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REGULARITY CONDITIONS IN NONNOETHERIAN

RINGSC)

BY

T. KABELE

Abstract. We show that properties of /{-sequences and the Koszul complex which

hold for noetherian local rings do not hold for nonnoetherian local rings. For

example, we construct a local ring with finitely generated maximal ideal such that

hdB M < co but M is not generated by an Ä-sequence. In fact, every element of M— M2

is a zero divisor. Generalizing a result of Dieudonné, we show that even in local (non-

noetherian) integral domains a permutation of an /{-sequence is not necessarily an

/{-sequence.

Introduction. A fundamental theorem of local algebra states that for a noetherian

local ring P with maximal ideal M the following are equivalent: (i) M is generated

by a regular sequence (also called P-sequence or prime sequence), (ii) hdfl M<co.

If these conditions are satisfied, P is called regular. A natural question to ask is:

Is the theorem true if we remove the noetherian hypothesis (but still assume M is

finitely generated)? In this paper we answer this question in the negative (§3,

Example 3) and investigate several alternate "regular conditions."

Once and for all, all rings are commutative with unit. We use the phrase "(P, M)

is local" to mean P is any commutative ring with unique maximal ideal M.

Let P be a ring, J= (xx,..., xn) an ideal of P. Let Xx,..., Xn be indeterminates.

Following Grothendieck, we say x = (xi)1sisn is a regular sequence iff, for l^í'á«,

Xi is not a zero divisor of P/25 = ï Bx,. We say * is a quasi-regular sequence iff the

canonical surjection a: R/J[XX,..., Xn] -» ~2.Ji/Ji + 1 defined by a(A'i) = xi+J2 is

bijective [5, 15.1.7, p. 15]. We let K(x, R) or R^Xiy:dXi = xi denote the Koszul

complex; that is, the exterior algebra generated by {Xx,..., Xn} with boundary map

dXi = xt. The homology groups of K(x, R) are denoted by Ht(x, R). The symbol hdB

means homological dimension.

We introduce the following new terminology:

Definition 1. A sequence x = (Xi)x¿i¿n is called Koszul-regular (resp. Hi-

regular) iff Hi(x, P) = 0 for all i^ 1 (resp. Hx(x, P) = 0).

Definition 2. Let (R, M) be local with M finitely generated. We say (a) M is a

regular ideal (resp. (b) Koszul-regular, (b') Hx-regular, (c) quasi-regular) iff M is

Received by the editors May 26, 1970.

AMS 1969 subject classifications. Primary 1395.

Key words and phrases. Nonnoetherian local ring, regular sequence, quasi-regular sequence,

Koszul complex.

(*) This work is part of the author's thesis and was done while he was a National Science

Foundation Fellow at Northwestern University.

Copyright © 1971, American Mathematical Society

363



364 T. KABELE [April

generated by some regular (resp. Koszul-regular, //.-regular, quasi-regular)

sequence.

Remark. Grothendieck [6, 16.9.2, 16.9.7, p. 46] and Berthelot [2] give similar

definitions of regular ideal for finitely generated ideals in an arbitrary ringed space.

They use their concepts to define regular immersions.

The concept of Koszul-regular sequence (or ideal) seems to be most suitable in

the nonnoetherian case (cf. [2]). It, unlike regularity, is independent of order (see

[4] and §3, Examples 4 and 5) and, unlike quasi-regularity, implies that the ideal

generated by the sequence has finite homological dimension (see §3, Examples 1

and 2).

In §1 we show that for the maximal ideal M of a nonnoetherian local ring R we

still have (a) => (b) => hdÄ M<oo => (b') => (c) and (b), (b'), (c) are "independent

of base." In §2 we show (c) is invariant under completion. In §3, using a class of

local rings invented by Nagata, we show (Examples 1,2,3) that (a) <= (b) <= (b') <= (c)

do not hold and that (a) depends on both order and choice of minimal generating

set (Example 4). In our last example (Example 5) we show that even in local integral

domains regularity of a sequence of generators of the maximal ideal depends on

order. This generalizes [4] and contradicts the converse part of Lemma 2 in [8,

p. 42].
This paper was inspired by a problem posed by Gerson Levin [7]. The author

wishes to express his deep appreciation to his thesis advisor Professor E. Matlis for

suggesting this problem and for encouraging and inspirational advice.

