TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 155, Number 2, April 1971

CERTAIN DENSE EMBEDDINGS OF REGULAR
SEMIGROUPS
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Abstract. In a previous paper, the author has introduced a number of homo-
morphisms of an arbitrary semigroup into the translational hull of certain Rees matrix
semigroups or orthogonal sums thereof. For regular semigroups, it is proved here that
all of these homomorphisms have the property that the image is a densely embedded
subsemigroup, i.e., is a densely embedded ideal of its idealizer, and that the corre-
sponding Rees matrix semigroups are regular. Several of these homomorphisms are
1-1, in each case they furnish a different dense embedding of an arbitrary regular semi-
group into the translational hull of a regular Rees matrix semigroup or orthogonal
sums thereof. A new representation for regular semigroups is introduced.

1. Introduction and summary. We have constructed in [7] a number of homo-
morphisms from an arbitrary or regular semigroup S into the translational hull of
a regular Rees matrix semigroup 7, where T is either the trace of a regular Z-class
D of S or certain other regular Rees matrix semigroups associated either with D or
with S. Some of these homomorphisms (or their sums) are embeddings of S into
the translational hull (or their direct product) and, for certain classes of semi-
groups, some are closely related to irreducible representations by matrices over a
field, transitive representations by partial transformations, etc.

This paper is essentially a supplement to [7]; for the sake of economy, we will
not repeat any definitions, notation, or results that can be found in that paper. We
prove here that for a regular semigroup S, letting ¢: S — B stand for any of the
homomorphisms of S constructed in [7], Sp is a densely embedded ideal of its
idealizer ig(Sp) in B. For the case when ¢ is 1-1, iz(Sp) then furnishes a (natural)
isomorphic copy of the translational hull Q(S) of S. In §2 we prove this for
xp: S — Q(Tp) where T}, is the trace of the Z-class D, and for the sum y of all x,.
We perform a similar analysis in §3 for £,: S — Q(Fp) where Fp, is the fragment of
D, the sum £ of all £, and for £65: S — Q(F) where F is the fragment of S. In §4
we construct a homomorphism e of an arbitrary semigroup, which has as special
cases m and 8, of [7], and for a regular semigroup prove that ¢ is an into isomorphism
with the property stated above.

'We now recall a minimum of needed definitions. If S is an ideal of a semigroup
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V, then V is an extension of S; V is a dense extension of S if the equality con-
gruence on V is the only congruence on ¥ whose restriction to S is the equality on
S; if V is a maximal (under inclusion) dense extension of S, then S is a densely
embedded ideal of V. If A is a subsemigroup of a semigroup B, then the idealizer of
A in B is given by ix(A)={be B | ba, ab e A for all ae A}; if A is a densely em-
bedded ideal of igz(4), then A is a densely embedded subsemigroup of B. If ¢ is an
isomorphism of S into B and Sy is a densely embedded subsemigroup of B, we say
that ¢ is a dense embedding of S into B and also that S can be densely embedded into
B.

THEOREM. A weakly reductive semigroup S is a densely embedded ideal of an
extension V if and only if the canonical homomorphism v: V — Q(S), defined by
7: 0= (Ay puig) Where A, and p, are inner translations of V induced by v, is an
isomorphism of V onto (S).

(See [2, §1] and [4, §3].)

This theorem is crucial for most of the proofs in this paper. In fact, for a regular
semigroup S and a certain homomorphism ¢: S — B, in order to show that S is a
densely embedded subsemigroup of B, viz., that Se is a densely embedded ideal of
is(Sp), we prove that the canonical homomorphism 7: iz(Sp) — Q(Se) is 1-1 and
onto. We will apply this idea and the above theorem without further mention.

Densely embedded ideals and subsemigroups play an important role in the study
of various semigroups of (partial) transformations on a set, endomorphisms of a
vector space, binary relations, several other ‘“‘concrete’’ semigroups, and other
algebraic structures (see [3]). A precedent in the theory of abstract semigroups which
is the nearest analogue of some of the results in this paper is [8, 6.2].

2. Trace. The results in this section supplement those in [7, §3] and heavily
depend upon them. We start with the trace of a Z-class of a regular semigroup.

