x=(x;);54sn
a sequence of elements of R, then H,(x, R)=0 implies H,(x, R)=0 for all j=1.

ExaMpLE 3. A local ring (S, N) for which N is Koszul-regular (and thus
hds N<oo0) but not regular. In fact, N— N? consists of zero divisors.

Before defining the example we need some essential facts.

Fact #1. There exists a field K of characteristic p=2, such that [K:K2]=2%
=card K.

In fact, let K be the integers mod 2 with ¢=2%0 indeterminates adjoined. These
indeterminates are linearly independent over K2.

Fact #2.1f K is as above and B< K is a p-base, then card B=c.
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We now define Example 3. Let K be a field as in Fact #1, and let B<K be a
p-base of K. Let x, y, z be indeterminates, let R*=K][[x, y, z]], R=K?[[x, y, z]I[K],
R,=K?[[x, y]][K]. Let M=(x, y, z)R and M,=(x, y)R, be the maximal ideals of
R and R, respectively.

Divide B into ¢=2% pairwise disjoint subsets, each of which is denumerable.
Associate to each v € My— M¢ one of these subsets; call it {b(v, i)};>,. This is
possible since card M,— MZ<card R*=card K®***?=c¥o=c=card B, where
w={0, 1, 2, ...} is the set of nonnegative integers.

Define, for every integer n=1,

L3

Goom) = 3 yibx, Dy"  E@m) = 5 xbw i),
i=n

i=n
where u ranges over all elements satisfying
™ ueMy—ME and u¢xR,.

Note that E(u, n)? and G(x, n)? € R,. Define e(u, n)=zE(u, n), g(x, n)=zG(x, n).
Set

C, = {e(u, n), g(x, n) : u satisfies (*)},

D, = {finite products of two or more distinct elements of C,},

F,

= {ue(u, n), ze(u, n), xg(x, n), zg(x, n) : u satisfies (*)}.

Let C=\Uy-1 C,, let T=R[C], let A be the R-module generated by
(B U Q F,u C')l D,.

Note that A is also a T-ideal. Then

S = T/ is the required example.

By definition e(u,n)=xe(u,u+1)+b(u,n)z,g(x,n)=yg(x,n+1)+b(x,n)z, and
E(u,n)?, G(x, n)®> € zR. As in previous examples we can prove that T is local with
maximal ideal (x, y, z)T. Thus, S is local with maximal ideal N=(%, y)S, where -
denotes residue class mod . Also for every « € T (resp. B € %) and for all large n, «
(resp. B) is an R-linear combination of {1} U C, U D, (resp. {z} U F, U D,). The
proof of 3.2 generalizes to show {1} U C, U D, is R-linearly independent for
every n.

Using the above facts, we can show e(u, 1) and g(x, 1) ¢ %, while e(x, 1)« and
g(x, De e A for every o € T-C (where T-C is the T-ideal generated by C). Since
ze ¥, every element of N is of the form ##+a& where ue M, and « € T-C. But
&€ (N N! since, for example, e(u, n)=x™e(u, n+m) (mod A). Thus, t+aec N—N?2
implies u € Mo— M. If u € xR,, then g(x, )(u+a) € A. If u ¢ xR,, then u satisfies
(*) and e(u, 1)(u+«) € A. Thus, every element of N— N2 is a zero divisor.
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Let E=S<{X, Y): 0X=X,0Y=y be the Koszul complex. Claim Hy(E)=0.
Suppose « € T and «x, «y € A. We must show o € UA. By the above we can write, for
large n,

o« = ag+a,g(x, n)+ >, ay(u)e(u, n)+terms involving D,,
xa = Boz+ [Bix +Baz]g(x, n)+ >, [Bs(u)u+ Bs(u)zle(u, n) +terms involving D,
Yo = yoz+ [y1x +v22lg(x, n)+ >, [ys(Wu+yy(u)z]e(u, n)+terms involving D,

where oy, o;, ag(u), €tc., € R and where u ranges over a finite set of elements L satis-
fying (*). Since D,<A, we need only show «q, o, g(x, n), ax(u)e(u, n) € A for all
u € L. Applying linear independence of {1} U C, U D, over R, we get

Xay = oz, Yoo = voz,
Xy = Bix+Bez, Yo, = yiX+yez,
xog(u) = Ba(Wu+Ba(W)z,  yas(u) = ys(w)u+yy(u)z.

