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Abstract. Let P1ll2 + ix(z) be the associated Legendre function of order m and

degree —1/2 +ix. We give, here, two integral transforms Gm and Hm, arising naturally

from the generalized Mehler transform, which is induced by PI I/2 + i*(cosh y), such that

HmGm = Identity (formally). We show that if 1 </7<oo, — l/p<a< 1 -l//>, m£1/2 or

m = \, 2,..., then |Gm/l,.«á¿?..||/lp.«and \\Hmf\\r,a^A^a\f\\r,a, where"-" denotes

the Fourier cosine transform. We also prove that Gmf, Hmf exist as limits in L"-° of

partial integrals, and we prove inequalities equivalent to the above pair: \Gmf\p¡a

â^.al/lk« and \Hmf\P,^A^Af\\v.c These we dualize to ||Cr7m/r lU^ÎUl/lk«

and WWrrh.a^A'SAñr..*-
Gm and Hm are given by Gm(f; y) = J" f(x)Km(x,y) dx and Hm(f;x)

= J" f(y)Km(x, y) dy (0¿y < oo), where

K<»(x,y) = \T(\ß-m-ix)IT(-ix)\(smhyyi2P1ll2 + ix(Coshy).

The principal method of proving the inequalities involves getting asymptotic expan-

sions for Km(x, y); these are in terms of sines and cosines for large y, and in terms of

Bessel functions for y small. Then we can use Fourier and Hankel multiplier theorems.

The main consequences of our results are the typical ones for transplantation

theorems: mean convergence and multiplier theorems. They can easily be restated in

terms of the more usual Mehler transform pair

g(y) = j" f(x)P.ll2 + ¡x(y)dx

/* oo

f(x) = TT-1xsmhnx-T(ll2-m + ix)T(l/2-m-ix) J     g(y)P-i,2 + lx(y) dy.

and

1. Introduction.    Let P™ll2+ix(z) be the Legendre function of real order m and

degree — \+ix given by the formula [5, p. 122, 3.2(3)]

1        (z+l\ml2

for m/1,2,..., and by [5, p. 148, 3.6(1)]

Y(\-m + ix)m\ P1ll2+ix(z) = 2~m T(\ + m + ix)(z2-l)m<2

•F(^+m+ix,^ + m — ix; l+m; \—\z),
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if m— 1,2,... ; Fis the classical hypergeometric function. Then P™ 1/2 + ix(z) satisfies

the second order differential equation [5, p. 121, 3.2(1)]

Replacement of z by cosh y, for x and y real, gives the conical functions, introduced

by Mehler. They arise in the course of solving Laplace's equation in a hyperboloid

of two sheets. For certain values of m they occur in a probabilistic connection, as

spherical functions on some noncompact hyperbolic spaces.

From the differential equation satisfied by (sinh j01,2P-i/2+i*(cosh y) = v(y),

„    ( „      1 - 4m2 "I

v+{x2+ ¡Tasser=°'

and the definition of P™i;2+jx(z), it is easy to show that

(1.1) (sinh vO^Pi'f^i* (cosh y) = (2/tt)1'2 cos xy

and

(1.2) (sinh yY'2PZ ÎH + ix (cosh y) = (2/tt)1'2 sin xy.

Rewriting the differential equation for (sinh j)1,2P™1/2+j* (cosh j>) as

fl-4m2}
V+XV=-\ÄslnWy)V

and treating it as a nonhomogeneous second order differential equation leads us to

seek trigonometric expansions for (sinh y)ll2P-n2+¡x (cosh y). We will, in fact,

find functions km(x) so that km(x)(sinby)ll2P,H.ll2 + iX(cosh.y) behaves roughly like

constant (i.e., independent of x) linear combinations of sin xy and cos xy (or

J-m(xy), with J-m a Bessel function). The asymptotic behavior of the error terms,

as well as that of their partial derivatives, can be determined; they can be differ-

entiated termwise.

The functions rcm(x)(sinh v01,2P-i/2 + ix(cosh >0 form the kernels of two integral

transforms. From the asymptotic expansions it will follow that the mapping from

the cosine transform of a given function to either of these two integral transforms

of the same function is, in some sense, bounded.

Let us be more specific; for/a Lebesgue measurable function on [0, co), we

formally define

(1.3) g(y) = J" f(x)P1il2+ix(y) dx.

With certain conditions of /, principally on its behavior near 0 and co, it can be

recovered from g by means of the formula [15, p. 2C(3)]

(1.4) f(x) = n-*x sinh nxT(\-m + ix)TQ-m-ix) J"° g(y)P™ll2+ix(y) dy.
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Rosenthal [19] has shown that this is the right inversion formula and has given

conditions for its validity. This integral transform pair occurs in solving certain

boundary value problems arising from conductivity questions. In order to rewrite

(1.3) and (1.4) so that the cosine and sine transforms arise when m= ±\, let

(1.5) km(x) = \T(lr-m-ix)ir(-ix)\;

using an identity for the T-function [5, p. 3,1.2(5)] one gets

tt~1x sinh ttxY(\ — m + ix)T(\ — m — ix) = k%(x).

Also, define

(1.6) Km(x, y) = km(x)(sinh yy*2P™ m+ix(cosn y).

Then Kll2(x, y) = (2/7r)llz cos xy and K~ll2(x, y) = (2/ir)112 sin xy. We rewrite (1.3)

and (1.4) as

g(cosh rO(sinh yY>2 = £° Ä Km{Xi y) dx

and

/(*)C-K={   g(cosh >0(sinh y)ll2Km(x, y) dy.
x)      Jokm\

Replacing f(x)/km(x) by F(x), and g(cosh y)(sinh y)112 by G(y) leads us to define

two integral operators:

(1.7) Gm(F;y) = jQ  F(x)Km(x,y)dx,       FeL^oo),

and

(1.8) Hm(G; y) = J" G(y)Km(x, y) dy,       GeL^O, oo).

With m=\ or m= — \, these operators become the cosine or sine transform. We

will postpone treatment of the existence of Gm and Hm for arbitrary m until we have

some estimates for Km(x, y).

Formally, at least, Gm and Hm are inverses of each other. Hence, it is natural to

raise the mean convergence question: in what (Lebesgue integral) norms do the

partial integrals for Hm (Gm(F)) converge to F? For the Fourier transform, mean

convergence results follow from the boundedness of the Hubert transform

/-> ]f(x)/(x—y) dx on the real line (or an any subinterval). The boundedness of

this latter operator is a well-known result of M. Riesz [17] for Lp (1 <p<co),

extended to Lp,a (1 <p<co, -\/p<a<l-l/p), by Hardy and Littlewood [11].
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Mean convergence results are also known for series expansions of a function by

means of classical orthogonal polynomials. Pollard [16] investigated the problem

for Legendre series and obtained positive results for LP with 4/3 <p < 4. Hirschman

[12] used lacobi expansions to get a projection theorefn; his result can be viewed

as a mean convergence theorem for Jacobi coefficients. Also in the area of mean

convergence theorems is a result of Wing [22] dealing with partial Hankel integrals,

operating on LP with 1 <p^2.

Transplantation theorems are somewhat stronger results than mean convergence

theorems. Very roughly, they amount to comparing \\TF\\ and \\T'F\\, where Pand

T' are given operators. Important applications arise when, for example, mean

convergence results are known for one operator, giving analogous results for the

second operator in the transplantation pair. D. L. Guy [10] found a theorem on

transplanting between integral transforms induced by the kernels (xy)ll2Ja(xy) for

a^ — \ on LP,a (1 <p<co, \/p<a< 1 - l/p). Askey and Wainger [3] obtained

transplantation theorems arising from consideration of certain ultraspherical

series. They also showed [2] that one can transplant between two sets of ultra-

spherical coefficients of a given function provided the parameter is, in each case,

greater than zero. Askey [1] obtained a similar result for Jacobi coefficients pro-

vided all parameters are at least —\. Our principal transplantation results will be:

If m-i\ or m= 1, 2,... ; if 1 <p<co and — \/p<a< 1 — l/p, then

P \Gm(F;y)\py^dy Ú A?,tt P \F(y)\'y<" dy
Jo Jo

and

P \Hm(F;y)\*y"*dy Ú <„ P \Hy)\*ya> dy,
Jo Jo

where A%,u is independent of F and F stands for the Fourier cosine transform of P.

The significance of transplantation theorems is that they enable us to lift results

known for one operator to another. A typical example of this procedure is the way

in which a Fourier multiplier theorem is used to obtain multiplier theorems for

other operators.

We state the definition of Lp,a[0, oo):

Definition. For 1 ¿¡p<co,feLp,a[0, co) if fis measurable and

11/11?,. = j" \f(x)\'x"dx < 00.

In this paper, we will take 1 <p<co. It is easy to see here that Lp,a is a Banach

space with dual L"-'a where l/p+l/q=\. If —l/p<a<l — l/p, we also have

-l/q< -a< l-l/q.

We will be using the Fourier multiplier theorem in the following form :
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Theorem 1. Let \<p(t)\ Ú C, J™ \d<p(t)\ ̂ C, 1 <p < oo and - l\p < a < 1 - l/p. Then

there is a constant A, depending only on p and a, such that, for g, g eL'P.oo),

and

f   cos ty<p(y)g(y)dy l     Ú AC\\g\\p,a
I JO Up,»

u:sin ty <p(y)g(y) dy ï AC\\g\\,,„.

