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REGULAR REPRESENTATIONS OF DIRICHLET SPACES

BY

MASATOSHI FUKUSHIMA

Abstract. We construct a regular and a strongly regular Dirichlet space which

are equivalent to a given Dirichlet space in the sense that their associated function

algebras are isomorphic and isometric. There is an appropriate strong Markov process

called a Ray process on the underlying space of each strongly regular Dirichlet space.

1. Introduction. A. Beurling and J. Deny [1] introduced the notion of Dirichlet

spaces and developed the general theory of kernel-free potentials. Recently the

author [6] adopted Dirichlet spaces relative to L2-spaces (we will call them L2-

Dirichlet spaces or D-spaces as an abbreviation) to describe boundary conditions

for multidimensional Brownian motions.

A .D-space is a certain space of functions that are defined on an underlying

measure space (X, m). When (X, m) is fixed, there is a one-to-one correspondence

between the set of all symmetric sub-Markov resolvent operators on L2(X; m)

and the set of all £>-spaces. In particular, any sub-Markov resolvent kernel on X

which is symmetric with respect to m generates a £>-space. The present paper and

the subsequent one [9] concern the problem of whether conversely any Z)-space

guarantees the existence of a suitable strong Markov process or not.

The present paper aims at constructing a regular and a strongly regular Z)-space

which are equivalent to a given D-space. A D-space is called regular if it densely

contains sufficiently many continuous functions vanishing at infinity on its under-

lying space. There corresponds a potential theory of a type of Beurling-Deny to

each regular D-space. A strongly regular Z)-space is a regular one which is generated

by a Ray resolvent kernel. According to D. Ray [15], there is a right continuous

strong Markov process on the underlying space of each strongly regular D-space.

Suppose that we are given a D-space with underlying space (X, m). Theorem 2

in §5 states that there exists then a regular D-space with some modified underlying

space (A", m') in such a way that these two D-spaces are equivalent to each other

as function spaces. The latter D-space will be called a regular representation of the

given one. The regular representation will be carried out depending on a sub-

algebra L of L°°(X; m) satisfying a certain condition denoted by (C). Actually we

will take as X' the space of all regular maximal ideals of L.
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There are generally many possibilities to find L satisfying (C). In §6, a special P

possessing an additional property denoted by (R) will be constructed by making

use of the method of F. Knight [11] and H. Kunita and T. Watanabe [12]. We can

regard the condition (R) as a generalization of Ray's hypothesis for a sub-Markov

resolvent [15]. Theorem 3 in §6 asserts that the regular representation with respect

to such an P turns out to be a strongly regular P-space.

§3 consists of typical examples of P-spaces related to the multidimensional

Brownian motion. Those P-spaces except for the last example took the fundamental

roles in the investigations of boundary problems by J. L. Doob [4] and by the

author [5], [6]. The last example is a rather sophisticated one of regular P-spacesi1).

Much stress on the roles of regular ones will be laid in [9].

The appendix is referred to only in §3.

2. Basic properties of P-spaces.

Definition 2.1. We call (X, m,^,S) an L2-Dirichlet space (or a D-space, for

short) if the following conditions are satisfied.

(D.l) A' is a locally compact, Hausdorff, and separable space, misa Radon

measure on X.

(D.2) !F is a linear subspace of the real L\X)=L2(X; m), two functions of &

being identified if they coincide m-a.e. on X. S is a symmetric nonnegative definite

bilinear form on IF and, for each a > 0, F is a real Hubert space with respect to the

inner product

(2.1) Sa(u, v) = ê(u, v) + a(u, v)x,       u,ve^,

where (u, v)x denotes the inner product of L2(X).

(D.3) Every normal contraction operates on (F, S) : if u e F and a w-measurable

function J7 satisfies inequalities

\v(x)\ ^ \u(x)\,       \v(x)-v(y)\ Ú \u(x)-u(y)\

m-a.e. on X, then v eF and S(v, v)^S(u, u).

The present definition of P-space was given in [6]. (X, m) is called the

underlying space of the P-space. According to §2 of [6], let us state a theorem about

a one-to-one correspondence between P-spaces and P2-resolvents.

Definition 2.2. Let (X, m) satisfy condition (D.l). A system {Ga,a>Q} of

linear, bounded and symmetric operators on L2(X) is called an L2-resolvent if it

has the following properties.

(G.l) Sub-Markov property: if u eL2(X) and O^u^l m-a.e. then Ç)^aGauu I

m-a.e., for any a>0.

(G.2) Resolvent equation : Ga-Gß + (a -ß)GaGe=0, a,ß>Q.

(x) N. Ikeda suggested to the author the last example of §3 and theorem of the appendix.
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Theorem 1. Let us fix (X, m) satisfying condition (D.l). For a given D-space

(IF, S) with underlying space (X, m), there exists a unique L2-resolvent {Ga, a > 0} on

L2(X) satisfying the equation

(2.2) S\Gau, v) = (u, v)x

for any ve!F, where a > 0 and u e L2(X) are arbitrarily fixed. Conversely, for a

given L2-resolvent {Ga, a > 0} on L2(X), a D-space is defined by

(2.3) & = SueL2(X);    lim   ß(u-ßGßu, u)x < +co\,
l S-» + °o J

(2.4) S(u,v)=    lim   ß(u-ßGsu,v)x,       u,ve&.

The correspondence defined by (2.2) and that defined by (2.3) and (2.4) are reciprocal

to each other.

Remark 2.1. (i) The proof of Theorem 1 was sketched in §2 of [6]. The essential

ideas for the proof can be found in Beurling-Deny [1] and Deny [2]. So far as this

theorem and the next lemma are concerned, condition (D.l) for (X, m) can be

much weakened. These have been proved in [7] without the separability assumption

for X (see also [8]). T. Shiga and T. Watanabe [16] gave a detailed proof of

Theorem 1 under the assumption that, instead of (D.l), the underlying space

(X, m) is merely a <r-finite measure space.

(ii) Condition (D.3) in the definition of D-space can be replaced with the

following apparently weaker but equivalent condition (D.3)' [16].

