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ON EMBEDDINGS WITH LOCALLY NICE
CROSS-SECTIONS(*)
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Abstract. A k-dimensional compactum X* in euclidean space E® (n—k=3) is
said to be locally nice in E™ if E®— X* is 1-ULC. In this paper we prove a general
theorem which implies, in particular, that X* is locally nice in E™ if the intersection
of X* with each horizontal hyperplane of E™ is locally nice in the hyperplane. From
known results we obtain immediately that-a k-dimensional polyhedron P in E™
(n—k=z3andn=5)istamein E™ if each (E*~* x {w})— P (w € E')is 1-ULC. However,
by strengthening our general theorem in the case n=4, we are able to prove this result
for n=4 as well. For example, an arc 4 in E* is tame if each horizontal cross-section
of A is tame in the cross-sectional hyperplane (that is, lies in an arc that is tame in the
hyperplane).

In this note we give a sufficient condition that a k-dimensional compactum X in
euclidean n-space E™ (n—k=3) have a i-ULC complement in E™. A principal
application of our result is that E"— X is 1-ULC provided each (E* " *x{w})— X
(we EY) is 1-ULC, where we consider E™ as E® "1 x E1,

THEOREM 1. Suppose that X is a k-dimensional compactum in E**'=E"x E*
(n=3 and n—k =2) such that for each w € E* and each ¢ >0 there exists an e-push h
of (E™*1, X) (see [4]) such that (E™ x{w})—h(X) is 1-ULC. Then E*** is 1-ULC.

THEOREM 2. Suppose that X is a 1-dimensional compactum in E* satisfying the
hypothesis of Theorem 1 and having the additional property that, for some 8>0, no
component of (E® x {w}) N X contains a nontrivial (Cech) l-cycle of diameter less
then & for any w € E*.

Then for each 2-complex K in E* and for each >0, there exists an e-push g of
(E*, X N K) such that g(K) N X= o&.

COROLLARY 1. Suppose that h,: M — Q (t € [0, 1]) is an isotopy of locally flat
embeddings of the topological m-manifold M in the interior of the topological q-
manifold Q (q—m=3). Then the embedding H: M x I — Q x I defined by H(x, t)
=(hy(x), t) is a locally flat embedding.
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COROLLARY 2. Suppose that A is an arcin E**! (n23) such that A N (E™ x {w})
has a 1-ULC complement in E™ x {w}. Then A is tame.

More generally, if for each w € E* there exists a small push h of (E™*1, A) such
that (E™ x {w})—h(A) is a tame subset of E™ x {w} of dimension <0, then A is tame.

CoROLLARY 3. If P is a k-dimensional polyhedron in E"** (n=23 and n—k 22)
such that (E™x {w})—P is 1-ULC for each w € E*, then P is tame.

COROLLARY 4. Suppose that X is a k-dimensional compactum in E™*!
(n=3,2k+1=n) and that f: X — E"* is an embedding such that both X and f(X)
satisfy the hypotheses of Theorem 1 if n=4 and Theorem 2 if n=3. Then there exist a
compact set C and an isotopy h, (¢ € [0, 1]) of E™** such that h,=identity, h,| X=f,
and each h, is the identity outside C.

The proofs of the corollaries in the case n=4 are each obtained as a direct
application of Theorem 1 and the results of [2] and [3]. The cases in which n=3
follow from Theorem 2 and the methods of [1].

Let D? denote the unit disk in E2 and let S*=Bd D2. A subset U of E™ is said to
be 1-ULC if to each ¢>0 there corresponds 8 >0 such that every map f: S* — U
with diam f(S*) < § extends to a map F: D? — U with diam F(D?) <e. We use I to
denote the interval [—1, 1] considered as a subset of the first factor of E™. Let

D* = {(x,t)e E*xE*|xel and 0=1t<1}.

LeMMA 1. Suppose that E"— X* (n—k=3) is 1-ULC and that F: D* — E" is a
map with F(S*) N X= @. Then for each ¢>0 there exists a map G: D> - E"— X
such that d(F(x), G(x))<e and G|S*=F|S™.

For a proof of this lemma, see the proof of Lemma 1 of [1].

LEMMA 2. Suppose that X¥*<E"*'=F"xE' (n23 and n—k=2) and that
f: D* -~ E"x [0, 1] is a level-preserving map (that is, f(x,t) € E*x{t} for each
(x, t) € D¥) such that f|Bd Ix [0, 1]=inclusion and f(Bd D*) N\ X= @. Then for
each neighborhood U of f(D¥) in E"*1, there exist numbers

to=0<th<ty<---<t,=1

and embeddings «;: I - E" (i=1, 2, ..., m) such that
(a) «|Bd I=inclusion,
(®) (ea(x), 0)=1(x, 0) and (en(x), 1)=1(x, 1), and
©) e(D)x[ti_1, ,]<U—X for each i=1,2,...,m.