Remark. Theorem 1 remains true if <p(y) is replaced by a bounded function of r

multiplied by y(y) or by sums of such terms. (AC would obviously be replaced by

some other constant.)

We will also use the following form of Guy's lemma [10, 8C]:

Theorem 2. If ^ — \, 1 <p<oo and —l/p<a<l — l/p, there is a constant

Al<a such that, for g e Z/fO, oo),

I P (tyy%(ty)g(y) dy       è A%<a I P cos tyg(y) dy
|| Jo p,x || JO

The fact that a mapping/^ Tf majorized by J¿ M\f(y)\dy + $™ (M/y)\f(y)\dy

is a bounded operator of Lp'a[0, oo) into Lp-"[0, 1] will be used frequently. We will

also use the boundedness (on L"-a[0, oo) into itself) of operators majorized by

J"" M\f(y)\/(x+y) dy. In both situations, l</?<ooand - l/p<a< I —l/p. These

facts will be needed to deal with some error terms.

Our results will hold when the parameter m^% or m=l,2,.... To simplify the

problem a bit, we use the fact [5, p. 140, 3.3(7)] that, for m—\, 2,...,

pm (vï _ ni + m + ix)
r-V2+tx(.z) - r^_m+fcc)^-ua+«*W-

The quotient is a polynomial of degree 2m and, by induction on m, it equals

(-l)m(^ + x2)- ■ ([(2m-l)/2]2 + x2), which has constant sign (-l)m. From (1.5)

so that

(1.9)

Km(x, y)  = MÛ. gÍ±^±g K - %X, y)
k-m(x)Y(^-m-ix)

-ÍT(\ + m + ix)

T(\-m + ix)

T(\ + m + ix)

Y(%-m + ix)
K-m(x,y)

Km(x, y) = (- l)mK-n(x, y)   for m = 1, 2,....

2. Asymptotic expansions.

2.1. To get our transplantation results, we will need some asymptotic expansions
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for Km(x, y). We begin with the region where x^l and j>äl. From [5, p. 128,

3.2(26)], we have

-P-i/2+i*(cosh.y)

1 T(-ix)
^(sinhj)-^|r(^w7.x).g-^-p(l + m,i-m;l+/x;;^7)

+ T(i-m + ix) U + W'2       '      'x,é*"-\)j'

this has the form w+w. Hence, combined with (1.5) and (1.6), it gives

(2.1.1)

For the quotient we write

■6■e~lxyF\- + m--m; l+ix; r)

(2.1.2)
r(i-m-ix)

n-ix)
TQ-m-ix)

= exp \t arg
["

r(-fr)
TQ-m-ix

1 Tt    , T(-/x)    1
r    = exp   ; Im log =¡7:-r^r  •
)J L bV(^-m-tx)\

Now using Barnes' expansion for log (z + a) and fixed n [5, p. 48, 1.18(12)] twice

and subtracting, we have

T(-ix)
l0gm±^)= -^-m)\og(-ix)+2

^ Bn + 1(0)-Bn + 1($-m)(   1   \»

n(n+l) W + HN(x)

where Bn is the nth degree Bernoulli polynomial and HN(x) = 0(x N  1). Also from

Barnes' expansion,

í(z) = logr(í + a)-(i + a-I)logi+i-ilog2,

_^2MZ_ (~iy + 1Bn + 1(a) x

1-2 Z      " 11(11+1) ~ UKZ     '

for Iarg z\ <tt, and for real a, t(z) is analytic off the real axis. For imaginary z#0,

let yz be the circle of radius \z\/2 centered at z. Then by Cauchy's formula for t'(z),

applied to yz, we obtain |i'(z)|=0(|z|n), z~0, z imaginary. Replacing z by If—ix

for x real therefore gives HÛ(x) = 0(x~N~2), x~œ.

Let N=l in the preceding formula. Then [5, p. 36, 1.13(3)] B2(0)-B2(i-m)

= — m2 + \ so that

.          T(—ix)               .,       V1      .    . .    (m2-i)    1    , u r x
lQg wi    „    ;„\ = -Q-m)log(-tx)-T^-—7Z + H1(x)

TQ-m-ix) 2       —ix
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and from (2.1.2) and the Taylor expansion for the exponential function

r(-jx)
(2.1.3)     Y(\-m-ix)

T(-ix)

T(^-m-ix)\

= exp [-/(2m- 1)tt/4]{1 -(m2-i)/2ix + R(x)}

where R(x) = 0(x'2), R'(x) = 0(x~3).

To obtain the needed expansion for the hypergeometric term, we make use of the

fact that it is analytic in x and in y. Let

(2.1.4)    l(w,z) = F{^ + m,\-m;l+iz;-^-^-l
(^ + m)(j-m)

(l+/z)l \e2w-l)'

Then t, is analytic in {(w, z) : Re w > 0, Re z > 0}. First fix y ^ 1 and let x S: 1. Let

yx be a circle centered at x of radius \. By analyticity

d_

dx «»*-&} m *
so that

dx
t(y, x) Ú 2 sup \t,(y, z)\,

where Ûx— closed disc of radius | about x. Similarly, we find that

dy
i(y, x) Í 2 sup \l(w,x)\.

weQy

Thus once we can estimate |£|, we will also have bounds for the first partial deriva-

tives of Ç.

Now

^'Z)%?3 V&rH     on Re w^ log 2-

It is easy to see that

(i+wMi-m)* = (i + w)(3/2 + m)(5/2 + w),_2a-m)(3/2-w)(5/2-«j)fc_2

= am(5l2 + m)k_2(5/2-m)k.2

and that

(1+ iz\ = (1 + zz)(2 + iz)(3 + iz)k _ a ;

zeQx(xäl)   implies   ¡l+zz| ^Re z^x/2, |2 + /z| äx/2   and,   for   n~£2,\n + iz\

^« —Imz^« —^. Hence, for ze ilx,

\(l+iz)k\ ^ ix2(5/2)fc_2.
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We also know that if w e Qy, y^ 1, then

|e2l"-l| ^ e*»-«»_l ^ e2y/5.

Consequently, xgil, y^l,(w, z)e QyxQ.x implies

\Uw z\\ <       M       f (5/2 + m)k(5/2-m)k
\i(W,z)\ =ix2ae2y)2Zo (5/2)^! &     >

Cm   ^ (5/2 + m)k(5/2-m)k /5\fc _    C'm

[April

xV* A (5/2)kk\
(-Y = -
\e2)       x2

We conclude that

(2.1.5)

Combining (2.1.3), (2.1.4) and (2.1.5) with (2.1.1) gives

l(y, x), |j l(y, x), ¿ i(y, x) = 0(x'2e-^).

Km(x,y) = (2/n)ll2cos(xy+[2m-l]ir/4)

-(2/n)112 ^^ coth y sin (xy+ [2m- 1]tt/4)

+ cos (xy +[2m-l]tt/4)R1(x, y) + sin (xy + [2m -1 ]7r/4)P2(x, j)

+ cos (xy + [2m -1 ]tt/4)D1(x, y) + sin (xy + [2/n - l]7r/4)Z>2(x, y)

where P,(*, j) = S¿x) + Py(x)/(e2u -1) with

Sy(x), P/x) = 0(x-2),       S',(x), T;(x) = 0(x~3),

and

Dix, y), |j £>3(x, j), ¿ />/*, J) = 0(x-2e-^),

for xä l,j^l.

2.2. To obtain an expansion for the region x^ I, y^ 1, we again make use of

[5, p. 128, 3.2(26)], so that we now consider

r(-fr)
TQ-m-ix)

r(-ix)
r(i — m — ix)

for small x. For the moment, assume m + \,\,.... With this restriction on m,

i        r(-"0 ,     »"li       1X1-fa)
togr(i-m-fe) - logx+logra-rn-/x)

and log T(l — /x)/r(^ — w — z'x) is analytic for x close to zero. These facts yield the

expansion

logftF^) = logx-logr^-^+^'
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where g1(x) = 0(x),g[(x) = 0(1). Making use of (2.1.2) shows that, formai, L    3

(2.2.1) YQ-m-ix)
Y(-ix)

r(i-m-ix)
= ±i+g(x),

where g(x) = 0(x) and g'(x) = 0(l); the " + " sign depends on sgn FQ — m).

Note that if we let m = k+\ for /c = 0, 1,2,..., and call the corresponding

quotient, (T(-ix)IT(%-m-ix))l\T(-ix),IT(%-m-ix)\, Pk(x), then pk + 1(x) = Pk(x)

(k—l —ix)/\k— 1 —ix\. Since p0(x)=l, we obtain, for m = \, \,...,

(2.2.2)
Y(\-m-ix)

Y(-ix)

T(%-m-ix)
= 1+gW

where g(x) = 0(x), g'(x) = 0(1).

We write the relevant hypergeometric term as

FU + m,i-m; l+ix; ß2y_A = l+s(x,y),

and from the series for F, we have \s(x, y)\ fkAe~2y (/l = absolute constant). The

analyticity of Fin x for \x\ < 1 shows, by Cauchy's formula, that for small x,

\8s(x,y)/8x\ ^ Ae~2y.