1. Basic facts. Here we prove a generalization of a theorem of Eilenberg and,

putting this together with some obvious generalizations of classical results, we

conclude

Theorem 1.1. Let (R, M) be local with M finitely generated. Then, with the

notation of Definition 2,

(i) (a) => (b) => (b') => (c).

(ii) M satisfies (b) (resp. (W), (c)) iff every (some) minimal generating set of M is a

Koszul-regular (resp. Hy-regular, quasi-regular) sequence.

In fact, (i) follows from 1.4(i) and 1.6; while (ii) follows from 1.4(ii) and 1.5.

Remark. Using a result of Täte [12, Theorem 8, p. 27] and Northcott [10, p.

239], Levin [7] has shown hdñ M<oo => (b'). Trivially, (b) => hdK M<oo. If M is

generated by two elements, Levin has shown (b) o hdB M<oo.

1.2. Let R be any ring and J=(xy,..., xn) an ideal of R. Let Xy,..., Xn be in-

determinates. The following are equivalent: (i) x¡, ...,xn is a quasi-regular se-

quence ; (ii) for every integer sä0 and for every form >¡>(Xy,..., Xn) of degree s,

>f>(xy,..., xn) ejs + 1 implies the coefficients of <f> are m J\ (iü) f°r every form

<p(Xy,..., Xn) of arbitrary degree, <p(xx,..., x„) = 0 implies the coefficients of <p

are in J.
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In fact, (i) o (ii) => (iii) are trivial, while (iii) => (ii) follows by modifying a

proof of Northcott [11, 4.4, pp. 67-68]. When J=M and (R, M) is a local

noetherian ring, quasi-regularity is equivalent to analytic independence.

The next remark follows from the definition of the Koszul complex. We call an

nxn matrix C— [c(i] skew-symmetric iff cit = 0 and ctj= —cñ.

1.3. Let P be a ring with xx,..., xneR. Let P denote the Koszul complex

R(XX,..., Xn):8Xi = xi. Let T=[xx- ■ -xn] and A = [ax■ ■ ■ an], where ateR, be

1 xn matrices. Then 2?=i a¡Xi is a one-cycle (resp. one-boundary) of P iff ATl = 0

(resp. A = TB for some nxn skew-symmetric matrix P). Thus Hx(E) = 0 iff ATt = Q

implies A = TB.

1.4. Let P be a ring, x = (xt)XÉi¿n a sequence of elements of R, and J^R the

ideal generated by x. Consider the following conditions: (a) x is regular, (b) x is

Koszul-regular, (b') x is pp-regular, (c) x is quasi-regular. Then (i) (a) => (b) => (b')

and (a) => (c); (ii) if x satisfies any of the above regularity conditions, then it

minimally generates J.

In fact, (i) is [6, 19.5.1, p. 204] while (ii) follows from 1.2 and 1.3.

If(P, M) is local and J a finitely generated ideal, then [9, 5.1, p. 13] every minimal

generating set ofJ has the same number of elements and mod JM forms a free base

over R/M. Thus 1.5 carries over from the noetherian case.

1.5. Let (R,M) be local with J an ideal minimally generated by x = (xi)x¿i¿nand

y = (yùiSiSn- Then (i) x is quasi-regular iff y is quasi-regular, (ii) the Koszul

complexes K(x, R) and K(y, R) are isomorphic. Thus x is Koszul-regular (resp.

/it-regular) iff y is.

Part (ii) is proved by the same method used by Täte in [12, p. 23]. Part (i) follows

from the commutative diagram (cf. [6, 16.9.3, p. 46]):

p/y[^,...,xj "v 2JiiJi+1

9

R\J\Y,. Yn]a-^ 2JtlJt+X

If Xi = ^=xaijyj, then the vertical isomorphism is defined by <p(X/) = Y!¡=x a^Y,

where (7(JeP; Xt and  Y¡ are indeterminates. We set ax(Xi) = Xi+J2 and ce^V,)

=yt+J2-

The following theorem is a generalization of a theorem of Eilenberg [12, p. 26].

We prove it by using a method of indeterminates employed by Northcott [11,

Theorem 3, p. 68] to prove that every system of parameters of a noetherian local

ring forms an analytically independent set.

Theorem 1.6. Let(R, M) be a local ring with J an ideal generated by x = (xùxns,n.

Then x is Hx-regular implies x is quasi-regular.