THEOREM 1. For any D-class D of a regular semigroup S, Sxp is a densely em-
bedded subsemigroup of (Tp).

Proof. We will show that the canonical homomorphism

¢ by (Sxp) = Q(Sxp)
is 1-1 and onto.
1. To prove that 75, is 1-1, we suppose that w, o’ € igir,)(Sxp) have the property
wrp=w'tp. Then in Q(T,) we have

w(sxp) = w'(sxp),  (Sxp)w = (sxp)e’  (s€S),
or, writing w=(A, p), o' =(X, p'), sxp=(X%, p), it follows that
1) A =XX,  pp=pp (s€I).
Now letting aA=(c, @) (recall that A(1; i, ) =(ei; o, p) if A(1; i, u)#0, and a0=0)
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and a)’ =(«’, ¢') as in (4) of [6], using (6) of [6] and the definition of X*in [7, §3],
we obtain
AX(a; i, p) = Mrisria; j, 1) = ((@)rjsna; of; p)
if sHy; =H;;, and j € de, and 0 otherwise, and analogously
X'X(as i, p) = (Pf)risra; ', p)
if sHy; =Hj;, and j e do’, and 0 otherwise. Since § is regular, for every pair i, j of
indices in I an s€ .S can be found for which sH;, = Hj;. Since by (1) we have
A =X'Xs, it then follows that je do <> jedo’, so that de=do’, and hence also
of=o'j and @j=¢’j for all j € de. Consequently =o' and p=¢’ which implies that
A=)’ since a is 1-1. Similarly the second equation in (1) implies that p=p’, and
hence w=w’. Therefore 7, is 1-1.
2. To prove that 7, is onto, we let (X', p’) € Q(Sxp) and must find (A p) e
iﬂ(Tp)(SxD)c—: Q(TD) Sl.lCh that
¥)] X%, p) = (A, p)(X, p) = (AN, pp°)  (s€S),
3 X% 000" = (X, p)A, p) = (BA, p°p)  (s€S).

For every s € S, write #*=syp = (X%, p*). Let C be any subset of S intersecting each
congruence class of ker yp, exactly once, and for every s € S, let 5, § € C be defined by
Nt =2, m%p =7

Next define

do = {jel|sH; = H;;,§H,, = Hy, for some se S, kel},

aj = k, (Pj = (r;;jrj)(r;srj)—l if SHH = Hll) .S-'Hjl = Hkl’

dB = {ve A | H,,t = H,,, H,,f = H,, for some te S, 6 € A},

Vﬁ = 0, V‘/’ = (qvtq\'r)-l(qqué) if Ht = Hlv’ Hlvi = H,.
We will show that (A, p), where aA = («, ¢) and pb=(, B), has the desired properties.
Recall that (s, #) € ker y,, if and only if for any d e D,

dsRdordtR#d=ds=dt and sdLdortd ¥ d= sd = td

3. To show that o and ¢ are single valued, we suppose that sH;,=Hj,
§H;,=Hy, and tH;;=H},, iH;,; = H,,. Then sr; #Z tr, and hence sr,=tru, try=sryp
for some u, v € S so that

" = 2'n’s = (Na%)a"s = N(n®n"s) = N#™"

@ ’ ’ ’ L3 L
= X7t = X(#ta"*) = (N'a)n'st = ala' = =¥,

Since 3r; € Hy,, we have §r; £ e so that §r,=35r,e. On the other hand, (4) implies
that (5ry, fru) € ker xp which together with §r; Z e implies that (5r,)e=(iru)e.
Consequently 5r;=ir,(ue); similarly fr;=35r,(ve) and hence 3r; # fr, which implies
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that k=n and hence that « is single valued. Further, we may suppose that v € H;,
Since Hlell =Hjl and Obtaln

resr)(risr)) = = (refrjue)(ritrjn) =t = (refrpuu=2(ritr)) =t = (rifr))(ritr)) =t

which implies that ¢ is single valued. An analogous argument shows that both ¢
and B are single valued.
4. To establish that A and p are linked, by [6, Theorem 3] we must show:

sH;, = Hj;, §H;, = Hy, for some s € S and q,r, € Hy;
) < H,t = H,,, H,,f = Hy, for some t € S and g,r; € Hy,
= (g )(risry)(risr) ™t = (9,¢9:) " *(,195)(gor ).