(We use Cauchy's formula for the derivative on a fixed circle of, say radius 1 — 8

(some 8 > 0) about the origin.) The function s(x, y) is also analytic on Re y > 0 and

by the same methods we used for £ as defined in (2.1.4)

\ds(x,y)/dy\ ^ Ae~2».

Now according to [5, p. 128, 3.2(26)], we combine (2.2.1) with these facts on the

hypergeometric function so that

(2.2.3)
Km(x, y) — ±(2/tt)112 sin xy + cos xy hx(x) + sin xyh2(x)

+ cos xy Sx(x, y) + sin xys2(x, y)

formai, f,..., where h,(x) = 0(x), h'j(x) = 0(l) and

s,(x, y), 8Sj(x, y)/dx, 8Sj(x, y)\dy = 0(e~2v)   for x á \,y £ 1.

When m = \, \,..., one gets by (2.2.2)

Km(x, y) = (2/n)1'2 cos xy + cos xy hx(x) + sin xy h2(x)

+cos xy Sx(x, y) + sin xy s2(x, y),
(2.2.4)

where h}, s¡ have the same properties as in (2.2.3), for x¿ 1, y^ 1.
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2.3. We will now do the expansion of Km(x, y) for xú 1, yú 1. We exclude the

case «2 = 1,2,.... (Recall that by (1.9), this restriction involves no loss of generality.)

Then by [5, p. 122, 3.2(3)],

(sinhJ)-P.1/2+i;c(coshJ) = -^    (cosh^+ir
rYl-mMsinhjr-1'2

•F(£— ix,^+ ix; 1— m;\—\cos\y).

Setting the hypergeometric function equal to l+f(x, y) and using the power

series shows that \t(x, y)\^Ay2. Also, the formula for differentiating a hyper-

geometric series (with respect to its last argument) is well known ; applying it yields

\dt(x,y)/dy\^Ay. Moreover, t(x,y) is an entire function of x; by Cauchy's

formula we therefore conclude that \dt(x, y)/8x\ is Ay2.

Now km(x) = exp Re log I\£ — m — ix)/T(— ix) from (1.5). If m±\, f,..., we

have, by power series,

(2.3.2) km(x) = x-\Y(\-m)\{l+ r(x)}

with r(x) = 0(x2), r'(x) = 0(x).

For«i = ^, f,..., letm = n + %andon(x) = km(x).Then<jn + 1(x) = on(x)/\n +1 + ix\.

We have v0(x)=l so that if m=\, f,...,

(2.3.3) km(x) = ll(m-$)\+ri(x)

where n(x) = 0(x), r[(x) = 0(1).

Combining our information on the hypergeometric term with (2.3.1), letting

il(*'j) = r(i-w) (sinti/)"-"2 t{pc'j)'     j(x) = lr(i-w)I^W

leads to

K*(X vï - m-m)\(coshy+ir
Ä y**?)      Y(\-m) (sinhy)"-1'2

(2.3.4)
(cosh v + l)m      1

+ Ira-noises, >;)+(sinh>;)m-i/2 ^-„I'W+'W» jO

for »«#*, |,..., where f^x, j), 8t1(x,y)/dx = 0(yB'2-m), dt1(x,y)/dy=0(y3'2-m)

s (x) = 0(x3) and * '(*) - 0(x2), for x ^ 1, y ^ 1.

If, on the other hand, m=\, f,... then (2.3.1) gives rise to the formula

KHx v\ - 1 (coshj+ir
l ,7J      r( 1 -m)(m-i) ! (sinhy)m"1/2

(2-3.5) ^ j       (coshy+l)m

+ fa=$\ ^»^ + r(i-«z)(sinhJr-^^(x) + riW^'J')
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where t±(x,y) has the same properties as in (2.3.4) and r^(x) = 0(x), ri(x) = 0(l),

forx£l,?ál.

2.4. To develop the kind of expansion we will need for the region x^ 1, y^ 1

requires more work than was required to get expansions for the previous regions.

We will use an integral representation for the Legendre function, comparing it to a

similar representation for the Bessel function. Both representations are valid only

if m<\ and so from here on, we will be making this restriction. To obtain bounds

for the remainder that occurs in the expansion for P™1/2 + «(cosh_y), we have

adapted methods developed by G. Szegö and appearing in [20] and [21].

According to [5, p. 156, 3.7(8)]

(W> ~1/2 V
P-im + tx(coshy) = ^pr1-r(sinhj)"1      (cosh j-cosh v)'"1'112 cos xv dv

\.(-2- — m) Jo

which we write as

P™u2 + ix(coshy)

(2.4.1(1)) 2-V-1'2
(siinhy)m i"   (2coshj>-2cosht;)-m-1'2ei*t,ifo.

J -ym-m)

The expression to which we will compare this is [6, p. 81, 7.12(7)]

(2.4.1(2)) Ity+tt/jß) = w_i'W j1   (l-t2y-"2e^ dt,

which is valid for ¡x> — \.

Our aim is to expand

(2 cosh y — 2 cosh v\   m  1/2

y2 — v2

in    a    series    of   powers    of   (y2 — v2),    which    gives    an    expansion    of

(2 cosh y — 2 cosh v)-m-v2 m p0wers of ( j>2 — t;2). A change of variables will then

allow us to compare (2.4.1(1)) with the kind of representation we have in (2.4.1(2)).

Let T=y2 — v2 and set

.      .      2 cosh v — 2 cosh v , n
Ky, r) =--^—^-,       T ft 0,

= sJrtLZ        T m o

for y and v complex variables. Since the hyperbolic cosine is an even function, r is

entire in y and r. Its only zeroes occur where either v—y or y is a nonzero multiple

of 2m. Hence if |_y|^7r, then r(y, t) = 0 implies v=y + 2n-ni, for some nonzero

integer n, and so v2=y2 + 4nni—4n2-n2  or Re t = 4n2n2 ^ 47T2.  It follows that
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r(y, t)^0 whenever \y\ ^n and |t[ ^1tt2/2. Within this region r(y, t) has analytic

powers so for such points

(«inh lA -m-1/2    ™

^ 2 <Pk(y)rk

where

+ 1/2    C

III-

nAUAw          <-,  ■   r >>       (sinhy\m + 112 C            r(y,rYm-^2  ,
(2.4.1(4)) 2™?^) =    —^ é ^'  ¿+1-¿r;

\      J      / J |t| = 3ji2 T

we also have 9?0(.y) = 1-

From here on, we take — -n^y^n. Then if v e [—y, y], we have

0 S t = j2-t;2 ^ 772;

hence the series in (2.4.1(3)) converges uniformly on

{T:v = (y2-v2y2e[-y,y]}.

We obtain the representation

(2 cosh y - 2 cosh v) ~ m ~ ll2eixv dv
J -y

lsin\\v\~m~112  ■?- Cy=   snmjn .^^W        (y2-v2y-^>2e^dv.

\    y    / k = o J-y

A change of variables gives

Cy f1
(y2 — v2y~m~ll2eixvdv = y2k~2m I     (I—t2y~m~ll2eixytdt

= 7Tv22«-»T(k-m + i)(y/xy-mJk_m(xy),

by (2.4.1(2)) since k — m> — \. Thus, in consequence of (2.4.1(1)), the formula

^-i/2+«(coshj)

(2.4.1(5)) •teF*-%**&&«*®>~»>-
valid for \y\ ¡í-n, arises. Moreover, if we let the error in this expansion after/? terms

be Rp(x, y) = Rp, then

2m7r-1'2 , . ,    ,/sinh y\

(2.4.1(6))

■Z9k(y) i"  (y2-v2y-m-ll2etxvdv.

k=p J-y
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We also want to differentiate this formula with respect to x. (We will later

differentiate a shorter expansion with respect to y.) Clearly,

T   (2 cosh y-2 cosh v)~m-ll2eixv dv
J -y

is differentiable in x, and

— i"   (2 cosh .y-2 cosh i;)-"1-1'2*?'*"^

=  Í    (2coshy-2coshv)-m-ll2iveixvdv
J -y

(«inh lA -m-l/2    « ry

=) 2<Pk(y)        {(y2-v2r-m-i'2iv}e<*°dv
y     1 k=o J-y

/sinh v\~m-1'2 •£■> x Cy

by parts. With the same change of variables just used, and an application of

(2.4.1(2)), this expression becomes

(sinh v\ -m-i/2   "
™ 2 <pk(y){-irll22k-mr(k-m+ir)-y(y/xy-mJk+1-m(xy)}.

y  i        k=o

Hence, for \y\ ^n, we get by (2.4.1(1)),

Ô

(2.4.1(7))
dx

P-i/2+i*(cosh>>)

/      v      \l/2 J° r(k-m + i)
F(i-m) 9k^yÁx) jr*+1-»í^-

Letting the error after /? terms of this expression be denoted by Rp(x,y) = Rp, we

have

(2.4.1(8))

~       2m7r-1'2  . . .    ./sinhjA
Rp = TW^ñ){&mhyr\y)

sinhj<\-m"1/2

2 VÁy) r   (y2-v2)k-m'll2iveixv dv.
k=v J-y

2.4.2. To consider the accuracy of our expansions, we need to estimate |<pjc(y)| ;

we use (2.4.1(4)). We recall that r is entire, thus continuous in (y, t) and that if

\y\ aw and \n\ ^7/2it2 then r(y, t)^0. It follows that there is a constant, M, such

that, for y and r as indicated,

(2.4.2(1))
/sinh y\m + 1'2 ,      .   » ira
(—^) r(.y, t)-"-1'2 ^ M.
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Therefore by (2.4.1(4)),

(2.4.2(2)) IçfcOOl ^ M(3ir2)-*

for — TT^yú-n.