We need some preliminary lemmas.
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Lemma 1.7. Same hypothesis on R, J, x as in 1.6. If x is Hy-regular, then

cx\ e (x2,..., xn) implies c e (x2,..., xn), where c e R and s is a positive integer.

Proof. Suppose cx\ e (x2,..., xn). Then cxs1 = 2?=2 #(*i for some ax e R, and so

cxsy~1Xy — '£i^2aiXiisa one-cycle of the Koszul complex R(Xlf..., Xn):8Xi = xi.

By 1.3 cxy'1 e (x2,..., xn). By induction we prove the lemma.

Lemma 1.8. Let R be any ring with Zy,...,Zd indeterminates and let R*

= R[Zy,. . ., Zd]. If I is an ideal of R, let IR* denote the ideal of R* generated by I.

Then (i) an element fin R* is in IR* iff all coefficients off are in I; (ii) ifP is a prime

ideal of R, then PR* is a prime ideal of R* ; (iii) iffe R* is a zero divisor, then there

exists c^O in R such that c/=0.

Statements (i) and (ii) are proved by Northcott [11, Lemma 2, Proposition 2,

p. 66, p. 81]. Northcott proves (iii) for noetherian rings but Nagata [9, 6.13, p. 17]

gives a proof in the general case.

Proof of Theorem 1.6. To prove x is a quasi-regular sequence, it suffices to

verify condition (iii) of 1.2. Let <p(x) = <p(xy,..., xn) = 0, where <p is a form of degree

s; we have to show all coefficients of <p are in /. If c is the coefficient of x* in «p,

then from cp(x) = 0 we get cx\ e (x2,..., xn). By Lemma 1.7 c e (x2,..., xn)c/.

Following Northcott, we extend this result to all coefficients of <p by introducing

n2 indeterminates Zt, (1 £i£rt, 1 újúrí). We put R* = R[Zij\. By Lemma 1.8

M* = R*M is a prime ideal. Since R is local, 1.8(iii) implies that no element of

R* — M* is a zero divisor in jR* ; so we can form the ordinary ring of quotients Q'

of R* with respect to M*. Q' is local with maximal ideal M' = Q'M* = Q'M.

As in Northcott det \Zi}\ is a unit in Q', so by Cramer's rule we can define

Uy,..., un e Q' such that x¡ = 2"=i Zyi/y. Since Hy(x, R) = 0 and since R* is a free

jR-module, we see, using remark 1.3, that Hy(x, R*) = 0 and Hy(x, Q') = 0. By a

direct calculation, or by 1.4(h), x minimally generates J' =JQ'. Since |Zfi| is an

invertible matrix, H = (wi)isis„ minimally generates J'; and thus 1.5 shows

Hy(u, Q') = 0. As in Northcott, the first part of the proof shows that the coefficients

of <p(Zyy, Z12,..., Znl) are in /. This proves 1.6.

2. The completion. In this section we show that quasi-regularity of a minimal

generating set is preserved when we take the completion.

Let (R, M) be a local ring. Taking {M"}"=1 to be a base of neighborhoods of 0,

we define a topology on R, called the M-adic topology. If C]ñ=i M" = {0}, then {0}

is closed in the M-adic topology, and R is Hausdorff. We can then form the M-adic

completion of R. The following is a result of Cohen [3, Theorem 2, Theorem 3,

pp. 59-61].
2.1. Suppose (R, M) is a local ring with M finitely generated and H"=i Mn = 0.

Let R* be the M-adic completion. Then R* is a noetherian local ring with maximal

ideal MR*. Further, MiR*/Mi + 1R* = MiIMi + 1 for every i^O.
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Note. Since MR*/M2R* = M/M2, every minimal generating set for M is also a

minimal generating set MR*.

Using 2.1 and a result of Nagata [9, 18.3, p. 59], we have the following interesting

corollary (cf. [9,31.8]):

2.2. Same hypothesis as 2.1. The following are equivalent: (1) 0B P* is exact,

(2) AR* n R = A for every ideal A of R, i.e. every ideal is closed, (3) P is noetherian.

Theorem 2.3. Let (P, M) be a local ring with M finitely generated. Let (S, N) be

the completion of R/(\ñ=i Mn, and let <p: R—> S be the canonical map. Then a

minimal generating set xx,..., xnof M is a quasi-regular sequence in R if and only if

<p(xx),..., (p(xn) is a quasi-regular sequence in S.