(D.3)' Every unit contraction operates on (!F,ê): if ue^ then d = (0vi.)a 1

is also in F and <#(v, v) fk $(u, u). Here, the lattice operations V and A for functions

on X are defined by (w, V u2)(x) = max (uy(x), u2(x)) and «, A u2 = — (( — Uy) V ( — u2)).

The next lemma states the basic properties of D-spaces which we need in the

later discussions. Notice that, for a D-space, Sa and Sß define equivalent metrics

on ¿F for any a, ß > 0.

Lemma 2.1. Let (X, m, ^,S) be a D-space and {Ga, a>0} be its associated IP-

resolvent. Fix an a0>0.

(i) If S is a dense subset of L2(X), then, for any <x>0, Ga(S) is dense in !F with

respect to metric S"o.

(ii) For u,veF,

(2.5) £«(u, v)=    lim   ß(u-ßGe + au,v)x.
j3-> + oo

(iii) For any ue!F, liml8_ + 00 ßGeu = u strongly in norm Sa<¡ and hence strongly

in L2(X) sense.

(iv) IF is a function lattice : if u,ve^, then u V v, u A v e ¡F. Further u A 1 e !F

for ueáF.
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(v) If u and v are both in F and m-essentially bounded, then the product u-v

is also in F.

(vi) For ueF, put un — (( — n)\/ü)An.

Then limn_ + 00 un = u strongly in norm <?V

Proof, (i) is a consequence of the equation (2.2).

(ii) is a consequence of Lemma 1 of [8].

(iii) For ß>a0,

£a°(ßGßu-u,ßGßu-u) á i\ßGßu-u,ßGßu-u)

= ß2(ßGßu, u)x-2ß(u, Ü)x + S\u, u)

= -ß(u-ßGßu, u)x + £(u, u)-*0,       ß^ +00.

(iv) Since |w| and «A 1 are normal contractions of m, they are in F if u is. Note

that

u V v = ^((u + v)+\u — v\),       u A v = \((u + v)—\u — v\).

(v) If ueF and |u|^M m-a.e. for some constant M, then u2 is a normal

contraction of 2Mu and hence u2 e F. Note that u-v = ^((u + v)2 — (u— v)2).

(vi) By Lemma 2.1 of [6], $a°(un, un) increases to $a°(u, u) as n tends to infinity.

On the other hand,

é»°o(un, Gaow) = (un, w)x n_^+0¿ (u, w)x = S"o{u, Gaow)

for any weL2(X). These facts combined with the first statement of this lemma

imply that un converges to u weakly and after all strongly with respect to the inner

product Saa.

We will now give definitions and remarks concerning regularity of P-spaces.

For a locally compact space X, denote by C(X) (resp. CQ(X)) the space of all

continuous functions vanishing at infinity (resp. with compact supports). C + (X)

(resp. C0+(X)) will denote the set of all nonnegative elements ofC(X) (resp. C0(X)).

We say a measure monlto be everywhere dense if m(E) is not zero for any non-

empty open set Pc X.

Definition 2.3. A P-space (X, m, F, S) is called regular if m is everywhere dense

and F n C(X) is dense both in F with norm Stt» and in C(X) with uniform norm.

Here, a0>0 is arbitrarily fixed.

Next, consider (X,m) satisfying condition (D.l). For a sub-Markov resolvent

kernel(2) {Ga(x, E), a>0} on X, we set

(2.6) Gau(x) = [ Ga(x, dy)u(y),       u e C(X).

(2) Ga(x, E) is called a kernel on X if, for a fixed x e E, Ga(x, ■ ) is a Borel measure on X

and, for a fixed Borel set E<^X, G„(-, E) is a measurable function on X.
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Definition 2.4. (i) A sub-Markov resolvent kernel {Ga(x, E), a > 0} on X is

called m-symmetric if

Gau(x) ■ v(x)m(dx) =      u(x) ■ Gav(x)m(dx) fk +oo
Jx Jx

for any u, veC+(X). (ii) A sub-Markov resolvent kernel {Ga(x, E),a>0} on

X is called a Ray resolvent if it satisfies the following conditions.

(R.a) Ga(C(X))czC(X) for any a>0.

(R.b) There exists a countable subcollection Cy of C+(X) such that (a) d

separates points of X, and, for any xe X, there exists awed whose value at x

is not zero, (ß) for some a0>0, every function m e Cy satisfies the inequality

ßGao+ßufku,ß>0.

Consider any ».-symmetric sub-Markov resolvent kernel {Ga(x, E), a > 0} on X.

It satisfies the inequality (aGau, aGau)xfk(u, u)x for all u eL2(X; m) n C(X) [16].

Therefore it determines a unique F2-resolvent. The Dirichlet space associated with

this F2-resolvent will be said to be generated by the resolvent kernel {Ga(x, E), a > 0}.

We will say the set Cy appearing in the definition of Ray resolvent to be attached

to the given Ray resolvent.

Definition 2.5. A D-space (X, m, ¡F, S) is called strongly regular if m is every-

where dense on X, (!F, ê) is generated by an m-symmetric Ray resolvent on X and

& n C(X) contains the set Cy attached to this Ray resolvent.

Remark 2.2. (i) A strongly regular D-space is regular. To see this, let (A', m,!F,S)

be a strongly regular D-space and {Ga(x, E), a > 0} be its associated Ray resolvent.

«T n C(X) contains Ga(L2(X) n C(X)), which is dense in (3F, «#«o) by virtue of

Lemma 2.1(i). Owing to the fifth statement of the lemma, IF r\ C(X) is a function

algebra. Since it contains the set Cy attached to {Ga, a>0}, it is dense in C(X) by

Stone-Weierstrass theorem.

