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CERTAIN DENSE EMBEDDINGS OF REGULAR

SEMIGROUPS

BY

MARIO PETRICH

Abstract. In a previous paper, the author has introduced a number of homo-

morphisms of an arbitrary semigroup into the translational hull of certain Rees matrix

semigroups or orthogonal sums thereof. For regular semigroups, it is proved here that

all of these homomorphisms have the property that the image is a densely embedded

subsemigroup, i.e., is a densely embedded ideal of its idealizer, and that the corre-

sponding Rees matrix semigroups are regular. Several of these homomorphisms are

1-1, in each case they furnish a different dense embedding of an arbitrary regular semi-

group into the translational hull of a regular Rees matrix semigroup or orthogonal

sums thereof. A new representation for regular semigroups is introduced.

1. Introduction and summary. We have constructed in [7] a number of homo-

morphisms from an arbitrary or regular semigroup S into the translational hull of

a regular Rees matrix semigroup T, where T is either the trace of a regular ^-class

D of S or certain other regular Rees matrix semigroups associated either with D or

with S. Some of these homomorphisms (or their sums) are embeddings of S into

the translational hull (or their direct product) and, for certain classes of semi-

groups, some are closely related to irreducible representations by matrices over a

field, transitive representations by partial transformations, etc.

This paper is essentially a supplement to [7] ; for the sake of economy, we will

not repeat any definitions, notation, or results that can be found in that paper. We

prove here that for a regular semigroup S, letting <p: S-^ B stand for any of the

homomorphisms of S constructed in [7], S<p is a densely embedded ideal of its

idealizer iB(Scp) in B. For the case when <p is 1-1, iB(S<p) then furnishes a (natural)

isomorphic copy of the translational hull Q(5) of S. In §2 we prove this for

Xd '■ S -»■ Ü.(TD) where TD is the trace of the S'-class D, and for the sum x of all xd-

We perform a similar analysis in §3 for t¡D : S -> Q(FD) where FD is the fragment of

D, the sum £ of all £D, and for (68: S-+£l(F) where Lis the fragment of S. In §4

we construct a homomorphism e of an arbitrary semigroup, which has as special

cases r? and 8a of [7], and for a regular semigroup prove that e is an into isomorphism

with the property stated above.

We now recall a minimum of needed definitions. If S is an ideal of a semigroup
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V, then V is an extension of S; F is a dense extension of S if the equality con-

gruence on V is the only congruence on V whose restriction to S is the equality on

S; if F is a maximal (under inclusion) dense extension of S, then S is a densely

embedded ideal of V. If A is a subsemigroup of a semigroup B, then the idealizer of

A in B is given by iB(A) = {b e B \ ba, ab e A for all a e A}; if ^ is a densely em-

bedded ideal of iB(A), then ^4 is a densely embedded subsemigroup of P. If 9 is an

isomorphism of S into P and S<p is a densely embedded subsemigroup of B, we say

that ¡pisa í/eníe embedding of 5 into P and also that S can be densely embedded into

B.

Theorem. A weakly reductive semigroup S is a densely embedded ideal of an

extension V if and only if the canonical homomorphism t. V^ Q(S), defined by

t:v-> (A„|s, p„ls) where A„ and pv are inner translations of V induced by v, is an

isomorphism of V onto Q.(S).

(See [2, §1] and [4, §3].)

This theorem is crucial for most of the proofs in this paper. In fact, for a regular

semigroup 5 and a certain homomorphism <p : S -> B, in order to show that S<p is a

densely embedded subsemigroup of P, viz., that Scp is a densely embedded ideal of

iB(S<p), we prove that the canonical homomorphism t: iB(S<p) -> i2(S<p) is 1-1 and

onto. We will apply this idea and the above theorem without further mention.

Densely embedded ideals and subsemigroups play an important role in the study

of various semigroups of (partial) transformations on a set, endomorphisms of a

vector space, binary relations, several other "concrete" semigroups, and other

algebraic structures (see [3]). A precedent in the theory of abstract semigroups which

is the nearest analogue of some of the results in this paper is [8, 6.2].

2. Trace. The results in this section supplement those in [7, §3] and heavily

depend upon them. We start with the trace of a i^-class of a regular semigroup.

Theorem 1. For any 3-class D of a regular semigroup S, SxD & a densely em-

bedded subsemigroup of fl(PD).