Now let 0< >»<«•; the error terms for — i7<j><0 will obviously be of the same

order of growth. We wish to bound Rp and Rp; to this end, let

(2.4.2(3)) Sp

and

(2.4.2(4)) Sp

Note that Rp = 0(ym)Sp and Rp = 0(ym)Sp. Two cases arise: xy^l and xj^l.

First take xyfi 1 and let/j^ 1. Then/? — m — \>\ — m>0 so that

CO

\SP\ Ú2M 2 (3rr2)-ky2k-2n = 0(y2p~2m).
k = p

Moreover, integration by parts shows that we can write

S, = - % 9k(y) ̂z^ f_y (y^-vr^-^ d.

Since/? — m + i^pt I,

CO

\SP\ ^ Mx 2 (3n2)-ky2k + 2-2m = 0(xy2p + 2-2m).

k = p

Therefore, if xy ̂  1,

(2.4.2(5)) Rp(x,y) = 0(y2p'm)

and

(2.4.2(6)) dRp(x, y)/dx = Rp(x, y) = 0(xy2p + 2~m).

Finding bounds when xy ^ 1 is a bit harder ; however a device due to Szegö [20]

is very helpful. It consists of repeatedly integrating by parts, noting that

^L{y2_v2Y-m-m  =  ?_{{y_v)k-m-V2<y+v)k-m-V2}

= 2 (")¿O'-»)*-"-1'23^i(y+v)k-m-112,

= 2 Vk(y) i'   (y2-v2)k-m-ll2eixvdv

k=v J-y

= 2 V*ty) f   iv(y2-v2)k-m-ll2eixvdv.
k=p J-V
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which gives rise to the sequence of estimates

dv
_ (y2 — V2)k-m-H2

dv'
(y-v) iJc-m-l/2

fln-J
_- /v+yyc-m-:U2
dvn-'yy     '10

^ (k-m-\)n 2 (n\(y-v)k-m-ll2-i(y + v)k-m-ll2~(n-fí

j=0  \I'

= (k-m-my2-v2r-^2 J (J)^)'^)^

=   /¡c_m_^yry2^v2-)k-m-ll2-n2nyn

and consequently, for /c — m — \ — n = 0 and — y^t>^j,

3n

(2.4.2(7)) dv
.(y2-v2)

ite-m-l/2 ¿ C(«)(/c-w-i)n>'2'c-2m-1-n.

Now let/=0, 1,... be chosen so that l= -m + i<l+ 1. Put n=p + l in (2.4.2(7)) to

get

Pp + i   —
t = P+l •< -3/ ""

-m-1/2 _£- ¿y

<

(ix)»+l

C"(p)x-p-'   2   (/c-m-i)!, + ,j2'c-2m-(p + ,),
k = p+l

by (2.4.2(2)),

•Zk= C'(p)x-p-'y-p-'-2m    2    (k-m-i)p + 'y
/c=p + i

g C"(/')x-p-^p-I-2m + 2

for j~0. Now /+77i + i>0 and y~1<x so that y-a+*+va>£¿+"+v* Gr

y-i-m^+m+iHiyiw leading t0

I^p + iI ^ C"(p)xm + ll2-py-m + 5l2 + p.

Moreover, the leading term of the series for Sp can be evaluated in terms of Bessel

functions by (2.4.1(2)) giving

<p,(y) f (y*-v*y-m-i'*e**°dv = <pP(y)c(p)(yy"nJP-m(xy)

and by well-known estimates on Ju(t) for ?~oo, the leading term is bounded in

absolute value by

(2.4.2(8)) C(p-)xm-ll2-Py-m-ll2+I,_

Combining this with the estimate for Sp + 1 shows that Sp = 0(xm + ll2-"y-m-ll2 + p).

Replacement of p by p+l in this gives Sp + 1 = 0(xm-ll2-py-m + ll2 + p) which when

used in conjunction with (2.4.2(8)) leads to Sp = 0(xm-ll2-py-m-ll2 + p) and so

(2.4.2(9)) Rp = 0(xm-ll2-py-ll2 + p),       xy = l,y~0.
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To estimate S„, first note that for k — m — Ja«, by (2.4.2(7)), we have for

—yfkvfky
8n

— vfv2_v2\k-m-W
dvn   KJ '

v£-n(y2-v2r-m-112 + n
an-1

___ (v2_.,2\k-m-ll2
8vn-iyy    U>dp

á C(n)(k-m-Wy2k~2m~n-

Thus, with n=p + l, we obtain, by the same procedure as before, for y~0,

\S,+i\ ¿ C"(p)x-"-'yp'l-2m + 3 ¿ c"(p)xm + ll2~py-m + ,,l2 + p

by choice of I. Consideration of the leading term of Sp yields, by a similar sequence

of steps as for Sp, Sp = 0(xm-ll2-py-m + ll2 + p) and

(2.4.2(10)) Pp = o(xm-ll2-pyll2 + p),       xy ^ l,y~0.

2.4.3. We note an expansion for /cm(x) = exp Re log (T(\ — m — ix)/T( — ix)), for

xäl. We use [5, p. 48, 1.18(12)]; the differentiation property of this expansion

follows in the same way as for the quotient of T-functions we looked at on the

region x ^ 1, y ^ 1. We thus obtain

.     ra-m-ix)     .,      ..     .    .,   B2a-m)-B2(0)    ...
'°g     T(-ix)      = (*-"01og(-'*)+      (-/jc)i.2      +7'(x)

with

h(x) = 0(x~2), l[(x) = 0(x'3).

The Bernoulli polynomials have real coefficients; therefore taking the real part and

exponentiating gives

(2.4.3) U*) = *l'a-m{l+£«(*)}

where ^m(x) = 0(x"2) and ^(x) = 0(x"3).

We can now put the pieces together and expand Km(x, y). Using only two terms

of (2.4.1(5)) we obtain

(sinhjO^P^^icoshvO

= y1'2x»>J_m(xy) + 2(i-m)cp1(y)y3i2xm-V1_m(xy) + Em(x, y),

where

Em(x,y) = 0(y°'2-m), xy£l;

= 0(xm~6l2y2),        xy^l,

by (2.4.2(5)) and (2.4.2(9)).

Multiplying km(x) and (sinh y)ll2P_ll2 + ix(cosh y), using these last two formulas

and (2.4.5) gives

(2.4.6)   K»(x,y) = (xyyi2J.m(xy) + 2(^-m)<Pl(y)y3i2x-i'2J1.m(xy) + Fm(x,y)

and Fm(x, y) is a sum of four terms, each of which we will examine. To do this, we

use the estimates for the Bessel function: Jll(t) = 0(tu), t~0;Ju(t) = O(t-112), t~oo.
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Note also that <pi(y) = 0(l). We tabulate below estimates for the terms adding up

to Fm:

0(....)

Term xy ^ 1 xy ^ 1

xll2-mEm(x,y)

(xy)ll2km(x)J-m(xy)

2(1 - m)9l( y)y 3'2x " "Kx)/, _ m(xy)

xi'2-mJcm(x)Em(x,y)

„1/2-my 9/2-m

„-3/2-myl/2-m

v.-3/2-my 5/2-m

„-3/2-my9/2-m

x  2y2

x~3y

x~y2

Each of these terms, excepting the second, is of smaller magnitude in x, and no

larger in y than the second term in (2.4.6). Consequently, Fm can be written as

[0(x   y ),

-m-3/2.. -m + 5/2 ),       xyúl;

xy ^ 1.

The next problem is that of estimating dFm(x, y)/dx. Evidently

8

8x
Km(x,y) = (^-m)x-í'2-m{l+km(x)}(smhy)í'2P'2ll2+tx(Coshy)

+ x1'2 - m£m(x)(sinh yy-i*P11/2 + iÄ(cosh y)

+ x1'2 - »{1 + /vra(x)} • Tx (sinh y)»*P? 1/2 + iJC(cosh j;).

If we now substitute from (2.4.4) and (2.4.5) and use (2.4.1(7)) with two terms plus

remainder (using (2.4.2(6)) and (2.4.2(10)), this expression can be written as

8x
Km(x,y) = (i-«î)x-1'2j1'2/_m(xj)-x1'2j3'2/1_m(xj)

+ 2(^-m)<p1(y){x-3'2y3'2J1.m(xy)-x-ll2y5'2J2.m(xy)}

+ ^{km(x)(xyy<2J-m(xy)}

+
(0(x-

\0(x-

m-5/2y -m + 5/2-j Xy   <   J

2y3), xy ^ 1.