Proof. We have induced maps

<px:R/M^S/N,
OO CO

<p2:   2  M'/M^1^   2  W/Ni + 1,
1=0 i=0

9,3 : R/M[TX, ...,Tn]^ S/N[TX,..., Tn],

where P¡ are indeterminates and <p3 is the obvious extension of <px; we set cp3(T^ = Tx.

By 2.1 the maps <px and <p2 are bijective. The map <p3 is also bijective. Thus, the

theorem follows from the following commutative diagram :

R/M[Tx,...,Tn] --*-♦* 2M'lMi+1
1 I

93 j '< 92
* f

SIN[Tx,...,Tn]  -as-» 2N'lNi + 1

Corollary 2.4. Same hypothesis as 2.3. We have (a) xx,..., xn is a regular

(resp. Koszul-regular, Hx-regular) sequence in R implies <p(xx),..., <p(xn) is a regular

(resp. Koszul-regular, Hx-regular) sequence in S; (b) hdB M<co implies hds N<oo.

However, the converse implications are false (the counterexample is Example 1 o/§3).

Proof. Use Theorem 1.1, and note that the conditions of 1.1 are equivalent in

the noetherian case.

3. Counterexamples. We now construct counterexamples to the converse

implications of Theorem 1.1, using a class of local rings invented by Nagata

[9, E 3.1, p. 206]. We first need some facts.

Proposition 3.1 (Nagata). Let K be a field of characteristic p^Q and xx,. .., xn

be indeterminates. Set R* = K[[xx,.. .,*„]], R = Kp[[xx,..., xn]][K]. Then R* and

R are both regular noetherian local rings with maximal ideals generated by

{xx,..., xn}, andR* is the completion of R. Moreover, (I) an element h of R* is in R

iff the coefficients of h generate a finite extension of K", (2) if [P:P2] = oo, then
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R* # R, (3) R* is integral over R ; in fact, heR* implies h" e R, (4) AR* n R = A

for every ideal A of R.

Let K be a field of characteristic p. Recall from [13, Volume I, p. 129] that a

subset i?<= Kis said to be a p-independent set iff for every finite subset {by,. . ., bn}<=B

the monomials b{i- • -bl« (where Oáv¡á/?) are linearly independent over Kp. The

set B is called a/.-base iff it is/»-independent and KP[B] = K. By Zorn's lemma we

can prove that every field K contains a p-base.

Nagata states, without proof, the following result in [9, line 14, p. 209]. To prove

it one could use the above definition of/.-independent set and condition (1) of

Proposition 3.1. We shall use generalizations of the result in constructing our

counterexamples.

Lemma 3.2. Let R, R* be as in 3.1 with n = 2. Write x, y in place of Xy, xa; and

let B = {b¡, c^iLy^-K be an infinite set of p-independent elements. Set L=2¡°i1 &,**

and L=2j™ i CiyK Then 1, E, F, EF are linearly independent over R.

The following fact follows from a corollary of the "lying over theorem" (see

[13, Volume I, Remark 2, p. 259]).

3.3. If (R*, M*) is a local ring and if R* is integral over a ring R, then

(R, M* n R) is a local ring.

We now list some examples of nonnoetherian local rings in which the maximal

ideal is finitely generated by a regular sequence, i.e., the maximal ideal satisfies

condition (a) of Theorem 1.1 and therefore also (b), (b'), and (c). These are (i) the

ring B of germs of C°°-functions of a real variable x in the neighborhood of 0, see

[4]; (ii) the ring A of [4]; (iii) the integral domain T" in [9, E 4.1, p. 207]; (iv)

Example 4; (v) Example 5.

Example 1. A local domain (T, N) for which N is quasi-regular but not Hy-

regular. (By 1.1 and remark after hdr N=oo.)

Let K be a field of characteristic 2 with [K:K2] = oo. Let R* = K[[x, y]] and let

R = K2[[x, y]][K] where x, y are indeterminates. Let {b¡}°°= y<= Kbe an infinite set of

/7-independent elements. Set En = ^=n (xy)%, en = EJyn,fn = En/xn. We will show

that

T = R[ey,fy,..., en,fn,...] is the required integral domain.

We have en=yen + 1 + bnxn,fn = xfn + 1 + bnyn, xnfn=ynen, and ejn, e\,f2 e R.