Proof. We will show that the canonical homomorphism

Td- ÍcktdÁSXd) -*■ &(Sxd)

is 1-1 and onto.

1. To prove that td is 1-1, we suppose that to, oí' e ÍcxtD)(Sxd) have the property

ojtd = oj'td. Then in Q(TD) we have

"(sXd) = <»'(sxD),       (sxd)"> = (sxdW       (s e S),

or, writing co=(X, p), w' = (\', p), sxD=(X>, ps), it follows that

(1) AAS = A'AS,       p*p = psP'       (s e S).

Now letting a\ = (a, <p) (recall that A(l ; i, p) = (cpi; ai, p) if A(l ; i, fO^O, and a0 = 0)
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and aA' = (a', <p') as in (4) of [6], using (6) of [6] and the definition of Xs in [7, §3],

we obtain

XXs(a; i, p.) = X(r'jSrta;j, p.) = ((<pj)r'}sria; eg, p.)

if sHn = Hjy and /' e da, and 0 otherwise, and analogously

A'As(a; /, p) = ((q>'j)r',sria; a'j, p.)

if sHa = Hjy and j e da, and 0 otherwise. Since 5 is regular, for every pair i, j of

indices in / an se S can be found for which sHiy = Hjy. Since by (1) we have

AAS = A'AS, it then follows that j eda o je da', so that da = da, and hence also

aj=a'j and cpj=<p'j for alljeda. Consequently a = a' and <p = <p' which implies that

A=A' since a is 1-1. Similarly the second equation in (1) implies that p = p, and

hence o> = w'. Therefore td is 1-1.

2. To prove that rD is onto, we let (A', p) e í2(Syd) and must find (A, p) e

ÍcktdÁSxd) S ß(rD) such that

(2) A'(A», p°) = (A, p)(X°, pO = (AÁ* PP*)       (s e S),

(3) (A*, p*)p' = (X\ p°)(X, p) = (À'À, p'p)       (s e S).

For every s e S, write irs = sxD = (As, ps). Let C be any subset of S intersecting each

congruence class of ker vD exactly once, and for every s e S, let s, s e C be defined by

AV   =   7TS, TTSp    =   77*.

Next define

da = {je I\ sHjy = Hjy, s Hn = Hkl for some s e S, k e I},

«/' = k>   9J = {r'kSrjXr'jSrjY1 if sHn = Hn, SHn = //fcl,

dß = {ve A\ Hlvt = Hlv, HyJ = Hle fox some í e S, 6 e A},

vß =6,    v^ = (qvtq'v)-\qM) ÏÏHivt = Hiv, HyJ = 7/le.

We will show that (A, p), where aX = (a, <p) and /ja = (¡/>, ß), has the desired properties.

Recall that (s, t) e ker xd if and only if for any de D,

dsS&dox dtS/td^ ds = dt   and   sdSC d or td ¿f d => sd = td.

3. To show that a and <p are single valued, we suppose that sHjy = H¡y,

sHjy = Hkl and tHjy = H¡y, iHjy = Hnl. Then sr¡ M tr¡ and hence STj = trjU, tr¡=srjV

for some w, v e S so that

„>i   =   TfVi   =   (A'77S)77ri   =   AYttV')   =   A'77Sri

(4)
=   W   =   A'(7r(77riU)   =   (AV)77r.U   =   77£77riU   =   TtV.

Since sr¡ e Hkl, we have sr} «5? e so that sr¡ = srje. On the other hand, (4) implies

that (5/7, ir-ù) e ker xd which together with sr¡ 3? e implies that (sr¡)e = (trju)e.

Consequently sr¡ = ír¡(ue); similarly irj = srj(ve) and hence sr¡¿% tr¡ which implies



336 MARIO PETRICH [April

that k = n and hence that a is single valued. Further, we may suppose that u e HXi

since HjXHxl = HjX and obtain

(r'kSr^r'jSr,)-1 = (r'ktr•jue)(r',trfit)'~x = (/Jr^uu'^r^rj)'1 = (/fcfrí)0k"V)~1

which implies that <p is single valued. An analogous argument shows that both 4>

and ß are single valued.