Differentiation of the first two terms of (2.4.6), using [6, p. 11, 7.2.8(51)], and

comparison with this expression, shows

(2.4.8)

¿Fm(x, y) ^to^)1'2/-^)}

+
-m-5/2v -m + 5/2

y0(x

0(x-2y3),

),       xy ^ 1,

xy ^ 1.
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Finally, we come to differentiation with respect to y. For our purpose, we only

need to use one term plus remainder for Km. Using (2.4.6) and (2.4.7) we get

(2.4.9) Km(x, y) = (1 +km(x))(xyy<2J_m(xy) + Wn(x, y)

with

Wm(x,y) = 0(x-m + 1>2y-m + 512),       xy á 1,

= 0(x~1y), xy ^ 1.

Next, we differentiate Km(x, y), making use of the recurrence relation [5, p. 161,

3.8(9)] to arrive at

yyK"(x,y) = (^-rri) cotb y K^(x,y)-{(m-W + x2}-^^)K--\x,y).

Noting that km(x)/km^1(x) = {(m — |)2 + x2} ~ 1,2; we write this as

(2.4.10) ^-Km(x,y) = (ï-m) coth y Km(x, y)-((m-$)2 + x2Yl2Km-i(x, y).

Moreover, since

^(xyY'2J-m(xy) = (\-m)x^2y^>2J_m(xy)-x3^'2J1_n(xy),

-

termwise differentiation of (2.4.9) yields

^K™(x,y) = (i-m)(l+km(x))x^y-^J_m(xy)

- (1 + £m(x))x3'2v- ««/, _ m(xy) +1. Wm(x, y).

Substitution of (2.4.9), with m and with m— 1, into (2.4.10) shows that

fy Km(x, y) = (i-m) coth y {y(l+km(x))x"2y-"2J_m(xy)}

+ (\-m) coih y Wm(x,y)

-((m-\)2 + x2y'2{x -\l + ~km. ¿x^x^y «V, _ m(xy)}

-((m-W + x^Wn.^y).

Now

ycoihy-l ■= O(y);

iiim_i)2 + x2yl2/x)(l+km_i{x))_(l+kmix))   =   0(x-2}

Consequently, by subtracting the two previous expressions for dKm(x, y)/8y, we

arrive, at

(2.4.11) Yy W^x^"> = Oix1'2-/'2-"1),       xy ^ 1,

= 0(D, Vil.
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3. Transplantation theorems. We now have enough information to prove our

transplantation theorems. The first one will be enough to give a mean convergence

theorem. It follows:

Theorem 3. Let G eZ/fO, oo). Then if m^\ or m=\, 2,...,

(3.1) Hm(G; x) =  P G(y)Km(x, y) dy = Hm(x)

exists as a Lebesgue integral; moreover, ifl<p<oo and —l/p<a<l — l/p, there is

a constant Ap¡a such that

!l#1lp.a ̂  AU\Hll2L.a-

By (1.9) it suffices to prove this theorem for m<\. By (2.1.6), (2.2.3), (2.3.4) and

(2.4.4), Fm(x, y) is a bounded function of y for each x. Since G eL\ the existence

of (3.1), for m<\, follows. Thus (3.1) exists.

To prove the required norm inequality, we recall, from elementary Fourier

analysis, that for G e Lx,

(2/tt)1'2 f   Hxl2(u)e~™ cos uy du—> G(y)   as e \ 0.
Jo

Since Fm(x, y) e L'°(dy), we have

Hm(x) = lim (-)      P Fm(x, y) f°° Hll2(u)e~™ cos uy du dy.
ElO W       Jo Jo

Hence, by Fatou's lemma,

\\Hm\\p a ^ lim (-Y'' I P Km(x, y) f" Hll2(u)e~eu cos uy du dy I    •
iiO  W       || Jo Jo lip,a

Setting H(u) = Hll2(u)e-£U and noting that \H(u)\ ^ \H1!2(u)\, we see that Theorem

3 is implied by the following:

Theorem 4. Let m<\, with p and a as in Theorem 3. Then there is a constant

A™,a such that for H e Lp-a n L\ H e L1,

P Km(x, y)ñ(y) dy
JO

<   Am   \\H\\
=   s*p,al\ÄÄ lip,or*

(Here, as in the rest of this paper, "~" stands for the Fourier cosine transform.)

Theorem 4 (as well as Theorem 7) is analogous to results of Askey and Wainger

(see [3]; there all parameters must be at least zero).

For the proof of Theorem 4, we will write

P Km(x, y)H(y) dy =  C Km(x, y)H(y) dy+ C Km(x, y)Ñ(y) dy.
Jo Jo Jl

The expansions we obtained in §2 for Fm(x, y) were in terms of sin xy, cos xy and
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J-m(xy). In view of Theorem 1, we will try to show that the coefficients of sin xy

and cos xy form acceptable Fourier multipliers. For expansions involving J^m(xy),

we will use Guy's transplantation result (Theorem 2) and then Theorem 1.

We begin with Jf Km(x, y)H(y) dy. Let

(3.2.1) am = cos (2«i- 1)tt/4,       ßm = sin (2m- 1)tt/4.

Then

cos (xy + (2m— 1V/4) = am cos xy—ßm sin xy,

(3.2.2)
sin (xj + (2»î— 1)7t/4) = ßm cos xj> + am sin xy.

Let x^ 1. The sum of the two leading terms of (2.1.6) is

/2V'2/-  J      m2-\    t,    \   . , /2V'2/        _   «z2-j\
_ ( -)    [ßm + «m —^ coth v I sin xy +1-I    I «m - ßm —^ I cos xj>.

Now d(coth y)/dy= -csch2 y eLx[l, oo) and hence, by Theorem 1 and the remark

following it, the functions equal to the above coefficients of sin xy or of cos xy for

ja 1, and equal to zero for O^já 1, form satisfactory multipliers. The next two

terms of (2.1.6) have for coefficients of sin xy or of cos xy terms of the type

>l>i(x) + i}i2(x)/(e2y— 1), with i/»!, </i2 bounded. The same results again apply. We may

now conclude that

{§™\^ K™(x,y)H(y)dy

l/p

xapdxr     ú Am,a\\H\\p¡a

where Km denotes the sum of the first four terms in the expansion (2.1.6).

We must now deal with the last two error terms. The situation is now somewhat

different, inasmuch as instead of actual quotients for coefficients, we have terms

which are merely bounded by quotients of the right type. We look at

J" cos (xv+ [2m-1] ^jD,(x, y)H(y) dy

= l-J cos lxy+[2m— 1] jlZMx, y) \    H(u) cos uy du dy

= I-) H(u)       cos (xy+[2m— 1] -JO^x, y) cos uy dy du.

(Fubini's theorem applies since Dx e L\dy).) Then we have

cos [xy + [2m -1 ] |j D^x, y) cos uy dy   ^ j    | D¿x, y)\ dy = O [A ■
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Also,

277

uy y = co

» = 1

Í + X

cos lxy+ [2m- 1] ̂ IP^Íx, y) eos uy dy

= eos (xy+ [2m-l] ^jA(x, y) ^

-- í   I-x sin (xy+[2m-l]7^0(x-2e-iy) + 0(x-2e-iy)\ sin uydy

Now if x^w, 0(l/x) = 0(l/(x + «)), and if x^h, 0(1/h) = 0(1/(x + m)). Hence, we

obtain

I P eos (xy+ [2m- 1] jW*. j)//(jO ¿y ¡I
II Jí \ ^1 h.cc

Similarly,

I J"   sin (xy+ [2m-1] j)/>a(x, jO^Í-JO rfy

This completes treatment of the case x^ 1, giving

Il r °°
(3.3) tf»(x,jO#(.v)«íy á^,„||A||,.«.

Il Jl llp.a; U:* ë 1>

(The actual value of A™itt has already changed several times; it will again.)

Now we will let x^ 1 ; the relevant expansion is (2.2.3). The leading terms are

(± (2/Tr)ll2 + h2(x)) sin xy + h^x) cos xy, and  ± (2/tt)1'2 + h2(x), hx(x) are bounded,

so they are permissible Fourier multipliers.

For the first remaining error term, we consider

i«« /2V2 r°°        r°°
cos xy Sx(x, y)H(y) dy = Í-I H(u)       cos xy sx(x, y) cos uy dy du

by Fubini's theorem, applicable since ii e L\dy). Now if w^ 1, we note that

^ ^?.«ll# ||p..-

^ <J#||p.«.

f cos xy sY(x, y) cos uy dy < M < oo.

If, on the other hand, u^l, then we integrate by parts:

/»CO

Jl
cos xy íi(x, j>) cos uy dy = cos x_y sx(x, y)

sin «y j/ = co

- J    j - x sin x>> *i(*, j) + cos xj g- j,(x, j) j sin wj dy = Oy-J
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since x< 1. We obtain—

" cos xys1(x,y)H(y)dy =  f  H(u)0(l) du+ P H(u)o(^j du.

Similarly,

P sin xy s2(x, y)H(y) dy =  f  H(u)■ 0(1) du+ P H(u)o(j) du.

The remark following Theorem 2 completes the case x^l, y^l. Combining these

two facts with our remarks on the relevant multipliers and with (3.3), we conclude

that the mapping

#-> P Km(x,y)H(y)dy

is a bounded transformation of L1 n Lp,a[0, oo)c:/."•".