Proof. Let f; be f|Ix{t} followed by the projection into E™. We may assume that
fo and f; are embeddings (n=3). Since f(Ix{0}) N X=f(Ix{1}) N X= @, there
exist numbers 0<s,<s;<1 such that (fo(Z)x[O0, o)), (i({) %[5y, 1]) €U—X.
For each 7 € [s,, 5,] there exists an embedding «,: I — E™ such that ;| Bd I=inclu-
sion and e(I)x{t}<U— X (since n—k=2). Hence, there exists §,>0 such that
a(I)x (=8, t+8)<U—X.
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Let A>0 be a Lebesgue number for the cover {(t—8&;, t+8,) | so<t=s,} of
[0, 81]). Choose t;=s,<t3<::-<tn_;=s; so that t,—¢#_; <X (i=2,...,m—1).
Taking o, =f; and o,=f;, we see that for i=1,..., m there exist embeddings
«;: I — E* satisfying (a), (b), and (c).

LEMMA 3. Suppose that X*<E"*1=E"x E' (n23 and n—k22) satisfies the
hypothesis of Theorem 1 and that f: D* — E™ x [0, 1] is a level-preserving map with
fIBd Ix [0, 1]=inclusion and f(Bd D*) N X= &. Then for each neighborhood U
of f(D¥) there exists a map g: D* — U— X such that g|Bd D*=f|Bd D*.

Proof. Let U be a neighborhood of D* and assume that f|Ix{0, 1} is an em-
bedding. From Lemma 2 we obtain numbers £,=0<?,<t,<:-- <t,=1 and em-
beddings o;: [ - E™ (i=1, 2, .. ., m) satisfying

o;|Bd I = inclusion,
o =fo and op =f
(again, f; is f|Ix {t} followed by the projection into E™), and
o()x[t_, 4] < U-X
for each i=1, 2,..., m. Moreover, we may assume that each
[oD) © o1 (D)) x {t}}
is a simple closed curve that bounds a singular disk D; in Un (E™*x{t})
@(i=1,...,m—-1).
By hypothesis, there exists a small push 4, of (E**?, X) such that
(E™x{t:)—h(X)

is 1-ULC. If A, is a sufficiently small push, then we will have

h1|,L=J1 (o(D) x [t; -1, t;]) = identity.
By Lemma 1, we may replace D; by a singular disk D] in [U N (E™ x {t,})] — h(X).
Then Ay }(D7) N X= @ and Bd (hi 1(D1))=(e;(I) Y ay(I)) x {t;}. Thus
[e2(2) U aa(D)] x {11}

. bounds a disk D, (=h7%(D7)) in U—X.
Continuing in this manner, we obtain singular disks D,, D,, ..., D,,_,in U- X
such that Bd (D) =[¢(]) U o ,(I)] x{t;} for i=1, ..., m—1. Taking the union

(al(I) X [t03 tl]) v Dl v (0‘2(1)>< [tb t2]) v.--v Dm—l U (am(l) X [tm—la tm]),

we obtain a singular disk D in U— X such that Bd D=f(Bd D*).
Proof of Theorem 1. Suppose that X< E"+*1=FE"x E! satisfies the hypothesis
of Theorem 1. Let I'" be a small simple closed curve in E***— X, We may change
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IV by a-small homotopy to a simple closed curve I in E**!— X such that I is the
union of a finite collection of small line segments, each being parallel to either
E"x {0} or to {0} x E*.

Let v, be a vertex of I'. We are going to construct a small homotopy of I' in
E™*1— X that takes I' into E™ x {v,}.

Let J be a “horizontal” segment in I' (that is, J is parallel to E" x{0}), and let u
and v be the endpoints of J. Let f;: J — E™*! (¢ € [0, 1]) be the natural homotopy
that slides J into the plane E™x{v,}, oriented so that fy=inclusion and
S(J)=E™ x{vo}.

Since n+1=24 and n—k=2, we may assume that the vertical segments
S{u} x [0, 1]) and f({v} x [0, 1]) (where f(x, t)=f,(x)) miss X. (A small argument is
required to see that this can be accomplished with a homeomorphism that preserves
(n+ Dth coordinates.) Since n—k =2, we may also assume that f;(J) N X= & by
slightly altering the homotopy f; on the interior of J as ¢ approaches 1.

Lemma 3 now allows us to replace f; (¢ € [0, 1]) by a homotopy g;: J — E"— X
(¢ € [0, 1]) having the properties that go=/o, g1=/1, g|Bd Jx [0, 1]=/|Bd Jx [0, 1],
and g(Jx [0, 1]) lies in any preassigned neighborhood U of f(J x [0, 1]).

Thus the natural homotopy of I' into the plane E™ x {v,} can be replaced by a
homotopy h,;: I' — E**1— X (¢ € [0, 1]) that takes I' into E™ x {vo}. Applying the
hypothesis of Theorem 1 once again to the plane E™x{vo} as in the proof of
Lemma 3, we see that 4,(I") can be contracted to a point in E**1— X by a small
homotopy. The combination of these two homotopies gives a small homotopy of
I' to a point in E**1— X,

Before we prove Theorem 2, we must prove a strengthened version of Lemma 3.
We also need a little more notation. Let

B* = {(x1, X, X3, X)) € E*| =1 S x;, X3, x3 £ 1 and 0=x, =1}
(notice that D* is embedded properly in B*), and let
B} ={xeB*|x, =1t} (t€]0,1]).