4. To establish that A and p are linked, by [6, Theorem 3] we must show:

sHjx = Hjx, sHjx = Hkx for some se S and qvrk e Hxx

(5) o HXvt = HXv, HXJ = Hxe for some t e S and qer, e Hxx

* (q^yr'^r^srj)-1 = (qJq'.y^qJq'eXqerj).

Suppose that sHjX = HjX, sHjX = HkX, qyrk e H1X. Let t e S be such that Hlvt = Hlv;

then

,r" = ,rV = 7r*(AV) = (ttW = tt1tts = tt's

whence nq^Sri = -n''^sri where (qvt)(srj)e HXvHkX = Hxx since qvrkeHxx. Hence

e =Sf (q¿sr¡)e which together with (qvtsr„ qjsr,) e ker xd implies that (qvtsr¡)e

= (qjsr,)e. But then qvtsrj=qjsrj since r¡£ue implies rie=r/. Consequently

qjsr, e H1X which implies that Hlvisrj = Hxl. It follows that HxJ=Hxe for some

6 e A by [1, Lemma 3.15 (ii)]. Further, qe e HXvi and r¡ e sH]X so that HxJsr¡ — Hxx

implies that qBr¡ e Hxx. We have proved: HXvt = Hlv, H1J=H1B for some t e S and

qer¡ e Hxx ; the converse implication in (5) is proved analogously.

Suppose next that the two equivalent statements in (5) hold. We have seen that

qvtsr¡=qjsrr Since qvt e Hlv, we have qvt ££ f so that qvt=qvtfv and f=q'vqv and

thus qvt=qvtq'vqv; similarly srj = rjr'jsrj. Consequently

(qMiXlvSr,) = (q,t)(sr,) = (qJr^r'jSrj),

and since r¡sr„ qvtq'v e Hxx, it follows that (qvsrj)(r'jsrj)~1 = (qvtq'v)~1(qvtr,). Further

srfeHkl implies that sr¡^ek which together with ek = rkr'k implies srj = eksrj,

= rkr'ksr,; similarly qj=qjq'eqe. Therefore

(qvrkXr'kSr^r'jSrj)-1 = (?v^) ~ Htfv^Xtfe'V)

which completes the proof of (5) and shows that (A, p) e £1(TD).

5. We prove next the first part of (2), viz., AAS = AS. On the one hand

AAs(a; i, p) = X^sr^a-J, p) = ((<E/')(/>,)a; «A p)

= ((r'JriWitr^-^r'iSr^a; k, p)

if sHiX = HjX, tHn = Hn, tHjX = HkX, and 0 otherwise, and on the other hand

As(a; i, p) — ((r¡sri)a; I, p) if sHiX = Hlx, and 0 otherwise. Hence we must prove

sHiX = H,x and tHjX = HjX, iHlX = HkX for some t e S
(6)

osHix = Hkx => (r'kirjXr'jtrJ-^r'jSri) = rksr¡.
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Suppose that sHiy = H¡y, tH¡y = H¡y, îHn=*Skl. Then tru r¡ e sHn and hence

tr¡=sriv for some ve Hyy since HnHyy=Hn. Consequently 7riri = i7sri" so that

TTiri = TrSrtv and thus (fry, sr¡v) e ker vD. Since tr¡^C e, we conclude as before that

irJ = irje = srive = srlv. Here r¡v e HiyHyy — Ha and tr¡ e Hkl and hence sHn = Hkl as

desired.

Conversely, suppose that sH¡y = Hkl. Then As(a; i, /x)^0, and since S is regular,

s=sds for some «f e S. Hence

0 # A5(a; /, M) = ns(a; i, p) = (AV)(a; i, p.) = (AVK[As(a; i, p.)],

which implies that Xs(a;i, p.)^0 so that sHa=Hn for some je I. There exists

ueS such that vHjl = Hil. It follows easily that Trsvri = TTSvri, further svr¡ e svHfl

= sHiy = Hkl, and as before we conclude that svrj = svrj so that svHn=svHn

= sH(1 = Hky. Therefore t = sv is the desired element which proves the converse

in (6).

Suppose next that the equivalent statements in (6) are satisfied. Hence sHa = tHn

so that srt = tu for some ueHn. As before we conclude that sr{ = iu and that

u=eju = r1r'ju which yields

(r'kir¡Xr,,tri)-1{r'jsri) = (rítr^tr^WÜ)

= {r'Jr^r'jtrjY^r'jtrjYjU

= {rlfrjYjU = r'Ju = r'ksri.