Thus, every a e T is an .R-linear combination of {l,ymen + m, xmfn+m}, for some

convenient n (depending on a) and for all m. Therefore, we can write

(1) « = <*o + ayymen + m+a2Xmfn+m

where a, e R. Hence,

[(x,y)R*]mnT= [(x,y)T]m.
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(In fact, a e [(x, y)R*]m n T implies a0 e [(x, y)R*]m n R = [(x, y)R]m, which im-

plies ae [(x, y)T]m.) This proves T, with the N=(x, y)T adic topology, is a sub-

space of R*. Lis dense in R*, because R is dense in R* and R*=>T=>R. Thus, R* is

the completion of T.

By 3.3 T is local, with maximal ideal (x, y)R* n L=(x, y)T.

The sequence (x, j>) is quasi-regular in T, because it is quasi-regular in the

completion of T, which is R* (see 2.3).

Claim ey/x $ T. If, conversely, ey/x e T, then as in (1) above we can write, for

all large n, ey/x = a0 + ayen + a2fn, where ateR. But e1=yn~1en + rx where

'■ = 2?-11 foO'-1*. e R. Therefore,

(yn~1en)lx + r = a0 + ayen + a2fn.

Multiplying by x", using xnfn=ynen, and applying linear independence of {1, en}

over R, we get (xy)n~1 = a1xn + a2yn. This contradicts unique factorization in R.

Thus ey/x i T. Similarly fjy £ T.

Let E be the Koszul complex E-T{X, Y}:8X=x, 8Y=y. The above claim

proves Hy(E)y±0. In fact, Yex — Xfy is a nonbounding cycle.

Example 2. A local ring (S, N) for which N is //.-regular but not Koszul-

regular. (By remark after Theorem 1.1, hds N=co.)

Let ibea field of characteristic 2 with [K:K2] = oo. Let R* = K[[x, y, z]],

R = K2[[x, y, z]][K]; and let {ÄJ^, c A" be an infinite set of ^-independent elements.

Set

CO

En = 2 (xyybil(xy)n>     en = zEn,

and let L=/?[«?!,.. .,en,.. .].Let9íbethe.R-wociw/«?generatedby{z,xVn,j'Vn,Zí?,,}"=1.

Note that 91 is also a T-ideal. Then

S = L/9Í is the required example.

As with the previous example, we can show T is a local ring with maximal

ideal (x, y, z)T. Therefore, S is a local ring with maximal ideal (x, y)S (where

denotes residue class modulo 91).

Since e„ = xyen + 1 + bnz, and e2 e R, we have that every a e Lis an .R-linear com-

bination of {1, en} for every large n. Also every ß e 9t is an .R-linear combination

of {z, xnen, ynen, zen}, for every large n.

Let Lbe the Koszul complex E=S(X, Y}:8X=x, 8Y=y. Recall [1, p. 626]

H2(E) equals the S-annihilator of {x, y} (i.e., the set of all j in S such that sx = 0

= sy). Since xë1=0=_yë1, to prove H2(E)^=0 we need only show «?!#0. If, con-

versely, ey e 91, then we can write, for some n,

ex = ß0z + ßyxnen + ß2ynen+ß3zen
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where ßt e R. Since ex = (xy)n~1en + zr (for some r e R), we get from linear indepen-

dence of {1, en} over P that

(xyY-1 m ßxxn + ß2yn + ß3z.

This contradicts unique factorization in the regular noetherian local ring R/zR.

Hence, ex $ 9t.

We claim Hx(E) = 0. Assume a, ßeT and ax+ßy e 91. We must find y eT such

thatcc= — yy and ß=yx (mod %). We can find an integer n and elements a¡, /},, yte R

such that

ax+ßy = y0z+yixnen+y2ynen+y3zen,

a = a0-\-axen,

ß = ßo + ßien-

By linear independence of {1, en} over P, we have

a0x + ß0y = y0z,

axx+ßxy = yxx"-+y2yn + y3z.

Thus,

a0x+ß0y = o,

(ax -yxxn- l)x + (ßx - y2 y » " x)y = 0   (mod zR).

Since R/zR is a regular noetherian local ring, we have 0 = Hx(R/zR(x + zR, y + zR}).

Therefore, for some c, deR,

«o ■ -cy, ß0 = ex,

«i—yi*"_1 = —^J,       & —y2jn_1 = ^   (mod zR).

Now en=xjen + 1 and yn + 1en + x = 0=xn + 1en + x (mod 91). Therefore, «!<?„= — 8y and

/?iens Sx (mod 91), where S=[ — yxxn+y2yn + dxy]en + x. Then

a = a0 + «ie„ ■ (S + c)(-j),

JS = /30+rV„ ■ (8 + c)x   mod (91).