Suppose that SHjl =Hj1, S‘Hjl =Hk1’ quk € Hll‘ Let te S be Such that Hlvt=H1v;
then

7 = #in’ = A7) = (a'p')n® = wln® = 7S

whence 7% =n%" where (q,t)(5r;) € Hy Hy = Hy, since gq,r, € H;;. Hence
e Z (q,tsr;)e which together with (q,t5r;, q,fsr;) € ker x, implies that (gq,t5r;)e
=(q,Isr))e. But then gq,tsr;=gq,fsr; since r; £ e implies re=r;. Consequently
q.isr; € H,; which implies that H,fsr,=H,,. It follows that H,,f=H,, for some
6 € A by [1, Lemma 3.15 (ii)]. Further, g, € H,,f and r, € sH}; so that H,,fsr;=H,,
implies that g,r; € H;,. We have proved: Hy,t=H,,, H,,f=H,, for some € S and
ger, € Hyy; the converse implication in (5) is proved analogously.

Suppose next that the two equivalent statements in (5) hold. We have seen that
q.t5r;=gq,fsr;. Since q,t € H,,, we have g,t Z f, so that ¢q,t=gq,tf, and f,=q,q, and
thus q,t=q,tq.q,; similarly sr;=r,risr;. Consequently

(@t0:)(qy5ry) = (q,)(5ry) = (qutrj)(rjsry),
and since rjsr;, q,tq, € Hy,, it follows that (g,5r,)(risr,) =t =(q,tq,) ~*(q.tr;). Further
§r; € Hy, implies that §r; # e, which together with e,=r.r; implies 5r;=e,sr,,
=r,rsry; similarly g,f=q,7q5q,. Therefore
(qyr)(ricdry)(risry) =" = (u195) ~*(9,1q6)(gor)
which completes the proof of (5) and shows that (A, p) € Q(Tp).
5. We prove next the first part of (2), viz., AA*= A% On the one hand
AX(a; i, p) = A(risras j, ) = (@)risra; o, p)
= ((ridr))(rjtry)~(rjsr)a; k, p)
if sHy=H;,, tHy=H;, iH;=H,,, and 0 otherwise, and on the other hand
N(a; i, p)=((risr)a; I, p) if $H;; = H);, and 0 otherwise. Hence we must prove
sHu = Hll and tHjl = Hjl’ t-Hjl=Hk1 for some t € S

<> §Hyy = Hyy = (ridr)(rjtry) = X(risr) = ridr.

(6)
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Suppose that sH;;=H;,, tH;;=H;;, iH;;=H,;. Then tr;, r;e sH;; and hence
tr;=srp for some ve H,, since H; H,;=H;. Consequently #'s==*" so that
#t=7"" and thus (fr;, §rv) € ker xp. Since ir, & e, we conclude as before that
fr;=ir;e=3rwe=35rp. Here riv € H;; H,, = H;; and ir; € Hy, and hence §H;, = H,, as
desired.

Conversely, suppose that $H;; = H,;. Then X(a; i, ©)#0, and since S is regular,
s=sds for some d € S. Hence

0 # X(a; i, p) = 7(as i, p) = (N'7)(a; i, p) = N7 [X(a; i, p)],
which implies that A%(a; i, ©)#0 so that sH;, =H;, for some je I. There exists
ve S such that vH,; =H,,. It follows easily that a5 =7%" further Svr; e svHj;,
=§H;,;=H,,;, and as before we conclude that svr;=5vr; so that svH; =5vH;
=§H,, = H,,. Therefore t=sv is the desired element which proves the converse
in (6).