Therefore AAs = Aä.

6. We now prove the second part of (2), viz., pps—pi. On the one hand

(a; i, p,)pps = (a(qutq'u)'1(qjq'g); i, 6)ps = (a(qutq'u)-1(qJq'e)(qesq'Y); i, y)

if Hlßt = Hlu, HyJ = Hig, Hyes = Hyy, and 0 otherwise, and on the other hand

(a; i, p.)ps = (a(qllsq'6); i, 8) if Hlus = H16, and 0 otherwise. Hence we must prove

Hlut = Hllt, HyJ = Hie for some t e S and H1$s = Hly

o Hlus = Hyy => (qJq'nYKqJq'eKqeSq'y) = qusq'y.

Suppose that Hlut = Hlu, Hluî=Hie, Hies = Hly. We have seen above that

7rts=7r's so that (ts, îs) e ker xd- Since qjs e HyJs = Hlgs = Hly and (quts,qjs)

e ker vD, similarly as before we conclude that quts = qjs. Consequently

HyuS  =   HyJS   =   HyJS  =   HyeS  =   Hyy.

Conversely, suppose that Hltis = Hly. There exists teS such that Hllit = Hlll.

Then Hyuts = Hly and similarly as before we conclude that qjs=quts and thus

HyJs = Hly. Hence by [1, Lemma 3.15 (ii)] we have that HyJ=Hie for some 6 e A

and thus also Hies = Hly.

Now assume the validity of the two equivalent statements in (7). Since qj e Hie,

we have qJ^Cfi which together with fg=qéqe implies qj=qjq'eqe',  similarly
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qj e HXu   implies  qu.t=qíltq'llqll.   We have  seen  above  that  qjs=quts  so  that

(qjq'e)(qesq'y) = (qutq'ß)(qtisq'y) where each expression in parentheses is in Hxx. Thus

(qjqlY^Jq'eyqasq'y) = qM,

which completes the proof of (7). Therefore pps = ps.

7. In 5 and 6 above, we have established (2); formula (3) follows anal-

ogously. Therefore (A, p)rD = (A', p) which proves that r¡ maps ÍchtdASxd) onto

Q(Sxd) and completes the proof of the theorem.

We now consider the sum x of xd as D ranges over the index set A of all ^-classes

of a regular semigroup.

Theorem 2. For S any regular semigroup, x '* a dense embedding of S into

nD6A a(TD).

Proof. Let ^inoeifKTiifô)^^) he the canonical homomorphism, we

must show that t is 1-1 and onto. Suppose that o)t = o>'t. Then

oj(sx) = o>'(sx),       (sx)oj = (sx)a>'       (s e S),

or, writing <o = (a>D)DeA, oj' = (co'd)D€A where toD, a>'D e incrD)(SxD) for every D e A, we

have

°>d(sxd) = u>'d(sxd),       (sXd)ud = (sXd)<»'d       (seS, De A).

For a fixed D e A, it follows by Theorem 1 that wD = w'D which then implies that

o) = (x>'. Therefore r is 1-1.

To prove that t is onto, we let (A', p) e ü(Sx) and must find w e i nD6i n(rD) (Sx)

such that

(8) \'(sx) = w(sx),       (sx)p' = (sx)»       (seS),

or, writing w = ((\D, pD))DeA, sx = (sxd)d^ = ((^d, Pd))dsa,

(9) \'(sx) = ((ADAS, pDph))DsA,        (sxV = ((AJ,AB, p°DPD))DeA       (s e S).

Since x is 1-1, for every s e S, we may define s and s by

A'fo) = $X>       (sx)p = *P-

Formulae (9) written componentwise then become

(10) A¿ = \D\%,   psD = PdPsd,    \h = A^AD,    pí = psdPd   (seS,De A).

For a fixed D e A, we define (a, <p) and (i/>, ß) as in the proof of Theorem 1 and let

a\D = (a, <p), pDb = (ifi, ß). Following the same steps as in the part of the proof of

Theorem 1 after the definitions of (a, <p), (</>, ß), and, in fact, going through the same

proof except for the simplifications arising from the fact that x is 1-1, one shows

that (AD, pD) e £1(TD) and that all the formulae in (10) hold. Consequently (9) also

holds and thus a> = ((AD, pd))Dea satisfies the two equations in (8), which proves that

<ut=(A', p). Therefore t is onto.