We now deal with J¿ Fm(x, y)H(y) dy. We address ourselves first to the case

where xg 1 and use (2.3.4); evidently an appeal to the Fourier multiplier theorem

would not help. We have, instead,

Km(x, y)H(y) dy = l-\ Km(x, y)       H(u) cos uy du dy

(2\l/2    /•<*> /*1
-) H(u)      Km(x, y) cos uy dy du

since Km eL\[0, 1]; dy). From (2.3.4), Fm(x, y)-¿M. Hence,

f  H(u) f   Km(x, y) cos uy dy du =  f   //(m) • 0(1) du.
Jo Jo Jo

Also, from (2.3.4), j¿ 18Km(x, y)/8y \ dy < M, so that, by integrating by parts,

J¿ Fm(x, y) cos uy dy=0(llu) for w^ 1 and

P H(u) [  Km(x, y) cos uy dy du =  P //(«) • 0^-) ¿m,

so we obtain, as before,

(3.4) {£ | £ F-(x, y)* GO ¿y xapdx^1,P ^ ^.a||7/|

We proceed next to the remaining situation: x^l, y^l. Our principal tool will

be Guy's transplantation theorem for the Hankel transform (Theorem 2). It will be

sufficient to use the short expansion (see (2.4.9) and (2.4.11)):

(3.5) Km(x, y) = (1 +/cm(x))(xyy!2J-m(xy)+ Wm(x, y),
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where

îcm(x) = 0(x-2);

Wm(x,y) = 0(x-m+1/2y-m+6'2),       xy $ 1,

279

= 0(x-iy), xy^ 1;

dWm(x, y)/8y = 0(x-m + 1/2^-m + 1/2),       xy JS 1,

= 0(1),

First,

xy ^ 1.

| f (1 +£m(x))(xJ01'2/_m(x, y)■ H(y) dy I
Jo llp.a: {*:* ë 1}

£ dl f (xyy2J-m(xy)H(y) dy
II Jo

II f1  -
^ A™a        H(y) cos wy i/v

II Jo

by Guy's result, with the function g replaced by the restriction of H to [0, 1]. The

mean convergence result (for partial integrals) for the cosine transform implies that

the last norm is bounded by a multiple of ||/f||Pja; hence

(3.6) \\(1(l+Jcm(x))(xyy2J_m(xy)H(y)dy\\     ú AíJH¡p.a.
IIJ 0 lip,a

To dispose of the error term, we note that if xy^l, then

y-m+l/2-p-m + 5/2  _   „-m + l/2y-m + l/2y2  _  Q(yX_1)

Therefore Wm(x,y) = 0(yx~1), X^l,y£l and so

Wm(x, y) cos uy dy = O^-j-

Moreover, since m<^, Wm(x,y) = 0(l), and 8Wm(x,y)/dy=0(l), integration by

parts gives

l\
cos uy dy = 01-P Wm(x, y) ,

Jo

These two integral estimates show that

£ Wm(x, y)H(y) dy = ^ " J" H(u) £ WJx, y) cos ay dy du

= lomU)°(Úx)du-

(Fubini's theorem applies because Wm(x, y) = 0(l).) Using this in conjunction with

(3.6) and (3.4) we see that the mapping

H ^ ^ Km(x, y)H(y) dy

is a bounded transformation of L1 n Lp,a[0, co)<=Lk-a, as desired.
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Corollary 5. Let p, a, m be as in Theorem 3. Then if H eL1 <~\Lp-a, we can

define a function SmH by

rN
(SfH)(x) = l.i.m.p-a      Km(x, y)H(y) dy;

w-*œ Jo

moreover

\S?H\v,a Ú AU\ff\\p,a-

Proof. Let 0 ^ N± < N2 < co and put the G(y) of Theorem 3 equal to zero off

[Nu N2], and equal to H(y) on [Nu N2]. Then GeL»[0, co) so

II     (*N II     /*N

2 Km(x, y)H(y) dy       Ú A%,a       * cos xyH(y) dy ■
II J/^i Up.a II J Ni

The corollary is known to be true for m=\\ thus ||{^ Fm(x, y)H(y) dy\\p¡a -> 0 as

Ni, Ar2->oo and S™H exists in V-a. Taking ^=0 then gives the desired norm

inequality.

Our second transplantation theorem (which, in turn, implies a projection theo-

rem) is as follows:

Theorem 6. Let FeLx[0, oo). Then ifm^\ or «z = l, 2,...,

(3.7) Gm(F; y) =  P F(x)Km(x, y) dx = Gm(y)

exists as a Lebesgue integral; moreover if 1 <p<co, —l/p<a< l — l/p there is a

constant Ap¡a such that

\Gm\\p,a Ú 4M|g1/2L„.

It is enough to prove Theorem 6 for m<\. By (2.1.6), (2.2.3), (2.3.4) and (2.4.9),

Fm(x, y) is bounded in x for each y. Since F e L1, Gm(F; y) exists.

As with our first transplantation result, we will prove the following and it will

imply Theorem 6:

Theorem 7. Let m<\, with p and a as in Theorem 6. Then there is a constant

Am,a such that for G e Lp-a nL1,Ge L1,

= AmjG\\p.a.P Fm(x, y)Ô(x) dx
\\ Jo

Again we write

P Fra(x, y)G(x) dx =  f  Fm(x, y)G(x) dx+T Km(x, y)G(x) dx
Jo Jo Jl

and we will begin by treating JJ Fm(x, y)G(x) dx. As a start, we let y = 1 and use
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(2.3.4). Since our expansion is not in terms of sines and cosines, we will not use

multiplier theorems. Instead, we have

f Fm(x, y)G(x) dx = (-\     (  Km(x, y) f   G(u) cos ux du dx

(9\ 1/2    />eo fl

-) G(u)      Km(x,y) cos uxdx du;

the order of integration is interchangeable because |Fm(x, y)\ ^ C. Now for w£ 1,

we note that jl Km(x,y) cos ux dx = 0(l). For w^l, we use the .fact that

|Fm(x, y)\ ^ C and |SFm(x, y)/8x\ ^ C, integrate by parts, and get

Km(x, y) cos ux dx = 0(l/u).

We conclude that

(3.8) i^j^ j\m(x, y)G(x) dx

Next, we let jï: 1. The estimates we need are in (2.2.3). We write this as

Km(x, y) = (±(2/tt)1'2 + h2(x)) sin xy

+ «i(x) cos xy + Si(x, y) cos xy +s2(x, y) sin xy.

The coefficients ±(2ln)ll2 + h2(x) and «i(x) satisfy the requirements for multipliers

given in Theorem 1.

To deal with the error terms, we note that st(x, y), 8sf(x, y)/8x=0(e~2y). Now

C1 ~ /2\1/2 f°° f1
cos xy Si(x, y)G(x) dx = I-) G(u)      si(x, y) cos xy cos ux dx du

since J¿ |íi(x, j)|í/x=0(1). Moreover, |ii(x, y)\ <Me~2y so that

l/p

y"dy\     úAU\G\\v,a.

Si(x, y) cos xy cos wx i/x ^ Me~2y.

Also, integrating by parts and using the condition on ds^x, y)\8x gives

I/o 5i(x' y) cos x^ cos MX dx\ r¿(M/ü)e~2y. Now letting tu(w) = M on O^u^l, œ(u)

= M/u on «el, and l//?+l/?= 1, <« eL«--a[0, oo), the dual ofL"-". Hence,

cos xy Sx(x, y)G(x) dx

Clearly, e'2y eLp-a[l, oo) and so

II f1
cos xy sx(x, y)G(x) dx

II Jo

= e-21|G|L,aP,a II1"II«,-a-

<   Am    11(711
=  ^p.all^llp.a-
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The same argument works for the term sin xy s2(x, y). Recalling (3.8), we conclude

that

(3.9) IfI Jo
Km(x, y)G(x) dx ^ ^.«llGllp...

We will now deal with _[" Km(x, y)G(x) dx, starting with y^l. According to

(2.1.6), (3.2.1) and (3.2.2)

r/2\i/2 /2\1/2     m2 — 1 1
Km(x, y) = - |j-j    fl»+(-)    «m-^cothy+ßMx,y)-*nRa(x,y)\smxy

[Í2\112        Í2\112    m2-i- 1
+ [\n)      "m_W      ßm^^^OÜl y-^CC^^X, y)+ßmRa(x,y)^COSXy

+ Z)i(x, y) cos (xj+ [2ot- 1]tt/4) + D2(x, y) sin (xy+[2m-l]-n/4).

The coefficients of sin xy and of cos xy that appear in this expression satisfy the

sufficient conditions given in and right after Theorem 1 for Fourier multipliers. The

last two terms we treat differently.

(    cos (xy + [2m - 1 ] ̂ ) D^x, y)G(x) dx
Ji V 4/

= I-) G(u)       cos lxy+[2m — 1] j\Dx(x, y) cos ux dx du,

since J" |Z>,(x, y)\dx = 0(l). We also have

cos I xy + [2m — 1 ] j I Di(x, >>) cos ux dx Ú Me'iy, uúl,

ú (M/u)e-iy,       u^l.