Suppose next that the equivalent statements in (6) are satisfied. Hence sH;; =tH},
so that sr;=rtu for some u € H;;. As before we conclude that §r,=7u and that
u=-e;u=r,;rju which yields

(rifr)(rjtry) ~X(rjsr) = (rifry)(ritry) ~*(rjtu)
= (ridry)(rjtry) = *(ritrrju
= (ryir)riu = rifu = rgr,.
Therefore AX = A°.
6. We now prove the second part of (2), viz., pp*=p®. On the one hand

(a; i, Wpp® = (a(qutq,) ~*(qufas); i, 0)p° = (a(qutq,) *(4.95)(96593); i, ¥)

if Hy,t=H,,, H,,f=H,y, Hyos=H;,, and 0 otherwise, and on the other hand
(a; i, wp*=(a(q,5qs); i, 8) if H,,5=H,,, and 0 otherwise. Hence we must prove

H,,t = H,,, H,,f = H,, for some t € .S and Hyps = H,,

(7) - ’ ’ ’ -1
< Hy,§ = Hyy = (9,19,) 1 (9.796)(659)) = 9.59;-

Suppose that H,,t=H,,, H,,f=H,,, H.ss=H;,. We have seen above that
a=nt so that (25, fs) € ker xp. Since gq,fs € H,,fs=H,,s=H,, and (q,t3, q,f5)
€ ker xp, similarly as before we conclude that q,t5=¢,fs. Consequently

H]_”f = Hlutj = Hl,,fs = Hlos = Hl)"

Conversely, suppose that H,,5§=H,,. There exists t € S such that H,,t=H,,.
Then H,,t5=H,, and similarly as before we conclude that gq,is=gq,t5 and thus
H,,is= H,,. Hence by [1, Lemma 3.15 (ii)] we have that H,,f= H,, for some 6 € A
and thus also H,,s=H,,.

Now assume the validity of the two equivalent statements in (7). Since g,f € Hy,,
we have q,f.% f, which together with f;=ggq, implies g,f=q,fqsq,; similarly
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q,t € H,, implies g,t=q,tq,9,. We have seen above that q,fs=gq,t5 so that
(9.796)(9654;) = (4,29, )(q,59,) where each expression in parentheses is in Hy,. Thus

(9429.) ™ *(4,96)(96595) = 4,543,
which completes the proof of (7). Therefore pp*=p*.

7. In 5 and 6 above, we have established (2); formula (3) follows anal-
ogously. Therefore (A, p)7p=(X’, p) which proves that n maps igq,)(Sxp) onto
Q(Sxp) and completes the proof of the theorem.

We now consider the sum y of xp, as D ranges over the index set A of all 2-classes

of a regular semigroup.

THEOREM 2. For S any regular semigroup, y is a dense embedding of S into
].—.[DGA Q(T D)'

Proof. Let 7:i,_, aap (Sx) = Q(Sx) be the canonical homomorphism, we
must show that = is 1-1 and onto. Suppose that wr=w’r. Then

w(sy) = o'(sx),  (X)o = (sx)0’  (s€S),
or, writing w=(wp)pea, @' =(wp)pea Where wp, wp € inir,,(Sxp) for every D € A, we
have
wp(sxp) = wp(sxp),  (Sxp)wp = (Sxp)wp  (s€S, DeA).
For a fixed D € A, it follows by Theorem 1 that w,=wp which then implies that
w=w'. Therefore 7 is 1-1.

To prove that 7 is onto, we let (X', p') € Q(Sx) and must find w € i 1, _, arp (Sx)
such that

® N(sx) = wlsx),  (sx)p' = (x)o  (s€S),
or, writing w=((Ap, pp))peas 5X =(5Xp)pea=((Ad; Pb))pea;
) X'(sx) = ((ApAb, PpPD))pens (sx)p" = ((AbAp, PPD))DeA (seS).
Since y is 1-1, for every s € S, we may define § and § by
N(sx) = 5x  (sx)p’ = 3p.
Formulae (9) written componentwise then become
(10) A =225, pb = poph, Ab = XAy, pb = pbpp (s€S, DeA).

For a fixed D € A, we define (e, ¢) and (4, B) as in the proof of Theorem 1 and let
arp=(c, ), ppb=(, B). Following the same steps as in the part of the proof of
Theorem 1 after the definitions of («, ¢), (¢, B), and, in fact, going through the same
proof except for the simplifications arising from the fact that x is 1-1, one shows
that (Ap, pp) € Q(Tp) and that all the formulae in (10) hold. Consequently (9) also
holds and thus w=((Ap, pp))pea satisfies the two equations in (8), which proves that
wr=(X, p’). Therefore 7 is onto.
The next corollary sharpens [7, Theorem 2].
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COROLLARY. Every regular semigroup can be densely embedded both into the
direct product of the translational hulls of the traces of its different 2-classes and into
the translational hull of its trace.