(ii) Consider a Ray resolvent {Ga(x, E), a > 0} on a locally compact Hausdorff

separable space X. Let X= X u {oo} be the one point compactification of X if X

is not compact. If X is compact, let {oo} be an isolated point. Define a new kernel

{Ga(x, E), a > 0} on X by Ga(x, E) = Ga(x, EnX) + ((l- aGa(x, X))/a)8{a>}(E),

xe X, Ga({co}, E) = (l¡a)8{x¡](E). Then {Ga, ce>0} is a conservative Ray resolvent

on the compactum X. By Ray's theory [15], [12], this defines on Xa right continuous

conservative strong Markov process for which the point {oo} is a trap. Thus, we

obtain a right continuous strong Markov process (Xt, £,Px, xe X) on X such

that

(2.7) Ga(x, E) = F*(£ e~atXE(Xt) dt},

Xe being the indicator function of the Borel set F. We will call the process on X so

obtained the Ray process associated with the Ray resolvent {Ga, a > 0} on X.

There is a Ray process on the underlying space of any strongly regular D-space.
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3. Examples.    Denote by D a domain of Euclidean A/-space RN (JVg 1).

Example 1. Let us put

£b(D) = {u;ue L2(D), du/dXl e L2(D), i = 1, 2,..., N},

i     \ 1  f   V  8u 8v j

Here, derivatives are taken in Schwartz distribution sense and dx denotes the

Lebesgue measure on RN.

(D, dx, S\*(D), ( , )DjX) is a P-space in our sense. Condition (D.3)' for this

space can be verified easily (see Proposition A.l of [16] or Théorème 3.1 of [3]).

This space is not regular except when it coincides with 2\2(D) of the next example.

Denote by D the closure of P in RN. Let C°°(P) be the space of restrictions to D

of functions which are infinitely differentiable on RN. If dD = D—D is a closed

hypersurface of class C\ then ë\*(D) n C°°(D) is dense in <$b(D) [14]. Therefore,

in this case, (P, dx, S\^(D), ( , )DfX)(3) is a regular P-space. When P is bounded,

the space (i\*(D), ( , )D>1) is generated by the continuous resolvent density

constructed in [5] and in §8(1) of [6].

Example 2. Denote by Co(D) the space of infinitely differentiable functions on

P with compact supports. Let 3i}?(D) be the closure of C0X(D) in

(Sb(D),( , )D,1 + ( , )D).

(D, dx, @s\*(D), ( , )D,i) is a regular P-space. Since @>h(D) coincides with the

completion of ¿>l2(D) n C0(P) with respect to metric ( , )D,i + ( , )D, we can apply

Corollary 3 of Appendix to show that it is a regular P-space. It is generated by a

continuous resolvent density of the absorbing barrier Brownian motion on P [6].

It is strongly regular when each point of the boundary 3D is regular with respect

to the Dirichlet problem for P.

Example 3. Let M be the Martin boundary of the domain D and p, be the

harmonic measure on M with respect to a reference point x0 of P. J. L. Doob [4]

introduced the space H'h of measurable functions <p on M for which the integral

DM(<p,<p) = U     f   (9(0-<p(ri))2(>(t,l)KdOKdr))
H Jm Jm

is finite. Here, 6(¿¡, r¡) is Nairn's kernel on M and q is 2-n if N=2 or the product of

N—2 and the unit ball boundary area if N>2. It was proved in [4] that //¿c

P2(M; p). We can easily see that (M, p, H'h, DM( , )) is a P-space. This is regular

when P is a disk (§18 of [4]). Let Hh be the space of all harmonic functions on P

with finite integrals (u, u)D.x. Then, (//¿, DM( , )) is the trace on M of the space

(Hh, ( , )D>1) in the following sense: each function u of Hh has a fine boundary

(3) We regard here $ln(D) as a subspace of L2(D) ( = L2(Z>)). See Remark 5.2.
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limit function yu in H'h and y define a unitary map from (Hh, ( , )D>1) onto (H'h, DM).

This is the reason why functions of H'h were called in [4] BLD boundary functions.

A modification of the space (H'h, DM) was introduced in [6] in order to describe

the space of all a-harmonic functions of £\*(D). Suppose that D is bounded. Let

Ua(£, y) and i/(f, r¡) be Feller kernels on M. t/(£, -n) is equal to (q¡2)-6(£, r¡) /x-a.e.

Denote by p.' the measure Uyl-p. on M and put HM = H'hr\ L2(M; p.'). Then,

(M p.' HM, DM) is a D-space. By virtue of Lemma 3.1 and equality (3.21) of [6],

it is clear that (M, y,', HM, D^1) is also a D-space for each a>0, where

imv, <!>) = dm(9, 4i)+[  f <p(è)UM, vïKnMd&rtdrj).
Jm J m

Let Jtf'a be the orthogonal complement of 2¿¡\2(D) in the Hubert space

(ßb(D),( , )D.1+«( , )D).

The space (HM, D!$) is nothing but the trace on M of the space

(•**«.( > W+«(. >*)(*)■

Example 4(5). Assume that D is bounded. Let A = UpepFp be a measurable

partition of the Martin boundary M. Then, A defines a Dirichlet subspace (&£, DM)

of (HM, DM) by «^$ = {<p e HM; there exists a set Ev such that n'(Elf) = 0 and <p is a

constant on Ev — Ew for each /. e F}. Even when D is a unit disk, (M, p!, ¿F£, DM)

is no longer regular except for a trivial case that F£ is equal to HM.

Example 5. Consider the whole plane R2 and put

1  f + «°  r + °>/dudv    dudv\ j   j      1  f™    a«(x, 0) Sy(x, 0)  ,

«s/ = {« e C0(Ä2); m(jc, j) is absolutely continuous in each variable x and j

and ê(u, u) < +oo}.

For this space («j«/, <#), let us check the conditions of Theorem of Appendix, («i/.l)

and (¿#.2) are evident. To see («s/.3), assume that a sequence unesé satisfies

(un, un)R* -*■ 0 and S(un — um, un — um) -> 0. We have to prove &(un, un) -*■ 0. Since

un converges to zero in !3\?(R2) with metric ( , )R2,y + ( , )R2, we can select a

subsequence uUk such that unic(x, y) converges to zero for every (x, y) except on a

2-dimensional Brownian polar set(6) [3]. Especially, unk(x, 0) converges to zero

for every x except on a set of linear Lebesgue measure zero.