The same argument we used for the remainder terms when x^ 1, y^ 1 works here

as well as for the term sin (xy+[2m—l]n/4)D2(x,y). We have

( fco  I    /-co P "\ l/P

(3.10) |J^     J^   K"(x,y)G(x)dx   y<"> dyj     Ú A™a\\G\\p,a.

Now we assume x^l,_y^l. The expansion we want is (2.4.6) with estimates

(2.4.7) and (2.4.8):

K"(x, y) - (1 +ïcm(x))(xyy>2J-m(xy) + 2($-m)cPl(y)y3l2x-v2J1-m(xy) + E(x, y)

with

km(x) = 0(x-2),       k'm(x) = 0(x~3);

E(x,y) = 0(x-m-3'2y-m + 512),       xy ^ 1,

= 0(x'2y2), xy^l;

and

^-E(x,y) = o(x-m-5l2y-m + 512),       xy ^ 1,

= 0(x"2y3), xy ä; 1.
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We replace the "g" of Guy's result (see Theorem 2) by the restriction to [1, oo) of

(l+/cm(x))G(x)toget

I P (1 +km(x))G(x)(xyy>2J_m(xy) dx 1
II vl ||p,a

^ A?,a fl r (l+lcm(x))G(x) cos xy dx       Ú Am,a\\G\\p,a;
Il JX P.tt

the second inequality arises from the fact that 1 + /vm(x) satisfies the hypothesis we

have given for Fourier multipliers. For the second term, <pi(y) = 0(l) and

I P 2(\-m)9l(y)y3>2x-i'2G(x)J1.m(xy) dx I
Jl p.a

Ú C    P x-^xXxyY'^.^xy) dx       ú Am¡a    f   x^Gix) cos xy dx
II Jl lip,a II Jl Up,a

<    Am    Il G II

the second inequality comes from Guy's result, with his "g" equal to x_1G(x)

restricted to [1, oo). The third comes from treating x"1 on [1, oo) as a Fourier

multiplier.

We have to dispose of the error term E(x, y). Writing

fa f í>l/y        /»ooN

J    F(x,j)G(x)í/x = |Ji   +J    jE(x,y)G(x)dx,

we will treat J^'" F(x, y)G(x) dx first. Evidently E(x, y) is bounded in x and y so

we can interchange the order of integration and

/•l/y /2\1/2  f°° f1/s
E(x, y)G(x) = l-l G(m)        F(x, j) cos wx dx du.

We have

I   fi/y rily
E(x, y) cos wx dx   á 0(>> -»+5/2*-m-3/2) ¿x ^ M

I Ji I      Ji

Also, by parts,

F(x, j) cos MX rfx   < L^liZiJ +J. ^F(x,j)
Ji u       |x = 1      «Ji     |ôx

Isin mx| dx

<
?j>

-m-5/2y-m +5/2-4^   <
M

Once again, the remark following Theorem 2 implies that

»i/y/•l/y

F(x,j)G(x)dx       ^ ^?.«||G||,.«.
Jl lip,a



284 SUSAN SCHINDLER [April

For the integral over [1/^, oo), we note that J™/v |P(x, y)\ dx = 0(l) and so, by

Fubini's theorem,

/»co ^ t'y. 1/2    /»co /.co

E(x, y)G(x) dx = [-) G(u)        E(x, y) cos ux dx du.
Jlly W       Jo Jlly

First of all, since E(x, y) = 0(x~2y2) on the range in question,

P E(x, y) cos ux dx   = o{y2 P x"2¿ix} = 0(y3) â M.
I Jlly L       Jl/y J

Also, by parts, and since dE(x, y)/dx = 0(x~2y3), we get \j™y E(x,y) cos ux dx\

5= M/u and the argument we just used works again.

Combining our results for this region (xg 1, y^ 1) with (3.9) and (3.10), we now

obtain the boundedness of the transformation

G -> P Km(x, y)G(x) dx
Jo

ofL1nLp-a[0,co)<=Lp-a.

Corollary 8. Let p, a, m be as in Theorem 6. Then if G eL1 n LP-", we can

define a function S2G by

(S^G)(x) = l.i.m. {   Km(x,y)G(x)dx;
N-><x>    Jo

moreover

\S$G\,.a S A?JG\\

We omit the proof; it parallels that of Corollary 5.

4. Applications. Typical consequences of transplantation theorems are results

about multipliers. To get these results, however, we need to be able to map from

G1'2 to Gm and back, and from H112 to Hm and back. At the least we have to obtain

sharp duals for Corollaries 5 and 8. Preliminary to this, we will obtain two mean

convergence results, stated in one lemma. (The second part might be considered as

a projection theorem.)

Lemma 9. Lei 1 <p<ao, — l/p<a< 1 — l/p, m^\ or m=l,2,.... Then if

feL1 c\V"a,

l.i.m."-« fN Km(u, y)Gm(f; y) dy = f(u)
N-"X> Jo

and

l.i.m."'« P Km(y, u)Hm(f; y) dy = f(u).
W-.CO Jo

Proof. We will only prove the first statement ; the proof of the second proceeds

along similar lines. For/eL1 n Lp-\ \Gm(f; y)\^supx_y \Km(x, y)\ ■ ||/||1<JÄ/|/|i,
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from the asymptotic expansions. Hence, Gm(f; y) multiplied by the characteristic

function of [0, N] is in F^O, oo), so by Theorem 3,

I P Km(u, y)Gm(f; y) dy      Í A"a I P cos uy Gm(f; y) dy I    •
II Jo P.a II Jo lip,a

Take q so that l/p+ l/q=l; the dual of Lp,a is L9-~". Since the last norm equals

s"Pfc< <*>  Il JÔ cos uy °m(f; y) dy ||p,a: {u:uik), it is bounded by

/•oo pN

sup h(u)      cos uy Gm(f; y) dy du
,i_0Si:/tsL1 | Jo Jo\h q

For h e L1, we may use Fubini's theorem and

/•co pN /   \ 1/2 I    /»1V

Ju  A(«) Jo cos uy Gm(f; y) dydu\ = [jj      jQ Gm(f; y)ft(y) dy

= Q1'5 | [ JV(x)F-(x, jOfo) dx dy

= (I)"8 | £V(*) I" *m(*, *Ä>0 ̂ dx

since feLx[0, oo) and Â eL^O, N].

We apply Theorem 3 to ft multiplied by the characteristic function of [0, N],

since — l/q< — a< 1 — l/q, and

/•AT

Jo
Km(x, y)h(y) dy < Am

=   -Kg. -

II rN

II Jo
cos xy h(y) dy

Ú   Am.-a||«||«.-a   Ú   Aq_.a;

the second inequality arises from mean convergence results for the cosine trans-

form. Holder's inequality then implies

(4.1)   I P *»(«, y)G™(f; y) dy I     á A»a(nl2y'*A»_tt\\f\\p,tt = 2Ç.J/L,.
II Jo Up,a

This inequality shows that to get mean convergence for/e L1 n Lp,a it is enough

to let/belong to a dense (in (p, a) norm) subspace of this intersection. We will let

fe C™(0, cc) = {f: support off is a compact subset of (0, oo) and /has infinitely

many derivatives}. Then by [19]

f(u)= lim   Ç Km(u,y)Gm(f;y)dy
W-»co   Jo

for u à 0. Let (rNf)(u) = f£ Km(u, y)Gm(f; y) dy. We will show rNf^l^f To do this

we have to show that rNfis bounded by a fixed function in L"-a (and Lebesgue's

Dominated Convergence Theorem completes the argument).
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First, Gm is bounded (by supXi!/ \Km(x, y)\ ■ \\fWJ. Hence, GmeL1[0, 1]. If y^ 1,

we integrate by parts twice to get

Gm(f; y) = [ f(x)Km(x, y) dx
Jsupport /

= | f"(x) f    f * Km(x2, y) dxa dxx dx,
J support / Jó   Jó

where S>0 depends on/. Then, from (2.1.6) and (2.2.3),

Gm(f;y) = 0(y-2)eLi[l,œ).

Consequently, ||Gm||i<oo. Hence, onO^w^l,

\(rNf)(u)\ Ï sup |^"(*,^)|-||G»||i < oo.
x.y

On u ̂  1, we integrate by parts and we have

(rNf)(u) = Gm(f; N) P Km(u, t) dt- P (Gm)'(f; y) f Km(u, t) dt dy.
Jo Jo Jo

It is easy to see from (2.1.6), (2.2.3) and (2.4.9) that

á £   and i Km(u, t) dt ^ —•
u

I i" Km(u,t)dt
I Jo

Also Gm(f) is bounded so

Gm(f; N) J* Km(u, t) dt

(Ci, C2 and C3 are independent of Af.) We show that (Gm)' e L^O, oo); this will give

\(rNf)(ü)\ ^ C/u onii^l. We may write

(Gm)'(f; y) = f       x/(x) ¿ ~ K"(x, y) dx.
Jsupp / x oy

Clearly (Gm)' £¿^0, 1]. So let j>1 1. Integrating by parts twice gives

(Gm)'(f; y)=  f        £-2 xf(x) ■ nx, y) dx
Jsupp / ^*X

where

nx,y)-\X6\X;)^(t,y)dtdx1

(S = min{x :/(x)/0}). From (2.1.6) and (2.2.3) we see that lm(x,y) = 0(l/y2) for

y^l and xesupp/. Thus (Gm)'(/;j') = 0(l/^2),>'^l, so (Gm)'gL^O, oo). We are

now able to conclude that

(rNf)(u) Ú 3/1|G»||i,        u =£ I,
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The function on the right is in Lp,a; call it s(u). Then

\{rNf)(u)-f(u)\pWp è {\s(u)\ + \f(u)\}pu"p í 2p{|i(«)|p+|/(M)|pKP

which belongs toF^O, oo). Hence, we conclude from Lebesgue's Dominated Conver-

gence Theorem that lim*.,« \\j% Km(u, y)G">(f; y) dy-f(u)\\p¡a = 0 fox fe Cc"(0, oo)

and hence for/eF1 n LP-a by (4.1).