Proof. This follows from Theorem 2 and the proof of [7, Theorem 2].

3. Fragment. The results here supplement those of [7, §4] and depend upon
them.

THEOREM 3. For any D-class D of a regular semigroup S, S¢p is a densely em-
bedded subsemigroup of Q(Fp).

Proof. We must show that the canonical homomorphism 75 ige,)(S€p) —
Q(S¢p) is 1-1 and onto.

Suppose that w, o’ € g,y (S€p) have the property wrp=w’rp. Then letting
w=(A, p), w'=(X, p’) and ar=e, aX’=0’ as in (4) of [6], we get for any /e L, and
u an inverse of /,

(1 ul,r)y = AM1;Lr) = (1; o, r) if ] € do, and O otherwise,

11
(1 NN ul,ry = N1 L, r) = (1; 'l r) ifl ede’, and O otherwise.

Since w(l¢ép) =w'(I€p), it follows that AX'= XA for all / € L,, which by (11) implies
that =« whence A=AX’. A similar argument proves that also p=p’ and thus
w=w'. Consequently 7, is 1-1.

To show that 7, is onto, let (X', p") € Q(S¢,). Let C be any subset of S inter-
secting each congruence class of ker £, exactly once, for every s € S write 7*=s¢,
=(X, p), and let §, § € C be defined by X'm*==*, #°p’ ==*. Next define

do = {leL,|sl =1 35leL, for somes e S},
ol =5lifsl =1leL,, sleL,,
d8 ={reR,|rt =r,rieR, forsomete S},
rB=rtifrt =reR,, rteR,.

We will show that (A, p)7,=(X’, p’) where aA=«, pb=B. First note that (s, ¢) e ker £,
ifand only if forany /e L,: sle L, ortle L, = sl=tland foranyre R;: rs€ R, or
rte R, = rs=rt.

Suppose that /=s/=tl with [, 5I, il € L,. Then #*'==" so that #*'==" and hence
(51, il) € ker £;,. Since [, §l, il e L,, it follows that §/=(5/)e=(#l)e=1il, which
proves that « is single valued; similarly B is single valued.

To show that A and p are linked, by [6, Theorem 3] we must prove that for any
leL, reR,,

sl =15leL,rsl = eforsomeseS

(12)

<rt=r,rte R, ril = eforsometeS.
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Suppose thatsi=1, 5l € L,, rsl=e, withl€ L,, r € R,. Then 7' = 7" = 7" = 2° 50 that
(7l, e) € ker £p. Since /, e € L;, we obtain //=Fle=ee=e. Let u be an inverse of r,
and let t=ur. Then rt=r and hence (rf, ) € ker £,. Since [, /l € L,, it follows that
ril=F#l and hence rfl=e. Further, r, e € R, implies that r=er so ri=e(rf) which
together with e=(rf)/ implies that rf # e and thus rf € R,. We have proved that
rt=r, rf € Ry, rfl=e; the converse implication in (12) is established analogously.

Consequently (A, p) € Q(Fp).
For any s € S, we have

AX(L; 0L r) = (1; isl, r)if sl, isl € Ly, tsl = sl for some ¢ € S, and 0 otherwise,
N(Q;Lr)= ;3 r)if 5le L,, and 0 otherwise.

If sl,isle L, and tsl=sl, then (isl, §]) € ker £, and thus §l=S5le=1isle=1isleL,.

Conversely, suppose that 5/ € L,, let u be an inverse of s, and ¢=su. Then ts/=sl and

hence (7s/, 51) € ker £, and similarly as above, we conclude that #s/=5/e L,. It

follows that 7s/ £ | which yields s/ .Z I, that is, s/ € L,. Consequently AX*= X,
Further

(1; 1L, r)pp* = (1; 1, ris) if ri, ris € Ry, rt = r for some ¢ € S, and 0 otherwise,
(1; 1, r)p* = (1; 1, r5) if r§ € R,, and 0 otherwise.
An argument similar to the preceding one shows that pp*=p®. A dual proof

establishes A*A=A* and p*p=p¢ which proves that (A, p)7p=(X’, p).
We consider next the sum ¢ of all ¢,

THEOREM 4. For any regular semigroup S, ¢ is a dense embedding of S into
[ Tbea Q(Fp).