Now it is easy to see that J"™„ (dun(x, 0)/dx)2 dx^0,n^ oo. Hence S(un, un)

-*■ 0 as was to be proved.

(4) Theorem 3.4 of [6].

(5) See footnote 27 of [6].

(6) The subsequent paper [9] will provide general discussions of this point.
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By means of Theorem of Appendix we get a P-space (F, S) on R2, (F, Sa)

being the completion of (¿Í, Sa) for each a > 0. This P-space is regular because

C0°°(P2)^^ (Corollary 1 of Appendix).

4. Equivalence of P-spaces. Consider a P-space (X, m, F, €). For ueLc0(X)

(=Lm(X;m)), put ||u||00=/n-ess supxeX |«(x)|. Let P be a closed subalgebra of

(LC0(A'), || ||„o). It is well known that L is then a function lattice and that ueL

implies uAl eL. Therefore, by making use of Lemma 2.1(iv) and (v), we get the

next lemma.

Lemma 4.1. F(~\Lis a function algebra and a function lattice. Further, ueFr\L

implies uAleFnL.

Now we are in a position to define an equivalence relation in the set of all

P-spaces.

Definition 4.1. Two P-spaces (X, m, F,S) and (X',m',F',S') are called

equivalent if there is an algebraic isomorphism €> from F n L°°(X) onto F' n

P°°(A") and O preserves three kinds of metrics: HI«, = H^wH'«,, S(u, u) = S'(<bu, <Dh)

and (u, u)x = (<&u, <Dw)x. for u e F n LCC(X).

This definition of equivalence is the same as that of [8] where the definition is

given in terms of the associated P-rings.

It is not difficult to see that the mapping <D of Definition 4.1 turns out to be a

lattice isomorphism and further $ can be extended to a unitary map <t>x from

(F, S) onto (&', S") and a unitary map <D2 from L2(X) onto L2(X'). Here, L%(X)

(resp. L2(X')) is the closure of F (resp. F') in the metric space L2(X) (resp.

L2(X')). We can use Lemma 2.1(vi) to define the extension <S>X. The L2-resolvents

{Ga, a > 0} associated with equivalent P-spaces are mutually related by G'au' =

^2Ga^2yu', u' eLl(X'), a>Q. This relation is proved in [8].

Before proceeding to the next sections, we will summarize here some facts related

to Gelfand representations of subalgebras of I". Let (X, m) be as above and L be a

closed subalgebra of the real Banach algebra (L™(X; m), \\ || «,). A nonzero algebraic

homomorphism x from P into real numbers is called a (real) character on P.

Denote by Jt the set of all characters on P. An algebraic homomorph <D from P

into real functions on J? can be defined by

(4.1) 0>M(x) = x(u),       ueL,   xe^.

We define a neighborhood of % e ^ by

(4.2) N(x; Mi, u2,..., un; e) = {x'eJt; \<&uk(x')-<&uk(x)\ < e, k = 1,2,..., n}

with any e>0 and «,, u2,..., un eL. The set M endowed with topology (4.2) will

be called the character space of P.

Lemma 4.2. (i) The character space JÏ ofL is a locally compact Hausdorff space.

If the algebra L is countably generated, then JÍ is separable. M is compact if and only

ifleL.
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(ii) The map <£> of (4.1) is an algebraic isomorphism and isometry from (L, || \\K)

onto C(Jt), C(Jt) being associated with the uniform norm.

(iii) Suppose that m is everywhere dense L^Cb(X) (the space of continuous

bounded funtions on X) and, for any xe X, there is aueL with w(x)#0. There exists

then a continuous mapping qfrom X onto a dense subset of Ji characterized by

(4.3) <bu(qx) = u(x),       xe X,    ueL.

Proof. Consider the space A=L + (— l)ll2L with uniform norm || ||M. This is a

complex Banach algebra closed under the operation of taking complex conjugate

function. If u e A, then

\u\2        i    ^ . l3/aa-|ii|Y   ,
—■—■— =-  y  \u\ \-■—— i  f /.
1 + |M|2      l+a2kéol  ' \l+a2 J  eL'

where a=|w||00. Therefore, A is a symmetric algebra and the character space J(

of L can be identified with the space of regular maximal ideals of A (Loomis [13,

subsections 23A and 26C]). Now statements (i) and (ii) of our lemma are known

facts. The statement (iii) is evident but we give its proof here for later conveniences.

Fix anxelA map u -> u(x) is clearly a character on L which we denote by qx.

q is continuous at x e X because any neighborhood N(%; Uy, u2,..., un; e) of x=qx

includes the set q(U(x)), where U(x) is an open neighborhood of x defined by

U(x) = {x' e X; \uk(x') — uk(x)\ <e, k= 1, 2,..., «}. Suppose that q(X) is not dense

in JÍ. There is then a nonvanishing v e C(Ji) such that «; = 0 on q(X). By (ii) and

(4.3), we have ||t;||oo = ||«î>-1t.¡|œ = supj;eX l*-1^*)! =sup*eX \v(qx)\=0, which is a

contradiction.

Finally we will state the following lemma according to 26J of [13].

Lemma 4.3. Suppose that L is a dense ideal of L and every function in L can be

expressed as a difference of nonnegative functions in L. Then, for any positive linear

functional I on L, there exists a unique Radon measure p, on JÍ such that

O(L) c L\^; p),

(4.4)
l(u ■v)=\    ®u(x)<S>v(x)p,(dx),       ueL,    veL.

Jm

5. Regular representations. Suppose that we are given a D-space (X, m, !F, ë).

A closed subalgebra L of Lco(X; m) will be said to satisfy condition (C) if it enjoys

the following three properties.

(Cl) F is a countably generated closed subalgebra of Lco(X; m).

(C.2) ^ n Lis dense both in (!F, S"°) and in (L, \ || M), a0 being a fixed positive

number.

(C.3) L\X; m) n L is dense in (L, \  \ «,).