Remark. [1, Proposition 2.6, p. 632]. If P is a noetherian ring and * = (.fi)iSiSn

a sequence of elements of P, then P?i(jc, P) = 0 implies H,(x, R) = 0 for ally^ 1.

Example 3. A local ring (S, N) for which N is Koszul-regular (and thus

hdsN<oo) but not regular. In fact, N—N2 consists of zero divisors.

Before defining the example we need some essential facts.

Fact #1. There exists a field K of characteristic p = 2, such that [K:K2] = 2*o

= card K.

In fact, let Pbe the integers mod 2 with c=2N'<> indeterminates adjoined. These

indeterminates are linearly independent over K2.

Fact jß. If K is as above and B<=K is a ^-base, then card B=c.
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We now define Example 3. Let K be a field as in Fact #1, and let B<^K be a

/7-base of K. Let x, y, z be indeterminates, let R* =K[[x, y, z]], R = K2[[x, y, z]][K],

R0 = K2[[x, y]][K]. Let M=(x, y, z)R and M0 = (x, y)R0 be the maximal ideals of

R and R0 respectively.

Divide B into c = 2"o pairwise disjoint subsets, each of which is denumerable.

Associate to each v e M0 — M§ one of these subsets; call it {b(v, i)}¡°=1. This is

possible since card M0 — M2 f£ card R* = card Ka *ra * m = cx<> = c = card B, where

co = {0, 1, 2,...} is the set of nonnegative integers.

Define, for every integer näl,

OO 00

G(x, n) = 2 y'Kx, i)/yn,     E(u, h) = 2 *'*("> 0/**,
i=n ¡=n

where u ranges over all elements satisfying

(*) u e M0 — Mo    and   u $ xR0.

Note that E(u,n)2 and G(x,n)2eR0. Define e(u,n) = zE(u,n),g(x,n) = zG(x,n).

Set

Cn = {e(u, n), g(x, n) : u satisfies (*)},

Dn = {finite products of two or more distinct elements of Cn},

Fn = {ue(u, n), ze(u, n), xg(x, n), zg(x, n) : u satisfies (*)}.

Let C=U"=i C let T=R[C], let 91 be the R-module generated by

{z} u Û Fn u IJ A.-
n=l nm1

Note that 9Í is also a T-ideal. Then

S = L/9I is the required example.

By definition e(u,n) = xe(u,u+l) + b(u,n)z,g(x,n)=yg(x,n+l) + b(x,n)z, and

L(w, n)2, G(x, n)2 e zR. As in previous examples we can prove that T is local with

maximal ideal (x, y, z)T. Thus, S is local with maximal ideal N=(x, y)S, where "

denotes residue class mod 91. Also for every a e L(resp. ß e 91) and for all large n, a

(resp. ß) is an jR-linear combination of {1} u Cn u Dn (resp. {z} u Fn u 7J)n). The

proof of 3.2 generalizes to show {1} uCnuD, is .R-linearly independent for

every n.

Using the above facts, we can show e(u, 1) and g(x, 1) £ 9Í, while e(u, l)a and

g(x, l)a e 9Í for every aeTC (where T- C is the L-ideal generated by C). Since

z e 9Í, every element of N is of the form ü + ä where u e M0 and aeTC. But

ä e p| N' since, for example, e(u, n)=xme(u, n + m) (mod 91). Thus, ü + ä e N—N2

implies u e M0 — M§. If ue xR0, then g(x, l)(u + a) e 91. If u $ xR0, then u satisfies

(*) and e(u, l)(w + a) e 91. Thus, every element of N—N2 is a zero divisor.
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Let E=S<X, F> : 8X=x, 8Y=y be the Koszul complex. Claim H2(E)=0.

Suppose a e Pand ax, ay e 91. We must show a e 91. By the above we can write, for

large n,

a = a0 + axg(x, n) + 2u a2(u)e(u, n) + terms involving Dn,

xa = ß0z+[ßxx + ß2z]g(x, n) + J,u [ß3(u)u+ßA[u)z]e(u, n) + terms involving Dn,

ya = y0z+[yxx + y2z]g(x, n) + 2u bz^u + yAf^z^u, n) + terms involving Dn,

where a0, ax, a2(u), etc., e R and where u ranges over a finite set of elements L satis-

fying (*). Since Pn<=91, we need only show œ0, axg(x, n), a2(u)e(u, n) e 91 for all

ueL. Applying linear independence of{l}uC,uZ)n over P, we get

xa0 = ß0z, ya0 = y0Z,

xax = ßxx + ß2z, yax = yxx + y2z,

Xa2(u) = ß3(u)u + ßi(u)z, ya2(Ú) = 73(«)" + 74(«)z.