LEMMA 4. Suppose that X is a 1-dimensional compactum in E* satisfying the
hypothesis of Theorem 1 such that X N Bd D*= & and every component of X N B}
is acyclic for each t € [0, 1]. Then there exists a homeomorphism h: B* — B* such
that h|Bd B*=identity and h(D*) N X= &.

Proof. Let B®={(x;, x5, x5) € E®3| —12x,21 (i=1, 2, 3)}. Let

Cy = {(x1, X2, X3) € Bd B® | x; = 0},
and for each t€(0,1], let C,;={tx|xe C;} and S,={(—1,0,0),(1,0,0)}*C,
(where A * B denotes the join of 4 and B). Each S; is a 2-sphere in B® obtained by
suspending the simple closed curve C; from the points (—1, 0, 0) and (1, 0, 0).

For each ¢ € (0, 1) the set X N (S; x{t}) does not separate S; x {¢}. Thus we can
find an embedding o;: I — S, such that ;| Bd I=inclusion and o,(I) x{t} N X= &.
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Applying the methods in the proof of Lemma 3, we can find numbers
to=0<t,<---t,=1 and embeddings e;: I — B® (i=1, ..., m) such that

o;|Bd I = inclusion,

a; = a, = inclusion,
a(Dx[ti-, 4] N X = o,
a(I) N o (I) = BdT ifi+#j,

and for i=2,...,m—1, «(I)< S, for some t € (0, 1).
Now fix i 2<i<m—1) and consider the simple closed curve

Iy = [e(I) U o a(D]x {2}

in B}. We may assume that I'; is a polygonal curve. Our construction of «; and
o, guarantees that I'; bounds a nonsingular polyhedral disk D; in B such that
D; N Bd B =Bd Ix{t;}. Let h;be a small push of (E*, X) such that (E® x {£;}) — h(X)
is 1-ULC. Let B, be a 3-cell in B containing Dj properly. From Lemma 1, we see
that I'; bounds a singular disk in B;—h(X), and so, by Dehn’s lemma [5], T}
bounds a nonsingular polyhedral disk D; in B,—hy(X).

Since A, (and, hence, ;1) is a stable homeomorphism of E%, we may assume that
h7t is the identity on (e(I)X[ti—1, ]) U (o1 (I) X [, 2,41]) and outside
BN E3x[4(t,_1+1), 3(t,+1,,1)]. (This is the first time we have really needed
stability.)

Observe that the 2-cell

D = oy(I)x[to, 1,1V Dy U ag(I) X [t1, 1] U + -+ U Doy U (D) X [ty - 1, tm]

is properly embedded in B* and that the cell pair (B D) is unknotted. Let
h': B* — B* be a homeomorphism that is fixed on Bd B* and takes D* to D, and
let h":B*— B* be defined by A"(x)=h7%x) if xeB*N E3x[3(t,-1+1),
3(t,+1,4,)] and A"(x)=x otherwise. Then the homeomorphism h=h"h": B* — B*
satisfies all of our requirements.

Proof of Theorem 2. Suppose that X < E* satisfies the hypotheses of Theorem 2,
e>0, and K is a 2-complex in E*% Assume that e is small enough so that
(E®x{w}) N X does not contain any nontrivial (Cech) 1-cycles of diameter less
than e for any w e E*.

Subdivide the complex K so that each of its simplexes has diameter less than e.

First move the vertices of K so that no two of them lie in a single horizontal
hyperplane. Next move X off the 1-skeleton of K by an isotopy of E* that does not
change the x,-coordinate of any point of E*.

Let o be a 2-simplex of K, let u be the vertex of ¢ with the smallest x,-coordinate
and let v be the one with the largest. Let r and s denote the x,-coordinates of u and
v, respectively. Choose numbers #,>r and ¢, <s such that o N X<E3x [t,, t,].
Let B be a 4-cell in E®x[ty, #;] of diameter less than e such that the pair
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(B, o N (E®x [ty, t;])) is homeomorphic to (B%, D*) (as defined above) by a
homeomorphism that takes each horizontal cross-section of B to a horizontal
cross-section of B%.

We may now apply Lemma 4 to get a homeomorphism k: B—> B such that
k|Bd B=identity and k(¢) N X= &. Moreover, k is an e-push of (E*%, o N X),
since k is isotopic to the identity (keeping Bd B fixed) via the Alexander isotopy.

If we are careful to construct the 4-cells B corresponding to each 2-simplex o of
K so that any two intersect in a subset of the boundary of each, then the e-pushes
k that we obtain will piece together to give the desired e-push # of (E%, KN X).
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