Theorem 2. (i) There exists at least one L satisfying the condition (C). (ii) Let an

L satisfying condition (C) be fixed and X' be its character space. X' is compact if
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and only if I eL. There exists a regular D-space whose underlying space is X' and

which is equivalent to the given D-space.

The regular P-space of Theorem 2(ii) will be called a regular representation of the

given D-space with respect to the algebra L.

Proof of Theorem 2(i). We can find a countable subset P0 of C0(X) such that

each function in C0(X) can be uniformly approximated by a sequence of functions

in P0 whose supports are included in a suitable common compactum. P0 is dense

in L2(X; m). Let {Ga, ce>0} be the P2-resolvent associated with the given (F, $).

Then, Gao(D0)^F n L°°(X; m) and Gtt0(P0) is dense ih(F,é'ao) by Lemma 2.1(f).

We define P as the closed subalgebra of LX'(X; m) generated by Gao(D0). It is clear

that this P satisfies conditions (C.l) and (C.2). As for (C.3), observe that

GaJD0)^L1(X;m)nL

since

\Gauu\ dm ^       Gao\u\ dm =        sup        (v, Gao\u\)x
Jx Jx OSbSI.weCo«)

á —      \u\ dm < +00,       u e D0.
ao Jx

Proof of Theorem 2(ii). Let P be a space satisfying condition (C) and X' be its

character space. By (C.l) and Lemma 4.2(f), X' is a locally compact Hausdorff

and separable space. X' is compact if and only if 1 eL. The map <J> of (4.1) is

giving an algebraic isomorphism and isometry from P onto C(X'). <I> is consequently

a lattice isomorph and it holds that <i>(uA l) = (<ï>w) A 1 for ueL. Let us put

(5.1) 3t = F n P,       3F = <t>(@).

Since F is dense in P by (C.2), F' is dense in C(X'). Further, by Lemma 4.1, F' is

a lattice and u' AleF' whenever u' e F'.

Keeping these in mind, we are now to construct, step by step, a regular represen-

tation (A", m', F', S") by making use of the map <t> of (4.1).

(1) A measure m' on X'. There exists a unique Radon measure m' on X' which

satisfies

<S>(V-(X; m)nl)c L\X'; m'),

(5.2) r r
u(x)v(x)m(dx) =\    ®u(x')<S>v(x')m'(dx'),       ueL\X;m) nP,    veL.

Jx Jx-

In fact, by virtue of (C.3), we can apply Lemma 4.3 to a dense ideal L=L1(X;m) C\L

and a positive linear functional

l(u) =      u(x)m(dx ),       ueL.
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Consider the spaces 0t and &t' of (5.1). Since condition (C.2) implies that 3% is

dense in IF in L2-sense, we have

(5.3) 31 e L2(X; m),       » = L2(X; m),

where the closure is taken in F2-sense and L2(X; m) denotes #. Next we will prove

(5.4) & c L2(X' ; m'),       »' = L2(X' ; m').

For any «e«, (Í>M)2 = <D(M2) e <D(L n F^JST; w)) and hence <$>ueL2(X';m')

according to (5.2). In order to show that 0t' is dense in L2(X' ; m'), take a function

u in Co(X'). Since «^' is uniformly dense in C(X') and is a lattice, we can find a

ue«^' and wne«^' such that Ofkunfkv and wn converges to u uniformly on X'.

Hence, un converges to u in L2(X' ; m').

Finally let us show

u'(x')v'(x')m'(dx'),       u,ve3%,

where u' = <i>u and v' = $>v. Take a nonnegative veut. By condition (C.3) and the

obvious fact that L1(X; m) n L is a lattice, we can select «>„ e L1^; m) C\ L such as

0^pn^ti w-a.e. and \vn — v\^^0. Since <ï> is a lattice isomorph and preserves the

uniform norm, the same relations hold for v'n and v'. Now (5.2) for u = v = vn leads

us to

f v(x)2m(dx) =  f   v'(x')2m'(dx')
Jx Jx-

which implies (5.5) because each element of 0t is expressed as a difference of non-

negative elements of 0t and O is an algebraic isomorphism.

(II) Extendedmap ^onL2(X; m). In view of (5.3), (5.4), and (5.5) of the preceding

paragraph, the algebraic and lattice isomorphism <I> from !% to «^' can be uniquely

extended to

(<D.l) A unitary map <t> from L2(X; m) onto L2(X'; m').

Let us study the features of this extended map <I>. It has the following properties.

(0.2) L2(X; m) is a lattice and $ is a lattice isomorphism. 0(«A 1) = (Om) a 1

whenever u e L2(X; m).

(0.3) <t> is an algebraic isomorphism from Lq(X; m) n Lœ(X; m) onto

L2(X';m')nL'°(X';m').

Further it holds that

(5.6) HI« = ll<M'»>       ueL2o(X;m)nL<°(X;m).

To prove (0.2), take aweL2(X; m) and find a sequence une¿% which converges

to u in F2-sense. Since \un\ e0t converges to \u\ in F2-sense, \u\ eL\X; m). Since

O is a lattice isomorph on a? and preserves L2-norm, we have 0|w| =l.i.m. <1>|«„]

= l.i.m. |Oi/n| = [ d>i/j. Thus we have proved the first half of (0.2). The latter half

is similarly proved.

(5.5) Í u(x)v(x)m(dx) =  f
Jx Jx
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The property (<D.3) follows from (0.2). In fact, for ueLl(X;m) with H|„ =

a< +00, we have |0m| =0(|m|) = 0(|h| aö)=|Oh| A a which means ||Oh||'«, ̂  ||w||«,.

In the same way, we have ||//||«,^ H«!»-1«'!!<« for u' eL2(X'; m') n L°°(X'; m').

To see that <1> is an algebraic isomorphism, take a ue L2(X; m) r» LX(X; m) and

a sequence uneF which converges to winP2-sense. We may assume that |wn| ̂  ||w||«,.

Then u2 (resp. (Own)2) converges to u2 (resp. (Oh)2) in P2-sense. Since O is an

algebraic isomorph on F, 0(H2) = l.i.m. 0(w2) = (Oh)2.