The next corollary sharpens [7, Theorem 2].
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Corollary. Every regular semigroup can be densely embedded both into the

direct product of the translational hulls of the traces of its different ^-classes and into

the translational hull of its trace.

Proof. This follows from Theorem 2 and the proof of [7, Theorem 2].

3. Fragment. The results here supplement those of [7, §4] and depend upon

them.

Theorem 3. For any 2-class D of a regular semigroup S, SÇD is a densely em-

bedded subsemigroup of 0(LD).

Proof. We must show that the canonical homomorphism rD: iniFD)(SijD)->-

Q(S£D) is 1-1 and onto.

Suppose that o>, w' e in(FD)(S(D) have the property wtd = uj'td. Then letting

co = (X, p), cu' = (A', p) and aX = a, aX' = a' as in (4) of [6], we get for any IeLy and

u an inverse of /,

AA'(1 ; ul, r) = X(l ; I, r) = (1 ; al, r) if I e da, and 0 otherwise,

A'A'(1 ; ul, r) = X'(l ; I, r) = (1 ; a'l, r) if / e da', and 0 otherwise.

Since aj(lÇD) = a>'(l£D), it follows that AA^A'A' for all 1 eLy, which by (11) implies

that a = a whence A=A'. A similar argument proves that also p = p and thus

(o = (o'. Consequently rD is 1-1.

To show that td is onto, let (X', p) e Q.(S(D). Let C be any subset of S inter-

secting each congruence class of ker (D exactly once, for every se S write 77s = j£D

= (AS, ps), and let s,seCbe defined by AV = tts, ttsp'=ttí. Next define

da = {/ e Ly | si = /, si e Ly for some s e S},

al = si if sl = I eLy, sie Ly,

dß = {r e Ry | rt = r, rî e Ry for some t e S},

rß = rî if rt = r e Ry, rî e Ry.

We will show that (A, p)rD = (A', p') where aX = a, pb = ß. First note that (s, t) e ker ÇD

if and only if for any l e Ly: si e Ly or tl e Ly => sl= tl and for any r e Ry : rs e Ry or

rt e Ry => rs = rt.

Suppose that l=sl=tl with /, si, il eLy. Then 77^ = 77" so that tt^t^' and hence

(si, il) e ker (D. Since l, si, il, e e Ly, it follows that sl=(sl)e = (il)e=il, which

proves that a is single valued; similarly ß is single valued.

To show that A and p are linked, by [6, Theorem 3] we must prove that for any

I eLy, re Ry,

sl = l, sie Ly, rsl = e for some s e S
(12)

o rt = r, rî e Ry, rîl = e for some t e S.
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Suppose that sl= I, si e Lx, rsl= e, with le Lx, r e Rx. Then nfl = -nHl = -nrsl = -ne so that

(fl, e) e ker fD. Since /, e e Lx, we obtain rl=rle = ee = e. Let u be an inverse of r,

and let t = ur. Then rt = r and hence (ri, r) e ker £D. Since /, fl eLx, it follows that

rîl=fl and hence rîl=e. Further, r, e e Rx implies that r = er so rî=e(rî) which

together with e = (rî)l implies that rî&t e and thus ríe Rx. We have proved that

rt = r, rîeRx, ril=e; the converse implication in (12) is established analogously.

Consequently (A, p) e Q(FD).

For any s e S, we have

AAS(1 ; /, r) = (1 ; isl, r) if si, isl e Lx, tsl = si for some t e S, and 0 otherwise,

Aä(l ; l,r) = (I; si, r) if si e P,, and 0 otherwise.

If si, isleLx and tsl=si, then (tsl, si) e ker |D and thus si=sie = isle = isleLx.

Conversely, suppose that si e Lx, let u be an inverse of s, and t = su. Then tsl=si and

hence (fa/, í/) e ker £D, and similarly as above, we conclude that tsl=sleLx. It

follows that tsl & I which yields si 3? I, that is, sleLx. Consequently AAS = AS.

Further

(1 ; /, r)pps = (1 ; /, ris) if rî, ris e Rx, rt = r for some t e S, and 0 otherwise,

(1 ; /, r)ps = (I; I, rs) if ri e P,, and 0 otherwise.