We may now prove a theorem which dualizes Theorems 4 and 7. Actually, we

will only prove the first part.

Theorem 10. Let l<p<oo, —l/p<a< l — l/p, m^\orm=l,2,.... Then there

is a constant B™a such that, for feL^O, oo) and0^a<b<<x>,

Í  cos ux Gm(f; u) du       % Bm,a    f  Km(x, u)Gm(f; u) du
Ja p,a II Ja

and

f cos ux Hm(f; u)du\     ú Bm¡a I f Km(u, x)Hm(f; u)
Ja \p,a If Ja

du

Proof of the first inequality. Let g(u) = Gm(f; u) on [a, b], g(u) = 0 off [a, b]. Then

g e L"-a n L1 and, by the lemma,

k(u) = £ Km(y, u)Hm(g; y) dy -* g(u)

in Lp,a[a, b] and hence in V-[a, b]. So

rcos ux Gm(f; u) du       =
¡IP, a

lim      rk(u
k— co Ja

) cos ux du

¿ lim inf I
ft:-» co

|   rk(u) cos «X rfw

by Fatou's lemma. Moreover,

rk(u) cos ux du =      \\   Km(y,u)Hm(g;y) dy> cos ux du

=       Hm(g; y)      Km(y, u) cos ux du dy.
Jo Ja

So, with l/p+l/q=l,

Il F   , II
I   rfc(w) cos ux du

II Ja Up,a

II   Ck C II
= Hm(g; y)      Km(y, u) cos ux du dy

II Jo Ja ||p,a

I    /«oo /»/c /•&

=        sup «(x)      7/m(g';>')      Km(y, u) cos ux du dy dx
llhll,,-„sr.fteL1  | Jo Jo Ja

sup fëV'' I f Hm(g; y) f Fm(y, «)Ä(«) du dy
IIWI,,-aSüíiei1   W        I Jo Ja
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By Corollary 5, ||J* Km(y, u)h(u) du\\q<.^Aq^a\\h\U.-a- Thus

I f rk(u) cos ux du\     Ú B"a || Hm(g) || „.„
II Ja \\p,a

by Holder's inequality so that

I f cos ux Gm(f; u) du \\     ^ BZ,a\\Hm(g)\\p,a = B».a I f Km(x, u)Gm(f; u) du I    ,
II Ja lip,ce II Ja Up,a

as desired.

We include our multiplier results in one theorem; once again, we will only prove

the first result.

Theorem 11. Let \cp(t)\SC, J'0 \sd<p(s)\èCt, l<p<co, -l/p<a<l-l/p,m¿i

or m=l, 2,.... Then for feL1 nPp,a[0, oo), the functions

l.i.m.»-« Ç Km(x,y)<p(y)Gm(f;y)dy = (TltJ)(x)
N-.CO Jo

and

I.i.m."-« f Km(y,x)<p(y)H»'(f;y)dy = (T2,0f)(x)
¡V-.CO Jo

exist, and for some constant Ap,a

II Pi,tpj ||p,a = Ap¡aC ||y ||p >a

and

\\L2¡(PJ ||p,a =  Ap¡aC \\j \\p¡a.

We will need a lemma, the dual of the Fourier multiplier theorem.

Lemma 12. Let \<p(t)\ <; C, f0 \s<p(s)\ ̂Ct, 1 <p< oo and -l/p<a<l-l/p. Then

for a constant A, we have for all g e Px[0, oo),

1!      /»CO ||      /»CO

cos ty <p(y)g(y) dy       è AC\\       cos ty g(y) dy
II Jo p,a II Jo p,a

Proof of Theorem 11. We write (TNf)(x) = J"* Km(x, y)q>(y)Gm(f; y) dy. We will

show \\TNlf-TN2f\\p¡a->0 as Nu N2^co (which implies Tx «, exists). For

O^Nx<N2<oo,

\\TNJ-TN2f\\Pia = I P2 Km(x, y)9(y)Gm(f; y) dy
II JNí p,a

and since the characteristic function of [Nu N2] times <p(y)Gm(f; y) is in P^O, co)

Theorem 3 yields

I P2 A""(x, y)<p(y)Gm(f; y) dy I     Ú A™a I P" cos xv- <p(y)Gm(f; y) dy I    •
II Jnx Wp.a II JiVi llp.tr
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Letting g(y) = Gm(f; y) on [Nlt N2], g(y) = 0 elsewhere, gives, by Lemma 12,

II CN¡í II f°°
cos xy <p(y)Gm(f; y) dy       = cos xy <p(y)g(y) dy

II JNi p,a II Jo llp.er

II   /*°°
^ AC cos xy g(y) dy

II Jo |p,a

II rN*
= AC cos xy Gm(f; y) dy

I JNi pta

í AC-B£a I f2 Fm(x, j)Gm(/; j) ¿y I
II JNl ||p,a

by Theorem 10. By Lemma 9, this last norm approaches zero as A7!, N2 -*■ co, for

each/e F1 n Fp-a. Hence,Tlttpf exists in Lp,a. With iVi =0, the preceding inequalities

show that

I P2 Fm(x, j)9>(j)Gm(/; y) dy I     ^ ¿CPp% I P' Fm(x, >;)Gm(/; >>) dy 1
II Jo l|p,a II Jo lip,a

^ ^cf^.i/iIp,,,

also by Lemma 9. Letting N2^ao implies that ||F1><p/||p,a^j4Cfi£j/||,,,e.

Returning briefly to the first mean convergence problem, let us note that its

solution depends on an analysis of the integral transform

(TNf)(u) =  P f{x) P K"(x, «)*»(*, J) ¿V dx.
Jo Jo

By [5, p. 169, 3.12(1)] and [5, p. 161, 3.8(9)], it is easy to see that, for m < 1,

/:
Km(x, y)Km(u, y) dy = -g—^ {Km(x, N)(Q-m)* + ui)V2K.n-\u, N)

-Km(u, Af)((l-«j)2 + x2)1/2Fm-1(x, TV)},

and that for m > 1 the kernel does not exist as a Lebesgue integral. Using the

Hubert transform in conjunction with expansions (2.1.6) and (2.2.3) and the trans-

form induced by the kernel l/(w + x) gives the mean convergence result for «z< 1.

In the case of the other mean convergence result, we do not now have access to a

closed formula for the integral kernel which occurs. If one compares recursion

formulas for Bessel functions with those for Legendre functions, however, one can

probably make a plausible argument for the failure of the second kind of mean

convergence result in Lemma 9 for Legendre functions with m>\, «z#l, 2,....

Such an argument would lean on the expansions for xS: l,y^l, and would use the

failure of (p, a) mean convergence for the Hankel transform with m>\.

Boas [2] has noted the following theorem for the Fourier cosine transform :

Theorem. If geÜ-,g(t) \ 0 as r^oo and l<p<co, —l/p<a<l — l/p, then

geLp-a[0, oo) if and only if geLp^-a~2ip.
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The roles played by g and g can be switched here keeping g in L1. Moreover,

— l/p< l—a — 2/p< l — l/p if and only if — l/p<a< 1 — l/p. One can also show,

by Lemma 9, that if xio,m(x) = characteristic function of [0, N], then for

g e L1 n Lp,y (usual hypotheses on p and y) we have for N^N(g)

klip., =s2¿»7||rjfc0(OTG»(g)rllp.y

One can then show the following: For geLx,g(t) j 0 as t->co, 1 <p<oo and

- l/p <a < 1 - l/p, Gmg e Lp-a if and only if g e jy.i-«-«». Recalling the definitions

(1.6) and (1.7) of km and Km, we can restate this as

Theorem 13. Let j" |/(x)| dx/km(x)<co and suppose f(x)/km(x) j 0 as x^oo.

Put r(w) = j^ f(x)Prlll2+iX(w) dx. Then if 1 <p<co, — l/p<a< 1 — l/p, m<^ or

m »1,2,...,

f   |/(x)|"x-a;î'-2i/x+ P |/(x)|!'xm!'-ap-p'2-2tix < 00

if and only if

" \r(w)\p(yv2-l)pli-112 [\og(w + (w2-iyi2)]ap dw < 00.
/;

We note that by using Hm in place of Gm, the same conclusions obtain if the

hypotheses are replaced by

"J"o° |g(cosh >>)| (sinh y)112 dy < oo and g (cosh y)(sinh y)112 j 0 as >>->oo."
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