(III) Induced D-space (X', m', F', $'). By means of the preceding map <J> on

L%(X; m)^F,we define

F' = 0(JH,
(5.7)

*'(«'. »0 = <?(0 " V, O ~ V),       u', v' e F'.

Then, (X', m', F', S') is a P-space.

Condition (D.l) for (X', m') has already been proved and (D.2) for (F', S') is

obvious by the property ($.1) of O. Instead of proving (D.3), let us check an

equivalent condition (D.3)' in Remark 2.1. Take u' eF' and put v' = (0vu)A 1,

h = 0_V. Then we have i/ = 0v toA 1 =0(0 vwA 1) by (0.2). Since v =

0 V u A 1 e F and «¡f(i>, r) ^ é?(m, h), p' e F' and <?'(i/, t/) ¿ S'(u', u') proving (D.3)'.

(IV) (A", m', J^', ^') 75 equivalent to (X, m,F,ê). This is evident from (0.1),

(0.3) and (5.7).

(V) (A", m!, ¡F', $') is regular. O preserves ^"o-norm and the uniform norm on

F=F ni. Hence by virtue of condition (C.2), 0t'= <b(0t) is dense both in F'

and in C(X'). Since F is the intersection of F and the uniform closure of F, the

same relation holds for F' and F'. Therefore

(5.8) F' = &' n C(A").

On the other hand we have by (5.6),

(5.9) sup \u'(x')\ = m'-ess sup \u'(x')\,       u' eF' n C^JT').
x'eX' x'eX-

Since J5"' n C(X') is dense in C(A"), (5.9) means that m' is everywhere dense on X'.

The proof of (V) is complete.

The proof of Theorem 2 has ended.

The next remarks and lemma will state the meaning of Theorem 2 for special

cases.

Remark 5.1. Suppose that the given P-space (X, m, F, S) is regular. Since m is

everywhere dense, C(A') may be considered as a closed subalgebra of Lco(X; m).

Obviously C(X) satisfies conditions (C.l) and (C.2). It also satisfies (C.3) because

of L1(X; m) n C(X)=>C0(X). Therefore, we may consider the regular representa-

tion with respect to C(X). However, as is well known, the character space of C(X)

coincides with X itself, and after all the regular representation goes back to the

given regular P-space without any change.
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Lemma 5.1. Suppose that m is everywhere dense. Suppose further that an algebra

L satisfies not only conditions (Cl), (C.2) and (C.3) but also the following.

(C.4) £c Cb(X), L separates points of X and, at any xe X, there is a ueL such

thatu(x)^0.

Let (X', m', «^"', S') be the regular representation with respect to this L. Then,

(i) X is continuously embedded onto a dense subset of X'. By this embedding,

any Borel set of X goes to a Borel set of X' and the restriction to X of any Borel set

of X' is a Borel set of X (with respect to the original topology).

(ii) For any Borel subset A of X', m'(A) = m(A n X). Therefore, the space

(L2(X'; m'), ( , )x.) is identified with the space (L2(X; m), ( , )x).

(iii) By the above identification, LW, ê') is equal to (&, S).

Proof. By virtue of (C.4), the map q of (4.3) from X onto a dense subset of X'

is not only continuous but also one-to-one. The rest of the lemma is obvious.

Remark 5.2. Consider the situation of Example 1 of §3. If dD is of class C1,

then the space L = {ue Cb(D); u is continuously extendable to D} satisfies con-

ditions (C.1)~(C4). {D,dx,ê\*,( , )D1} is just the regular representation of

{D, dx, ê\*, ( , )D1} with respect to this L. In this case, D is homeomorphically

embedded into D. Coming back to the general case of Lemma 5.1, Xis homeo-

morphically embedded onto a dense subset of X' if and only if for any x0e X

and F<=xsuch as x0 <£ Y, there exists ueL such that u(x0) = 1 and u(x) = 0 on Y.

6. Strongly regular representations. Suppose that we are given a D-space

(X, m, ¡F, S"). Denote by {Ga, a>0} its associated L2-resolvent.

Lemma 6.1. (i) Ga makes the space L2(X; m) n Lco(X; m) invariant and

(6.1) HG.KIL fk i H.,       ueL2nL<°.

(ii) Ga makes the space Lco(X; m) n L^X; m) (<=L2(X; m)) invariant and

(6.2) f  \Gau(x)\m(dx) fk - f  \u(x)\m(dx),       ueL°°nL\
Jx a Jx

Inequality (6.2) for u e C0(X) has already been proved in the proof of Theorem

2(i). The proof for u e L°° n L1 is the same. The rest of Lemma 6.1 is clear.

Owing to Lemma 6.1(i), Ga on L2 n F™ can be uniquely extended to a linear

operator Ga on LÔ(X; m) (the closure of L2 n L°° in L"). {Ga, a>0} is a sub-

Markov resolvent on Lq , that is,

(G.l) IfueLo0 andOfkufkl m-a.e. then 0 fkàGttu fk 1 m-a.e.

(G.2) Ga - Ge + (a -ß)GaGß = 0,       a, ß > 0.

A closed subalgebra L of Lo(X; m) is said to satisfy condition (R) if it enjoys

the following two properties.
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(R.l) Ga(P)cP for every a>0.

(R.2) P is generated by a countable subset P0 of F n P such that each u e L0

is nonnegative and satisfies aGa + a u^u, m-a.e., a>0.

Theorem 3. (i) There exists an L satisfying condition (R) as well as (C). (ii) Fix

an L which satisfies (C) and (R). The regular representation of the given D-space

with respect to this L turns out to be strongly regular.

We need the next lemma for the proof of Theorem 3(i).

Lemma 6.2. Let S0 be a set of countable nonnegative functions in F n P00 n L\

Then, there exists a set S possessing the following features.

(5.1) S=>S0 and S is a countably generated subalgebra of F n P00 n P1. Each

function of S is expressed as a difference of nonnegative functions of S.

(5.2) For any a>0, Ga makes the space S invariant, S being the closure of S

inL">.

Proof. According to F. Knight [11, Lemma 1], we construct S as follows.