Proof. The argument here is entirely analogous to that in the proof of Theorem 2
if we substitute y by £ and use Theorem 3 instead of Theorem 1. For the definitions
of 6 and &, see the proofs of [7, Lemma 1] and [7, Lemma 3], respectively.

THEOREM 5. For any regular semigroup S, £08 is a dense embedding of S into
Q(F).

Proof. First note that by [7, Lemma 1] and Theorem 4, we have that K=S¢60 is a
densely embedded ideal of igy,(K) where N=3 1., @ Fp. Hence K3 is a densely
embedded ideal of

(la(K))8 = iawr(K8) N (QN))S.

Thus to prove the theorem, it suffices to show that iy (K8) is a dense extension of
K3. Recall that for any s € S,

5£08 = (Xb, pp)peatd = (X', p°)8 = (¢°, §)



1971] CERTAIN DENSE EMBEDDINGS OF REGULAR SEMIGROUPS 341
where X*x=A,x and xp*=xp} if x € Fp, 2*0=0p*=0, and
F = Jl°(l; U L7, U R?;P), P = (pn)
DeA DeA

with p,=1if re R?, e L?, ri=e,, for some D € A, and 0 otherwise, and for any
;L) eF, ¢ L, r)=1;apl, r) if 1€ L?, a(X|p,)=0h, | € dof, and O otherwise,
and a corresponding expression for (1; 7, r)¢*, *0=04*=0.

Now suppose that (A, p), (X', p) € igw(K3S) have the property

A, )@ ¥°) = N, 0N 49, @, 8)A p) = (@)X, p)  (sES),
so that
Ap* = XNg®, pft = p'Ys, @A =X, P'p =4 (s€S)
Let /€ L? and u be an inverse of /. Then ul € L? and letting aA=«, aX’ =<', we obtain

Ap'(L; ul,r) = (1; o, r) if I € da, and O otherwise,
Ne'(L; ul,r) = (1; 'l r) if I € do’, and O otherwise.

It follows that a=«" and hence A=A’; similarly p=p’ which proves that (A, p)
=(X', p'). Therefore iq(K8) is a dense extension of K8. Since ig,(K8) N (Q(N))8
is a maximal dense extension of K3, it follows that ig(K8) = (iqw)(K))8. Therefore
K3 is a densely embedded ideal of ig(K3) and thus a densely embedded sub-
semigroup of Q(F).

The next corollary sharpens [7, Theorem 5].

COROLLARY. Every regular semigroup can be densely embedded into
(i) the direct product of the translational hulls of the fragments of its different
D-classes,
(ii) the translational hull of the orthogonal sum of the fragments of its different
D-classes,
(iii) the translational hull of its fragment.

4. Another representation of a regular semigroup. In [7, §§5 and 6] we have
introduced representations of a regular semigroup S using the % and # equiva-
lences on S (into the contour of S') and using a semilattice congruence on S. We
now introduce a ‘“common ancestor” to both of these representations by making
use of conditions (7;) and (T) stated in [5, Chapter II, §1] and refer the reader to
this source for further applications of these ‘conditions to representations of
regular semigroups. In the discussion that follows and in Proposition 1, the semi-
group S need not be regular.

Let ¥ and & be binary relations on S satisfying the conditions:

(13) a 8 abc < a 8 ab, ab 8 abe (a, b, ceS),
(14 ay cha <> ay ba, bay cha (a, b, ce S).
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Let A=4#°(1; S, S; P) where P=(p,;) is an S x S matrix with p,,=1if a 8 aband
b y ab, and 0 otherwise. For every s € S, define the functions A* and p* on 4 by

A(1; x, y) = (1; sx, p) if x y sx, and 0 otherwise,
(1; x, y)p* = (1; x, ys) if y 8 ys, and 0 otherwise,
X0 = 0p* =0,

and let e: s — (A%, p*) (s € S).