An argument similar to the preceding one shows that pps = ps. A dual proof

establishes AsA = Aä and psp = p° which proves that (A, />)td = (A', p').

We consider next the sum f of all £D.

Theorem 4. For any regular semigroup S, f is a dense embedding of S into

Ud^a &(FD).

Proof. The argument here is entirely analogous to that in the proof of Theorem 2

if we substitute x by f and use Theorem 3 instead of Theorem 1. For the definitions

of 6 and 8, see the proofs of [7, Lemma 1] and [7, Lemma 3], respectively.

Theorem 5. For any regular semigroup S, ¿¡68 is a dense embedding of S into

Q(P).

Proof. First note that by [7, Lemma 1 ] and Theorem 4, we have that K= S£8 is a

densely embedded ideal of /nW)(A') where A/=2dea © FD. Hence PS is a densely

embedded ideal of

(W>(*))S = iniFÂKS) n (Q(AO)S.

Thus to prove the theorem, it suffices to show that iniF)(K8) is a dense extension of

K8. Recall that for any s e S,

SÍ68 = (At, piWeS - (Xs, ps)8 = (<p\ f)
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where Xsx=XsDx and xps = xpsD if xeFD, As0 = 0ps = 0, and

f = jrn; u Lf, u *?; p),     p = (Pn)
\       DeA DeA /

with Pn=l if r e R%, leLf, rl=eD for some DeA, and 0 otherwise, and for any

(1 ;l,r)e F, <ps(l ; I, r) = (l ; asDl, r) if leL?, a(As|FD) = a|,, Ie dasD, and 0 otherwise,

and a corresponding expression for (1 ; /, r)>ps, <ps0 = 0«/<s = 0.

Now suppose that (A, p), (A', p) e iñ(F)(K8) have the property

(A, p)(,p°, f) = (A', p')(<p\ n       (<p\ «(A, p) = (9\ 0S)(A', p)       (s e S),

so that

A<ps = Ay,    pi/js = p'<ps,   <psX = <psX',   xjjsp = <psPs   (s e S).

Let I eLy and u be an inverse of /. Then uleLy and lettingaX = a, aX' = a', we obtain

A<p'(l ; «/, r) = (1 ; a/, /-) if / e </a, and 0 otherwise,

A'<p!(l;ul,r) = (I; a'I, r)if /e</a', and 0 otherwise.

It follows that a = a and hence A = A'; similarly p = p which proves that (A, p)

= (A', p). Therefore ia^(K8) is a dense extension of A"S. Since iniF)(K8) n (C1(N))8

is a maximal dense extension of K8, it follows that í£5(f)(/«'S) = (/í2W)(A^))8. Therefore

A^S is a densely embedded ideal of iWF-)(K8) and thus a densely embedded sub-

semigroup of Í2(L).

The next corollary sharpens [7, Theorem 5].

Corollary. Every regular semigroup can be densely embedded into

(i) the direct product of the translational hulls of the fragments of its different

^-classes,

(ii) the translational hull of the orthogonal sum of the fragments of its different

^-classes,

(iii) the translational hull of its fragment.

4. Another representation of a regular semigroup. In [7, §§5 and 6] we have

introduced representations of a regular semigroup S using the «á? and £% equiva-

lences on 5 (into the contour of S) and using a semilattice congruence on S. We

now introduce a "common ancestor" to both of these representations by making

use of conditions (Tr) and (T¡) stated in [5, Chapter II, §1] and refer the reader to

this source for further applications of these conditions to representations of

regular semigroups. In the discussion that follows and in Proposition 1, the semi-

group S need not be regular.

Let y and 8 be binary relations on S satisfying the conditions :

(13) a 8 abe o a 8 ab, ab 8 abc       (a, b, c e S),

(14) a y cbao a y ba,bay cba       (a, b, c e S).
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Let A=JÍ°(l; S, S; P) whereP = (/7a6)isan Sx S matrix with pab=l if a 8 ab und

b y ab, and 0 otherwise. For every se S, define the functions As and ps on A by

As(l ; x, y) = (1 ; sx, y) if x y sx, and 0 otherwise,

(1 ; x, y)ps = (I ; x, ys) if y 8 ys, and 0 otherwise,

As0 = 0PS = 0,

and let e: s ^ (Xs, Ps) (s e S).