Starting with S0, assume Sx,..., Sn are defined. Define Sn + X as an algebra generated

by {Sn, Ga¡(Sn),..., Gan(Sn), Gantl(Sn)}, where {ak} is the set of all positive rational

numbers. Put S={J™=0 Sn, which satisfies condition (S.l) by virtue of Lemma 6.1

and of the fact that F C\Lm n P1 is an algebra (Lemma 4.1). It is easy to see that

condition (S.2) is met.

Proof of Theorem 3(i). Let D$ be a countable subset of Co" (A') such that the

set D0 = {u = ux — u2; ute Do , i=l, 2} has the property in the proof of Theorem 2(i).

Put S0 = G„0(Do), which satisfies the following.

(50.1) S0 is a countable set of nonnegative functions in F n P™ n P1.

(50.2) The set {u = ux — u2;u¡e S0, i— 1, 2} is dense in (F,Saa).

(50.3) aGa + aou^u m-a.e. for u e S0 and a>0.

For such an S0, let 5 be a set which satisfies conditions (S.l) and (S.2) of Lemma

6.2. By (S.l), there exists a set S of countable nonnegative functions in S whose

linearization is just S. Let us put

(6.3) P0 = So u Gao(§),

(6.4) P = the closed subalgebra of P°° generated by P0,

then the space P meets both conditions (C) and (R).

In order to check condition (C) of §5, denote by F0 the algebra generated by P0-

By (S0.l), (S.l) and Lemma 6.1, P0 and hence F0 are included in F n P00 n P1.

Notice that FQ^F nP and that P is the closure of F0 in P°°. Therefore both

&nL and L}(X; m) n P are dense in P. Since F0 contains the set of (S0.2), F n P

is dense in (F, Sa¿).

Coming to condition (R), it is clear that condition (R.2) is satisfied by P0 of

(6.3). Observe that P is the closed subalgebra of P" generated by S0 U Gao(S)



1971] REGULAR REPRESENTATIONS OF DIRICHLET SPACES 469

By conditions (S.l) and (S.2), this means L^Sand hence Ga(L)<=Ga(S) = Gao(S)<=L

proving property (R.l) for L.

Proof of Theorem 3(ii). Let us fix an L which satisfies conditions (C) and (R) and

let (X', m', 3P', S") be the regular representation with respect to L according to

Theorem 2(ii). We have to prove that (¡F', S") is generated by a Ray resolvent

kernel on X' and !F' n C(X') contains a set C[ attached to the Ray resolvent

(Definition 2.5).

A Ray resolvent can be constructed by 0 of (4.1) which is an algebraic isomorph

and isometry from L onto C(X'). <5 is a lattice isomorph and satisfies <t>(u A 1)

= (<&u) A 1 for u e L. Indeed,

(6.5) G'au' = <DGacJ>-V,       u'eC(X'),   a > 0,

(6.6) C'y = 0)(L0)

define a Ray resolvent operator {G'a, a>0} on C(X') and a set C'y attached to it.

G'a is a sub-Markov resolvent on C(X') on account of (R.l) forLand(G.l), (G.2)

for Ga on Lô- (R-2) implies that C'y generates the closed algebra C(X') and so that

C'y separates points of X' and, for any x' e X', there exists u' e C[ nonvanishing

at x'. The inequalities w'SO, aGa + aou'fku' for u' e C'y are obvious from (R.2).

We see that C'y is included in &' n C(X') because of (5.8) and (R.2).

Finally, let us prove that {G'a, a>0} generates the space (!F', S"). It suffices to

show

(6.7) G'au = G'au,   m'-a.e.,       u e L2(X' ; m') n C(X'),

where {G'a, a>0} is the L2-resolvent associated with (!F', «?').

Observe that G'a is related to the L2-resolvent Ga associated with (&, S) as

follows.

(6.8) G'au' = <D2Ga<D2-V,       u'eL2(X';m').

Here, 02 denotes the unitary map from L2(X;m) onto L2(X';m') as appeared

in step (II) of the proof of Theorem 2(ii). We have indeed by (5.7), <S'a(G'au', v')

= («', v')x. = (<D2- V, <D2- H')x = Sa(Ga02- V, *a- V) = €'£[(<D2Ga4)2- 1i/', t/) for any

p'e^'.

Since Q> and <t>2 coincide onFni and Ga is equal to Ga on #" n L, (6.5) and

(6.8) lead us to the equality (6.7) for u' e&' fi\ C(X'). However 9#-- n C(X') is

dense in C(X'). Therefore, taking sub-Markovity of G'a and G'a into account, we

get (6.7) for «' eL2(A"; m') n C(A").

The proof of Theorem 3 is complete.

The next lemma expresses the meaning of Theorem 3 for a special case.

Lemma 6.1. Suppose that m is everywhere dense. Suppose further that the next

condition is satisfied.
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(G.3) (F, ê) is generated by a symmetric resolvent kernel {Ga, a>0} on X such

that Ga transforms Cb(X) into Cb(X) and lima^ + co aGau(x) = u(x) for any xe X,

u e Cb(X).

(i) There exists then an algebra L which satisfies not only (C) and (R) but also

the additional condition (C.4) of Lemma 5.1.

(ii) Let (A", m', F', <S") be the regular representation with respect to such an L.

Then, this is strongly regular and X is embedded onto a dense subset of A" in such a

way as Lemma 5.1. The associated Ray resolvent kernel G'a on X' is an extension of

Ga o/(G.3) in the following sense. For any Borel set A of X,

(6.9) G'a(x, A) = Ga(x, A),       xeX.

Proof, (i) By replacing P2-resolvent {Ga} with the smooth resolvent {Ga} of

(G.3), we can repeat the arguments of the proof of Theorem 3(i) to get an P in

Cb(X). Moreover, S0 (CP) separates points of X. In fact, assume that Gaou(x)

= Gaou(y) for every u e Dq . Then, it is valid for u e Cb(X). Hence aGau(x) = aGau(y)

for all a>0 and MeC¡,(A"). By letting a tend to infinity, we have u(x) = u(y),

ueCb(X), which means x=y. In the same way, we see the existence of some

function of S0 nonvanishing at any preassigned point of X.