Now zR, (4, z)R, and (x, z)R are prime ideals of R. (By [11, p. 72]) if u,, ..., u,
generate the maximal ideal of a regular noetherian local ring, then (uy, ..., u,)isa
prime ideal for i=1, ..., n.) Hence, xo, € zR, ya, € (x, 2)R, xa5(u) € (4, z)R imply
ay € ZR, o; € (X, Z)R, ax(u) € (4, 2)R. Since z, xg(x, n), ue(u, n) € A, we have that o,
a1 g(x, n), and oay(u)e(u, n) € A. This proves o € A.

The proof that H;(E)=0 is similar to the proof of a similar statement in Example
2. For instance, let u=rx+sy € M,— Mg, wherer,s€ Ryand s # 0. Lete,=e (u, n).
Then O=uwe, (mod ) implies 7é, X +35¢,Y is a one-cycle of E. This cycle is a one-
boundary since O=ue, ,, and e,=xe, ,; (mod A) imply

re, = re, .1 x = (—se, 1)y, se, = (se,,1)x (mod ).

REMARK 1. Not every element of N2 is a zero divisor in S. In fact, the prime
element x2+ y3 of R gives rise to a nonzero divisor when reduced mod 2. However,
by modifying construction of S we can make every element of N a nonzero divisor.

REMARK 2. Suppose Ris a noetherian local ring with maximal ideal M. If M — M?
consists of zero divisors, then M does also and the annihilator of M is not zero
[1, p. 653].

ExamPLE 4. A local ring (S, N) (with N finitely generated) in which regularity
depends on the choice of the minimal generating set.

We will construct a local ring (S, N) where N is generated by two elements
X, y such that both X and y are zero divisors (and therefore neither (%, y) nor (j, x)
are regular sequences) but (¥+j, X) is a regular sequence.

Let K be a field of characteristic 2 with [K:K2]=o00. Let R*=K[[x, y, z]],
R=K?[[x, y, z]I[K], and {b;, ¢;};2 < K be an infinite set of p-independent elements.
Define

En = z b,x‘/x", Fn = Cay'/y", e, = ZEm f;z = ZFn'
=n

M
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Set T=Rley, f1, . . .5 €ns fn, . . . ]. Let A be the R-module (or, equivalently, T-ideal)
generated by {z, ye,, ze,, Xfu, Zfn, €xfuln=1. Then

S = T/ is the required example.

The proof is much like the preceding ones. Note that for all n, the set
{1, e,, f», €, /»} is linearly independent over R. The elements x, y are zero divisors
since e, y and f1x € A. We are done with Example 4.

Now let T be an arbitrary integral domain with x, y elements of 7. We easily see
Hy(x, y; T)=0 iff (x, y) is a regular sequence. The next example shows this to be
false for sequences of three or more elements.

ExampPLE 5. A local integral domain (T, N) in which regularity of the minimal
generating set depends on order.

Let K, R*, R, {b;} be as in Example 2. Set E,=3>2, bz!/z", e,=yE,, f,=XxE,.
Then

T = Rles, fi, - . -5 €n, fn, . . . | is the required example.

We have yf,=xe,, e,=ze, ., +b,y, fa=2fr.1+b,x and e, f,, €2, fZe R. As with
the previous examples, for every o € T there is an n (depending on «) such that for
all m we can write

« = gt oz, mt+ azsz;z +ms

where o; € R. We conclude [(x, y, 2)T*]" N T=[(x, y, z2)T]" for all m, zR* " T=2T,
(x, 2)R* N T=(x, 2)T, (y, 2)R* " T=(y, 2)T.

The first equation shows us that the maximal ideal of T is (x, y, z)T. The last
three say that z7, (xz)7, and (y, z)T are prime ideals of T. Since (0) is also a prime
ideal (z, x, ), (z, y, x), (», z, x), and (x, z, y) are all regular sequences.

However, neither (y, x, z) nor (x, y, z) are regular sequences since e, € (yT, xT)
but e, ¢ yT, and f; € (xT, yT) but f; ¢ xT.
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