Now zR, (u, z)R, and (x, z)R are prime ideals of P. (By [11, p. 72] if ux,..., un

generate the maximal ideal of a regular noetherian local ring, then («,,..., ut) is a

prime ideal for i=l,.. .,n.) Hence, xa0 e zR, yax e (x, z)R, xa2(u) e (u, z)R imply

a0 e zR, ax e (x, z)R, a2(u) e (u, z)R. Since z, xg(x, n), ue(u, n) e 91, we have that a0,

axg(x, n), and a2(u)e(u, n) e 91. This proves a e 91.

The proof that HX(E) = 0 is similar to the proof of a similar statement in Example

2. For instance, let u = rx + sy e M0 — M2, where r, se R0 and s ^ 0. Leten = e(u, n).

Then 0=uen (mod 91) implies rënX+sënY is a one-cycle of P. This cycle is a one-

boundary since 0=uen + x and en=xen + x (mod 91) imply

ren = ren + xx = (-sen + x)y,       sen = (sen + x)x   (mod 91).

Remark 1. Not every element of N2 is a zero divisor in S. In fact, the prime

element x2+y3 of P gives rise to a nonzero divisor when reduced mod 9Í. However,

by modifying construction of S we can make every element of N a nonzero divisor.

Remark 2. Suppose P is a noetherian local ring with maximal ideal M. If M— M2

consists of zero divisors, then M does also and the annihilator of M is not zero

[1, p. 653].
Example 4. A local ring (S, N) (with N finitely generated) in which regularity

depends on the choice of the minimal generating set.

We will construct a local ring (S, N) where N is generated by two elements

x, y such that both Jc and y are zero divisors (and therefore neither (Jc, y) nor (y, x)

are regular sequences) but (x+y, x) is a regular sequence.

Let K be a field of characteristic 2 with [P:P2] = oo. Let R* = K[[x, y, z]],

R = K2[[x, y, z]][K], and {bh cj,™ X<=K be an infinite set of p-independent elements.

Define

OO 00

En = 2 bix'lxn>       Fn = 2 ciyilyn,        en = zEn,       fn = zFn.
i=n i=n
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Set T=R[e1,f1,. ..,«?„,/„,...]. Let 91 be the /{-module (or, equivalently, L-ideal)

generated by {z, yen, zen, xfn, zfn, enfn}™=1. Then

S = L/91 is the required example.

The proof is much like the preceding ones. Note that for all n, the set

{1, en,fn, Cnfn} is linearly independent over R. The elements x, y are zero divisors

since exy and/x e 91. We are done with Example 4.

Now let Lbe an arbitrary integral domain with x, y elements of T. We easily see

Hy(x, y; T) = 0 iff (x, y) is a regular sequence. The next example shows this to be

false for sequences of three or more elements.

Example 5. A local integral domain (T, N) in which regularity of the minimal

generating set depends on order.

Let K, R*, R, {b(} be as in Example 2. Set En = JT=nbizilzn, en=yEn,fn = xEn.

Then

L = R[ex,fy,..., en,fn,...] is the required example.

We have yfn = xen, en = zen + 1 + bny,fn = zfn + 1 + bnx and enfn, el,f2 e R. As with

the previous examples, for every a e T there is an n (depending on a) such that for

all m we can write

a = a0 + ayZmen + m + a2zmfn + m,

where a, e R. We conclude [(x, y, z)T*]m n L= [(x, y, z)T]m for all m, zR* n T=zT,

(x, z)R* n L=(x, z)T, (y, z)R* n T=(y, z)T.

The first equation shows us that the maximal ideal of T is (x, y, z)T. The last

three say that zT, (xz)T, and (y, z)T are prime ideals of T. Since (0) is also a prime

ideal (z, x, y), (z, y, x), (y, z, x), and (x, z, y) are all regular sequences.

However, neither (y, x, z) nor (x, y, z) are regular sequences since ex e (yT, xT)

but e, iyT, and/ e (xT, yT) but/x i xT.
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