(ii) The identity (6.8) is equivalent to

(6.10) G'au'(x) = Gau(x),       u'eC(X'),   xeX,

where u = u'\x the restriction of u' to X. The right-hand side of (6.10) makes sense

because u e Cb(X). Since (4.3) implies z/|x=0-1w' for any u' e C(A"), we have

G'au'\x = O-^y = O-iOG^O-V = Gau,       u' e C(X'),   by (6.5).

However, Ga and Ga are identical on P for they are on P2(A"; m) n C(X).

Remark 6.1. We may consider that Theorem 3 treats the problem of finding

strong Markov processes for a given resolvent operator. Theorem 3 solves this

problem demanding that the construction procedure does not change the structure

of certain associated function spaces. If we take off such a demand, we have much

more possibilities of getting strong Markov processes. The proof of Theorem 3

indicates the following.

Suppose that we are given a sub-Markov resolvent operator {Ga, a>0) on a

closed subalgebra A ofB(X) orP°°(A; m). Here, P(A") denotes the space of bounded

functions with uniform norm. No kind of assumption of symmetry is imposed

on Ga.

(I) If we are given a closed subalgebra P of A which satisfies condition (R)(7),

then (6.5) defines a Ray resolvent (and consequently a strong Markov process of

Ray in the sense of Remark 2.2(h)) on the very character space A" of P.

C) Here the term of condition (R) is used under a trivial modification that we do not

require L0 of (R.2) to be a subset of F.
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(II) Let DJ" be any countable subcollection of A + . Then D<J" generates an L

satisfying condition (R) quite in the same manner as in the proof of Theorem 3.

Our method to get L which satisfies (R) is due to H. Kunita and T. Watanabe

[12]. The above mentioned facts tell the generality of their method and the scope

of the Ray process.

Remark 6.2. Consider a bounded domain D of RN. The D-space of Example 1

of §3 meets the condition (G.3) of Lemma 6.1. According to Lemma 6.1, we get

its strongly regular representation accompanied by a Ray process on an extension

D' of D. On the other hand, we adopted in [5] the compactification D* of D with

respect to Gy(D¡}~ ) to serve as a state space of an extended strong Markov process—

a reflecting Brownian motion. This process is not necessarily a Ray's one in the

strict sense of the word. However, it turns out that (D*, dx, ¿ffe, ( , )D¡1) is a

regular representation of the given D-space, for the algebra generated by Gy(D¡}~)

and 1 is obviously dense both in C(D*) and in S\*.

The situation is quite the same for the D-space generated by each resolvent

density of class G in [6].

Appendix. Construction of D-spaces by means of completion. Let Ibea locally

compact Hausdorff and separable space and m be a Radon measure on X. A pair

(«s/, ê) is said to satisfy condition (sé) if it enjoys the next three conditions.

(sé.V) «of is a linear subspace of L2(X; m) and S is a positive definite symmetric

bilinear form on «s/.

(sé.2) If u ese, then v = (0 v u) A 1 e se and ê(v, v) fk S(u, u).

(se.3) \funesé satisfies (un, u„)x->0 and S(un — um, un — um)-*■ 0, then

^(«n, "n) -»■ 0.

Condition (sé.l) means that sé is a real pre-Hilbert space with respect to inner

product Sa(u, v) = S(u, v) + a(u, v)x, u,v esé, for each a > 0.

Theorem. Suppose that a pair (se, ê) satisfies condition (sé). Let !F be the com-

pletion of sé with respect to a metric Sao for a fixed a0 > 0. Then, (X, m, iF, S) is a

D-space.

Proof, (sé.l) and (sé.3) imply that !F is a linear subspace of L2(X; m) and that

(&, ê) satisfies the condition (D.2) of Definition 2.1. Therefore, for each a>0 and

u e L2(X; m), there exists Gau e 3F such that S\Gau, v) = (u, v)x holds for any

v e!F. It suffices for us to show that {Ga, a>0} is an F2-resolvent, because then

(¿F, «#) coincides with the D-space generated by {Ga, a>0}. Obviously {Ga, a>0}

satisfies the resolvent equation. To see its sub-Markov property, let us assume that

u e L2(X; m) and 0 fk u fk 1 m-a.e.

If we put <f>(v) = S(v, v) + a(v — (l\a)u, v — (l\a)u)x for ve!F, then we have

<£(<;) = <$>(Gaú) + ia(Gau — v, Gau — v), which means that Gau is a unique element of

IF minimizing the quadratic form <D on !F. Further we see that vn e !F converges
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to Gau in «f-norm if and only if vn is a minimizing sequence for O: 0(u„) -»■ 0(Gaw).

Since s/ is dense in !F in <fa-norm, there exist vnesé which converges to Gau

in #a-norm. Put wn = (0wn)A(l/a). By condition (s/.2), wnes/ and $(wn, wn)

fk@(vn, v„). Now it is easy to see that 0(Gaw)¿ 0(w„)á 0(yn) for each «. However,

y„ is a minimizing sequence for O and so that wn is. Hence, wn converges to GaM

in <fa-norm and consequently a subsequence of wn converges to Gau m-a.e. Thus

we get 0 á Gau £ 1/a m-a.e.

Corollary 1. In addition to the condition in Theorem, we assume that m is every-

where dense on X and that si is a dense subset of C(X). Then (X, m, F, S) of the

theorem is a regular D-space.

Corollary 2. Suppose that we are given a D-space (X, m, F, S). Let si be a

subspace of F such that (0 V u) A 1 e sé whenever ue sé. Denote by ^ the completion

of si with respect to Sa°-norm. Then, (X, m, F0, S) is a D-space.

Corollary 3. Suppose that we are given a D-space (X, m, F, S) with everywhere

dense m. We assume that F n C0(X) is dense in C0(A'). Denote by F0 the com-

pletion of F n C0(A") with respect to S"ao-norm. Then, (X, m, F0, <?) is a regular

D-space.
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