PROPOSITION 1. For any semigroup S, ¢ is a homomorphism of S into Q(A) and
ker (emp) = {(s, t) | if x € S and either x 8 xs or x 8 xt, then xs = xt}.

Proof. The proof that A* is a left translation and that A*Af=X* is almost the same
as in [7, Theorem 3]; the case of right translations is dual. An obvious modification
of the corresponding part of the proof of [7, Theorem 6] shows that A* and p* are
linked and that ker (emp) is the one given in the statement of the proposition.

It is clear that [7, Theorem 6] corresponds to the case y=.%¢ and §=%, and [7,
Theorem 7] to the case y=38=o0. These theorems are further sharpened in the
following more general result.

THEOREM 6. Let S be a regular semigroup, let y and 8 be reflexive binary relations
on S satisfying conditions (13) and (14), respectively, and let A and ¢ be as defined
above relative to y, 8. Then A is a regular Rees matrix semigroup and ¢ is a dense
embedding of S into Q(A).

Proof. Let a e S and let b be an inverse of a. Then a & aba so that a & ab; also
by bab so that b y ab. Consequently p,,=1 and similarly p,,=1; hence the sand-
wich matrix P of A is regular. Suppose next that (s, ¢) € ker e. Then for any inverses
5" and ¢’ of s and ¢, respectively, using the expression for ker (emp) in Proposition 1
and its dual for ker (em,), we obtain: s’ § s'ss’ implies s 8 s's and hence s't=s's and
similarly ¢'s=tt; dually ts'=ss’, st'=ss". Consequently

S = 88's = ts5's = tr'ts's = tt'ss's = tt's = 't = t.

We will show again that the canonical homomorphism 7: ig,,(Se) — Q(Se) is
1-1 and onto. The proof that = is 1-1 is almost identical to the proof in Theorem 3
that 75 is 1-1. To show that 7 is onto, we let (X', p") € Q(Se). Since ¢ is 1-1, for every
s € S, we may define § and § by X'(se)=S5e and (se)p’ =Se. Now define

do = {sx€ S| xysx}, oa(sx)=3xifxy3sx,
dB = {yteS|ydyt}, (yt)B=ytifysyi

We show next that (A, p)r=(X’, p’) where adl=e, pb=8. Since ¢ is 1-1, it follows
easily that §x=25x. Hence if sx=1y, then §x=3§X=7fy=1iy and « is single valued;
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similarly B is single valued. To show that A and p are linked, we let (1; x, y),
(1; z, w) € A. There exist e, f€ S such that y=ye, z=/z, and hence

(15 %, MIAA; z, w)] = (1; x, YIAL; f2, W] = (1; x, w)
if zy fz, y 8 yfz, fz y yfz, and O otherwise; similarly
(A5 x, )el(1; 2, w) = [(1; x, ye)pl(1; z, w) = (1 x, w)
if y 8 yé, yé 8 yéz, zy yéz, and 0 otherwise. Taking into account that yfz=yefz
=yéfz=yéz and the conditions on y and §, it follows immediately that each of the
sets of conditions zy fz, y 8 yfz, fzy yfz and y 8 yé, yé 8 yéz, z y yéz is equivalent
to y & yéz, z y yéz. Therefore (A, p) € Q(A).
Further,
15 AX(1; x, y) = (1; §x, y) if x y sx, x y §x, and 0 otherwise,
(15 X(1; x, y) = (1; 3x, y) if x y 5x, and 0 otherwise.

Let x y §x and let e be a left identity of 5. Then x y §x and §x y esx imply x y esx.
But then x y ésx which in turn implies that x y sx. Consequently, it follows from
(15) that Axs= X,

Let y € S and let f be a right identity of y; then

(1; x, y)pp* = (1; x, 3fs) if y 8 yf, yf 8 yfs, and 0 otherwise,

16
(16) (1; x, »)p* = (1; x, y5) if y 8 y5, and 0 otherwise.

Noting that yfs=yf§=ys, (16) immediately yields that pp*=p*.
A similar proof shows that A*A=Xf and p*p=pf, which then implies that
(A, p)r=(X', p’) and completes the proof.

COROLLARY. Every regular semigroup can be densely embedded into the trans-
lational hull of its contour.
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