Proposition 1. For any semigroup S, e is a homomorphism of S into Q.(A) and

ker (eTTp) — {(s, t) | if x e S and either x 8 xs or x 8 xt, then xs = xi).

Proof. The proof that As is a left translation and that ASA4 = Asi is almost the same

as in [7, Theorem 3] ; the case of right translations is dual. An obvious modification

of the corresponding part of the proof of [7, Theorem 6] shows that As and ps are

linked and that ker («rp) is the one given in the statement of the proposition.

It is clear that [7, Theorem 6] corresponds to the case y = 3? and 8 = 0t, and [7,

Theorem 7] to the case y=8 = a. These theorems are further sharpened in the

following more general result.

Theorem 6. Let S be a regular semigroup, let y and 8 be reflexive binary relations

on S satisfying conditions (13) and (14), respectively, and let A and e be as defined

above relative to y, 8. Then A is a regular Rees matrix semigroup and e is a dense

embedding of S into Q(A).

Proof. Let a e S and let b be an inverse of a. Then a 8 aba so that a 8 ab; also

b y bab so that b y ab. Consequently pab = 1 and similarly pba=l ; hence the sand-

wich matrix P of A is regular. Suppose next that (s, t) e ker e. Then for any inverses

s' and t' of s and t, respectively, using the expression for ker (e-nP) in Proposition 1

and its dual for ker (e-nA), we obtain: s' 8 s'ss' implies s' 8 s's and hence s't = s's and

similarly t's = t't; dually ts'=ss', st' = ss'. Consequently

s = ss's — ts's = tt'ts's = tt'ss's = it's = tt't = t.

We will show again that the canonical homomorphism t : iauÁ^E) ~* ^(Se) is

1-1 and onto. The proof that t is 1-1 is almost identical to the proof in Theorem 3

that rD is 1-1. To show that t is onto, we let (A', p) e Q(Se). Since e is 1-1, for every

s e S, we may define s and s by X'(se) = se and (se)p' = se. Now define

da = {sx e S | x y sx},     a(sx) = sx if x y sx,

dß = {yteS\y8 yt),     (yt)ß = yîify8 yî.

We show next that (A, p)r = (X', p) where aX = a, pb = ß. Since e is 1-1, it follows

easily that sx = sx. Hence if sx = ty, then sx=sx = ty = iy and a is single valued;
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similarly ß is single valued. To show that A and p are linked, we let (1 ; x, y),

(1 ;z,w)e A. There exist e,fe S such that y=ye, z=fz, and hence

(1 ; x,y)[X(l; z, w)\ = (l;x,y)[X(l;fz, w)\ = (1 ; x, w)

if z yjz, y 8 yfz, fz y yfz, and 0 otherwise ; similarly

[(1 ; x, y)P](l ;z,w) = [(1 ; x, ye)P](l ; z, w) = (1 ; x, w)

if y8yê, yê 8 yêz, zyyêz, and 0 otherwise. Taking into account that yfz=yefz

=yêfz=yêz and the conditions on y and S, it follows immediately that each of the

sets of conditions z yfz, y 8 yfz, fz y yfz and y 8 yê, yê 8 yêz, z y yêz is equivalent

to y 8 yêz, z y yêz. Therefore (A, p) e Q.(A).

Further,

AAS(1 ; x, y) = (1 ; sx, y) if x y sx, x y sx, and 0 otherwise,

Aä(l ; x, y) = (l; sx, y) if x y sx, and 0 otherwise.

Let xy sx and let e be a left identity of s. Then xy sx and sx y esx imply x y esx.

But then x y êsx which in turn implies that x y sx. Consequently, it follows from

(15) that AAs = Aä.

Let y e S and let/be a right identity of y; then

(1 ; x, y)Pps = (1 ; x, yfs) if y 8 yf, y/8 yfs, and 0 otherwise,
(16)

(1 ; x, y)ps = (l;x, ys) if y 8 ys, and 0 otherwise.

Noting that yfs=yfs=ys, (16) immediately yields that pps = ps.

A similar proof shows that  ASA = AS" and psp = p§, which then implies that

(A, p)r = (X', p') and completes the proof.

Corollary. Every regular semigroup can be densely embedded into the trans-

lational hull of its contour.
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